JP5171327B2 - Steel plate for skin plate excellent in thickness direction toughness of heat-affected zone with large heat input and manufacturing method thereof - Google Patents

Steel plate for skin plate excellent in thickness direction toughness of heat-affected zone with large heat input and manufacturing method thereof Download PDF

Info

Publication number
JP5171327B2
JP5171327B2 JP2008066262A JP2008066262A JP5171327B2 JP 5171327 B2 JP5171327 B2 JP 5171327B2 JP 2008066262 A JP2008066262 A JP 2008066262A JP 2008066262 A JP2008066262 A JP 2008066262A JP 5171327 B2 JP5171327 B2 JP 5171327B2
Authority
JP
Japan
Prior art keywords
plate
inclusions
cooling
toughness
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008066262A
Other languages
Japanese (ja)
Other versions
JP2009221522A (en
Inventor
豊明 塩飽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008066262A priority Critical patent/JP5171327B2/en
Priority to CN2009101265507A priority patent/CN101532112B/en
Priority to KR1020090021696A priority patent/KR101096871B1/en
Publication of JP2009221522A publication Critical patent/JP2009221522A/en
Application granted granted Critical
Publication of JP5171327B2 publication Critical patent/JP5171327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper

Description

本発明は、例えば高層建築構造物の建築鉄骨として使用されるボックス柱(四面ボックス柱、溶接組立箱形断面柱などとも言う)のスキンプレートに適用される鋼板に関し、エレクトロスラグ溶接や角部サブマージアーク溶接等の、入熱量が400kJ/cm以上の大入熱溶接をしたときに熱影響を受ける部位(以下、「HAZ」と呼ぶことがある)の板厚方向靭性に優れた鋼板に関する。   The present invention relates to a steel plate applied to a skin plate of a box column (also referred to as a four-sided box column, a welded assembled box-shaped cross-section column, etc.) used as a building steel frame of a high-rise building structure, for example, electroslag welding or corner submerging. The present invention relates to a steel sheet excellent in sheet thickness direction toughness of a part (hereinafter sometimes referred to as “HAZ”) that is affected by heat when large heat input welding with a heat input of 400 kJ / cm or more, such as arc welding.

高層建築構造物に適用される柱は、4枚の長い鋼板(スキンプレート)をボックス柱形状になるように長辺角部を溶接し、さらに梁が溶接される予定になっている箇所には、強度を確保するために柱内にダイヤフラムを溶接しておくことによって製造される。これらの溶接を行う場合、施工効率の向上や施工時間の短縮を図るため、一パスでの溶接が望まれる。そこで、スキンプレート間の溶接となる角部溶接では入熱量が400〜600kJ/cm程度の大入熱サブマージアーク溶接を行い、スキンプレートとダイヤフラムとの溶接では入熱量が400〜1200kJ/cm程度の大入熱エレクトロスラグ溶接が行われるようになってきている。しかし、大入熱溶接を行うと溶接熱影響部(HAZ)の金属組織が粗大化することにより、溶接部の靭性が劣化する。耐震性を向上するには、むしろ溶接部の靭性向上が望まれる。特に、入熱量が400kJ/cm以上の大入熱溶接は、一部の建築構造で行われているエレクトロガス溶接とは異なり、入熱量が高く冷却速度も遅いため、靭性がより劣化しやすい。   Columns that are applied to high-rise building structures are welded to the long side corners of four long steel plates (skin plates) in a box column shape, and where the beams are to be welded. It is manufactured by welding a diaphragm in a column to ensure strength. When performing these weldings, welding in one pass is desired in order to improve construction efficiency and shorten construction time. Therefore, in the corner welding that is the welding between the skin plates, a large heat input submerged arc welding is performed with a heat input of about 400 to 600 kJ / cm, and in the welding between the skin plate and the diaphragm, the heat input is about 400 to 1200 kJ / cm. High heat input electroslag welding has been performed. However, if high heat input welding is performed, the toughness of the welded portion deteriorates due to the coarsening of the metal structure of the weld heat affected zone (HAZ). In order to improve the earthquake resistance, it is rather desirable to improve the toughness of the weld. In particular, high heat input welding with a heat input of 400 kJ / cm or more, unlike the electrogas welding performed in some building structures, has a high heat input and a low cooling rate, and thus the toughness is more likely to deteriorate.

大入熱溶接熱影響部における靭性を改善するための金属組織学的な研究、例えば1)TiNを活用した研究、2)酸化物を活用した研究、3)硫化物を活用した研究などが従来から行われている。   Conventional metallographic studies to improve toughness in heat-affected zone of high heat input welding, such as 1) research using TiN, 2) research using oxide, 3) research using sulfide, etc. It is made from.

1)TiNを活用した研究では、例えば特許文献1に、TiNとVNを活用したHAZ靭性改善技術が提案されている。また特許文献2では、TiとNの量比率[Ti]/[
N]比を3.5〜5.0と、N量に比してTi量を多くした提案がなされている。しかし、溶接金属と溶接熱影響部(HAZ)との界面(フュージョンライン)近くは、1400℃を超える温度になる。特に建築での溶接は超大入熱溶接が行われるため、高温での滞留時間が長くなる。高温での滞留時間が長くなるほど、TiN粒子が溶解してしまい、HAZ靭性改善効果が低減する。また、このようなTiN粒子の溶解を防止するために、Ti量を多くしてTiN粒子を大きくすると、TiN粒子の粗大化によって却って靭性が劣化する。
1) In research using TiN, for example, Patent Document 1 proposes a HAZ toughness improvement technique using TiN and VN. In Patent Document 2, the amount ratio of Ti and N [Ti] / [
N] ratios of 3.5 to 5.0 have been proposed in which the Ti amount is increased compared to the N amount. However, near the interface (fusion line) between the weld metal and the weld heat affected zone (HAZ), the temperature exceeds 1400 ° C. In particular, since welding in architecture is performed with ultra-high heat input welding, the residence time at high temperatures becomes longer. The longer the residence time at high temperature, the more the TiN particles are dissolved, and the HAZ toughness improving effect is reduced. Further, in order to prevent such dissolution of TiN particles, if the Ti amount is increased and the TiN particles are enlarged, the toughness deteriorates due to the coarsening of the TiN particles.

2)酸化物を活用した研究として、例えば特許文献3、4および5は、Mgを添加した酸化物粒子を活用した技術を提案している。しかし、微細な酸化物を均一に分散する技術は難しく、工業的に安定して製造するにはさらなる改善が必要となる。   2) As research utilizing oxides, for example, Patent Documents 3, 4 and 5 propose techniques utilizing oxide particles added with Mg. However, it is difficult to uniformly disperse fine oxides, and further improvements are required for industrially stable production.

3)硫化物を活用した研究としては、REMを添加することによって硫化物、酸化物および硫酸化物の粒子を分散させる技術(例えば、特許文献6、7、8);CaSの粒子を活用するために、CaとSとOの含有量を、ACRという定式化したパラメータの範囲内に制御する技術(例えば、特許文献9、10)などが提案されている。しかし、硫化物を活用するこれらの技術では、ある程度のS量を必要とするため、硫化物が粗大化して靭性が劣化したり、MnS系の介在物によって板厚方向の靭性が劣化する。
特開平5−186848号公報 特開2002−266050号公報 特開2000−80436号公報 特開2000−80437号公報 特開2003−293077号公報 特開2004−176100号公報 特開2004−10951号公報 特開2003−286540号公報 特開2005−220379号公報 特開2005−68478号公報
3) As a research utilizing sulfide, a technique for dispersing sulfide, oxide and sulfate particles by adding REM (for example, Patent Documents 6, 7, and 8); for utilizing CaS particles In addition, a technique for controlling the contents of Ca, S, and O within the range of a formulated parameter called ACR (for example, Patent Documents 9 and 10) has been proposed. However, these technologies that utilize sulfides require a certain amount of S, so that the sulfides become coarse and the toughness deteriorates, or the toughness in the plate thickness direction deteriorates due to MnS inclusions.
Japanese Patent Laid-Open No. 5-186848 JP 2002-266050 A JP 2000-80436 A JP 2000-80437 A JP 2003-293077 A JP 2004-176100 A JP 2004-10951 A JP 2003-286540 A JP 2005-220379 A JP 2005-68478 A

ところで地震時には、建築構造物が変形し、溶接接合部には柱材の板厚方向に引張応力が作用する。鋼板は板面内(板面に平行な方向)に働く応力に対しては強いが、板面の垂直方向である板厚方向の応力に対する強さは低下する。従って、建築構造物の耐震性を向上するには、板厚方向の靭性も考慮することが望ましい。上述の従来技術は、必ずしも安定して高靭性を満足できるわけではなく、また板厚方向の靭性を考慮したものでもない。板厚方向の靭性を評価するためには、同方向を長手方向とするシャルピー試験片を採取しなければならないが、通常の突き合せ溶接した鋼板からは、板厚方向を長手方向とする試験片を採取できない。   By the way, during an earthquake, the building structure is deformed, and tensile stress acts on the welded joint in the thickness direction of the column material. Although the steel plate is strong against stress acting in the plate surface (direction parallel to the plate surface), the strength against the stress in the plate thickness direction, which is the direction perpendicular to the plate surface, decreases. Therefore, it is desirable to consider the toughness in the thickness direction in order to improve the earthquake resistance of the building structure. The above-described prior art does not always satisfy the high toughness stably, and does not consider the toughness in the thickness direction. In order to evaluate the toughness in the plate thickness direction, a Charpy test piece with the same direction as the longitudinal direction must be collected, but from a normal butt welded steel plate, the test piece with the plate thickness direction as the longitudinal direction Cannot be collected.

本発明は上記の様な事情に鑑みてなされたものであり、その目的は、建築構造物の鉄骨として使用されるボックス柱の耐震性を向上することにある。より具体的には、スキンプレート間の溶接となるボックス柱角部のサブマージアーク溶接や、スキンプレートとダイヤフラムとのエレクトロスラグ溶接の溶接熱影響部(HAZ)で、スキンプレートの板厚方向(Z方向)の靭性を改善することにある。   This invention is made | formed in view of the above situations, The objective is to improve the earthquake resistance of the box column used as a steel frame of a building structure. More specifically, in the heat affected zone (HAZ) of the sub-merged arc welding of the box column corner that is welded between the skin plates and the electroslag welding of the skin plate and the diaphragm, the plate thickness direction (Z Direction) to improve toughness.

前記課題を解決した、本発明に係る、大入熱溶接熱影響部の板厚方向靭性に優れたスキンプレート用鋼板は、C:0.02〜0.10%(質量%の意味。以下、同じ。)、Si:0.05〜0.5%、Mn:1.0〜2.0%、P:0.015%以下(0%を含まない)、S:0.0010%以下(0%を含まない)、Al:0.01〜0.05%、Cu:0.05〜1.5%、Ni:0.05〜1.5%、Ti:0.003〜0.02%、B:0.0005〜0.0030%、Ca:0.0015〜0.0030%、N:0.0040〜0.008%、O:0.0005〜0.0030%を含有し、残部が鉄および不可避的不純物であって、上記Ti、B、Nの含有量(質量%)が下記式(1)〜(3)を満たし、鋼板の縦断面において、Caを含有する円相当径5μm以上の介在物が5個/mm2以下で、長さ50μm以上のMnS系介在物が2個/cm2以下であり、鋼板の中心偏析部のC濃度が、鋼板全体の平均C濃度の1.2倍以下である点にその要旨を有する。
(1)1.0≦[Ti]/[N]≦3.0
(2)0.0003≦[N]−[Ti]/3.4≦0.0035
(3)−0.0005≦[B]−{([N]−[Ti]/3.4)×11/14}≦0.0015
(但し、[Ti]、[N]、[B]は、夫々Ti、N、Bの含有量(質量%)を表す。)
本発明のスキンプレート用鋼板は、さらにCr:0.05〜1.5%および/またはV:0.005〜0.05%を含有していてもよい。
The steel plate for skin plates according to the present invention, which has solved the above-mentioned problems and is excellent in the toughness in the thickness direction of the high heat input welding heat-affected zone, is C: 0.02 to 0.10% (meaning mass%; hereinafter, The same), Si: 0.05 to 0.5%, Mn: 1.0 to 2.0%, P: 0.015% or less (excluding 0%), S: 0.0010% or less (0 %), Al: 0.01 to 0.05%, Cu: 0.05 to 1.5%, Ni: 0.05 to 1.5%, Ti: 0.003 to 0.02%, B: 0.0005-0.0030%, Ca: 0.0015-0.0030%, N: 0.0040-0.008%, O: 0.0005-0.0030%, the balance being iron And inevitable impurities, wherein the content (mass%) of Ti, B, N satisfies the following formulas (1) to (3), inclusions or equivalent circle diameter 5μm containing a is at 5 / mm 2 or less, MnS based inclusions above length 50μm is at 2 / cm 2 or less, the C concentration of the center segregation area of the steel sheet, The main point is that the average C concentration of the whole steel sheet is 1.2 times or less.
(1) 1.0 ≦ [Ti] / [N] ≦ 3.0
(2) 0.0003 ≦ [N] − [Ti] /3.4≦0.0035
(3) −0.0005 ≦ [B] − {([N] − [Ti] /3.4) × 11/14} ≦ 0.0015
(However, [Ti], [N], and [B] represent the contents (mass%) of Ti, N, and B, respectively.)
The steel plate for skin plate of the present invention may further contain Cr: 0.05 to 1.5% and / or V: 0.005 to 0.05%.

本発明のスキンプレート用鋼板は、前記成分組成を満足し、かつ前記式(1)〜(3)を満足する鋼スラブを、1)950〜1250℃に加熱し、2)圧延仕上温度が800〜900℃となるように圧延した後、3)30秒以上の空冷を行い、4)その後1〜100℃/sの冷却速度で300℃以下の温度まで冷却することによって製造できる。   In the steel plate for skin plate of the present invention, a steel slab satisfying the above component composition and satisfying the above formulas (1) to (3) is heated to 1) 950 to 1250 ° C., and 2) the rolling finishing temperature is 800. After rolling to ˜900 ° C., it can be produced by 3) air cooling for 30 seconds or more, and 4) cooling to a temperature of 300 ° C. or less at a cooling rate of 1 to 100 ° C./s.

前記製造方法では、4)300℃以下の冷却の後、さらに5)450〜600℃に再加熱し、空冷してもよい。またこの4)300℃以下の冷却と、5)450〜600℃の再加熱及び空冷との間で、700〜850℃の再加熱と、それに続く1℃/s以上の冷却速度での200℃以下までの冷却を実施してもよい。   In the manufacturing method, 4) after cooling at 300 ° C. or lower, 5) reheated to 450 to 600 ° C. and air cooled. In addition, between 4) cooling of 300 ° C. or less and 5) reheating and air cooling of 450 to 600 ° C., 700 to 850 ° C. followed by 200 ° C. at a cooling rate of 1 ° C./s or more. The following cooling may be performed.

本発明のスキンプレート用鋼板では、各元素の量をそれぞれ制御し、Ti、B、Nの含有量の相互関係も適切に制御してTiNやBN等の窒化物を微細分散させるとともに、粗大なCa含有介在物および板厚方向靭性に有害な展伸したMnS系介在物を抑制し、さらにCの中心偏析を抑制しているので、サブマージアーク溶接やエレクトロスラグ溶接などの超大入熱溶接を行った場合でも、溶接熱影響部(HAZ)での板厚方向(Z方向)の靭性を確保することができる。   In the steel plate for skin plate of the present invention, the amount of each element is controlled, and the interrelation between the contents of Ti, B, and N is appropriately controlled to finely disperse nitrides such as TiN and BN, and the coarseness Suppresses Ca-containing inclusions and expanded MnS inclusions harmful to sheet thickness direction toughness, and further suppresses center segregation of C, so super-high heat input welding such as submerged arc welding and electroslag welding is performed. Even in this case, the toughness in the plate thickness direction (Z direction) at the weld heat affected zone (HAZ) can be ensured.

通常、造船メーカー等で行われる鋼板と鋼板との突合せエレクトロガス溶接継手や、突合せサブマージアーク溶接継手では、鋼板の圧延方向(L方向)又は圧延直角方向(C方向、板幅方向)のHAZ靭性評価を行っている。しかし、突き合せ溶接継手では、板厚方向(Z方向)を長手方向とする試験片を採取できず、板厚方向(Z方向)のHAZ靭性を評価できない。また、通常行われている、大入熱溶接での熱履歴を模擬した再現熱サイクル試験でも、試験片の採取方向はL方向又はC方向で行われるのみで、Z方向のHAZ靭性を評価したものはなかった。   Usually, in butt electrogas welded joints between steel plates and steel plates and butt submerged arc welded joints made by shipbuilders, etc., HAZ toughness in the rolling direction (L direction) or perpendicular to the rolling direction (C direction, width direction) We are evaluating. However, in a butt-welded joint, a test piece having the plate thickness direction (Z direction) as the longitudinal direction cannot be collected, and the HAZ toughness in the plate thickness direction (Z direction) cannot be evaluated. In addition, even in a reproducible thermal cycle test that simulates the thermal history of large heat input welding that is normally performed, the HAZ toughness in the Z direction was evaluated only by taking the specimen in the L direction or the C direction. There was nothing.

圧延された鋼板は、圧延方向(L方向)、圧延直角方向(C方向)、および板厚方向(Z方向)においてそれぞれ異なった状態を示し、例えば、圧延によって展伸した介在物が存在したり、圧延履歴を受けた金属組織が存在する場合などは、板厚方向(Z方向)のHAZ靭性はL方向や、C方向の靭性に比べて劣化するため、板厚方向(Z方向)の靭性を向上するには、介在物制御や組織制御の観点も必要である。   The rolled steel sheet exhibits different states in the rolling direction (L direction), the direction perpendicular to the rolling direction (C direction), and the sheet thickness direction (Z direction). For example, there are inclusions expanded by rolling. When there is a metal structure that has undergone rolling history, the HAZ toughness in the plate thickness direction (Z direction) deteriorates compared to the toughness in the L direction or C direction, so the toughness in the plate thickness direction (Z direction). In order to improve the quality, it is necessary to control inclusions and the structure.

そこで、本発明者は、L方向、C方向のみならず、板厚方向(Z方向)の大入熱HAZ靭性を向上させることに主眼を置き研究を重ねたところ、(i)介在物制御や組織制御の観点から成分組成を高度に制御するとともに、(ii)介在物や組織状態を直接的にコントロールすることによって、大入熱溶接の溶接熱影響部で板厚方向靭性を確保できることを見出した。   Therefore, the present inventor conducted research focusing on improving the high heat input HAZ toughness not only in the L direction and the C direction but also in the plate thickness direction (Z direction). From the viewpoint of microstructure control, we have found that it is possible to ensure the toughness in the plate thickness direction at the weld heat affected zone of high heat input welding by controlling the composition of the component at a high level and (ii) directly controlling the inclusions and the structure state. It was.

(i)介在物や組織を制御する観点からの成分制御
介在物や組織を制御する観点から言えば、(i―1)TiN、BNなどの析出状態と固溶B量を制御するためにTi、N、Bの量を制御すること、(i―2)Caを含有する介在物、展伸によって板厚方向の靭性を下げるMnS系介在物(A系介在物)を制御するためにCa量やS量を制御すること、(i―3)MA(martensite austenite constituent、島状マルテンサイト)を抑制するためにC量を制御することなどの成分制御を行うことが重要である。なおHAZ靭性に有害なNbを添加しないこと、Cu、Ni、B添加によって強度を確保することも重要である。
(I) Component control from the viewpoint of controlling inclusions and structures From the viewpoint of controlling inclusions and structures, (i-1) Ti is controlled to control the precipitation state of TiN and BN and the amount of dissolved B. (I-2) Inclusions containing Ca, MnS inclusions that reduce the toughness in the thickness direction by stretching (A inclusions) to control the amount of N and B It is important to control components such as controlling the amount of sulfur and S, and (i-3) controlling the amount of C in order to suppress MA (martensite austenite constituent). It is also important not to add Nb that is harmful to HAZ toughness and to ensure strength by adding Cu, Ni, and B.

特に(i―1)Ti量、N量、B量の制御は重要であるため、以下、より詳細に説明する。   Since (i-1) control of Ti amount, N amount, and B amount is particularly important, it will be described in more detail below.

本発明では、TiN、BNなどの析出状態と固溶B量を制御するために、Ti量、N量、B量を下記式(1)〜(3)の関係を全て満足するように制御する。
(1)1.0≦[Ti]/[N]≦3.0
(2)0.0003≦[N]−[Ti]/3.4≦0.0035
(3)−0.0005≦[B]−{([N]−[Ti]/3.4)×11/14}≦0.0015
(但し、[Ti]、[N]、[B]は、夫々Ti、N、Bの含有量(質量%)を表す。)
In the present invention, in order to control the precipitation state of TiN, BN, etc. and the amount of dissolved B, the amount of Ti, the amount of N, and the amount of B are controlled so as to satisfy all the relationships of the following formulas (1) to (3). .
(1) 1.0 ≦ [Ti] / [N] ≦ 3.0
(2) 0.0003 ≦ [N] − [Ti] /3.4≦0.0035
(3) −0.0005 ≦ [B] − {([N] − [Ti] /3.4) × 11/14} ≦ 0.0015
(However, [Ti], [N], and [B] represent the contents (mass%) of Ti, N, and B, respectively.)

上記(1)〜(3)の関係を決定した理由について、図1〜3を参照しながら説明する。図1〜3は、基本成分を0.04%C−0.15%Si−1.35%Mn−0.008%P−0.001%S−0.030%Al−0.6%Cu−0.6%Ni−0.6%Cr−0.0020%Ca−0.0015%Oとし、表1に示すようにTi、N、B量を変化させた鋼板について、HAZ靭性を評価し、Ti−N−Bの成分制御との関係を整理したものである。以下に、図1〜3に用いた鋼板の製造方法およびHAZ靭性の評価手順について説明する。   The reason for determining the relationships (1) to (3) will be described with reference to FIGS. 1 to 3, the basic components are 0.04% C-0.15% Si-1.35% Mn-0.008% P-0.001% S-0.030% Al-0.6% Cu As shown in Table 1, the HAZ toughness was evaluated for steel sheets with -0.6% Ni-0.6% Cr-0.0020% Ca-0.0015% O and varying amounts of Ti, N, and B as shown in Table 1. The relationship with Ti-N-B component control is organized. Below, the manufacturing method of the steel plate used for FIGS. 1-3 and the evaluation procedure of HAZ toughness are demonstrated.

まず、図1〜3に用いた鋼板の製造方法について説明する。表1に示す量に成分調整した鋼を連続鋳造して、厚さ280mmのスラブを得た(脱酸は転炉でAl脱酸およびRH脱ガス処理を行った)。なお、連続鋳造の際、凝固完了位置近傍で圧下ロール間隙(上側ロールと下側ロールの距離)を絞り込んで圧下した。次に、スラブを1200℃に再加熱した後、圧下して厚さ230mmのブレークダウンスラブとし、室温まで冷却した。さらに、前記ブレークダウンスラブを加熱温度1100℃、仕上温度850℃で板厚60mmまで圧延し、その後冷却速度9℃/sで加速冷却した。   First, the manufacturing method of the steel plate used for FIGS. 1-3 is demonstrated. Steel whose components were adjusted to the amounts shown in Table 1 was continuously cast to obtain a slab having a thickness of 280 mm (deoxidation was performed by Al deoxidation and RH degassing in a converter). During continuous casting, the reduction roll gap (distance between the upper roll and the lower roll) was reduced near the solidification completion position. Next, after the slab was reheated to 1200 ° C., it was reduced to a breakdown slab having a thickness of 230 mm and cooled to room temperature. Further, the breakdown slab was rolled to a plate thickness of 60 mm at a heating temperature of 1100 ° C. and a finishing temperature of 850 ° C., and then accelerated and cooled at a cooling rate of 9 ° C./s.

次に、HAZ靭性の評価手順について説明する。まず初めに前記要領で製造された鋼板から、熱サイクル試験片を作製した。次いで、エレクトロスラグ溶接の入熱量800kJ/cmに相当する溶接溶融線(Fusion Line)近傍の最脆化域の組織を再現するため、再現溶接熱サイクル試験を実施した。この再現溶接熱サイクル試験では、熱サイクル試験片を1400℃で30秒保持した後、800〜500℃までの冷却時間が730秒になるような冷却速度で冷却した。熱サイクル試験片から、板厚方向(Z方向)を長手方向とするVノッチ標準試験片(JIS Z 2242)を採取し、試験温度0℃でシャルピー衝撃試験(JIS Z 2242;衝撃刃半径2mm)を行い、吸収エネルギーvE0を求めた。 Next, the HAZ toughness evaluation procedure will be described. First, a heat cycle test piece was produced from the steel sheet produced as described above. Next, a reproducible welding heat cycle test was carried out in order to reproduce the structure of the most embrittled region in the vicinity of the weld line corresponding to the heat input 800 kJ / cm of electroslag welding. In this reproduction welding heat cycle test, the heat cycle test piece was held at 1400 ° C. for 30 seconds and then cooled at a cooling rate such that the cooling time from 800 to 500 ° C. was 730 seconds. A V-notch standard test piece (JIS Z 2242) whose longitudinal direction is the thickness direction (Z direction) is taken from the thermal cycle test piece, and a Charpy impact test (JIS Z 2242; impact blade radius 2 mm) at a test temperature of 0 ° C. And the absorbed energy vE 0 was determined.

図1は「[Ti]/[N]」とvE0の関係を示すグラフであり、図2は「[N]−[Ti]/3.4」とvE0との関係を示すグラフであり、図3は「[B]−{([N]−[Ti]/3.4)×11/14}」とvE0との関係を示すグラフである。 FIG. 1 is a graph showing the relationship between “[Ti] / [N]” and vE 0 , and FIG. 2 is a graph showing the relationship between “[N] − [Ti] /3.4” and vE 0 . FIG. 3 is a graph showing the relationship between “[B] − {([N] − [Ti] /3.4) × 11/14}” and vE 0 .

Figure 0005171327
Figure 0005171327

(1)1.0≦[Ti]/[N]≦3.0
図1に基づき、「[Ti]/[N]」を1.0以上、3.0以下と定めた。「[Ti]/[N]」はTiN粒子の分散状態と関係がある。TiN粒子は、オーステナイト粒子の粗大化防止作用と、冷却過程でのオーステナイト粒内からの変態促進作用があり、これらの作用によってHAZ靭性が改善される。TiN粒子を、微細に多く分散させるほど、HAZ靭性が向上する。[Ti]/[N]を1.0以上にすることによって、微細なTiN粒子を増やすことができ、HAZ靭性が向上する。一方、「[Ti]/[N]」が3.0を超えると、TiN粒子が粗大化してTiN粒子の個数が減少し、HAZ靭性が急激に低下する。「 [Ti]/[N]」の好ましい下限は1.5(特に2.0)、好ましい上限は2.9(特に2.8)である。
(1) 1.0 ≦ [Ti] / [N] ≦ 3.0
Based on FIG. 1, “[Ti] / [N]” was set to 1.0 or more and 3.0 or less. “[Ti] / [N]” is related to the dispersion state of TiN particles. TiN particles have an effect of preventing coarsening of austenite particles and an effect of promoting transformation from within the austenite grains during the cooling process, and these actions improve the HAZ toughness. As the TiN particles are finely dispersed, the HAZ toughness is improved. By setting [Ti] / [N] to 1.0 or more, fine TiN particles can be increased, and HAZ toughness is improved. On the other hand, if “[Ti] / [N]” exceeds 3.0, the TiN particles become coarse, the number of TiN particles decreases, and the HAZ toughness rapidly decreases. The preferable lower limit of “[Ti] / [N]” is 1.5 (particularly 2.0), and the preferable upper limit is 2.9 (particularly 2.8).

(2)0.0003≦[N][Ti]/3.4≦0.0035
図2に基づき、「[N]−[Ti]/3.4」を0.0003以上、0.0035以下と定めた。
(2) 0.0003 ≦ [N][Ti] /3.4≦0.0035
Based on FIG. 2, “[N] − [Ti] /3.4” was determined to be 0.0003 or more and 0.0035 or less.

図2は「[N]−[Ti]/3.4」とvE0との関係を示したものである。「[Ti]/3.4」は、TiとNが化学量論比で結合したときの、TiNに使われるN量を示す。従って、「[N]−[Ti]/3.4」は、トータルのN量からTiNに使われたN量を減じたもの、すなわちTiNが生成した後に残存するフリーのN量を意味する。NはTiとの結合力が強く、鋳造時にはTiNが優先的に生成する。そして溶接時の高温に加熱された後の冷却過程でフリーN(TiNが生成した後に残存するN)はBと結合し、BNとして析出する。言い換えると、「[N]−[Ti]/3.4」はBNの析出に有効に作用できる残存N量を意味しているとも言える。BNもTiNと同様に、適切に分散させれば、オーステナイト粒内からの変態を促進してHAZ靭性を向上させる。 FIG. 2 shows the relationship between “[N] − [Ti] /3.4” and vE 0 . “[Ti] /3.4” indicates the amount of N used for TiN when Ti and N are combined in a stoichiometric ratio. Therefore, “[N] − [Ti] /3.4” means a value obtained by subtracting the amount of N used for TiN from the total amount of N, that is, the amount of free N remaining after TiN is generated. N has a strong bonding force with Ti, and TiN is preferentially generated during casting. In the cooling process after being heated to a high temperature during welding, free N (N remaining after TiN is generated) is combined with B and precipitated as BN. In other words, “[N] − [Ti] /3.4” can be said to mean the amount of residual N that can effectively act on the precipitation of BN. BN, like TiN, promotes transformation from within the austenite grains and improves HAZ toughness, if appropriately dispersed.

「[N]−[Ti]/3.4」の値が小さいときは、フリーN量が少ないため、BNが不足してHAZ靭性は低い。「[N]−[Ti]/3.4」の値が0.0003以上になると、BNが適切に分散するようになり、HAZ靭性が急激に向上する。一方「[N]−[Ti]/3.4」が0.0035を超えるとフリーNが過剰となり、BNとして固定できないフリーNが増え、HAZ靭性が劣化する。「[N]−[Ti]/3.4」の好ましい下限は0.0005(特に0.0008)であり、好ましい上限は0.0025(特に0.0020)である。   When the value of “[N] − [Ti] /3.4” is small, the amount of free N is small, so BN is insufficient and the HAZ toughness is low. When the value of “[N] − [Ti] /3.4” is 0.0003 or more, BN is appropriately dispersed, and the HAZ toughness is rapidly improved. On the other hand, when “[N] − [Ti] /3.4” exceeds 0.0035, the free N becomes excessive, the free N that cannot be fixed as BN increases, and the HAZ toughness deteriorates. The preferable lower limit of “[N]-[Ti] /3.4” is 0.0005 (particularly 0.0008), and the preferable upper limit is 0.0025 (particularly 0.0020).

(3)−0.0005≦[B]−{([N]−[Ti]/3.4)×11/14}≦0.0015
図3に基づき、「[B]−{([N]−[Ti]/3.4)×11/14}」(以下、BK値と呼ぶことがある)を−0.0005以上、0.0015以下と定めた。BK値はトータルB量からBNとして析出したB量を減じたものであり、BNが析出した後に残存する固溶B量を意味している。ただし、BK値は固溶B量の絶対値を表すものではなく、相対的に固溶B量の大小を表すものである。固溶B量(BK値)が多くなるほど、HAZ靭性が向上し、また母材強度も向上する。よってBK値は−0.0005以上に定めた。一方、固溶B量(BK値)が多すぎると、オーステナイト粒内からの変態促進を阻害する。BK値が0.0015を超えると靭性が急激に劣化することから、BK値を0.0015以下に定めた。BK値の好ましい下限は−0.0003(特に0.0000)であり、好ましい上限は0.0012(特に0.0010)である。
(3) −0.0005 ≦ [B] − {([N] − [Ti] /3.4) × 11/14} ≦ 0.0015
Based on FIG. 3, “[B] − {([N] − [Ti] /3.4) × 11/14}” (hereinafter sometimes referred to as BK value) is −0.0005 or more, 0. 0015 or less. The BK value is obtained by subtracting the amount of B precipitated as BN from the total amount of B, and means the amount of dissolved B remaining after BN is precipitated. However, the BK value does not represent the absolute value of the solid solution B amount, but relatively represents the magnitude of the solid solution B amount. As the amount of solute B (BK value) increases, the HAZ toughness improves and the strength of the base material also improves. Therefore, the BK value is set to -0.0005 or more. On the other hand, if the amount of solute B (BK value) is too large, transformation promotion from within the austenite grains is inhibited. When the BK value exceeds 0.0015, the toughness deteriorates rapidly, so the BK value was set to 0.0015 or less. The preferable lower limit of the BK value is -0.0003 (particularly 0.0000), and the preferable upper limit is 0.0012 (particularly 0.0010).

(i―2)Ca量、S量制御、(i―3)C量制御、及びCu、Ni、Bなどの添加については、後述する。   (I-2) Ca amount, S amount control, (i-3) C amount control, and addition of Cu, Ni, B, etc. will be described later.

(ii)介在物や組織状態の直接的コントロール
板厚方向のHAZ靭性を向上させる観点からすれば、(ii―1)粗大なCa含有介在物を低減し、(ii―2)展伸したMnS系介在物を低減し、(ii―3)中心偏析を軽減することが大切である。
(Ii) Direct control of inclusions and microstructures From the viewpoint of improving the HAZ toughness in the thickness direction, (ii-1) reducing coarse Ca-containing inclusions and (ii-2) expanded MnS It is important to reduce system inclusions and (ii-3) reduce center segregation.

(ii―1)粗大なCa含有介在物の低減
粒径の大きなCa含有介在物、特に粒径(円相当径)が5μm以上のCa含有介在物は、HAZ靭性に悪影響を与える。従って本発明では円相当径5μm以上の介在物を5個/mm2以下、好ましくは4個/mm2以下、さらに好ましくは3個/mm2以下とする。なお介在物個数の下限は特に限定されないが、例えば、0.1個/mm2程度(特に0.5個/mm2程度)であってもよい。
(Ii-1) Reduction of coarse Ca-containing inclusions Ca-containing inclusions having a large particle diameter, particularly Ca-containing inclusions having a particle diameter (equivalent circle diameter) of 5 μm or more adversely affect HAZ toughness. Therefore, in the present invention, inclusions having an equivalent circle diameter of 5 μm or more are 5 pieces / mm 2 or less, preferably 4 pieces / mm 2 or less, more preferably 3 pieces / mm 2 or less. The lower limit of the number of inclusions is not particularly limited, but may be, for example, about 0.1 / mm 2 (particularly about 0.5 / mm 2 ).

粗大化の防止対象とするCaを含有する介在物としては、Caを含有する全ての介在物が含まれ、特に粗大化し易い(従って重点的に制御すべき)介在物としては、CaS等の硫化物系介在物の他、酸化物との複合介在物、窒化物との複合介在物などが挙げられる。   Inclusions containing Ca to be prevented from coarsening include all inclusions containing Ca, and inclusions that are particularly likely to be coarsened (and therefore should be controlled intensively) include sulfides such as CaS. In addition to physical inclusions, composite inclusions with oxides, composite inclusions with nitrides, and the like can be given.

粗大なCa含有介在物を低減するためには、鋼材成分(特にCa量、S量)、酸素含有量の制御の他、脱ガス処理時間を制御することが有効である。   In order to reduce coarse Ca-containing inclusions, it is effective to control the degassing time as well as the steel material components (particularly Ca content and S content) and the oxygen content.

なお、粗大なCa含有介在物の個数は、鋼板の縦断面の観察結果に基づく。すなわち粗大なCa含有介在物の個数は、該断面をEPMAやFE−SEMなどで観察してCaを含む介在物を抽出し、その粒径(円相当径)を測定することで求められる。   In addition, the number of coarse Ca containing inclusions is based on the observation result of the longitudinal cross-section of a steel plate. That is, the number of coarse Ca-containing inclusions can be obtained by observing the cross section with EPMA or FE-SEM, extracting inclusions containing Ca, and measuring the particle diameter (equivalent circle diameter).

(ii―2)展伸したMnS系介在物の低減
圧延により展伸したMnS系介在物(A系介在物)、特に長さ50μm以上のMnS系介在物が存在すると、その介在物と鋼材の地鉄との界面が剥離し、その部分が破壊発生の起点となり、板厚方向の靭性を劣化させる。これを防止するため、長さ50μm以上のMnS系介在物を2個/cm2以下、好ましくは1個/cm2以下、さらに好ましくは0.5個/cm2以下にする。
(Ii-2) Reduction of expanded MnS inclusions When MnS inclusions (A inclusions) expanded by rolling, especially MnS inclusions with a length of 50 μm or more, are present, The interface with the base iron peels off, and that part becomes the starting point of fracture occurrence, which deteriorates the toughness in the thickness direction. In order to prevent this, the number of MnS inclusions having a length of 50 μm or more is 2 pieces / cm 2 or less, preferably 1 piece / cm 2 or less, more preferably 0.5 pieces / cm 2 or less.

展伸したMnS系介在物(A系介在物)が存在すれば、溶接時にラメラテア割れが生じることは良く知られている(例えば、「新しい建築構造用鋼材」、鋼構造出版、p.88〜92)。しかし、板厚方向のHAZ靭性改善という観点では、MnS系介在物の影響は定量的に明確になっておらず、本発明で初めて明らかになった。   It is well known that lamellar tearing occurs during welding if expanded MnS inclusions (A inclusions) are present (for example, “New Steel for Building Structures”, Steel Structure Publishing, p. 88- 92). However, from the viewpoint of improving the HAZ toughness in the sheet thickness direction, the influence of MnS inclusions has not been clarified quantitatively, and has been clarified for the first time in the present invention.

展伸したMnS系介在物を低減するためには、鋼材成分(特にCa量、S量)を制御することが有効である。   In order to reduce the expanded MnS inclusions, it is effective to control the steel material components (particularly the Ca content and the S content).

展伸したMnS系介在物の個数は、鋼板の縦断面を光学顕微鏡(倍率は例えば100倍程度)により測定することで求められる。   The number of expanded MnS-based inclusions is determined by measuring the longitudinal section of the steel sheet with an optical microscope (magnification is about 100 times, for example).

(ii―3)中心偏析の軽減
鋼板の化学成分が中心偏析していると、溶接熱影響が板厚中心近傍まで及んだとき、この板厚中心の偏析部(化学成分濃化部)の組織が大きく変化し、島状マルテンサイト(MA)、マルテンサイト、ベイナイトなどの硬質相が、板面と平行な面に多く生成する。板厚方向に応力がかかったときにこのMAから破壊が発生するため、板厚方向のHAZ靭性が大きく劣化する。HAZ靭性の劣化を防止するためには、中心偏析を軽減する必要がある。この偏析の程度はCの偏析度で評価することができ、(中心偏析部のC濃度)/(鋼板全体の平均C濃度)の比が1.2を超えるとMAの生成が多くなりHAZ靭性が劣化する。そこで(中心偏析部のC濃度)/(鋼板全体の平均C濃度)の比の上限を1.2と定めた。(中心偏析部のC濃度)/(鋼板全体の平均C濃度)の比の好ましい範囲は、1.1以下である。
(Ii-3) Reduction of center segregation If the chemical composition of the steel sheet is center segregated, when the influence of welding heat reaches the vicinity of the center of the plate thickness, A structure | tissue changes greatly and many hard phases, such as an island-like martensite (MA), a martensite, and a bainite, produce | generate on a surface parallel to a plate surface. When a stress is applied in the plate thickness direction, fracture occurs from this MA, so that the HAZ toughness in the plate thickness direction is greatly deteriorated. In order to prevent the deterioration of the HAZ toughness, it is necessary to reduce the center segregation. The degree of segregation can be evaluated by the degree of segregation of C. When the ratio of (C concentration in the central segregation part) / (average C concentration in the entire steel sheet) exceeds 1.2, the production of MA increases and the HAZ toughness Deteriorates. Therefore, the upper limit of the ratio of (C concentration of central segregation part) / (average C concentration of the entire steel sheet) was set to 1.2. A preferable range of the ratio of (C concentration of central segregation part) / (average C concentration of the entire steel sheet) is 1.1 or less.

展伸したMnS系介在物(A系介在物)と同様、中心偏析が生じた場合にも、溶接時にラメラテア割れが生じることが良く知られている(前記「新しい建築構造用鋼材」、鋼構造出版、p.88〜92)。しかし、板厚方向のHAZ靭性改善という観点では、中心偏析の影響は定量的に明確になっておらず、本発明で初めて明らかになった。   As with the expanded MnS inclusions (A inclusions), it is well known that lamellar tearing occurs during welding even when center segregation occurs (the above-mentioned “new steels for building structures”, steel structures). Publishing, p. 88-92). However, from the viewpoint of improving the HAZ toughness in the plate thickness direction, the influence of center segregation has not been clarified quantitatively, and has been clarified for the first time in the present invention.

中心偏析の程度は、連続鋳造の鋳造温度、鋳造ロール間隙制御、鋳造スラブの再加熱ブレークダウンなどによって変化させることができる。より詳細には、鋳型への鋳入温度と凝固温度の差が小さいほど中心偏析を軽減でき、鋳造ロール間隙については、溶鋼の凝固完了位置近傍で圧下ロール間隙(上側ロールと下側ロールの距離)を絞り込んで圧下することによって中心偏析を軽減できる。また、鋳造スラブを再加熱し、高温で熟熱することにより中心偏析成分が拡散され、さらにブレークダウン圧延することにより中心部の凝固すきまを圧着でき、中心偏析を軽減できる。   The degree of center segregation can be changed by the casting temperature of continuous casting, casting roll gap control, reheating breakdown of the casting slab, and the like. More specifically, the smaller the difference between the casting temperature and the solidification temperature of the mold, the smaller the center segregation. As for the gap between the casting rolls, the reduction roll gap (the distance between the upper roll and the lower roll) near the solidification completion position of the molten steel. ) Can be reduced and the center segregation can be reduced. Moreover, the center segregation component is diffused by reheating the casting slab and aging at a high temperature. Further, by performing breakdown rolling, the solidification gap at the center can be crimped and the center segregation can be reduced.

中心偏析部のC濃度は、測定方法に応じて異なる値になる。従って、定量的な制御を行うには、測定方法を統一しておく必要がある。例えば、EPMAによれば、極めて微小な領域を分析するため、分析値にばらつきが生じやすくなる。そこで本発明では、以下のような方法で中心偏析部のC濃度を測定する。   The C concentration in the center segregation part varies depending on the measurement method. Therefore, in order to perform quantitative control, it is necessary to unify measurement methods. For example, according to EPMA, since an extremely small area is analyzed, the analysis value tends to vary. Therefore, in the present invention, the C concentration in the central segregation part is measured by the following method.

鋼板の縦断面を切り出し、マクロエッチングして中心偏析部を現出し、その濃化部位から特定の厚みで鋼材を削り出し、切り粉を化学分析することで、中心偏析部のC濃度を決定する。削り出し厚さは、板厚×0.02とする。例えば、板厚が100mmであれば、削り出し厚さは、100×0.02=2mmとする。削り出しには、削り出し厚さと同じ直径のドリルを使用するのが便利である。ただし、板厚との関係で削り出し厚みを決定したとき、その厚さによっては適切なドリル径の工具が入手できない場合があり、また板厚毎にドリル径を変更すると作業効率が低下し、削り出しが困難となる場合がある。そこで板厚50〜100mmの鋼板であれば、削り出し厚さ(ドリル径)を1〜1.2mmに設定してもよい。また中心偏析部が表面に出るように切削し、その表面を発光分析(カントバック)して中心偏析部のC濃度を決定してもよい。   A longitudinal section of the steel sheet is cut out, macro-etched to reveal the center segregation part, the steel material is shaved at a specific thickness from the concentrated part, and the C concentration of the center segregation part is determined by chemical analysis of the chips. . The machined thickness is set to plate thickness × 0.02. For example, if the plate thickness is 100 mm, the machined thickness is 100 × 0.02 = 2 mm. For machining, it is convenient to use a drill having the same diameter as the machined thickness. However, when the cutting thickness is determined in relation to the plate thickness, a tool with an appropriate drill diameter may not be available depending on the thickness, and if the drill diameter is changed for each plate thickness, the work efficiency decreases, It may be difficult to cut out. Therefore, in the case of a steel plate having a plate thickness of 50 to 100 mm, the machined thickness (drill diameter) may be set to 1 to 1.2 mm. Alternatively, the center segregation portion may be cut so as to come out on the surface, and the surface may be subjected to emission analysis (cantback) to determine the C concentration of the center segregation portion.

上述したように、本発明では(i―1)Ti−B−N間の成分量を制御したり、(ii)介在物や組織状態を直接的にコントロールする点に大きな特徴を有するが、さらに(i―2)Ca量、S量、および(i―3)C量、Cu量、Ni量、B量を制御することも重要であり、これらの制御を含め、鋼板の成分組成を適切に設計することも重要である。本発明の鋼板の成分組成及びその限定理由は、以下の通りである。   As described above, the present invention has a great feature in that (i-1) the amount of components between Ti and B-N is controlled, or (ii) the inclusions and the tissue state are directly controlled. It is also important to control (i-2) Ca content, S content, and (i-3) C content, Cu content, Ni content, B content. It is also important to design. The component composition of the steel sheet of the present invention and the reasons for limitation are as follows.

[C:0.02〜0.10%]
Cは鋼板の強度を確保するために必要な元素である。C量が0.02%未満では、強度を確保することができなくなる。一方、C量が0.10%を超えると、大入熱溶接時の溶接熱影響部(HAZ)に、島状マルテンサイト(MA)と呼ばれる硬質組織が生じやすくなり、HAZ靭性が劣化する。そこでC量を0.02〜0.10%と定めた。C量の好ましい下限は0.03%であり、好ましい上限は0.09%である。
[C: 0.02-0.10%]
C is an element necessary for ensuring the strength of the steel sheet. If the C content is less than 0.02%, the strength cannot be secured. On the other hand, if the amount of C exceeds 0.10%, a hard structure called island martensite (MA) is likely to occur in the weld heat affected zone (HAZ) during high heat input welding, and the HAZ toughness deteriorates. Therefore, the C content is determined to be 0.02 to 0.10%. The preferable lower limit of the amount of C is 0.03%, and the preferable upper limit is 0.09%.

[Si:0.05〜0.5%]
Siは、脱酸に必要な元素である。Si量が0.05%未満では、脱酸の効果が有効に発揮できない。一方、Si量が0.5%を超えると溶接性が劣化する。そこでSi量を0.05〜0.5%と定めた。Si量の好ましい下限は0.1%であり、好ましい上限は0.4%である。
[Si: 0.05-0.5%]
Si is an element necessary for deoxidation. When the amount of Si is less than 0.05%, the effect of deoxidation cannot be exhibited effectively. On the other hand, if the Si content exceeds 0.5%, the weldability deteriorates. Therefore, the Si amount is set to 0.05 to 0.5%. The preferable lower limit of the amount of Si is 0.1%, and the preferable upper limit is 0.4%.

[Mn:1.0〜2.0%]
Mnは、鋼板の強度を確保するとともに、靭性の向上に有効な元素である。Mn量が1.0%未満では、鋼板の強度および靭性を確保することができない。一方、Mn量が2.0%を超えると、溶接性が劣化する。そこで、Mn量を1.0〜2.0%と定めた。Mn量の好ましい下限は1.2%であり、好ましい上限は1.8%である。
[Mn: 1.0 to 2.0%]
Mn is an element effective for ensuring the strength of the steel sheet and improving toughness. If the amount of Mn is less than 1.0%, the strength and toughness of the steel sheet cannot be ensured. On the other hand, when the amount of Mn exceeds 2.0%, weldability deteriorates. Therefore, the amount of Mn is set to 1.0 to 2.0%. A preferable lower limit of the amount of Mn is 1.2%, and a preferable upper limit is 1.8%.

[P:0.015%以下(0%を含まない)]
Pは不純物元素として不可避的に混入する元素であるが、P量が0.015%を超えると靭性を劣化させるため、上限を0.015%とした。P量の好ましい上限は0.013%である。
[P: 0.015% or less (excluding 0%)]
P is an element that is inevitably mixed in as an impurity element, but if the amount of P exceeds 0.015%, the toughness deteriorates, so the upper limit was made 0.015%. The upper limit with preferable P amount is 0.013%.

[S:0.0010%以下(0%を含まない)]
Sは不純物元素として不可避的に混入する元素である。Sは、MnS系やCaS系の介在物となり、板厚方向の母材性能を劣化させるとともに、これら介在物が破壊発生の起点となり、HAZ靭性を劣化させる。MnS系介在物は、圧延後、板厚中心部および板厚方向のさまざまな位置で、展伸した状態で存在する。そして大入熱溶接を行った場合、溶接熱影響により、展伸したMnS系介在物と鋼板の地鉄との界面が剥離して破壊発生の起点となり、板厚方向のHAZ靭性を劣化させる。また、展伸したMnS系介在物は中心偏析部と共存しやすく、島状マルテンサイト(MA)と隣接するとさらにHAZ靭性が劣化する。S量が過剰になると、前述のMnS系やCaS系の介在物が粗大化し、介在物の個数も増加するため、破壊発生の起点となる箇所が増え、HAZ靭性が劣化する。そこで、S量の上限を0.0010%とした。S量の好ましい上限は0.009%である。
[S: 0.0010% or less (excluding 0%)]
S is an element inevitably mixed as an impurity element. S becomes an MnS-based or CaS-based inclusion, which deteriorates the performance of the base material in the thickness direction, and these inclusions serve as a starting point for occurrence of fracture and deteriorate the HAZ toughness. MnS-based inclusions are present in a stretched state at various positions in the sheet thickness center and sheet thickness direction after rolling. When high heat input welding is performed, the interface between the expanded MnS inclusions and the steel plate of the steel sheet is peeled off due to the influence of the welding heat and becomes a starting point of occurrence of fracture, which degrades the HAZ toughness in the thickness direction. In addition, the expanded MnS-based inclusion is likely to coexist with the central segregation portion, and the HAZ toughness is further deteriorated when adjacent to the island-like martensite (MA). When the amount of S becomes excessive, the aforementioned MnS-based and CaS-based inclusions become coarse and the number of inclusions also increases, so that the number of occurrence points of fracture increases and the HAZ toughness deteriorates. Therefore, the upper limit of the amount of S is set to 0.0010%. A preferable upper limit of the amount of S is 0.009%.

[Al:0.01〜0.05%]
Alは脱酸剤として作用する元素である。Al量が0.01%未満では脱酸の効果が有効に発揮されない。一方、Al量が0.05%を超えると靭性を劣化させる。そこでAl量を0.01〜0.05%と定めた。Al量の好ましい下限は0.02%であり、好ましい上限は0.04%である。
[Al: 0.01 to 0.05%]
Al is an element that acts as a deoxidizer. If the Al content is less than 0.01%, the effect of deoxidation is not exhibited effectively. On the other hand, if the Al content exceeds 0.05%, the toughness is deteriorated. Therefore, the Al content is determined to be 0.01 to 0.05%. A preferable lower limit of the amount of Al is 0.02%, and a preferable upper limit is 0.04%.

[Cu:0.05〜1.5%]
Cuは強度の上昇に有効であり、HAZ靭性の劣化が小さい元素である。Cu量が0.05%未満では強度を確保することができない。一方、Cu量が1.5%を超えると、溶接性が劣化する。そこでCu量を0.05〜1.5%と定めた。Cu量の好ましい下限は0.2%、好ましい上限は1%である。
[Cu: 0.05 to 1.5%]
Cu is an element effective in increasing the strength and has a small deterioration in HAZ toughness. If the amount of Cu is less than 0.05%, the strength cannot be ensured. On the other hand, if the amount of Cu exceeds 1.5%, weldability deteriorates. Therefore, the amount of Cu is set to 0.05 to 1.5%. The preferable lower limit of the amount of Cu is 0.2%, and the preferable upper limit is 1%.

[Ni:0.05〜1.5%]
Niは強度の上昇に有効であり、HAZ靭性の劣化が小さい元素である。Ni量が0.05%未満では強度を確保することができない。一方、Ni量が1.5%を超えると、溶接性が劣化する。そこでNi量を0.05〜1.5%と定めた。Ni量の好ましい下限は0.2%、好ましい上限は1.3%である。
[Ni: 0.05 to 1.5%]
Ni is an element that is effective in increasing the strength and has little deterioration in HAZ toughness. If the Ni content is less than 0.05%, the strength cannot be secured. On the other hand, if the Ni content exceeds 1.5%, weldability deteriorates. Therefore, the amount of Ni is set to 0.05 to 1.5%. The preferable lower limit of the amount of Ni is 0.2%, and the preferable upper limit is 1.3%.

[Ti:0.003〜0.02%]
TiはHAZ靭性の向上に極めて有効な元素である。TiNを微細に多く分散させることで、溶融点近くまで溶接熱が加わったとき、オーステナイト粒径の粗大化をピン止め効果により防止し、一方冷却時にはオーステナイト粒内のフェライト/ベイナイト核生成サイトとして働き、HAZ組織を微細化する。Ti量が0.003%未満では、このような効果を発揮させるためのTiNの個数を十分に確保することができない。一方、Ti量が0.02%を超えると、TiNが粗大化し、TiNの個数が減少する。そこで、Ti量を0.003〜0.02%と定めた。Ti量の好ましい下限は0.005%、好ましい上限は0.018%である。
[Ti: 0.003 to 0.02%]
Ti is an extremely effective element for improving the HAZ toughness. By dispersing a large amount of TiN finely, when welding heat is applied to near the melting point, the austenite grain size is prevented by the pinning effect, and during cooling, it acts as a ferrite / bainite nucleation site in the austenite grains. , To refine the HAZ structure. If the amount of Ti is less than 0.003%, it is not possible to sufficiently secure the number of TiNs for exhibiting such effects. On the other hand, if the Ti content exceeds 0.02%, TiN becomes coarse and the number of TiNs decreases. Therefore, the amount of Ti is set to 0.003 to 0.02%. The preferable lower limit of the amount of Ti is 0.005%, and the preferable upper limit is 0.018%.

[B:0.0005〜0.0030%]
Bは微量で強度上昇に有効であるとともに、Tiと同様にHAZ靭性の向上に有効な元素である。圧延後の冷却時にオーステナイト粒界に固溶偏析して焼入れ性を向上させ、強度を向上させる。また、溶接熱影響部において、TiN粒子は溶融線近傍の1400℃以上の高温で一旦溶解して粒子数が減少すると再析出しないのに対し、Bは溶接加熱後の冷却過程でBNとして析出し、オーステナイト粒内のフェライト/ベイナイト核生成サイトとして働き、HAZ組織を微細化する。このような効果を発揮させるために、B量の下限は0.0005%とした。一方、0.0030%を超えて含有すると、Bの固溶量が過剰となり、溶接性、HAZ靭性が劣化するため、B量の上限は0.0030%とした。B量の好ましい下限は0.001%であり、好ましい上限は0.0025%である。
[B: 0.0005 to 0.0030%]
B is an element that is effective for increasing the strength in a small amount and is effective for improving the HAZ toughness in the same manner as Ti. During cooling after rolling, solid solution segregates at the austenite grain boundaries to improve hardenability and improve strength. In the weld heat affected zone, TiN particles do not reprecipitate once they melt at a high temperature of 1400 ° C. or higher near the melting line and the number of particles decreases, whereas B precipitates as BN in the cooling process after welding heating. It works as a ferrite / bainite nucleation site in austenite grains and refines the HAZ structure. In order to exert such an effect, the lower limit of the B amount is set to 0.0005%. On the other hand, when the content exceeds 0.0030%, the solid solution amount of B becomes excessive, and the weldability and the HAZ toughness deteriorate, so the upper limit of the B amount is set to 0.0030%. A preferable lower limit of the amount of B is 0.001%, and a preferable upper limit is 0.0025%.

[Ca:0.0015〜0.0030%]
Caは、MnS系の長大な介在物を、CaS単独あるいはCaSとの複合介在物に変化させることで、球状化し、長さを短くする作用を有し、板厚方向特性の改善に寄与する元素である。さらにCaは、TiNとの複合介在物を形成し、高温で安定な微細介在物となり、HAZ靭性を改善する。この効果を得るために、Ca量の下限は0.0015%とした。一方、Ca量が0.0030%を超えると、Caを含む介在物が粗大化し、数も増加して、HAZ靭性が劣化するので、Ca量の上限を0.0030%とした。Ca量の好ましい下限は、0.0017%であり、好ましい上限は0.0029%である。
[Ca: 0.0015 to 0.0030%]
Ca is an element that has the effect of reducing the length by changing the length of MnS-based inclusions into single inclusions of CaS or composite inclusions with CaS, shortening the length, and contributing to the improvement of the plate thickness direction characteristics. It is. Furthermore, Ca forms complex inclusions with TiN, becomes fine inclusions stable at high temperatures, and improves HAZ toughness. In order to obtain this effect, the lower limit of the Ca content is 0.0015%. On the other hand, if the Ca content exceeds 0.0030%, inclusions containing Ca are coarsened, the number increases, and the HAZ toughness deteriorates. Therefore, the upper limit of the Ca content is set to 0.0030%. A preferable lower limit of the Ca content is 0.0017%, and a preferable upper limit is 0.0029%.

[N:0.0040〜0.008%]
Nは、TiNやBNの窒化物粒子となりHAZ靭性の改善に有効な元素である。N量が0.0040%未満では、HAZ靭性を改善する効果が発揮できない。一方、N量が0.008%を超えると、固溶Nが過剰となりHAZ靭性が劣化する。そこで、N量を0.0040〜0.008%とした。N量の好ましい下限は0.0045%、好ましい上限は0.007%である。
[N: 0.0040 to 0.008%]
N is an element that becomes nitride particles of TiN or BN and is effective in improving the HAZ toughness. If the N content is less than 0.0040%, the effect of improving the HAZ toughness cannot be exhibited. On the other hand, if the N content exceeds 0.008%, the solid solution N becomes excessive and the HAZ toughness deteriorates. Therefore, the N amount is set to 0.0040 to 0.008%. The preferable lower limit of the N amount is 0.0045%, and the preferable upper limit is 0.007%.

[O:0.0005〜0.0030%]
Oは過剰に添加するとアルミナ系介在物が増加するとともに、Caを含む酸化物が粗大化し、数も増加するためHAZ靭性を劣化させる。そこでO量の上限を0.0030%とした。O量の好ましい上限は、0.0025%である。また、Oは製鋼過程で不可避的に残存するので、下限を0.0005%とした。
[O: 0.0005 to 0.0030%]
When O is added excessively, the alumina inclusions increase, the oxide containing Ca becomes coarse, and the number increases, so that the HAZ toughness is deteriorated. Therefore, the upper limit of the O amount is set to 0.0030%. A preferable upper limit of the amount of O is 0.0025%. Further, O inevitably remains in the steel making process, so the lower limit was made 0.0005%.

本発明鋼板の成分組成は上記の通りであり、残部は鉄および不可避的不純物である。   The composition of the steel sheet of the present invention is as described above, and the balance is iron and inevitable impurities.

本発明では更に他の元素として、Cr:0.05〜1.5%および/またはV:0.005〜0.05%を含んでいても良い。以下、これらの成分について説明する。   In the present invention, as other elements, Cr: 0.05 to 1.5% and / or V: 0.005 to 0.05% may be included. Hereinafter, these components will be described.

[Cr:0.05〜1.5%]
Crは強度上昇に有効な元素である。このような効果を発揮させるために、Cr量は好ましくは0.05%以上、さらに好ましくは0.5%以上であることが推奨される。一方、Cr量が過剰であると溶接性が劣化するので、好ましくは1.5%以下、さらに好ましくは1%以下とするのが良い。
[Cr: 0.05-1.5%]
Cr is an element effective for increasing the strength. In order to exert such effects, it is recommended that the Cr content is preferably 0.05% or more, more preferably 0.5% or more. On the other hand, if the amount of Cr is excessive, the weldability deteriorates, so it is preferably 1.5% or less, more preferably 1% or less.

[V:0.005〜0.05%]
Vは強度と靭性を向上させるのに有効な元素である。このような効果を発揮させるために、V量は好ましくは0.005%以上、さらに好ましくは0.01%以上であることが推奨される。一方、V量が過剰であるとHAZ靭性が劣化するので、好ましくは0.05%以下、さらに好ましくは0.04%以下とするのがよい。
[V: 0.005 to 0.05%]
V is an element effective for improving strength and toughness. In order to exert such effects, it is recommended that the V amount is preferably 0.005% or more, more preferably 0.01% or more. On the other hand, if the amount of V is excessive, the HAZ toughness deteriorates, so it is preferably 0.05% or less, and more preferably 0.04% or less.

本発明の鋼板は、上記化学成分量と、Ti、N、Bについて上記(1)〜(3)式の要件を満たす鋼スラブを、950〜1250℃に加熱し、圧延仕上温度が800〜900℃となるように圧延した後、30秒以上の空冷を行い、その後1〜100℃/sの冷却速度で300℃以下の温度まで冷却することによって製造できる。   In the steel sheet of the present invention, a steel slab that satisfies the requirements of the above formulas (1) to (3) for Ti, N, and B is heated to 950 to 1250 ° C., and the rolling finishing temperature is 800 to 900. It can manufacture by air-cooling for 30 seconds or more after rolling so that it may become 0 degreeC, and cooling to the temperature of 300 degrees C or less after that with a cooling rate of 1-100 degrees C / s.

[圧延時の加熱温度:950〜1250℃]
鋼スラブの圧延時の加熱温度は、均一にオーステナイト組織に変態させる必要があるため、950℃以上にする必要がある。一方、加熱温度が高すぎるとオーステナイト結晶粒径が粗大化し、靭性が劣化するため上限を1250℃とした。加熱温度の好ましい下限は1000℃であり、好ましい上限は1200℃である。
[Heating temperature during rolling: 950 to 1250 ° C.]
The heating temperature at the time of rolling the steel slab needs to be 950 ° C. or higher because it is necessary to uniformly transform the steel slab into an austenite structure. On the other hand, if the heating temperature is too high, the austenite crystal grain size becomes coarse and the toughness deteriorates, so the upper limit was set to 1250 ° C. The minimum with a preferable heating temperature is 1000 degreeC, and a preferable upper limit is 1200 degreeC.

[圧延仕上温度:800〜900℃]
圧延仕上温度は、靭性を確保するため、未再結晶域でオーステナイト粒内に歪(変形帯)を導入できる温度が望ましく、上限を900℃とした。一方、圧延仕上温度が低温になりすぎると超音波探傷試験での音響異方性が大きくなり、溶接部の検査効率に弊害が生じるため、下限を800℃とした。圧延仕上温度の好ましい下限は820℃であり、好ましい上限は870℃である。
[Rolling finishing temperature: 800-900 ° C]
The rolling finishing temperature is desirably a temperature at which strain (deformation band) can be introduced into the austenite grains in the non-recrystallized region in order to ensure toughness, and the upper limit is set to 900 ° C. On the other hand, if the rolling finishing temperature becomes too low, the acoustic anisotropy in the ultrasonic flaw detection test becomes large and the inspection efficiency of the welded part is adversely affected. The minimum with a preferable rolling finishing temperature is 820 degreeC, and a preferable upper limit is 870 degreeC.

[圧延後の30秒以上の空冷]
圧延完了後、加速冷却(直接焼入れ(DQ))の冷却(水冷など)を開始するまでの間に、30秒以上空冷する必要がある。この空冷によって、鋼板の表面温度を均一化して鋼板内の材質ばらつきを低減するとともに、冷却開始温度を低下させ降伏比(YR)を低減させることができる。好ましい空冷時間は、60秒以上である。
[Air cooling for 30 seconds after rolling]
It is necessary to air-cool for 30 seconds or more before the start of cooling (water cooling or the like) of accelerated cooling (direct quenching (DQ)) after completion of rolling. By this air cooling, the surface temperature of the steel sheet can be made uniform to reduce material variation in the steel sheet, and the cooling start temperature can be lowered to reduce the yield ratio (YR). A preferable air cooling time is 60 seconds or more.

[冷却速度:1〜100℃/s]
圧延後の冷却速度が速いほど強度が上昇するため、冷却速度は1℃/s以上とする。一方、冷却速度が速すぎると硬質組織となり、靭性が劣化するので上限は100℃/sとする。冷却速度の好ましい下限は3℃/sであり、好ましい上限は30℃/s(特に15℃/s)である。
[Cooling rate: 1 to 100 ° C./s]
Since the strength increases as the cooling rate after rolling increases, the cooling rate is set to 1 ° C./s or more. On the other hand, if the cooling rate is too fast, the structure becomes hard and the toughness deteriorates, so the upper limit is set to 100 ° C./s. The preferable lower limit of the cooling rate is 3 ° C./s, and the preferable upper limit is 30 ° C./s (particularly 15 ° C./s).

[冷却停止温度:300℃以下]
冷却停止温度が低いほど低温変態組織となり強度が上昇するので、冷却停止温度は300℃以下とする。好ましい冷却停止温度は200℃以下である。
[Cooling stop temperature: 300 ℃ or less]
Since the lower the cooling stop temperature is, the lower the temperature is and the higher the strength, the lower the cooling stop temperature. A preferable cooling stop temperature is 200 ° C. or lower.

[焼戻し(T)]
本発明の製造方法では、前記のようにして加速冷却(直接焼入れ)した鋼板を、例えばオフラインで焼戻ししてもよい。焼戻しによって、硬質組織を軟化させ、さらに靭性を改善することができる。
[Tempered (T)]
In the production method of the present invention, the steel plate accelerated and cooled (directly quenched) as described above may be tempered offline, for example. Tempering can soften the hard tissue and further improve toughness.

焼戻し条件は、再加熱温度:450〜600℃、冷却手法:空冷にするのが望ましい。再加熱温度が450℃未満では、硬質組織の軟化が十分でなく、一方600℃を超えると引張強度(TS)が低下し規格強度を下回る場合があるとともに、引張強度(TS)の低下代に比べて降伏強度(YS)の低下が小さく降伏比(YR)が上昇する。   The tempering conditions are preferably reheating temperature: 450 to 600 ° C. and cooling method: air cooling. If the reheating temperature is less than 450 ° C, the softening of the hard tissue is not sufficient. On the other hand, if it exceeds 600 ° C, the tensile strength (TS) may be lower than the standard strength. In comparison, the yield strength (YS) decreases little and the yield ratio (YR) increases.

[二相域からの焼入れ(Q’)]
前記加速冷却(直接焼入れ)と焼戻しの間に、フェライト―オーステナイト二相域からの焼入れ(Q’)を実施してもよい。二相域からの焼入れ(Q’)は特に低YR化に有効な方法である。
[Quenching from two-phase area (Q ')]
Quenching (Q ′) from the ferrite-austenite two-phase region may be performed between the accelerated cooling (direct quenching) and tempering. Quenching (Q ′) from the two-phase region is a particularly effective method for reducing YR.

再加熱温度は、Ac1点以上(例えば700℃以上)、Ac3点以下(例えば850℃以下)である。鋼板を二相域(Ac1点以上Ac3点以下)に再加熱することによって、鋼板組織の一部がオーステナイト化し、残りは軟化したり、フェライト化する。次いで焼入れすることによってオーステナイトが硬質相になり、硬質相とフェライト相を適度にバランスさせることができ、低YR化することができる。好ましい再加熱温度は、700℃以上、850℃以下である。好ましい焼入れ条件は、冷却速度:1℃/s以上、冷却終了温度:200℃以下である。二相焼入れした鋼板は、焼入れままでは靭性が劣化するため、通常、前記と同様の焼戻し処理をする。 The reheating temperature is Ac 1 point or higher (for example, 700 ° C. or higher) and Ac 3 point or lower (for example, 850 ° C. or lower). By reheating the steel sheet to a two-phase region (Ac 1 point or more and Ac 3 point or less), a part of the steel sheet structure becomes austenite, and the rest softens or ferrites. Next, by quenching, the austenite becomes a hard phase, the hard phase and the ferrite phase can be appropriately balanced, and the YR can be lowered. A preferable reheating temperature is 700 ° C. or higher and 850 ° C. or lower. Preferred quenching conditions are a cooling rate of 1 ° C./s or more and a cooling end temperature of 200 ° C. or less. A steel sheet that has been subjected to two-phase quenching is usually tempered in the same manner as described above, because the toughness deteriorates as it is quenched.

また介在物の形態制御および中心偏析を軽減するためには、上記製造方法において更に、RH脱ガスの処理時間の制御、鋳造温度の制御、鋳造ロール間隙の制御、再加熱ブレークダウンを行うことも重要である。   In addition, in order to reduce the inclusion shape control and center segregation, the above manufacturing method may further include control of the RH degassing treatment time, control of the casting temperature, control of the casting roll gap, and reheating breakdown. is important.

RH脱ガスの処理時間の制御は、酸化物系介在物の大きさの制御に有効であり、好ましい処理時間は、20〜30分程度である。   The control of the treatment time for RH degassing is effective for controlling the size of oxide inclusions, and the preferred treatment time is about 20 to 30 minutes.

鋳造温度の制御、鋳造ロール間隙の制御、再加熱ブレークダウンは中心偏析の制御に有効である。鋳造温度については、鋳型への鋳入温度と凝固温度の差(ΔT)が小さいほど中心偏析を軽減でき、好ましいΔTの範囲は15〜25℃程度である。鋳造ロール間隙については、溶鋼の凝固完了位置近傍で圧下ロール間隙(上側ロールと下側ロールの距離)を絞り込んで圧下することによって中心偏析を軽減できる。圧下ロール間隙の絞込みの程度は、圧下ロールの配置される全長に亘って徐々に絞り込んでいく場合(つまり圧下勾配が小さい場合)を「小」、凝固完了間際で一気に絞り込む場合(つまり圧下勾配が大きい場合)を「大」、これらの中間を「標準」とすると、「大」または「標準」で絞り込むことが好ましい。また、特に極厚鋼板(板厚80mm以上)では、鋳造スラブを再加熱して拡散均熱処理を行い、ブレークダウン圧延することで中心偏析を軽減できる。ブレークダウン圧延の好ましい加熱温度は1200℃程度であり、好ましい圧下率は10〜20%程度である。   Control of casting temperature, control of casting roll gap, and reheating breakdown are effective in controlling center segregation. As for the casting temperature, the smaller the difference (ΔT) between the casting temperature into the mold and the solidification temperature, the more the center segregation can be reduced, and the preferable ΔT range is about 15 to 25 ° C. With respect to the casting roll gap, central segregation can be reduced by reducing the rolling roll gap (the distance between the upper roll and the lower roll) in the vicinity of the solidification completion position of the molten steel. The degree of narrowing of the rolling roll gap is “small” when the rolling roll is gradually narrowed over the entire length of the rolling roll (that is, when the rolling gradient is small), and narrowing down immediately when solidification is completed (that is, the rolling gradient is reduced). It is preferable to narrow down by “large” or “standard” where “large” is “large” and the middle of these is “standard”. In particular, in an extremely thick steel plate (plate thickness of 80 mm or more), center segregation can be reduced by reheating the cast slab, performing diffusion soaking, and performing breakdown rolling. The preferable heating temperature of breakdown rolling is about 1200 ° C., and the preferable rolling reduction is about 10 to 20%.

本発明の鋼板は、大入熱溶接をしたときの板厚方向のHAZ靭性、引張強度(TS)、に優れ、降伏比(YR)が低い。そのため本発明の鋼板を建築鉄骨として使用されるボックス柱のスキンプレートに用いると、ボックス柱の耐震性を著しく向上できる。   The steel sheet of the present invention is excellent in HAZ toughness and tensile strength (TS) in the thickness direction when high heat input welding is performed, and has a low yield ratio (YR). Therefore, when the steel plate of the present invention is used for a skin plate of a box column used as a building steel frame, the earthquake resistance of the box column can be significantly improved.

本発明の鋼板の板厚は、例えば30〜100mm程度、好ましくは40〜80mm程度である。引張強度は、例えば490〜740MPa程度である。降伏比(YR)は、例えば65〜80%程度である。   The plate | board thickness of the steel plate of this invention is about 30-100 mm, for example, Preferably it is about 40-80 mm. The tensile strength is, for example, about 490 to 740 MPa. The yield ratio (YR) is, for example, about 65 to 80%.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

表2に示す組成の鋼を、転炉で溶製した後、表3に示す方法で脱酸し、表3に示す条件で連続鋳造した後、表3に示す条件で鋳造スラブを再加熱して中間スラブ厚までブレークダウン圧延し、その後、表3に示す条件で所定の板厚まで熱間圧延・加速冷却を行った。一部の鋼板は、そのまま又は2相焼入れを行った後、焼戻しした。   After the steel having the composition shown in Table 2 was melted in a converter, it was deoxidized by the method shown in Table 3, continuously casted under the conditions shown in Table 3, and then the cast slab was reheated under the conditions shown in Table 3. Then, breakdown rolling was performed to an intermediate slab thickness, and then hot rolling and accelerated cooling were performed to a predetermined plate thickness under the conditions shown in Table 3. Some steel plates were tempered as they were or after two-phase quenching.

Figure 0005171327
Figure 0005171327

Figure 0005171327
Figure 0005171327

上記のように製造した鋼板について、下記の要領で測定した。   About the steel plate manufactured as mentioned above, it measured in the following way.

[Ca含有介在物の測定]
Ca含有介在物の測定には、FE−SEMを用いた。鋼板の縦断面のt/4位置(t:板厚)における任意の測定領域(約300μm×300μm)を、倍率1000倍で測定し、Caを含有する介在物を抽出し、円相当粒径5μm以上の介在物の個数をカウントした。測定は10視野について行い、得られた介在物の個数(10視野分の合計)を、1mmあたりの個数に換算した。
[Measurement of Ca-containing inclusions]
FE-SEM was used for the measurement of Ca-containing inclusions. An arbitrary measurement region (about 300 μm × 300 μm) at a t / 4 position (t: plate thickness) in the longitudinal section of the steel plate is measured at a magnification of 1000 times, and inclusions containing Ca are extracted, and the equivalent grain size is 5 μm. The number of inclusions was counted. Measurement was performed for 10 fields of view, and the number of inclusions obtained (total for 10 fields of view) was converted to the number per 1 mm 2 .

[MnS系介在物の測定]
MnS系介在物の測定には、光学顕微鏡を用いた。鋼板の縦断面のt/4位置とt/2位置(t:板厚)における任意の測定領域(約15mm×15mm)を、倍率100倍で観察し、長さ50μm以上のMnS系介在物の個数をカウントした。測定は、鋼板の縦断面のt/4位置とt/2位置(t:板厚)についてそれぞれ5視野ずつ、合計10視野について行い、得られたMnS系介在物の個数(10視野分の合計)を、1cmあたりの個数に換算した。
[Measurement of MnS inclusions]
An optical microscope was used to measure MnS inclusions. An arbitrary measurement region (about 15 mm × 15 mm) at the t / 4 position and the t / 2 position (t: plate thickness) of the longitudinal section of the steel sheet is observed at a magnification of 100 times, and MnS-based inclusions having a length of 50 μm or more are observed. The number was counted. The measurement was performed for each of the t / 4 position and t / 2 position (t: plate thickness) of the longitudinal cross section of the steel sheet for 5 fields, and a total of 10 fields, and the number of MnS-based inclusions obtained (total for 10 fields) ) Was converted to the number per cm 2 .

[中心偏析部のC濃度の測定]
鋼板を横断し、幅方向中央からサンプルを切り出し、マクロエッチングして偏析部を現出した。ドリル径1〜1.2mmのドリルで切削し、その切り粉を湿式分析により化学分析した。そして(中心偏析部のC濃度)/(鋼板全体の平均C濃度)を計算により求め、中心偏析度とした。
[Measurement of C concentration in center segregation part]
The steel sheet was crossed, a sample was cut out from the center in the width direction, and macro-etched to reveal a segregated portion. Cutting was performed with a drill having a drill diameter of 1 to 1.2 mm, and the chips were chemically analyzed by wet analysis. And (C density | concentration of a center segregation part) / (average C density | concentration of the whole steel plate) was calculated | required by calculation, and it was set as the center segregation degree.

[HAZ靭性の測定]
溶接継手部の靭性評価では、上記実験例で得られた鋼板をスキンプレートに見立てた。図4に示すようにして、板厚50mmのダイヤフラムと、スキンプレートとをT字型に配置し、これらを以下に示す条件でエレクトロスラグ溶接した。ダイヤフラム板厚の1/2の延長上であってスキンプレートと溶接金属の接続部分から、スキンプレートの板厚方向が長手方向となるシャルピー標準衝撃試験片(JIS Z 2242)を採取した。試験片の溶接溶融線(Fusion Line)上に、ノッチ長手方向が溶接方向となるVノッチを入れ、JIS Z 2242に従って、試験温度0℃でシャルピー衝撃試験を行った。3本の試験片について吸収エネルギー(vE0)を測定し、その平均値を求めた。吸収エネルギー(vE0)が70J以上の溶接継手部を合格とした。
[Measurement of HAZ toughness]
In the toughness evaluation of the welded joint, the steel plate obtained in the above experimental example was regarded as a skin plate. As shown in FIG. 4, a diaphragm having a thickness of 50 mm and a skin plate were arranged in a T shape, and these were electroslag welded under the conditions shown below. A Charpy standard impact test piece (JIS Z 2242) having a longitudinal direction in the thickness direction of the skin plate was collected from the connection portion between the skin plate and the weld metal on an extension of ½ of the diaphragm plate thickness. A V-notch whose longitudinal direction is the welding direction was placed on the weld fusion line of the test piece, and a Charpy impact test was performed at a test temperature of 0 ° C. in accordance with JIS Z 2242. Absorbed energy (vE 0 ) was measured for three test pieces, and the average value was obtained. A welded joint having an absorbed energy (vE 0 ) of 70 J or more was regarded as acceptable.

(エレクトロスラグ溶接条件)
入熱量:850kJ/cm
溶接電流:380A
溶接電圧:52V
溶接速度:14mm/分
(Electroslag welding conditions)
Heat input: 850 kJ / cm
Welding current: 380A
Welding voltage: 52V
Welding speed: 14mm / min

[引張強度の測定]
鋼板のt(板厚)/4部位から、JIS Z 2201の4号試験片を採取し、JIS Z 2241に従って引張強度(TS)、降伏強度(YS)を測定し、降伏比(YR)を求めた。引張試験時の試験速度は10N/mm2・秒とした。引張強度(TS)490MPa以上が合格であり、降伏比(YR)80%以下が合格である。
[Measurement of tensile strength]
Sample No. 4 of JIS Z 2201 was taken from t (plate thickness) / 4 part of the steel sheet, and the tensile strength (TS) and yield strength (YS) were measured according to JIS Z 2241 to obtain the yield ratio (YR). It was. The test speed during the tensile test was 10 N / mm 2 · sec. A tensile strength (TS) of 490 MPa or more is acceptable, and a yield ratio (YR) of 80% or less is acceptable.

これらの結果を表4に示す。   These results are shown in Table 4.

Figure 0005171327
Figure 0005171327

表4の鋼板No.1、7〜10、12〜14は、本発明の成分組成およびTi、B、N相互の関係式(1)〜(3)を満足する鋼A〜Eを用いて、本発明の製造方法によって製造されたものであり、Ca含有介在物、MnS系介在物の個数および中心偏析部のC濃度において本発明の要件を満たすため、良好な板厚方向HAZ靭性を示し、母材特性(引張強度、降伏比)も良好である。   Steel plate No. in Table 4 1, 7 to 10 and 12 to 14 are produced by the production method of the present invention using steels A to E satisfying the composition of the present invention and the relational expressions (1) to (3) of Ti, B, and N. In order to satisfy the requirements of the present invention in terms of the number of Ca-containing inclusions, the number of MnS inclusions, and the C concentration of the central segregation part, it exhibits good sheet thickness direction HAZ toughness, and the base material properties (tensile strength , Yield ratio) is also good.

表4の鋼板No.2は、圧延時の加熱温度が低いため、母材の引張強度が低く、鋼板No.3は圧延仕上温度が低いため、母材の引張強度が低い例である。鋼板No.4と11は、圧延終了後冷却までの空冷時間が短いため、冷却開始温度が高くなり、母材のYRが高くなっている。鋼板No.5は圧延終了後、水冷ではなく空冷しているため冷却速度が遅く、母材の引張強度が低い。鋼板No.6は冷却停止温度が高いため、母材の引張強度が低い。   Steel plate No. in Table 4 No. 2 has a low tensile temperature of the base metal because the heating temperature during rolling is low, and the steel plate No. 2 3 is an example in which the tensile strength of the base material is low because the rolling finishing temperature is low. Steel plate No. In Nos. 4 and 11, since the air cooling time from the end of rolling to the cooling is short, the cooling start temperature is high and the YR of the base material is high. Steel plate No. No. 5 is air cooled, not water cooled after rolling, so the cooling rate is slow and the tensile strength of the base material is low. Steel plate No. Since No. 6 has a high cooling stop temperature, the tensile strength of the base material is low.

鋼板No.15、16は中心偏析度(中心偏析部のC濃度/鋼板全体の平均C濃度)が高いため、Z方向溶接継手靭性が低い例である。鋼板No.17〜19は、長さの長いMnS形介在物が多く存在するため、Z方向の溶接継手靭性が低い。また鋼板No.19、24は、粗大なCa含有介在物が多く存在するため、Z方向の溶接継手靭性が低い。鋼板No.20〜23、25〜27は、Ti、N、Bのバランス(前記式(1)〜(3))が本発明で規定する範囲にないため、Z方向の溶接継手靭性が低くなっている。   Steel plate No. 15 and 16 are examples in which the Z-direction welded joint toughness is low because the degree of center segregation (C concentration in the center segregation portion / average C concentration in the entire steel sheet) is high. Steel plate No. Since 17-19 have many MnS type inclusions with a long length, the weld joint toughness of a Z direction is low. Steel plate No. 19 and 24 are low in weld joint toughness in the Z direction because there are many coarse Ca-containing inclusions. Steel plate No. In Nos. 20 to 23 and 25 to 27, the balance of Ti, N, and B (the above formulas (1) to (3)) is not within the range defined by the present invention, and therefore the weld joint toughness in the Z direction is low.

「[Ti]/[N]」とHAZ靭性の関係を示すグラフである。It is a graph which shows the relationship between "[Ti] / [N]" and HAZ toughness. 「[N]−[Ti]/3.4」とHAZ靭性の関係を示すグラフである。It is a graph which shows the relationship between "[N]-[Ti] /3.4" and HAZ toughness. 「[B]−{([N]−[Ti]/3.4)×11/14}」とHAZ靭性の関係を示すグラフである。It is a graph which shows the relationship between "[B]-{([N]-[Ti] /3.4) * 11/14}" and HAZ toughness. 溶接方法およびシャルピー試験片の採取要領を模式的に示した概略断面図である。It is the schematic sectional drawing which showed typically the collection method of the welding method and a Charpy test piece.

Claims (5)

C :0.02〜0.10%(質量%の意味。以下、同じ。)、
Si:0.05〜0.5%、
Mn:1.0〜2.0%、
P :0.015%以下(0%を含まない)、
S :0.0010%以下(0%を含まない)、
Al:0.01〜0.05%、
Cu:0.05〜1.5%、
Ni:0.05〜1.5%、
Ti:0.003〜0.02%、
B :0.0005〜0.0030%、
Ca:0.0015〜0.0030%、
N :0.0040〜0.008%、
O :0.0005〜0.0030%
を含有し、残部が鉄および不可避的不純物であって、上記Ti、B、Nの含有量(質量%)が下記式(1)〜(3)を満たし、
鋼板の縦断面において、Caを含有する円相当径5μm以上の介在物が5個/mm2以下で、長さ50μm以上のMnS系介在物が2個/cm2以下であり、
鋼板の中心偏析部のC濃度が、鋼板全体の平均C濃度の1.2倍以下であることを特徴とする、大入熱溶接熱影響部の板厚方向靭性に優れたスキンプレート用鋼板。
(1)1.0≦[Ti]/[N]≦3.0
(2)0.0003≦[N]−[Ti]/3.4≦0.0035
(3)−0.0005≦[B]−{([N]−[Ti]/3.4)×11/14}≦0.0015
(但し、[Ti]、[N]、[B]は、夫々Ti、N、Bの含有量(質量%)を表す。)
C: 0.02 to 0.10% (meaning mass%, hereinafter the same),
Si: 0.05 to 0.5%,
Mn: 1.0-2.0%,
P: 0.015% or less (excluding 0%),
S: 0.0010% or less (excluding 0%),
Al: 0.01 to 0.05%,
Cu: 0.05 to 1.5%,
Ni: 0.05 to 1.5%,
Ti: 0.003 to 0.02%,
B: 0.0005 to 0.0030%,
Ca: 0.0015 to 0.0030%,
N: 0.0040 to 0.008%,
O: 0.0005 to 0.0030%
The balance is iron and inevitable impurities, and the content (mass%) of Ti, B, and N satisfies the following formulas (1) to (3),
In the longitudinal section of the steel sheet, the number of inclusions with an equivalent circle diameter of 5 μm or more containing Ca is 5 / mm 2 or less, and the number of MnS inclusions with a length of 50 μm or more is 2 / cm 2 or less,
A steel plate for skin plate excellent in plate thickness direction toughness of a high heat input welding heat-affected zone, wherein the C concentration in the central segregation portion of the steel plate is 1.2 times or less of the average C concentration of the whole steel plate.
(1) 1.0 ≦ [Ti] / [N] ≦ 3.0
(2) 0.0003 ≦ [N] − [Ti] /3.4≦0.0035
(3) −0.0005 ≦ [B] − {([N] − [Ti] /3.4) × 11/14} ≦ 0.0015
(However, [Ti], [N], and [B] represent the contents (mass%) of Ti, N, and B, respectively.)
更に、Cr:0.05〜1.5%および/またはV:0.005〜0.05%を含有する請求項1に記載の鋼板。   Furthermore, the steel plate of Claim 1 containing Cr: 0.05-1.5% and / or V: 0.005-0.05%. 請求項1または2に記載の鋼板を製造する方法であって、
鋼スラブを、950〜1250℃に加熱し、圧延仕上温度が800〜900℃となるように圧延した後、30秒以上の空冷を行い、その後1〜100℃/sの冷却速度で300℃以下の温度まで冷却することを特徴とする、大入熱溶接熱影響部の板厚方向靭性に優れたスキンプレート用鋼板の製造方法。
A method for producing the steel sheet according to claim 1 or 2,
The steel slab is heated to 950 to 1250 ° C. and rolled so that the rolling finishing temperature is 800 to 900 ° C., then air-cooled for 30 seconds or more, and then 300 ° C. or less at a cooling rate of 1 to 100 ° C./s. The manufacturing method of the steel plate for skin plates excellent in the plate | board thickness direction toughness of a high heat input welding heat affected zone characterized by cooling to the temperature of.
請求項3に記載の300℃以下の冷却の後、さらに450〜600℃に再加熱し、空冷することを特徴とする、大入熱溶接熱影響部の板厚方向靭性に優れたスキンプレート用鋼板の製造方法。   After cooling at 300 ° C. or lower according to claim 3, the skin plate is further reheated to 450 to 600 ° C. and air-cooled, and is excellent in plate thickness direction toughness of a large heat input welding heat affected zone. A method of manufacturing a steel sheet. 請求項3に記載の300℃以下の冷却の後、
(1)700〜850℃の再加熱と、それに続く1℃/s以上の冷却速度での200℃以下までの冷却、
(2)450〜600℃の再加熱と、それに続く空冷
を順次行うことを特徴とする、大入熱溶接熱影響部の板厚方向靭性に優れたスキンプレート用鋼板の製造方法。
After cooling below 300 ° C according to claim 3,
(1) 700-850 ° C. reheating, followed by cooling to 200 ° C. or lower at a cooling rate of 1 ° C./s or higher,
(2) A method for producing a steel plate for skin plate excellent in plate thickness direction toughness of a high heat input welding heat-affected zone, wherein reheating at 450 to 600 ° C. and subsequent air cooling are sequentially performed.
JP2008066262A 2008-03-14 2008-03-14 Steel plate for skin plate excellent in thickness direction toughness of heat-affected zone with large heat input and manufacturing method thereof Active JP5171327B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008066262A JP5171327B2 (en) 2008-03-14 2008-03-14 Steel plate for skin plate excellent in thickness direction toughness of heat-affected zone with large heat input and manufacturing method thereof
CN2009101265507A CN101532112B (en) 2008-03-14 2009-03-12 Steel plate for panel with excellent toughness in thickness direction of jug line energy welding heat infection part and manufacturing method thereof
KR1020090021696A KR101096871B1 (en) 2008-03-14 2009-03-13 Steel sheet for skin plate having excellent toughness in sheet thickness direction in high heat input welding heat-affected zone, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008066262A JP5171327B2 (en) 2008-03-14 2008-03-14 Steel plate for skin plate excellent in thickness direction toughness of heat-affected zone with large heat input and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009221522A JP2009221522A (en) 2009-10-01
JP5171327B2 true JP5171327B2 (en) 2013-03-27

Family

ID=41102971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008066262A Active JP5171327B2 (en) 2008-03-14 2008-03-14 Steel plate for skin plate excellent in thickness direction toughness of heat-affected zone with large heat input and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP5171327B2 (en)
KR (1) KR101096871B1 (en)
CN (1) CN101532112B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191434B (en) * 2010-03-03 2013-02-06 宝山钢铁股份有限公司 Thick steel plate with great large line energy and low temperature toughness
CN104131225B (en) * 2014-07-30 2016-08-24 宝山钢铁股份有限公司 Low cost ultralow temperature nickel steel and manufacture method thereof
CN105522304B (en) * 2016-02-15 2018-02-23 江苏省沙钢钢铁研究院有限公司 It is a kind of to fuse the good high heat-input welding point of line position impact flexibility
MX2021002269A (en) * 2018-08-31 2021-05-27 Jfe Steel Corp High-strength steel plate and method for producing same.
KR102508701B1 (en) * 2018-08-31 2023-03-09 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and manufacturing method thereof
TWI769061B (en) * 2021-08-19 2022-06-21 中國鋼鐵股份有限公司 Negative segregation slab and method for producing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253344A (en) 1985-05-01 1986-11-11 Kawasaki Steel Corp Steel plate for high heat input welding and its manufacture
JPH0615689B2 (en) * 1987-05-19 1994-03-02 新日本製鐵株式会社 Method of manufacturing low yield ratio high strength steel
JPH11193445A (en) * 1997-12-26 1999-07-21 Kawasaki Steel Corp Extra thick steel plate for welding excellent in toughness in steel-plate-thickness direction and acoustic anisotropy and having 590 mpa class tensile strength in as-rolled state, and its production
JP2000096181A (en) 1998-09-25 2000-04-04 Sumitomo Metal Ind Ltd Steel sheet free from uts defect in weld heat-affected zone, and its manufacture
JP2002129281A (en) * 2000-10-23 2002-05-09 Nippon Steel Corp High tensile strength steel for welding structure excellent in fatigue resistance in weld zone and its production method
JP3668713B2 (en) * 2001-11-26 2005-07-06 株式会社神戸製鋼所 High tensile steel plate with excellent weldability and uniform elongation
JP4096839B2 (en) * 2003-08-22 2008-06-04 Jfeスチール株式会社 Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP2005187853A (en) * 2003-12-24 2005-07-14 Jfe Steel Kk Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP2005213534A (en) * 2004-01-27 2005-08-11 Jfe Steel Kk Method for producing steel material excellent in toughness at welding heat affected zone

Also Published As

Publication number Publication date
KR20090098745A (en) 2009-09-17
JP2009221522A (en) 2009-10-01
CN101532112A (en) 2009-09-16
KR101096871B1 (en) 2011-12-22
CN101532112B (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP5924058B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP5729456B2 (en) Steel material excellent in ductile crack initiation characteristics of weld heat-affected zone and base metal zone and its manufacturing method
DK2434027T3 (en) Steel materials for welding with high heat input
KR100837895B1 (en) Method for manufacturing for low yield ratio, high strength, high toughness, thick steel plate
JP3860763B2 (en) Thick steel plate with excellent fatigue strength and its manufacturing method
JP2013227671A (en) Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
JP5171327B2 (en) Steel plate for skin plate excellent in thickness direction toughness of heat-affected zone with large heat input and manufacturing method thereof
JP5045074B2 (en) High tensile thin-walled steel sheet having low yield ratio and manufacturing method thereof
JP2007177325A (en) High tensile strength thick steel plate having low yield ratio and its production method
JP5347827B2 (en) High yield point 490 MPa class welded structural steel excellent in acoustic anisotropy and method for producing the same
JP2007204781A (en) Method for producing steel material excellent in fatigue crack propagating characteristic
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP5435837B2 (en) Welded joint of high-tensile thick steel plate
JP4752441B2 (en) Steel material with excellent fatigue crack propagation resistance
WO2015064029A1 (en) High-strength hot-rolled steel sheet and method for manufacturing same
JP4008378B2 (en) Low yield ratio high strength steel with excellent toughness and weldability
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP4923968B2 (en) Steel material with excellent fatigue crack propagation resistance
JP2013049894A (en) High toughness steel for heavy heat input welding and method for manufacturing the same
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP3825623B2 (en) High-tensile steel with excellent fracture resistance of welds
WO2013128650A1 (en) Steel material for high-heat-input welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

R150 Certificate of patent or registration of utility model

Ref document number: 5171327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150