JP3668713B2 - High tensile steel plate with excellent weldability and uniform elongation - Google Patents

High tensile steel plate with excellent weldability and uniform elongation Download PDF

Info

Publication number
JP3668713B2
JP3668713B2 JP2001359970A JP2001359970A JP3668713B2 JP 3668713 B2 JP3668713 B2 JP 3668713B2 JP 2001359970 A JP2001359970 A JP 2001359970A JP 2001359970 A JP2001359970 A JP 2001359970A JP 3668713 B2 JP3668713 B2 JP 3668713B2
Authority
JP
Japan
Prior art keywords
less
steel plate
tensile
heat input
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001359970A
Other languages
Japanese (ja)
Other versions
JP2003160835A (en
Inventor
敏晃 ▲高▼木
等 畑野
喜臣 岡崎
裕之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001359970A priority Critical patent/JP3668713B2/en
Publication of JP2003160835A publication Critical patent/JP2003160835A/en
Application granted granted Critical
Publication of JP3668713B2 publication Critical patent/JP3668713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築構造物や橋梁などの大型構造物に好適に用いられ、引張強さが590MPa以上780MPa未満程度の高張力厚鋼板(以下、単に「590MPa級鋼板」と称すことがある)に関するものであり、殊に溶接性(大入熱HAZ靭性および耐溶接割れ性)および均一伸びに優れた高張力厚鋼板に関するものである。
【0002】
【従来の技術】
上記大型構造物に用いられている590MPa級鋼板では、母材強度の確保という観点から合金成分を多量に添加しているので、冷却速度の速い小入熱溶接条件ではHAZ(溶接熱影響部)が硬化して溶接割れ(低温割れ)が生じやすく、かかる溶接割れの防止を目的として、溶接施工時に75℃程度の予熱を行う必要がある。従って、この予熱工程を省略できれば施工効率が大幅に向上し、且つコストダウンにもつながるため、予熱工程を省略しても溶接割れが生じない程度の耐溶接割れ性に優れた590MPa級鋼板の提供が切望されている。
【0003】
ところで、耐溶接割れ性の指標としては下式で定義されるPcm(%)というパラメーターが一般に用いられている。こうした観点から、例えば特開平10‐68045号公報には、このPcmを0.20%以下に制限することによって耐溶接割れ性を改善することが開示されている。
Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5×[B]+[V]/10
《式中、[ ]は各元素の含有量(質量%)を示す》。
【0004】
一方、同じ590MPa級鋼板において、大入熱溶接時にHAZ靭性が劣化するという問題があることが指摘されている。こうした事態は、入熱が大きくなるとHAZ部の冷却速度が遅くなり、それに伴いHAZ部の焼入れ性が低下し、粗大な島状マルテンサイトを生成することに基づくことによって生じるとされている。こうしたこの問題は厚物、薄物いずれにおいても発生し、実際の溶接施工時に入熱制限が行われ、溶接効率が悪かった。
【0005】
大入熱溶接時のHAZ靭性の改善に当たっては、上記特開平10‐68045号公報の他、特開平10‐121191号公報において、下式で表される炭素当量(Ceq)を0.35〜0.40(%)と低く制限することが開示されている。
Ceq=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14
《式中、[ ]は各元素の含有量(質量%)を示す》。
【0006】
このように、従来はPcmを低値に制御することにより小入熱溶接時の耐溶接割れ性を改善したり、あるいはCeqを制御することにより大入熱HAZ靭性を改善すると共に、合金成分の含有量制限に伴う母材強度低下を、製造プロセスを改良するなどして補っていた。これにより、590MPa級鋼板において、母材製造時の焼入れにおける冷却速度が比較的速い薄物では溶接時の予熱フリーを達成できたが、冷却速度が遅い厚物では溶接時の予熱フリーと母材強度の両立を達成することが困難であった。また、Cuの析出を利用して母材強度を確保する方法も開示されているが、冷却速度が遅い厚物では充分な母材強度が得られなかった。
【0007】
このように、小入熱溶接においてHAZ部は高温に加熱された後の冷却速度が速いため、硬化して溶接割れ(低温割れ)を起こしやすい。一方、母材は板厚が厚くなるほど冷却速度が遅くなるため、圧延後の焼入れ効果による強度確保が難しくなる。従って、590MPa級鋼板の厚物では、小入熱溶接時の溶接割れを防止するため冷却速度が速くなっても硬くならないようにした上で、鋼板製造時の冷却速度が遅く、焼入れ効果が得難い場合であっても如何に強度を確保するかが重要課題となる。
【0008】
また、厚物、薄物いずれにおいても、大入熱溶接においては、HAZ部の冷却速度が遅くなり、それに伴いHAZ部の焼入れ性が低下し、粗大な島状マルテンサイト組織を生成して靭性が低下するが、このHAZ靭性を改善するには、冷却速度が遅い場合であっても島状マルテンサイト組織の生成を如何なる方法で抑制するかが重要課題となる。
【0009】
ところで、上記のような590MPa級鋼板では、特に建築構造物や鋼構造物に使用される場合には、耐震性を向上させるという観点から、均一伸びが高いことも要求される。即ち、この均一伸びは、鋼板が破断に至るまでの途中で局部収縮が開始するまでの伸びのことを意味し、鋼板が変形する際の安定性の指標となるものであり、こうしたことから値が高い方が良好な耐震性が得られるとされている。
【0010】
均一伸びを向上させる手段としては、残留オーステナイト(残留γ)量を増加させることが知られているが(例えば、マルテンサイト変態誘起塑性現象を用いたTRIP鋼板)、残留γを増加させると島状マルテンサイトも増加して母材靭性が低下することが問題となっていた。こうしたことから、良好な母材靭性を確保しつつ均一伸びを向上させる技術の確立が望まれているのが実状である。
【0011】
【発明が解決しようとする課題】
本発明は、上記事情に着目してなされたものであり、その目的は、溶接性(大入熱HAZ靭性および耐溶接割れ性)に優れ、しかも均一伸びも高い値が得られるような590MPa以上780MPa未満の高張力厚鋼板を提供することにある。
【0012】
【課題を解決するための手段】
上記課題を解決し得た本発明に係る高張力厚鋼板とは、C:0.010〜0.06%,Mn:0.5〜2.5%,Cr:0.1〜2.0%,Mo:1.5%以下(0%を含む),V:0.1%以下(0%を含む),Nb:0.1%以下(0%を含む),Ti:0.005〜0.03%,B:0.0006〜0.005%,N:0.002〜0.01%を満たし、残部がFeおよび不可避不純物である鋼からなり、
2.4%≦KP≦4.5%
を満足すると共に、島状マルテンサイト分率が20体積%以下であり、且つ0.5体積%以上の残留オーステナイトが存在するものであることを特徴とする溶接性および均一伸びに優れた高張力厚鋼板。
但し、
KP(%)=[Mn]+1.5×[Cr]+2×[Mo]
《式中、[ ]は各元素の含有量(質量%)を意味する。》
【0013】
本発明の高張力厚鋼板においては、島状マルテンサイト(以下、「島状MA」と記すことがある)の平均粒径が5μm以下であることが好ましく、こうした要件を満足させることによって、より高い母材靭性を得ることができる。
【0014】
また、本発明の高張力厚鋼板では、KV≦0.12(%)を満足するものであることが好ましく、こうした要件を満足させることによって、大入熱HAZ靭性を更に改善することができる。
但し、
KV(%)=[V]+[Nb]
《式中、[ ]は各元素の含有量(質量%)を意味する。》。
【0015】
本発明の高張力厚鋼板は、上記基本成分の他は実質的に鉄からなるものであるが、必要によって、(a)Ni:5%以下(0%を含まない)、(b)Cu:3%以下(0%を含まない)、(c)Ca:0.005%以下(0%を含まない)、(d)Mg:0.005%以下(0%を含まない)、希土類元素:0.02%以下(0%を含まない)およびZr:0.05%以下(0%を含まない)よりなる群から選ばれる1種以上、(e)Si:1%以下(0%を含まない)および/またはAl:0.2%以下(0%を含まない)等を含有させることも有効であり、含有される成分の種類に応じて高張力厚鋼板の特性が更に改善される。また本発明の高張力厚鋼板は、肉厚が80mm以上のものでも良好な溶接性と母材強度を有するものである。
【0016】
【発明の実施の形態】
本発明者らが検討したところによれば、490MPa級の鋼板ではPcmの制御によって耐溶接割れ性の改善と母材強度の確保を両立することができたが、590MPa級鋼板ではPcmによる成分制御を行ったとしても、特に厚物において両特性の満足を図ることは困難であることが判明した。
【0017】
また、一般に、大入熱溶接時に上部ベイナイトを生成させると島状MAが生成し、鋼のHAZ靭性が劣化するため、490MPa級の鋼板では、HAZにおいてフェライトを積極的に生成させるべく、Ceqを制御して大入熱HAZ靭性の改善が試みられてきたが、これは高強度化・厚肉化とは相反することであり、590MPa級鋼板での大入熱HAZ靭性の改善と厚肉化の両立を図ることも困難であった。
【0018】
そこで、本発明では成分設計に当たり、これまで耐溶接割れ性の指標とされてきたPcmおよび大入熱HAZ靭性確保の指標とされてきたCeqではなく、全く別のパラメーターにより耐溶接割れ性および大入熱HAZ靭性を制御できないか鋭意検討した。その結果、鋼組織を考慮した上記各式で表されるKPおよびKVを用い、さらにC量を極低減化し、Bを添加することにより良好な耐溶接割れ性、大入熱HAZ靭性と母材強度を達成できることを見出し、その技術的意義が認められたので先に出願している(特願2001−154512号)。
【0019】
本発明者らは、上記のような高張力鋼板を実現した後も、その特性の更なる改善を目指して更に検討を重ねた。その結果、上記KP値を適切な範囲に制御すると共に、製造条件を適切に制御することによって、島状MA分率が20体積%以下で、且つ0.5体積%以上の残留オーステナイトが存在するものとすれば、高い母材靭性を確保しつつ高い均一伸びが得られることを見出し、本発明を完成するに至った。
【0020】
まず、本発明において耐溶接割れ性および大入熱HAZ靭性を改善する原理について説明する。上記の通り、本発明では、Cを極低Cに制限した上で、焼入れ性向上元素であるMnおよびCr、場合によってはさらにMoを積極的に添加し、該焼入れ向上元素の含有量によって定められるKP値を適切に制御すること、必要によって、大入熱HAZ靭性低下元素であるVおよびNbの添加をBとの関係で規定したKV値を適切に制御するものである。これらの成分を適切に添加することにより、ベイナイトの連続冷却曲線(図1のCCT線図を参照)が短時間側且つ低温度側に移動すると共に、フェライトのCCT線が長時間側に移動することになる(実線から破線へ移動)。
【0021】
従来では、高冷却速度ではマルテンサイト(MA)、低冷却速度ではフェライトまたは上部ベイナイトを生成するために、硬さの冷却速度感受性が大きく、小入熱溶接時のHAZ部の硬さ低減(耐溶接割れ性の改善)と母材強度の確保が両立できず、予熱フリーの達成が困難であったが、本発明によれば、高冷却速度、低冷却速度のいずれにおいても低温変態ベイナイトを生成し、硬さの冷却速度感受性が低下し、溶接時のHAZ部の硬さ低減(耐溶接割れ性の改善)と母材強度確保を両立ならしめたのである。
【0022】
一方、大入熱溶接の場合、HAZの冷却速度が遅くなるため、従来はフェライトまたは上部ベイナイトを生成し、それに伴い粗大且つ塊状の島状MA組織が生成してHAZ靭性が劣化していたが、本発明では、冷却速度が遅くても低温変態ベイナイトが生成するため塊状ではなくフィルム状のMA組織になると同時に、極低Cであるため生成するMA組織が微細となり、HAZ靭性を確保できたのである。
【0023】
上記の観点から本発明では、KP値([Mn]+1.5×[Cr]+2×[Mo])を2.4〜4.5%の範囲とする必要がある。このKP値が2.4%未満になると、上記効果を有効に発揮させることができず、590MPa以上の母材強度を達成することができなくなる。一方、KP値が4.5%を超えると、大入熱HAZ靭性が低下することになる。尚、KP値の好ましい下限は2.5%であり、より好ましくは2.7%以上、更に好ましくは3.0以上とするのが良い。また、KP値の好ましい上限は4.3%であり、より好ましくは3.5%以下とするのが良い。
【0024】
本発明の高張力厚鋼板では、製造条件を適切に制御することによって、島状MA分率を20体積%以下とした上で、0.5体積%以上の残留オーステナイトを確保し、これによって高い母材靭性を確保しつつ高い均一伸びが得られたのであるが、こうした組織を得るための条件について説明する。
【0025】
まず、島状MA分率を制御する手段としては、例えば2相域熱処理温度を比較的低い温度にすることが挙げられる。具体的には、2相域熱処理温度を830℃以下とすることによって、島状MA分率を20体積%以下に制御できる。尚、島状MAは、完全に生成させないようにはできないが、好ましくは10体積%以下とするのが良く、より好ましくは5体積%以下とするのが良い。
【0026】
また、上記島状MAの平均粒径については5μm以下であることが好ましく、こうした要件を満足させることによって、より高い母材靭性を得ることができる。島状MAの平均粒径を5μm以下に制御する手段としては、焼入れ熱処理時の加熱温度をAc3〜940℃程度にすることが挙げられる。
【0027】
一方、残留γ量を0.5%以上に確保する手段については、例えば2相域焼入れ熱処理後の冷却において、600℃までを0.1〜0.3℃/秒程度で冷却し、その後350℃までを1℃/秒以上で冷却することが挙げられる。こうした方法は、初めは低い冷却速度でCを濃縮させ、その後セメンタイトを析出させないように、600℃以下では高い冷却速度で冷却することによって、0.5体積%以上の残留γを確保するものである。また、焼戻し熱処理によって残留γが分解しないように、焼戻し温度は300℃以下にすることが好ましい。尚、残留γ量については、1体積%以上存在させることが、均一伸びを高める上で好ましい。
【0028】
上記製造条件は、熱間圧延の後に熱処理する場合(即ち、調質の場合)を想定したものであるが、本発明ではこのような場合だけに限らず非調質であっても上記のような組織をすることができる。具体的には、熱間圧延の際の加熱温度をAc3〜950℃の温度範囲として比較的低温(830℃以下)で熱間圧延を終了し、その後600℃までを0.1〜0.3℃/秒程度で冷却し、更に350℃までを1℃/秒以上で冷却するようにしても良い。
【0029】
本発明の高張力厚鋼板においては、KV値([V]+[Nb])を0.12%以下に制御することも有効である。即ち、VおよびNbは大入熱HAZ靭性を低下させる元素であるので、これらの元素によって規定されるKV値を適切な範囲に制御することによって、大入熱HAZ靭性を改善できるのである。こうした観点からすれば、VおよびNbは、後述する必要含有量の範囲内でできるだけ低く設定することが推奨され、より好ましくは0.06%以下、更に好ましくは0.04%以下とするのが良い。
【0030】
本発明の高張力鋼板において、上記の効果を発揮させるためにはその化学成分組成も適切に調整する必要があるが、本発明鋼板における基本成分であるC,Mn,Cr,Mo,V,Nb,Ti,BおよびN等の範囲限定理由は次の通りである。
【0031】
C:0.010〜0.06%
Cは、溶接時におけるHAZ部の耐溶接割れ性と母材強度を両立させ、且つ大入熱HAZ靭性を改善するために重要な元素である。こうした効果を発揮させるためには、少なくとも0.010%以上含有させる必要があるが、0.06%を超えると高冷却速度側で低温変態ベイナイトでなくマルテンサイトが生成するようになり、耐溶接割れ性および大入熱HAZ靭性が改善されない。C含有量の好ましい下限は0.020%であり、より好ましくは0.025%以上とするのが良く、好ましい上限は0.050%であり、より好ましくは0.045%以下とするのが良い。
【0032】
Mn:0.5〜2.5%
Mnは焼入れ性を改善する作用を有し、高冷却速度乃至低冷却速度で低温変態ベイナイトを生成しやすくする。Mn含有量が0.5%未満であると、所望の焼入れ性改善作用が発揮されず、母材強度が不足する。しかしながら、Mn含有量が過剰になって2.5%を超えると、HAZ部の耐溶接割れ性が劣化することになる。Mn含有量の好ましい下限は1.0%であり、より好ましくは1.25%以上とするのが良く、好ましい上限は2.0%であり、より好ましくは1.6%以下とするのが良い。
【0033】
Cr:0.1〜2.0%
CrはMnと同様に、焼入れ性を改善する作用を有し、高冷却速度乃至低冷却速度で低温変態ベイナイトを生成しやすくする。Cr含有量が0.1%未満であると、所望の焼入れ性改善作用が発揮されず、母材強度が不足する。しかしながら、Cr含有量が過剰になって2.0%を超えると、HAZ部の耐溶接割れ性が劣化することになる。Cr含有量の好ましい下限は0.5%であり、より好ましくは0.6%以上とするのが良く、好ましい上限は1.5%であり、より好ましくは1.2%以下とするのが良い。
【0034】
Mo:1.5%以下(0%を含む)
Moは上記MnおよびCrと同様に焼入れ性を改善する作用を有し、高冷却速度乃至低冷却速度で低温変態ベイナイトを生成しやすくするが、過剰に含有されるとHAZ部の耐溶接割れ性が劣化するので、1.5%を上限として含有しても良い。Mo含有量の好ましい上限は1.0%であり、より好ましくは0.5%以下とするのが良い。
【0035】
V:0.1%以下(0%を含む)
Vは少量の添加により焼入れ性および焼戻し軟化抵抗を高める作用がある。但し、0.1%を超えて含有させると大入熱HAZ靭性が低下する。V含有量の好ましい上限は0.06%であり、より好ましくは0.04%以下とするのが良い。
【0036】
Nb:0.1%以下(0%を含む)
Nbはγ粒径を微細化し、これにより変態後のベイナイトブロックサイズが微細化されるため、母材靭性の向上に寄与する。但し、Nbの添加量が0.1%を超えると大入熱HAZ靭性が低下する。Nb含有量の好ましい上限は0.06%であり、より好ましくは0.04%以下とするのが良い。
【0037】
Ti:0.005〜0.03%
TiはNと窒化物を形成して大入熱溶接時におけるHAZ部のγ粒を微細化し、HAZ靭性改善に寄与する点で有用である。こうした効果を発揮させるためには、Tiは0.005%以上含有させる必要があるが、Ti含有量が0.03%を超えると逆にHAZ靭性が低下することになる。Ti含有量の好ましい下限は0.007%であり、好ましい上限は0.02%程度である。
【0038】
B:0.0006〜0.005%
Bは焼入れ性改善元素で、低冷却速度で低温変態ベイナイトを生成しやすくすると共に、小入熱溶接時におけるHAZ部の耐溶接割れ性と母材強度確保を両立させる上で有用な元素である。B含有量が0.0006%未満では焼入れ性改善効果が期待できず、母材強度が不足してしまう。好ましくは0.0007%以上、さらに好ましくは0.001%以上である。但し、B含有量が0.005%を超えるとかえって焼入れ性が低下し、母材強度が不足する。好ましくは0.003%以下とするのが良い。
【0039】
N:0.002〜0.01%
Nは上記の通り、Tiと窒化物を形成して大入熱溶接時におけるHAZ靭性改善に寄与する点で有用である。但し、NはBと結合して固溶Bを減少させ、Bの焼入れ性向上作用を阻害し、母材の靭性および大入熱HAZ靭性を低下させる作用も有しており、Nの含有量が0.01%を超えるとその作用が顕著になる。好ましくは0.008%以下である。また、N含有量が0.002%未満ではTiとの窒化物形成による大入熱HAZ靭性改善の効果が十分でない。好ましくは0.0030%以上である。
【0040】
本発明の高張力厚鋼板においては、上記基本成分の他(残部)は実質的に鉄からなるものであるが、これら以外にも微量成分を含み得るものであり、こうした高張力厚鋼板も本発明の範囲に含まれるものである。上記微量成分としては不純物、特にP,S等の不可避不純物が挙げられ、これらは本発明の効果を損なわない程度で許容される。こうした観点から、不可避不純物としてのP,SはP:0.02%以下,S:0.01%以下に夫々抑制することが好ましい。
【0041】
また本発明の高張力厚鋼板には、必要によってNi,Cu,Ca,Mg,希土類元素,Zr,Si,Al等を含有させることも有効であり、含有される成分の種類に応じて高張力厚鋼板の特性が更に改善される。必要によって含有される元素の範囲限定理由は下記の通りである。
【0042】
Ni:5%以下(0%を含まない)
Niは母材靭性向上に有用な元素であるが、5%を超えて添加するとスケール疵が発生しやすくなるため、その上限を5%とすることが好ましい。より好ましくは3%以下、更に好ましくは2%以下にするのが良い。
【0043】
Cu:3%以下(0%を含まない)
Cuは固溶強化および析出強化により母材強度を向上させると共に、焼入れ性向上作用も有する元素である。但し、3%を超えて添加すると大入熱HAZ靭性が低下するため、その上限を3%とすることが好ましい。より好ましくは2%以下、更に好ましくは1.2%以下にするのが良い。
【0044】
Ca:0.005%以下(0%を含まない)
CaはMnSを球状化して、介在物の異方性を低減する効果を有する元素である。こうした効果を発揮させるためには0.0005%以上添加することが好ましい。より好ましくは0.001%以上である。但し、0.005%を超えて過剰に含有させると母材靭性が低下するので、その上限を0.005%とすることが好ましい。より好ましくは0.004%以下とするのが良い。
【0045】
Mg:0.005%以下(0%を含まない)、希土類元素:0.02%以下(0%を含まない)およびZr:0.05%以下(0%を含まない)よりなる群から選ばれる1種以上
Mg、希土類元素(REM)およびZrは、HAZ靭性を向上させるのに有用な元素である。しかしながら、過剰に含有されるとHAZ靭性を却って劣化させることになるので、Mgで0.005%以下、REMで0.02%以下、Zrで0.05%以下とするのが良い。より好ましくは、Mg:0.003%以下、REM:0.01%以下、Zr:0.03%以下とするのが良い。尚、本発明で含有されることのあるREMは、周期律表3族に属するスカンジウム(Sc)、イットリウム(Y)およびランタノイド系列希土類元素(原子番号57〜71)の元素のいずれをも用いることができる。
【0046】
Si:1%以下(0%を含まない)および/またはAl:0.2%以下(0%を含まない)
SiおよびAlは脱酸剤として有用な元素である。またAlはNを固定して、固溶Bを増加させることにより、Bに基づく焼入れ性を向上する作用をも発揮する。これらの効果は、その含有量が増加するにつれて増大するが、Siで1%、Alで0.2%を超えて過剰に含有されると母材靭性(Siでは母材靭性と溶接性)が低下する。より好ましくはSiで0.6%以下、Alで0.1%以下、更に好ましくはSiで0.3%以下、Alで0.05%以下とするのが良い。
【0047】
本発明の高張力厚鋼板を製造するには、上記の組織を得るための製造条件を考慮する他は、上記化学組成を満足する鋼を用い、通常用いられる高張力厚鋼板の製造工程、および条件(温度、時間など)を適宜採用すれば良い。そして、本発明の鋼板は、比較的厚い鋼板を想定したものであり、例えば肉厚が80mm以上のものでも良好な溶接性と母材強度を有するものとなる。
【0048】
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
【0049】
【実施例】
実施例1
下記表1に示す化学成分組成の鋼を通常の溶製法により溶製し、スラブとした後、下記表2に示す条件で熱間圧延および熱処理を行って、所定の板厚からなる高張力鋼板を製造した。尚、「熱処理条件2」の熱処理は、「熱処理条件1」の熱処理の後に行った。
【0050】
【表1】

Figure 0003668713
【0051】
【表2】
Figure 0003668713
【0052】
このようにして得られた各鋼板について、下記の要領で島状MA分率およびサイズ、残留γ量を測定すると共に、母材特性[0.2%耐力、引張強さ、降伏比、靭性(vE-60)および均一伸び]を評価した。また本発明で基準とする母材レベル(590MPa≦引張強さ<780MPa、vE-60≧47J)をクリアしたものについては、さらに溶接性(耐溶接割れ性および大入熱HAZ靭性)を評価した。
【0053】
[島状MA分率およびサイズ]
各鋼板の板厚1/4部位についてレペラー腐食した後光学顕微鏡によって組織を観察し(倍率:1000倍)、50μ角の領域をn=10で撮影し、画像解析装置によって、分率およびサイズを測定した。
【0054】
[残留γ量]
各鋼板の板厚1/4部位についてX線回折によって、残留γ量を測定した。
【0055】
[母材特性試験]
▲1▼引張試験:各鋼板の板厚1/4部位からJIS4号試験片を採取し、引張試験を行うことにより0.2%耐力および引張強さを測定した。590MPa≦引張強さ<780MPaを合格とした。また、引張試験の際に、降伏比および均一伸びについても測定した。
▲2▼衝撃試験:各鋼板の板厚1/4部位からJIS4号試験片を採取し、シャルピー衝撃試験をおこなうことにより吸収エネルギー(vE-60)を得た。vE-60≧47Jを合格とした。
【0056】
[溶接性試験]
▲1▼HAZ靭性:入熱100あるいは120kJ/mm(エレクトロスラグ溶接法)で溶接を行い、図2に示す部位からJIS4号試験片を採取してシャルピー衝撃試験を行い、ボンド部の吸収エネルギー(vE-20)を求めた。vE-20≧15Jを合格とした。
▲2▼耐溶接割れ性:JIS Z 3158に記載のy形溶接割れ試験法に基づいて、入熱1.7kJ/mmで被覆アーク溶接を行い、ルート割れ防止予熱温度を測定した。25℃以下を合格とした。
【0057】
これらの試験結果を、島状MA分率およびサイズ、残留γ量と共に、下記表3に示すが、本発明で規定する要件を満足するもの(No.1,2,5,6,9,10,12〜17,27〜38)では、母材特性および溶接性のいずれにも優れていることが分かる。これに対して、本発明で規定する要件のいずれかを欠くもの(No.3,4,7,8,11,18〜26)では、耐溶接割れ性、大入熱HAZ靭性、母材特性(0.2%耐力、引張強さ,靭性、均一伸び)の少なくともいずれかが低下していることが分かる。
【0058】
【表3】
Figure 0003668713
【0059】
【発明の効果】
本発明は以上のように構成されており、溶接性(大入熱HAZ靭性および耐溶接割れ性)に優れ、しかも均一伸びも高い値が得られるような590MPa以上780MPa未満の高張力厚鋼板が実現できた。
【図面の簡単な説明】
【図1】本発明の成分設計の考え方を説明するための模式的なCCT線図である。
【図2】エレクトロスラグ溶接時のボンド靭性の試験片採取位置を示す概略説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention is suitably used for large structures such as building structures and bridges, and relates to a high-tensile thick steel plate (hereinafter sometimes simply referred to as “590 MPa-grade steel plate”) having a tensile strength of about 590 MPa to less than 780 MPa. In particular, the present invention relates to a high-tensile steel plate excellent in weldability (high heat input HAZ toughness and weld crack resistance) and uniform elongation.
[0002]
[Prior art]
In the 590 MPa grade steel plate used in the large structure, a large amount of alloy components are added from the viewpoint of ensuring the strength of the base material, and therefore HAZ (welding heat affected zone) is used under small heat input welding conditions where the cooling rate is fast. Is hardened and tends to cause weld cracks (cold cracks), and it is necessary to preheat at about 75 ° C. during welding for the purpose of preventing such weld cracks. Therefore, if this preheating step can be omitted, the construction efficiency can be greatly improved and the cost can be reduced. Therefore, provision of a 590 MPa grade steel plate having excellent weld crack resistance that does not cause weld cracking even if the preheating step is omitted. Is anxious.
[0003]
By the way, a parameter called Pcm (%) defined by the following formula is generally used as an index of resistance to weld cracking. From such a viewpoint, for example, JP-A-10-68045 discloses that the weld crack resistance is improved by limiting the Pcm to 0.20% or less.
Pcm = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 × [B] + [V] / 10
<< In formula, [] shows content (mass%) of each element >>.
[0004]
On the other hand, it has been pointed out that the same 590 MPa grade steel sheet has a problem that the HAZ toughness deteriorates during high heat input welding. Such a situation is said to be caused by the fact that when the heat input is increased, the cooling rate of the HAZ part is lowered, and the hardenability of the HAZ part is lowered accordingly, and coarse island martensite is generated. Such a problem occurred in both thick and thin objects, and heat input was restricted during actual welding work, resulting in poor welding efficiency.
[0005]
In improving the HAZ toughness at the time of high heat input welding, in addition to the above-mentioned JP-A-10-68045, JP-A-10-121191 discloses a carbon equivalent (Ceq) represented by the following formula: 0.35 to 0 It is disclosed to limit to as low as .40 (%).
Ceq = [C] + [Mn] / 6 + [Si] / 24 + [Ni] / 40 + [Cr] / 5 + [Mo] / 4 + [V] / 14
<< In formula, [] shows content (mass%) of each element >>.
[0006]
Thus, conventionally, by controlling the Pcm to a low value, the weld crack resistance at the time of small heat input welding is improved, or by controlling the Ceq, the high heat input HAZ toughness is improved, and the alloy components The reduction in the strength of the base material due to the content restriction was compensated by improving the manufacturing process. As a result, in a 590 MPa class steel sheet, preheating free during welding was achieved for thin materials with a relatively fast cooling rate during quenching at the time of manufacturing the base material, but preheating free during welding and base material strength for thick materials with a slow cooling rate. It was difficult to achieve both. Moreover, although the method of ensuring the base material strength using precipitation of Cu is also disclosed, sufficient base material strength was not obtained with a thick material having a slow cooling rate.
[0007]
As described above, in the small heat input welding, the HAZ portion has a high cooling rate after being heated to a high temperature, and is thus hardened and easily causes a weld crack (low temperature crack). On the other hand, since the cooling rate of the base material increases as the plate thickness increases, it is difficult to ensure the strength due to the quenching effect after rolling. Therefore, in the case of a thick 590 MPa grade steel plate, it is difficult to obtain a quenching effect because the cooling rate is slow at the time of manufacturing the steel plate after preventing the steel from becoming hard even if the cooling rate is high in order to prevent weld cracking at the time of small heat input welding. Even in this case, how to secure the strength is an important issue.
[0008]
Moreover, in both thick and thin objects, in high heat input welding, the cooling rate of the HAZ part is slowed, and the hardenability of the HAZ part is lowered accordingly, and a coarse island martensite structure is generated to produce toughness. However, in order to improve the HAZ toughness, an important issue is how to suppress the formation of island martensite structures even when the cooling rate is low.
[0009]
By the way, in the above-mentioned 590 MPa class steel plate, especially when used for a building structure or a steel structure, high uniform elongation is also required from the viewpoint of improving earthquake resistance. In other words, this uniform elongation means the elongation until the local contraction starts in the middle of the steel sheet breaking, and is an indicator of stability when the steel sheet is deformed. It is said that better earthquake resistance is obtained at higher values.
[0010]
As a means for improving the uniform elongation, it is known to increase the amount of retained austenite (residual γ) (for example, a TRIP steel sheet using martensite transformation-induced plasticity phenomenon), but when the retained γ is increased, an island shape is obtained. There has been a problem that martensite also increases and the base material toughness decreases. For these reasons, it is actually desired to establish a technique for improving uniform elongation while ensuring good base material toughness.
[0011]
[Problems to be solved by the invention]
The present invention has been made by paying attention to the above circumstances, and its purpose is 590 MPa or more that is excellent in weldability (high heat input HAZ toughness and weld crack resistance), and that a uniform elongation is high. The object is to provide a high-tensile thick steel plate of less than 780 MPa.
[0012]
[Means for Solving the Problems]
  The high-tensile steel plate according to the present invention that has solved the above-mentioned problems is: C: 0.010 to 0.06%, Mn: 0.5 to 2.5%, Cr: 0.1 to 2.0% , Mo: 1.5% or less (including 0%), V: 0.1% or less (including 0%), Nb: 0.1% or less (including 0%), Ti: 0.005 to 0 0.03%, B: 0.0006 to 0.005%, N: 0.002 to 0.01%, the balance being made of steel with Fe and inevitable impurities,
  2.4% ≦ KP ≦ 4.5%
High tensile strength excellent in weldability and uniform elongation, characterized in that the island martensite fraction is 20% by volume or less and the residual austenite is 0.5% by volume or more. Thick steel plate.
  However,
      KP (%) = [Mn] + 1.5 × [Cr] + 2 × [Mo]
        << In formula, [] means content (mass%) of each element. >>
[0013]
In the high-tensile thick steel plate of the present invention, the average particle size of island martensite (hereinafter sometimes referred to as “island MA”) is preferably 5 μm or less, and by satisfying these requirements, High base metal toughness can be obtained.
[0014]
In the high-tensile thick steel plate of the present invention, it is preferable that KV ≦ 0.12 (%) is satisfied. By satisfying these requirements, the high heat input HAZ toughness can be further improved.
However,
KV (%) = [V] + [Nb]
<< In formula, [] means content (mass%) of each element. >>
[0015]
The high-tensile steel plate according to the present invention is substantially made of iron in addition to the above basic components, but if necessary, (a) Ni: 5% or less (excluding 0%), (b) Cu: 3% or less (excluding 0%), (c) Ca: 0.005% or less (not including 0%), (d) Mg: 0.005% or less (not including 0%), rare earth elements: One or more selected from the group consisting of 0.02% or less (excluding 0%) and Zr: 0.05% or less (not including 0%), (e) Si: 1% or less (including 0%) And / or Al: 0.2% or less (not including 0%) or the like is also effective, and the characteristics of the high-tensile thick steel plate are further improved depending on the type of components contained. The high-tensile thick steel plate of the present invention has good weldability and base material strength even when the thickness is 80 mm or more.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
According to a study by the present inventors, in the 490 MPa class steel sheet, it was possible to achieve both the improvement of the weld crack resistance and the securing of the base material strength by controlling the Pcm, but in the 590 MPa class steel sheet, the component control by the Pcm. However, it has been found that it is difficult to satisfy both characteristics particularly for thick materials.
[0017]
In general, when upper bainite is generated during high heat input welding, island-shaped MA is generated, and the HAZ toughness of the steel deteriorates. Therefore, in a 490 MPa grade steel sheet, Ceq is used to actively generate ferrite in the HAZ. Attempts have been made to control and improve high heat input HAZ toughness, but this is contrary to high strength and thickening. Improvement of high heat input HAZ toughness and thickening in 590 MPa steel sheet It was also difficult to achieve both.
[0018]
Therefore, in the present invention, in the component design, the weld crack resistance and large resistance are not determined by completely different parameters, but Pcm, which has been used as an index of weld crack resistance, and Ceq, which has been used as an index of ensuring high heat input HAZ toughness. The inventors studied diligently whether the heat input HAZ toughness could be controlled. As a result, good weld crack resistance, high heat input HAZ toughness and base metal by using KP and KV represented by the above formulas considering the steel structure, further reducing the amount of C, and adding B Since it was found that the strength could be achieved and its technical significance was recognized, it has been filed earlier (Japanese Patent Application No. 2001-154512).
[0019]
The present inventors made further studies aiming at further improvement of the characteristics even after realizing the above-described high-tensile steel sheet. As a result, by controlling the KP value in an appropriate range and appropriately controlling the manufacturing conditions, there is residual austenite having an island-like MA fraction of 20% by volume or less and 0.5% by volume or more. If so, it was found that high uniform elongation was obtained while ensuring high base material toughness, and the present invention was completed.
[0020]
First, the principle of improving weld crack resistance and high heat input HAZ toughness in the present invention will be described. As described above, in the present invention, after limiting C to extremely low C, Mn and Cr, which are hardenability improving elements, and in some cases, further actively adding Mo, are determined by the content of the quenching improving element. Appropriately controlling the KP value to be obtained and, if necessary, appropriately controlling the KV value in which the addition of V and Nb, which are large heat input HAZ toughness reducing elements, is defined in relation to B. By appropriately adding these components, the continuous cooling curve of bainite (see the CCT diagram in FIG. 1) moves to the short time side and the low temperature side, and the CCT line of ferrite moves to the long time side. (Moving from solid line to broken line).
[0021]
Conventionally, since martensite (MA) is produced at a high cooling rate and ferrite or upper bainite is produced at a low cooling rate, the hardness is highly sensitive to the cooling rate, and the hardness of the HAZ part during the low heat input welding is reduced. (Improvement of weld cracking) and securing of the base metal strength were not compatible, and it was difficult to achieve preheating-free. However, according to the present invention, low-temperature transformation bainite was produced at both high and low cooling rates. In addition, the sensitivity to the cooling rate of the hardness is lowered, and the reduction in hardness of the HAZ part during welding (improvement of weld crack resistance) and the securing of the base material strength are achieved at the same time.
[0022]
On the other hand, in the case of high heat input welding, since the cooling rate of HAZ is slow, conventionally, ferrite or upper bainite was generated, and a coarse and massive island-like MA structure was generated accordingly, and HAZ toughness was deteriorated. In the present invention, low-temperature transformation bainite is generated even when the cooling rate is low, so that it becomes a film-like MA structure instead of a lump, and at the same time, because of the extremely low C, the generated MA structure becomes fine and HAZ toughness can be secured. It is.
[0023]
From the above viewpoint, in the present invention, the KP value ([Mn] + 1.5 × [Cr] + 2 × [Mo]) needs to be in the range of 2.4 to 4.5%. If this KP value is less than 2.4%, the above effect cannot be exhibited effectively, and a base material strength of 590 MPa or more cannot be achieved. On the other hand, if the KP value exceeds 4.5%, the high heat input HAZ toughness is lowered. The preferable lower limit of the KP value is 2.5%, more preferably 2.7% or more, and further preferably 3.0 or more. Moreover, the preferable upper limit of KP value is 4.3%, more preferably 3.5% or less.
[0024]
In the high-tensile thick steel plate of the present invention, by controlling the production conditions appropriately, the island-like MA fraction is set to 20% by volume or less, and 0.5% by volume or more of retained austenite is secured, thereby increasing the Although high uniform elongation was obtained while ensuring the base material toughness, the conditions for obtaining such a structure will be described.
[0025]
First, as a means for controlling the island-like MA fraction, for example, a two-phase region heat treatment temperature is set to a relatively low temperature. Specifically, by setting the two-phase region heat treatment temperature to 830 ° C. or less, the island-like MA fraction can be controlled to 20% by volume or less. The island-like MA cannot be completely generated, but is preferably 10% by volume or less, and more preferably 5% by volume or less.
[0026]
In addition, the average particle size of the island-shaped MA is preferably 5 μm or less, and by satisfying these requirements, higher base material toughness can be obtained. As a means for controlling the average particle size of the island-shaped MA to 5 μm or less, the heating temperature during the quenching heat treatment is set to A.c3About 940 degreeC is mentioned.
[0027]
On the other hand, as a means for securing the residual γ amount to 0.5% or more, for example, in cooling after the two-phase quenching heat treatment, cooling to 600 ° C. is performed at about 0.1 to 0.3 ° C./second, and thereafter 350 Cooling to 1 ° C. at 1 ° C./second or more can be mentioned. Such a method secures a residual γ of 0.5% by volume or more by initially concentrating C at a low cooling rate and then cooling at a high cooling rate at 600 ° C. or lower so as not to precipitate cementite. is there. Further, the tempering temperature is preferably 300 ° C. or lower so that the residual γ is not decomposed by the tempering heat treatment. The residual γ amount is preferably 1% by volume or more in order to increase the uniform elongation.
[0028]
The manufacturing conditions are assumed to be heat-treated after hot rolling (that is, in the case of tempering). However, in the present invention, not only in such a case but also in the case of non-tempering, as described above. Can be a good organization. Specifically, the heating temperature during hot rolling is Ac3The hot rolling is finished at a relatively low temperature (830 ° C. or lower) within a temperature range of ˜950 ° C., and then cooled to about 600 ° C. at about 0.1 to 0.3 ° C./second, and further up to 350 ° C. at 1 ° C. The cooling may be performed at a rate of more than 1 second.
[0029]
In the high-tensile thick steel plate of the present invention, it is also effective to control the KV value ([V] + [Nb]) to 0.12% or less. That is, since V and Nb are elements that reduce the high heat input HAZ toughness, the high heat input HAZ toughness can be improved by controlling the KV value defined by these elements within an appropriate range. From this point of view, it is recommended that V and Nb be set as low as possible within the range of the necessary content described later, more preferably 0.06% or less, still more preferably 0.04% or less. good.
[0030]
In the high-tensile steel plate of the present invention, in order to exert the above-mentioned effects, the chemical component composition must be adjusted appropriately, but C, Mn, Cr, Mo, V, Nb, which are basic components in the steel plate of the present invention. The reasons for limiting the range of Ti, B, N, etc. are as follows.
[0031]
C: 0.010 to 0.06%
C is an important element for achieving both the weld crack resistance of the HAZ part during welding and the strength of the base material and improving the high heat input HAZ toughness. In order to exert such an effect, it is necessary to contain at least 0.010% or more, but when it exceeds 0.06%, martensite is generated instead of low-temperature transformation bainite on the high cooling rate side, and welding resistance is increased. Crackability and high heat input HAZ toughness are not improved. The preferable lower limit of the C content is 0.020%, more preferably 0.025% or more, and the preferable upper limit is 0.050%, more preferably 0.045% or less. good.
[0032]
Mn: 0.5 to 2.5%
Mn has the effect of improving hardenability and makes it easy to produce low-temperature transformation bainite at a high cooling rate or a low cooling rate. If the Mn content is less than 0.5%, the desired hardenability improving effect is not exhibited and the base material strength is insufficient. However, when the Mn content is excessive and exceeds 2.5%, the weld crack resistance of the HAZ part is deteriorated. The preferable lower limit of the Mn content is 1.0%, more preferably 1.25% or more, and the preferable upper limit is 2.0%, more preferably 1.6% or less. good.
[0033]
Cr: 0.1 to 2.0%
Cr, like Mn, has the effect of improving the hardenability and facilitates the formation of low-temperature transformation bainite at high or low cooling rates. If the Cr content is less than 0.1%, the desired hardenability improving effect is not exhibited and the base material strength is insufficient. However, if the Cr content becomes excessive and exceeds 2.0%, the weld crack resistance of the HAZ part will deteriorate. The preferable lower limit of the Cr content is 0.5%, more preferably 0.6% or more, and the preferable upper limit is 1.5%, more preferably 1.2% or less. good.
[0034]
Mo: 1.5% or less (including 0%)
Mo, like Mn and Cr, has the effect of improving hardenability and facilitates the formation of low-temperature transformation bainite at high or low cooling rates. However, if it is excessively contained, weld crack resistance of the HAZ part Since it deteriorates, you may contain 1.5% as an upper limit. The upper limit with preferable Mo content is 1.0%, More preferably, it is good to set it as 0.5% or less.
[0035]
V: 0.1% or less (including 0%)
V has the effect of increasing hardenability and temper softening resistance when added in a small amount. However, if the content exceeds 0.1%, the high heat input HAZ toughness decreases. The upper limit with preferable V content is 0.06%, More preferably, it is good to set it as 0.04% or less.
[0036]
Nb: 0.1% or less (including 0%)
Nb refines the γ grain size, thereby minimizing the bainite block size after transformation, thereby contributing to the improvement of the base metal toughness. However, if the amount of Nb added exceeds 0.1%, the high heat input HAZ toughness decreases. The upper limit with preferable Nb content is 0.06%, More preferably, it is good to set it as 0.04% or less.
[0037]
Ti: 0.005 to 0.03%
Ti is useful in that it forms nitrides with N to refine γ grains in the HAZ part during high heat input welding and contributes to improvement in HAZ toughness. In order to exert such an effect, Ti needs to be contained in an amount of 0.005% or more. However, if the Ti content exceeds 0.03%, the HAZ toughness is conversely lowered. The preferable lower limit of the Ti content is 0.007%, and the preferable upper limit is about 0.02%.
[0038]
B: 0.0006 to 0.005%
B is an element for improving hardenability, and is an element useful for making low temperature transformation bainite easy to generate at a low cooling rate and at the same time ensuring both the weld crack resistance of the HAZ part and securing the base material strength during small heat input welding. . If the B content is less than 0.0006%, the effect of improving hardenability cannot be expected, and the base material strength is insufficient. Preferably it is 0.0007% or more, More preferably, it is 0.001% or more. However, if the B content exceeds 0.005%, the hardenability is lowered and the base material strength is insufficient. Preferably it is 0.003% or less.
[0039]
N: 0.002 to 0.01%
As described above, N is useful in that it forms Ti and nitrides and contributes to the improvement of HAZ toughness during high heat input welding. However, N combines with B to reduce the solid solution B, inhibits the hardenability improving effect of B, and also has the effect of lowering the toughness of the base metal and the high heat input HAZ toughness. When the content exceeds 0.01%, the effect becomes remarkable. Preferably it is 0.008% or less. On the other hand, if the N content is less than 0.002%, the effect of improving the high heat input HAZ toughness by forming a nitride with Ti is not sufficient. Preferably it is 0.0030% or more.
[0040]
In the high-strength thick steel plate of the present invention, in addition to the above basic components (remainder) is substantially made of iron, but may contain trace components other than these, and such a high-tensile thick steel plate is also present. It is included in the scope of the invention. Examples of the trace component include impurities, especially inevitable impurities such as P and S, and these are allowed to the extent that the effects of the present invention are not impaired. From such a viewpoint, it is preferable to suppress P and S as inevitable impurities to P: 0.02% or less and S: 0.01% or less, respectively.
[0041]
In addition, it is also effective to add Ni, Cu, Ca, Mg, rare earth elements, Zr, Si, Al, and the like to the high-tensile thick steel plate of the present invention, if necessary, depending on the type of components contained. The properties of the thick steel plate are further improved. The reasons for limiting the range of elements contained as necessary are as follows.
[0042]
Ni: 5% or less (excluding 0%)
Ni is an element useful for improving the base material toughness, but if added over 5%, scale flaws are likely to occur, so the upper limit is preferably made 5%. More preferably, it is 3% or less, and more preferably 2% or less.
[0043]
Cu: 3% or less (excluding 0%)
Cu is an element that improves the strength of the base metal by solid solution strengthening and precipitation strengthening and also has an effect of improving hardenability. However, if added over 3%, the high heat input HAZ toughness decreases, so the upper limit is preferably made 3%. More preferably, it is 2% or less, and further preferably 1.2% or less.
[0044]
Ca: 0.005% or less (excluding 0%)
Ca is an element having an effect of reducing the anisotropy of inclusions by spheroidizing MnS. In order to exert such effects, it is preferable to add 0.0005% or more. More preferably, it is 0.001% or more. However, if the content exceeds 0.005%, the toughness of the base material decreases, so the upper limit is preferably made 0.005%. More preferably, it is 0.004% or less.
[0045]
Mg: selected from the group consisting of 0.005% or less (not including 0%), rare earth elements: 0.02% or less (not including 0%), and Zr: 0.05% or less (not including 0%) One or more
Mg, rare earth elements (REM) and Zr are useful elements for improving the HAZ toughness. However, if it is excessively contained, the HAZ toughness is deteriorated, and therefore it is preferable that Mg is 0.005% or less, REM is 0.02% or less, and Zr is 0.05% or less. More preferably, Mg is 0.003% or less, REM: 0.01% or less, and Zr: 0.03% or less. The REM that may be contained in the present invention uses any of scandium (Sc), yttrium (Y), and lanthanoid series rare earth elements (atomic numbers 57 to 71) belonging to Group 3 of the periodic table. Can do.
[0046]
Si: 1% or less (not including 0%) and / or Al: 0.2% or less (not including 0%)
Si and Al are useful elements as deoxidizers. Further, Al fixes N and increases the solid solution B, thereby exhibiting the effect of improving the hardenability based on B. These effects increase as the content increases. However, if the Si content exceeds 1% and Al exceeds 0.2%, the base material toughness (base material toughness and weldability in Si) increases. descend. More preferably, the Si content is 0.6% or less, the Al content is 0.1% or less, the Si content is 0.3% or less, and the Al content is 0.05% or less.
[0047]
In order to produce the high-tensile steel plate of the present invention, except for considering the production conditions for obtaining the above structure, a steel that satisfies the above chemical composition is used, Conditions (temperature, time, etc.) may be adopted as appropriate. And the steel plate of this invention assumes a comparatively thick steel plate, For example, even if a thickness is 80 mm or more, it will have favorable weldability and base material strength.
[0048]
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. It is included in the range.
[0049]
【Example】
Example 1
A steel with the chemical composition shown in Table 1 below is melted by a normal melting method to form a slab, and then hot-rolled and heat-treated under the conditions shown in Table 2 below to obtain a high-tensile steel plate having a predetermined thickness. Manufactured. The heat treatment of “heat treatment condition 2” was performed after the heat treatment of “heat treatment condition 1”.
[0050]
[Table 1]
Figure 0003668713
[0051]
[Table 2]
Figure 0003668713
[0052]
For each steel plate thus obtained, the island MA fraction and size and the amount of residual γ were measured as follows, and the base material properties [0.2% proof stress, tensile strength, yield ratio, toughness ( vE-60) And uniform elongation]. Further, the base material level (590 MPa ≦ tensile strength <780 MPa, vE based on the present invention)-60For those that cleared ≧ 47 J), the weldability (weld crack resistance and high heat input HAZ toughness) was further evaluated.
[0053]
[Island-like MA fraction and size]
After repeller corrosion for the 1/4 thickness part of each steel plate, the structure was observed with an optical microscope (magnification: 1000 times), a 50 μ square area was photographed at n = 10, and the fraction and size were measured with an image analyzer. It was measured.
[0054]
[Residual γ amount]
The amount of residual γ was measured by X-ray diffraction at a 1/4 thickness portion of each steel plate.
[0055]
[Base material characteristics test]
(1) Tensile test: A JIS No. 4 test piece was taken from a 1/4 thickness portion of each steel plate, and 0.2% proof stress and tensile strength were measured by conducting a tensile test. 590 MPa ≦ tensile strength <780 MPa was regarded as acceptable. In addition, during the tensile test, the yield ratio and uniform elongation were also measured.
(2) Impact test: Absorbed energy (vE) by collecting JIS No. 4 specimen from 1/4 thickness part of each steel plate and conducting Charpy impact test.-60) vE-60≧ 47J was accepted.
[0056]
[Weldability test]
(1) HAZ toughness: Welding is performed at a heat input of 100 or 120 kJ / mm (electroslag welding method), and a JIS No. 4 specimen is taken from the site shown in FIG. vE-20) vE-20≧ 15 J was accepted.
(2) Weld crack resistance: Based on the y-type weld crack test method described in JIS Z 3158, covered arc welding was performed at a heat input of 1.7 kJ / mm, and the root crack prevention preheating temperature was measured. 25 degrees C or less was set as the pass.
[0057]
These test results are shown in Table 3 below together with the island-like MA fraction and size, and the amount of residual γ, and satisfy the requirements specified in the present invention (No. 1, 2, 5, 6, 9, 10 12-17, 27-38), it can be seen that both the base material properties and the weldability are excellent. On the other hand, those lacking any of the requirements defined in the present invention (Nos. 3, 4, 7, 8, 11, 18 to 26) are resistant to weld cracking, high heat input HAZ toughness, and base material properties. It can be seen that at least one of (0.2% yield strength, tensile strength, toughness, uniform elongation) is reduced.
[0058]
[Table 3]
Figure 0003668713
[0059]
【The invention's effect】
The present invention is configured as described above, and a high-tensile steel plate of 590 MPa or more and less than 780 MPa that has excellent weldability (high heat input HAZ toughness and weld crack resistance) and high uniform elongation can be obtained. Realized.
[Brief description of the drawings]
FIG. 1 is a schematic CCT diagram for explaining the concept of component design of the present invention.
FIG. 2 is a schematic explanatory view showing a test piece collection position of bond toughness during electroslag welding.

Claims (9)

C :0.010〜0.06%,
Mn:0.5〜2.5%,
Cr:0.1〜2.0%,
Mo:1.5%以下(0%を含む),
V :0.1%以下(0%を含む),
Nb:0.1%以下(0%を含む),
Ti:0.005〜0.03%,
B :0.0006〜0.005%,
N :0.002〜0.01%
を満たし、残部がFeおよび不可避不純物である鋼からなり、
2.4%≦KP≦4.5%
を満足すると共に、島状マルテンサイト分率が20体積%以下であり、且つ0.5体積%以上の残留オーステナイトが存在するものであることを特徴とする溶接性および均一伸びに優れた高張力厚鋼板。
但し、
KP(%)=[Mn]+1.5×[Cr]+2×[Mo]
《式中、[ ]は各元素の含有量(質量%)を意味する。》
C: 0.010 to 0.06%,
Mn: 0.5 to 2.5%,
Cr: 0.1 to 2.0%,
Mo: 1.5% or less (including 0%),
V: 0.1% or less (including 0%),
Nb: 0.1% or less (including 0%),
Ti: 0.005 to 0.03%,
B: 0.0006 to 0.005%,
N: 0.002 to 0.01%
It meets, the balance is Fe and inevitable impurities steel,
2.4% ≦ KP ≦ 4.5%
High tensile strength excellent in weldability and uniform elongation, characterized in that the island martensite fraction is 20% by volume or less and the residual austenite is 0.5% by volume or more. Thick steel plate.
However,
KP (%) = [Mn] + 1.5 × [Cr] + 2 × [Mo]
<< In formula, [] means content (mass%) of each element. >>
島状マルテンサイトの平均粒径が5μm以下である請求項1に記載の高張力厚鋼板。  The high-tensile thick steel plate according to claim 1, wherein the average particle size of the island-like martensite is 5 µm or less. KV≦0.12(%)を満足するものである請求項1または2に記載の高張力厚鋼板。
但し、
KV(%)=[V]+[Nb]
《式中、[ ]は各元素の含有量(質量%)を意味する。》
The high-tensile thick steel plate according to claim 1 or 2, which satisfies KV≤0.12 (%).
However,
KV (%) = [V] + [Nb]
<< In formula, [] means content (mass%) of each element. >>
更にNi:5%以下(0%を含まない)を含有するものである請求項1〜3のいずれかに記載の高張力厚鋼板。  Furthermore, Ni: 5% or less (excluding 0%) is contained, The high-tensile thick steel plate in any one of Claims 1-3. 更にCu:3%以下(0%を含まない)を含有するものである請求項1〜4のいずれかに記載の高張力厚鋼板。  Furthermore, Cu: 3% or less (0% is not included) is contained, The high-tensile steel plate in any one of Claims 1-4. 更にCa:0.005%以下(0%を含まない)を含有するものである請求項1〜5のいずれかに記載の高張力厚鋼板。  The high-tensile steel plate according to any one of claims 1 to 5, further containing Ca: 0.005% or less (excluding 0%). 更にMg:0.005%以下(0%を含まない)、希土類元素:0.02%以下(0%を含まない)およびZr:0.05%以下(0%を含まない)よりなる群から選ばれる1種以上を含有するものである請求項1〜のいずれかに記載の高張力厚鋼板。Further, Mg: 0.005% or less (excluding 0%), rare earth element: 0.02% or less (not including 0%), and Zr: 0.05% or less (not including 0%) The high-tensile thick steel plate according to any one of claims 1 to 6 , which contains one or more selected. 更にSi:1%以下(0%を含まない)および/またはAl:0.2%以下(0%を含まない)を含有するものである請求項1〜7のいずれかに記載の高張力厚鋼板。  The high tensile thickness according to any one of claims 1 to 7, further comprising Si: 1% or less (not including 0%) and / or Al: 0.2% or less (not including 0%). steel sheet. 肉厚が80mm以上である請求項1〜8のいずれかに記載の高張力鋼板。  The high-tensile steel sheet according to any one of claims 1 to 8, wherein the thickness is 80 mm or more.
JP2001359970A 2001-11-26 2001-11-26 High tensile steel plate with excellent weldability and uniform elongation Expired - Lifetime JP3668713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001359970A JP3668713B2 (en) 2001-11-26 2001-11-26 High tensile steel plate with excellent weldability and uniform elongation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001359970A JP3668713B2 (en) 2001-11-26 2001-11-26 High tensile steel plate with excellent weldability and uniform elongation

Publications (2)

Publication Number Publication Date
JP2003160835A JP2003160835A (en) 2003-06-06
JP3668713B2 true JP3668713B2 (en) 2005-07-06

Family

ID=19170871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001359970A Expired - Lifetime JP3668713B2 (en) 2001-11-26 2001-11-26 High tensile steel plate with excellent weldability and uniform elongation

Country Status (1)

Country Link
JP (1) JP3668713B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4283757B2 (en) * 2004-11-05 2009-06-24 株式会社神戸製鋼所 Thick steel plate and manufacturing method thereof
JP4730102B2 (en) * 2005-03-17 2011-07-20 Jfeスチール株式会社 Low yield ratio high strength steel with excellent weldability and manufacturing method thereof
JP4485427B2 (en) * 2005-07-28 2010-06-23 株式会社神戸製鋼所 Low yield ratio high strength steel sheet
JP4652952B2 (en) * 2005-11-04 2011-03-16 株式会社神戸製鋼所 High-tensile steel plate with excellent toughness of heat affected zone
JP4571915B2 (en) * 2006-02-08 2010-10-27 新日本製鐵株式会社 Refractory thick steel plate and manufacturing method thereof
JP4976906B2 (en) * 2007-04-09 2012-07-18 株式会社神戸製鋼所 Thick steel plate with excellent HAZ toughness, base material toughness, elongation, and strength-elongation balance
JP5073396B2 (en) * 2007-07-20 2012-11-14 新日本製鐵株式会社 Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
JP5172391B2 (en) * 2008-03-03 2013-03-27 株式会社神戸製鋼所 Steel sheet with excellent toughness and uniform elongation of weld heat affected zone
JP5171327B2 (en) * 2008-03-14 2013-03-27 株式会社神戸製鋼所 Steel plate for skin plate excellent in thickness direction toughness of heat-affected zone with large heat input and manufacturing method thereof
PT3168312T (en) * 2015-11-16 2019-07-16 Deutsche Edelstahlwerke Specialty Steel Gmbh & Co Kg Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part

Also Published As

Publication number Publication date
JP2003160835A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
JP5172391B2 (en) Steel sheet with excellent toughness and uniform elongation of weld heat affected zone
KR20070091368A (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP3668713B2 (en) High tensile steel plate with excellent weldability and uniform elongation
JP4044470B2 (en) High toughness steel sheet excellent in low temperature base metal toughness and low temperature HAZ toughness, and method for producing the same
JP3854807B2 (en) High tensile steel plate with excellent weldability and uniform elongation
JP2007177327A (en) Thick steel plate having excellent toughness and reduced softening in weld heat-affected zone
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP3970801B2 (en) High strength high toughness steel plate
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP4008378B2 (en) Low yield ratio high strength steel with excellent toughness and weldability
JP4259145B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP5103037B2 (en) Thick steel plate with excellent toughness of base metal and weld heat affected zone
JP3863413B2 (en) High toughness high tension non-tempered thick steel plate and manufacturing method thereof
JP4655372B2 (en) Method for producing high-tensile steel with high yield point
JP3746707B2 (en) High-tensile steel plate with excellent weldability
JP3739997B2 (en) High-tensile steel plate with excellent weldability
JP3900018B2 (en) High pass temperature multi-layer weld steel manufacturing method and high pass temperature multi-pass weld method
JP3602396B2 (en) Low yield ratio high strength steel sheet with excellent weldability
KR101207722B1 (en) High strength steel plate for welding structure with superior haz toughness for high heat input welding and method for manufacturing the same
JP2020204091A (en) High strength steel sheet for high heat input welding
JP2009179868A (en) High tensile strength steel plate having excellent weldability
JP3620573B2 (en) High strength steel plate with excellent weldability
JP3371699B2 (en) Manufacturing method of earthquake resistant building steel with excellent fire resistance
JP3920523B2 (en) High-tensile steel plate with excellent weldability and base metal toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9