JP3746707B2 - High-tensile steel plate with excellent weldability - Google Patents

High-tensile steel plate with excellent weldability Download PDF

Info

Publication number
JP3746707B2
JP3746707B2 JP2001359969A JP2001359969A JP3746707B2 JP 3746707 B2 JP3746707 B2 JP 3746707B2 JP 2001359969 A JP2001359969 A JP 2001359969A JP 2001359969 A JP2001359969 A JP 2001359969A JP 3746707 B2 JP3746707 B2 JP 3746707B2
Authority
JP
Japan
Prior art keywords
less
steel plate
tensile steel
heat input
excluding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001359969A
Other languages
Japanese (ja)
Other versions
JP2003160834A (en
Inventor
敏晃 ▲高▼木
等 畑野
喜臣 岡崎
裕之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001359969A priority Critical patent/JP3746707B2/en
Publication of JP2003160834A publication Critical patent/JP2003160834A/en
Application granted granted Critical
Publication of JP3746707B2 publication Critical patent/JP3746707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築構造物や橋梁などの大型構造物に好適に用いられ、引張強さが590MPa以上780MPa未満程度の高張力鋼板(以下、単に「590MPa級鋼板」と称すことがある)に関するものであり、殊に溶接性(大入熱HAZ靭性および耐溶接割れ性)に優れた高張力鋼板に関するものである。
【0002】
【従来の技術】
上記大型構造物に用いられている590MPa級鋼板では、母材強度の確保という観点から合金成分を多量に添加しているので、冷却速度の速い小入熱溶接条件ではHAZ(溶接熱影響部)が硬化して溶接割れ(低温割れ)が生じやすく、かかる溶接割れの防止を目的として、溶接施工時に75℃程度の予熱を行う必要がある。従って、この予熱工程を省略できれば施工効率が大幅に向上し、且つコストダウンにもつながるため、予熱工程を省略しても溶接割れが生じない程度の耐溶接割れ性に優れた590MPa級鋼板の提供が切望されている。
【0003】
ところで、耐溶接割れ性の指標としては下式で定義されるPcm(%)というパラメーターが一般に用いられている。こうした観点から、例えば特開平10‐68045号公報には、このPcmを0.20%以下に制限することによって耐溶接割れ性を改善することが開示されている。
Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5×[B]
《式中、[ ]は各元素の含有量(質量%)を示す》。
【0004】
一方、同じ590MPa級鋼板において、大入熱溶接時にHAZ靭性が劣化するという問題があることが指摘されている。こうした事態は、入熱が大きくなるとHAZ部の冷却速度が遅くなり、それに伴いHAZ部の焼入れ性が低下し、粗大な島状マルテンサイトを生成することに基づくことによって生じるとされている。こうしたこの問題は厚物、薄物いずれにおいても発生し、実際の溶接施工時に入熱制限が行われ、溶接効率が悪かった。
【0005】
大入熱溶接時のHAZ靭性の改善に当たっては、上記特開平10‐68045号公報の他、特開平10‐121191号公報において、下式で表される炭素当量(Ceq)を0.35〜0.40(%)と低く制限することが開示されている。
Ceq=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14
《式中、[ ]は各元素の含有量(質量%)を示す》。
【0006】
このように、従来はPcmを低値に制御することにより小入熱溶接時の耐溶接割れ性を改善したり、あるいはCeqを制御することにより大入熱HAZ靭性を改善すると共に、合金成分の含有量制限に伴う母材強度低下を、製造プロセスを改良するなどして補っていた。これにより、590MPa級鋼板において、母材製造時の焼入れにおける冷却速度が比較的速い薄物では溶接時の予熱フリーを達成できたが、冷却速度が遅い厚物では溶接時の予熱フリーと母材強度の両立を達成することが困難であった。また、Cuの析出を利用して母材強度を確保する方法も開示されているが、冷却速度が遅い厚物では充分な母材強度が得られなかった。
【0007】
このように、小入熱溶接においてHAZ部は高温に加熱された後の冷却速度が速いため、硬化して溶接割れ(低温割れ)を起こしやすい。一方、母材は板厚が厚くなるほど冷却速度が遅くなるため、圧延後の焼入れ効果による強度確保が難しくなる。従って、590MPa級鋼板の厚物では、小入熱溶接時の溶接割れを防止するため冷却速度が速くなっても硬くならないようにした上で、鋼板製造時の冷却速度が遅く、焼入れ効果が得難い場合であっても如何に強度を確保するかが重要課題となる。
【0008】
また、厚物、薄物いずれにおいても、大入熱溶接においては、HAZ部の冷却速度が遅くなり、それに伴いHAZ部の焼入れ性が低下し、粗大な島状マルテンサイト組織を生成して靭性が低下するが、このHAZ靭性を改善するには、冷却速度が遅い場合であっても島状マルテンサイト組織の生成を如何なる方法で抑制するかが重要課題となる。
【0009】
【発明が解決しようとする課題】
本発明は、上記事情に着目してなされたものであり、その目的は、溶接性(大入熱HAZ靭性および耐溶接割れ性)に優れた590MPa以上780MPa未満の高張力鋼板を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決し得た本発明に係る溶接性に優れた高張力鋼板とは、C:0.010〜0.06%,Mn:1.0〜2.5%,Cr:0.1〜2.0%,Mo:1.5%以下(0%を含む),V:0.1%以下(0%を含む),Nb:0.1%以下(0%を含む),Ti:0.005〜0.03%,B:0.0006〜0.005%,N:0.002〜0.01%,Si:1%以下(0%を含まない),Al:0.2%以下(0%を含まない)を満たし、残部がFeおよび不可避不純物である鋼からなり、
2.4%≦KP≦4.5%
を満足すると共に、(1)平均結晶粒径が10μm以下および/または(2)粒径:10〜250nmのNaCl型炭・窒化物が1×10個/mm以上存在するものである点に要旨を有するものである。
但し、
KP(%)=[Mn]+1.5×[Cr]+2×[Mo]
《式中、[ ]は各元素の含有量(質量%)を意味する。》
本発明の高張力鋼板は、KV≦0.12(%)を満足するものであることが好ましく、こうした要件を満足させることによって、大入熱HAZ靭性を更に改善することができる。
但し、
KV(%)=[V]+[Nb]
《式中、[ ]は各元素の含有量(質量%)を意味する。》
【0011】
本発明の高張力鋼板においては、必要によって、(a)Ni:5%以下(0%を含まない)、(b)Cu:3%以下(0%を含まない)、(c)Ca:0.005%以下(0%を含まない)、(d)Mg:0.005%以下(0%を含まない)および/またはZr:0.05%以下(0%を含まない)等を含有させることも有効であり、含有される成分の種類に応じて高張力鋼板の特性が更に改善される。また本発明の高張力鋼板は、肉厚が80mm以上のもので良好な溶接性と母材強度を有するものである。
【0012】
【発明の実施の形態】
本発明者らが検討したところによれば、490MPa級の鋼板ではPcmの制御によって耐溶接割れ性の改善と母材強度の確保を両立することができたが、590MPa級鋼板ではPcmによる成分制御を行ったとしても、特に厚物において両特性の満足を図ることは困難であることが判明した。
【0013】
また、一般に、大入熱溶接時に上部ベイナイトを生成させると島状マルテンサイトが生成し、鋼のHAZ靭性が劣化するため、490MPa級の鋼板では、HAZにおいてフェライトを積極的に生成させるべく、Ceqを制御して大入熱HAZ靭性の改善が試みられてきたが、これは高強度化・厚肉化とは相反することであり、590MPa級鋼板での大入熱HAZ靭性の改善と厚肉化の両立を図ることも困難であった。
【0014】
そこで、本発明では成分設計に当たり、これまで耐溶接割れ性の指標とされてきたPcmおよび大入熱HAZ靭性確保の指標とされてきたCeqではなく、全く別のパラメーターにより耐溶接割れ性および大入熱HAZ靭性を制御できないか鋭意検討した。その結果、鋼組織を考慮した上記各式で表されるKPおよびKVを用い、さらにC量を極低減化し、Bを添加することにより良好な耐溶接割れ性、大入熱HAZ靭性と母材強度を達成できることを見出し、その技術的意義が認められたので先に出願している(特願2001−154512号)。
【0015】
本発明者らは、上記のような高張力鋼板を実現した後も、その特性の更なる改善を目指して更に検討を重ねた。その結果、上記KP値を適切な範囲に制御すると共に、(1)平均結晶粒径が10μm以下、および(2)粒径:10〜250nmのNaCl型炭・窒化物が1×104個/mm2以上存在する等の要件のうち少なくともいずれかの要件を満足させれば、その特性が更に改善されることを見出し、本発明を完成するに至った。
【0016】
まず、本発明において耐溶接割れ性および大入熱HAZ靭性を改善する原理について説明する。上記の通り、本発明では、Cを極低Cに制限した上で、焼入れ性向上元素であるMnおよびCr、場合によってはさらにMoを積極的に添加し、該焼入れ向上元素の含有量によって定められるKP値を適切に制御し、必要によって、大入熱HAZ靭性低下元素であるVおよびNbの添加をBとの関係で規定したKV値を適切に制御するものである。これらの成分を適切に添加することにより、ベイナイトの連続冷却曲線(図1のCCT線図を参照)が短時間側且つ低温度側に移動すると共に、フェライトのCCT線が長時間側に移動することになる(実線から破線へ移動)。
【0017】
従来では、高冷却速度ではマルテンサイト、低冷却速度ではフェライトまたは上部ベイナイトを生成するために、硬さの冷却速度感受性が大きく、小入熱溶接時のHAZ部の硬さ低減(耐溶接割れ性の改善)と母材強度の確保が両立できず、予熱フリーの達成が困難であったが、本発明によれば、高冷却速度、低冷却速度のいずれにおいても低温変態ベイナイトを生成し、硬さの冷却速度感受性が低下し、溶接時のHAZ部の硬さ低減(耐溶接割れ性の改善)と母材強度確保を両立ならしめたのである。
【0018】
一方、大入熱溶接の場合、HAZの冷却速度が遅くなるため、従来はフェライトまたは上部ベイナイトを生成し、それに伴い粗大且つ塊状の島状マルテンサイト組織が生成してHAZ靭性が劣化していたが、本発明では、冷却速度が遅くても低温変態ベイナイトが生成するため塊状ではなくフィルム状のマルテンサイト組織になると同時に、極低Cであるため生成するマルテンサイト組織が微細となり、HAZ靭性を確保できたのである。
【0019】
上記の観点から本発明では、KP値([Mn]+1.5×[Cr]+2×[Mo])を2.4〜4.5%の範囲とする必要がある。このKP値が2.4%未満になると、上記効果を有効に発揮させることができず、590MPa以上の母材強度を達成することができなくなる。一方、KP値が4.5%を超えると、大入熱HAZ靭性が低下することになる。尚、KP値の好ましい下限は2.5%である。また、KP値の好ましい上限は4.3%であり、より好ましくは4.0%、更に好ましくは3.5%である。
【0020】
本発明の高張力鋼板では、(1)平均結晶粒径が10μm以下、および(2)粒径:10〜250nmのNaCl型炭・窒化物が1×104個/mm2以上存在する等の要件のうち少なくともいずれかの要件を満足させることによって、その特性が更に改善されるものとなるが、これらの要件を規定することによる作用は次の通りである。
【0021】
本発明の成分系(後述する)では、組織の平均結晶粒径を10μm以下に微細化することによって、より高い母材靭性を得ることができる。即ち、組織の平均結晶粒径が10μmを超えると、母材靭性が低下することになる。この平均結晶粒径は、好ましくは4μm以下とするのが良い。
【0022】
結晶粒径を微細化する手段については様々あり、特に限定するものではないが、例えば焼入れ熱処理時の加熱温度や圧延終了温度(FRT)を下げたることが有効な手段として挙げられる。また、焼入れ処理を複数回繰り返すことにことも有効である。具体的には、FRTを850℃以下とした上で、焼入れ熱処理時の加熱温度をAc3点〜940℃とし、必要によりこの焼入れ処理を複数回繰り返す方法が挙げられる。但し、圧延後の熱処理を省略した非調質鋼であっても、こうした組織を得ることができる。尚、本発明における結晶粒径は、後記実施例に示す如く、EBSP(Electron Backscatter Diffraction Pattern)を用いた方法により決定する。
【0023】
一方、粒径:10〜250nmのNaCl型炭・窒化物が1×104個/mm2以上存在させる(析出させる)ことによって、大入熱溶接時のγ粒粗大化を抑制し、大入熱HAZ靭性を向上させることができる。本発明で対象とする炭・窒化物は炭化物、窒化物および炭窒化物のいずれをも含むが(本発明ではこれを「炭・窒化物」と称している)、TiNを主体とするものとなる。またこの炭・窒化物の粒径を10〜250nmとしたのは、10nm未満にするためにはTi含有量を0.005%未満とする必要があり(後述するTi含有量参照)、また250nmを超えると、その効果(析出効果)が十分に達成されなくなる。更に、この炭・窒化物はNaCl型のものに限定したが、これは高温でも安定であるため、γ粒成長時にピンニングサイトとして作用するという理由からである。
【0024】
上記のような炭・窒化物はその効果を発揮させるためには、1×104個/mm2以上存在させる必要があるが、好ましくは5×104個/mm2以上存在させるのが良い。また、この炭・窒化物の存在個数の上限については、特に限定されるものではないが、HAZのγ粒径(〜100μm程度)という観点からして1×105個/mm2程度であることが好ましい。
【0025】
炭・窒化物を上記のように析出させる手段については様々あり、特に限定するものではないが、例えば(A)TiとNの成分バランスを最適化する、(B)溶製凝固時のスラブ厚みを薄くする(例えば、300mm以下)、(C)水冷等によって溶製凝固時の冷却速度を大きくする等が有効な手段として挙げられる。
【0026】
本発明の高張力鋼板においては、KV値([V]+[Nb])を0.12%以下に制御することも有効である。即ち、VおよびNbは大入熱HAZ靭性を低下させる元素であるので、これらの元素によって規定されるKV値を適切な範囲に制御することによって、大入熱HAZ靭性を改善できるのである。こうした観点からすれば、VおよびNbは、後述する必要含有量の範囲内でできるだけ低く設定することが推奨され、より好ましくは0.06%以下、更に好ましくは0.04%以下とするのが良い。
【0027】
本発明の高張力鋼板において、上記の効果を発揮させるためにはその化学成分組成も適切に調整する必要があるが、本発明鋼板における基本成分であるC,Mn,Cr,Mo,V,Nb,Ti,BおよびN等の範囲限定理由は次の通りである。
【0028】
C:0.010〜0.06%
Cは、溶接時におけるHAZ部の耐溶接割れ性と母材強度を両立させ、且つ大入熱HAZ靭性を改善するために重要な元素である。こうした効果を発揮させるためには、少なくとも0.010%以上含有させる必要があるが、0.06%を超えると高冷却速度側で低温変態ベイナイトでなくマルテンサイトが生成するようになり、耐溶接割れ性および大入熱HAZ靭性が改善されない。C含有量の好ましい下限は0.020%であり、より好ましくは0.025%以上とするのが良く、好ましい上限は0.050%であり、より好ましくは0.045%以下とするのが良い。
【0029】
Mn:1.0〜2.5%
Mnは焼入れ性を改善する作用を有し、高冷却速度乃至低冷却速度で低温変態ベイナイトを生成しやすくする。Mn含有量が1.0%未満であると、所望の焼入れ性改善作用が発揮されず、母材強度が不足する。しかしながら、Mn含有量が過剰になって2.5%を超えると、HAZ部の耐溶接割れ性が劣化することになる。Mn含有量の好ましい下限は1.25%であり、好ましい上限は2.0%であり、より好ましくは1.6%以下とするのが良い。
【0030】
Cr:0.1〜2.0%
CrはMnと同様に、焼入れ性を改善する作用を有し、高冷却速度乃至低冷却速度で低温変態ベイナイトを生成しやすくする。Cr含有量が0.1%未満であると、所望の焼入れ性改善作用が発揮されず、母材強度が不足する。しかしながら、Cr含有量が過剰になって2.0%を超えると、HAZ部の耐溶接割れ性が劣化することになる。Cr含有量の好ましい下限は0.5%であり、より好ましくは0.6%以上とするのが良く、好ましい上限は1.5%であり、より好ましくは1.2%以下とするのが良い。
【0031】
Mo:1.5%以下(0%を含む)
Moは上記MnおよびCrと同様に焼入れ性を改善する作用を有し、高冷却速度乃至低冷却速度で低温変態ベイナイトを生成しやすくするが、過剰に含有されるとHAZ部の耐溶接割れ性が劣化するので、1.5%を上限として含有しても良い。Mo含有量の好ましい上限は1.0%であり、より好ましくは0.5%以下とするのが良い。
【0032】
V:0.1%以下(0%を含む)
Vは少量の添加により焼入れ性および焼戻し軟化抵抗を高める作用がある。但し、0.1%を超えて含有させると大入熱HAZ靭性が低下する。V含有量の好ましい上限は0.06%であり、より好ましくは0.04%以下とするのが良い。
【0033】
Nb:0.1%以下(0%を含む)
Nbはγ粒径を微細化し、これにより変態後のベイナイトブロックサイズが微細化されるため、母材靭性の向上に寄与する。但し、Nbの添加量が0.1%を超えると大入熱HAZ靭性が低下する。Nb含有量の好ましい上限は0.06%であり、より好ましくは0.04%以下とするのが良い。
【0034】
Ti:0.005〜0.03%
TiはNと窒化物を形成して大入熱溶接時におけるHAZ部のγ粒を微細化し、HAZ靭性改善に寄与する点で有用である。こうした効果を発揮させるためには、Tiは0.005%以上含有させる必要があるが、Ti含有量が0.03%を超えると逆にHAZ靭性が低下することになる。Ti含有量の好ましい下限は0.007%であり、好ましい上限は0.02%程度である。
【0035】
B:0.0006〜0.005%
Bは焼入れ性改善元素で、低冷却速度で低温変態ベイナイトを生成しやすくすると共に、小入熱溶接時におけるHAZ部の耐溶接割れ性と母材強度確保を両立させる上で有用な元素である。B含有量が0.0006%未満では焼入れ性改善効果が期待できず、母材強度が不足してしまう。好ましくは0.0007%以上、さらに好ましくは0.001%以上である。但し、B含有量が0.005%を超えるとかえって焼入れ性が低下し、母材強度が不足する。好ましくは0.003%以下とするのが良い。
【0036】
N:0.002〜0.01%
Nは上記の通り、Tiと窒化物を形成して大入熱溶接時におけるHAZ靭性改善に寄与する点で有用である。但し、NはBと結合して固溶Bを減少させ、Bの焼入れ性向上作用を阻害し、母材の靭性および大入熱HAZ靭性を低下させる作用も有しており、Nの含有量が0.01%を超えるとその作用が顕著になる。好ましくは0.008%以下である。また、N含有量が0.002%未満ではTiとの窒化物形成による大入熱HAZ靭性改善の効果が十分でない。好ましくは0.0030%以上である。
【0037】
本発明の高張力鋼板においては、上記基本成分の他(残部)は実質的に鉄からなるものであるが、これら以外にも微量成分を含み得るものであり、こうした高張力鋼板も本発明の範囲に含まれるものである。上記微量成分としては不純物、特にP,S等の不可避不純物が挙げられ、これらは本発明の効果を損なわない程度で許容される。こうした観点から、不可避不純物としてのP,SはP:0.02%以下、S:0.01%以下に夫々抑制することが好ましい。
【0038】
また本発明の高張力鋼板には、必要によってNi,Cu,Ca,Mg,Zr,Si,Al等を含有させることも有効であり、含有される成分の種類に応じて高張力鋼板の特性が更に改善される。必要によって含有される元素の範囲限定理由は下記の通りである。
【0039】
Ni:5%以下(0%を含まない)
Niは母材靭性向上に有用な元素であるが、5%を超えて添加するとスケール疵が発生しやすくなるため、その上限を5%とすることが好ましい。より好ましくは3%以下、更に好ましくは2%以下にするのが良い。
【0040】
Cu:3%以下(0%を含まない)
Cuは固溶強化および析出強化により母材強度を向上させると共に、焼入れ性向上作用も有する元素である。但し、3%を超えて添加すると大入熱HAZ靭性が低下するため、その上限を3%とすることが好ましい。より好ましくは2%以下、更に好ましくは1.2%以下にするのが良い。
【0041】
Ca:0.005%以下(0%を含まない)
CaはMnSを球状化して、介在物の異方性を低減する効果を有する元素である。こうした効果を発揮させるためには0.0005%以上添加することが好ましい。より好ましくは0.001%以上である。但し、0.005%を超えて過剰に含有させると母材靭性が低下するので、その上限を0.005%とすることが好ましい。より好ましくは0.004%以下とするのが良い。
【0042】
Mg:0.005%以下(0%を含まない)および/またはZr:0.05%以下(0 %を含まない)
MgおよびZrは、HAZ靭性を向上させるのに有効な元素である。しかしながら、過剰に含有させると却ってHAZ靭性が劣化するので、Mgで0.005%以下、Zrで0.05以下とするのが良い。より好ましくは、Mg:0.003%以下、Zr:0.03%以下とするのが良い。
【0043】
Si:1%以下(0%を含まない)および/またはAl:0.2%以下(0%を含まない)
SiおよびAlは脱酸剤として有用な元素である。またAlはNを固定して、固溶Bを増加させることにより、Bに基づく焼入れ性を向上する作用をも発揮する。これらの効果は、その含有量が増加するにつれて増大するが、Siで1%、Alで0.2%を超えて過剰に含有されると母材靭性(Siでは母材靭性と溶接性)が低下する。より好ましくはSiで0.6%以下、Alで0.1%以下、更に好ましくはSiで0.3%以下、Alで0.05%以下とするのが良い。
【0044】
本発明の高張力鋼板を製造するには、(1)平均結晶粒径が10μm以下、(2)粒径:10〜250nmのNaCl型炭・窒化物が1×104個/mm2以上、を満足させるための製造条件を考慮する他は、上記化学組成を満足する鋼を用い、通常用いられる高張力鋼板の製造工程、および条件(温度、時間など)を適宜採用すれば良い。そして、本発明の高張力鋼板では、肉厚が80mm以上のものでも良好な溶接性と母材強度を有するものとなるが、肉厚が80mm未満のものであってもこうした特性が得られるのは勿論である。
【0045】
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
【0046】
【実施例】
実施例1
下記表1に示す化学成分組成の鋼を通常の溶製法により溶製し、スラブとした後、下記表2に示す条件で熱間圧延および熱処理を行って、所定の板厚からなる高張力鋼板を製造した。尚、「熱処理条件2」の熱処理は、「熱処理条件1」の熱処理の後に行った。また、実験No.12のものについては、熱処理条件1を2回実施した。
【0047】
【表1】

Figure 0003746707
【0048】
【表2】
Figure 0003746707
【0049】
このようにして得られた各鋼板について、下記の要領で平均結晶粒径、析出物のサイズおよび個数を測定すると共に、母材特性[強度および靭性(vE-60)]を評価した。また本発明で基準とする母材レベル(590MPa≦引張強さ<780MPa、vE-60≧47J)をクリアしたものについては、さらに溶接性(耐溶接割れ性および大入熱HAZ靭性)を評価した。
【0050】
[平均結晶粒径]
EBSPを用いて方位解析を行い、傾角が10°以上の境界を結晶粒界として、結晶粒径を決定した。このとき測定位置は各鋼板の板厚1/4部位、測定領域:70μ角、測定ステップ:0.2μm間隔とし、測定方位の信頼性を示すコンフィデンス・インデックス(Confidence Index)が0.1以下の測定点は測定対象から削除した。また、結晶粒径が0.5μm以下の結晶については測定ノイズと判断し、平均結晶粒径計算の対象から外した。更に、測定領域の端に掛かる結晶粒についても、平均結晶粒径計算の対象から外した。尚、本発明鋼板の主体組織はベイナイトであるが、フェライト、パーライト、マルテンサイトを含む組織においても上記の方法により結晶粒径を決定できる。
【0051】
[析出物のサイズ、個数]
抽出レプリカ法によって析出物(NaCl型の炭・窒化物)を抽出後、透過型電子顕微鏡(TEM)観察によって、サイズおよび個数を測定した。尚、NaCl型の炭・窒化物の測定に当たっては、TEM観察によりその形状が略四角形状として見えるものは、NaCl型の炭・窒化物として判断し、略四角形状でないものについてはX線分析によりその析出物に含まれる元素を調査し、例えばTiとNが分析されれば該析出物はTiNと判断し、化合物の型から該析出物がNaCl型か否か判断した(他の化合物についても同様である)。このとき、観察倍率4万倍で測定範囲2μm角の領域をn=10で撮影し、画像解析装置によって、粒径10〜250nmの個数をカウントした。
【0052】
[母材特性試験]
▲1▼引張試験:各鋼板の板厚1/4部位からJIS4号試験片を採取し、引張試験を行うことにより0.2%耐力および引張強さを測定した。590MPa≦引張強さ<780MPaを合格とした。また、引張試験の際に、降伏比についても測定した。
▲2▼衝撃試験:各鋼板の板厚1/4部位からJIS4号試験片を採取し、シャルピー衝撃試験をおこなうことにより吸収エネルギー(vE-60)を得た。vE-60≧47Jを合格とした。
【0053】
[溶接性試験]
▲1▼HAZ靭性:入熱80〜120kJ/mm(エレクトロスラグ溶接法)で溶接を行い、図2に示す部位からJIS4号試験片を採取してシャルピー衝撃試験を行い、ボンド部の吸収エネルギー(vE-20)を求めた。vE-20≧15Jを合格とした。
▲2▼耐溶接割れ性:JIS Z 3158に記載のy形溶接割れ試験法に基づいて、入熱1.7kJ/mmで被覆アーク溶接を行い、ルート割れ防止予熱温度を測定した。25℃以下を合格とした。
【0054】
これらの試験結果を、平均結晶粒径および析出物個数と共に、下記表3に示すが、本発明で規定する要件を満足するもの(No.1,2,4〜6,9,10,12〜18,28〜37)では、母材特性および溶接性のいずれにも優れていることが分かる。これに対して、本発明で規定する要件のいずれかを欠くもの(No.3,7,8,11,19〜27)では、耐溶接割れ性、大入熱HAZ靭性、母材特性(強度,靭性)の少なくともいずれかが低下していることが分かる。
【0055】
【表3】
Figure 0003746707
【0056】
【発明の効果】
本発明は以上のように構成されており、溶接性(耐溶接割れ性および大入熱HAZ靭性)に優れた、590MPa以上780MPa未満の鋼板を提供することができた。本発明によれば板厚が80mm以上の厚物であっても、上記の特性を備えた高張力鋼板を提供できる。
【図面の簡単な説明】
【図1】本発明の成分設計の考え方を説明するための模式的なCCT線図である。
【図2】エレクトロスラグ溶接時のボンド靭性の試験片採取位置を示す概略説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-tensile steel plate (hereinafter sometimes simply referred to as “590 MPa class steel plate”) having a tensile strength of about 590 MPa to less than 780 MPa, which is suitably used for large structures such as building structures and bridges. In particular, the present invention relates to a high-tensile steel sheet having excellent weldability (high heat input HAZ toughness and weld crack resistance).
[0002]
[Prior art]
In the 590 MPa grade steel plate used in the large structure, a large amount of alloy components are added from the viewpoint of ensuring the strength of the base material, and therefore HAZ (welding heat affected zone) is used under small heat input welding conditions where the cooling rate is fast. Is hardened and tends to cause weld cracks (cold cracks), and it is necessary to preheat at about 75 ° C. during welding for the purpose of preventing such weld cracks. Therefore, if this preheating step can be omitted, the construction efficiency can be greatly improved and the cost can be reduced. Therefore, provision of a 590 MPa grade steel plate having excellent weld crack resistance that does not cause weld cracking even if the preheating step is omitted. Is anxious.
[0003]
By the way, a parameter called Pcm (%) defined by the following formula is generally used as an index of resistance to weld cracking. From such a viewpoint, for example, JP-A-10-68045 discloses that the weld crack resistance is improved by limiting the Pcm to 0.20% or less.
Pcm = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 × [B]
<< In formula, [] shows content (mass%) of each element >>.
[0004]
On the other hand, it has been pointed out that the same 590 MPa grade steel sheet has a problem that the HAZ toughness deteriorates during high heat input welding. Such a situation is said to be caused by the fact that when the heat input is increased, the cooling rate of the HAZ part is lowered, and the hardenability of the HAZ part is lowered accordingly, and coarse island martensite is generated. Such a problem occurred in both thick and thin objects, and heat input was restricted during actual welding work, resulting in poor welding efficiency.
[0005]
In improving the HAZ toughness at the time of high heat input welding, in addition to the above-mentioned JP-A-10-68045, JP-A-10-121191 discloses a carbon equivalent (Ceq) represented by the following formula: 0.35 to 0 It is disclosed to limit to as low as .40 (%).
Ceq = [C] + [Mn] / 6 + [Si] / 24 + [Ni] / 40 + [Cr] / 5 + [Mo] / 4 + [V] / 14
<< In formula, [] shows content (mass%) of each element >>.
[0006]
Thus, conventionally, by controlling the Pcm to a low value, the weld crack resistance at the time of small heat input welding is improved, or by controlling the Ceq, the high heat input HAZ toughness is improved, and the alloy components The reduction in the strength of the base material due to the content restriction was compensated by improving the manufacturing process. As a result, in a 590 MPa class steel sheet, preheating free during welding was achieved for thin materials with a relatively fast cooling rate during quenching at the time of manufacturing the base material, but preheating free during welding and base material strength for thick materials with a slow cooling rate. It was difficult to achieve both. Moreover, although the method of ensuring the base material strength using precipitation of Cu is also disclosed, sufficient base material strength was not obtained with a thick material having a slow cooling rate.
[0007]
As described above, in the small heat input welding, the HAZ portion has a high cooling rate after being heated to a high temperature, and is thus hardened and easily causes a weld crack (low temperature crack). On the other hand, since the cooling rate of the base material increases as the plate thickness increases, it is difficult to ensure the strength due to the quenching effect after rolling. Therefore, in the case of a thick 590 MPa grade steel plate, it is difficult to obtain a quenching effect because the cooling rate is slow at the time of manufacturing the steel plate after preventing the steel from becoming hard even if the cooling rate is high in order to prevent weld cracking at the time of small heat input welding. Even in this case, how to secure the strength is an important issue.
[0008]
Moreover, in both thick and thin objects, in high heat input welding, the cooling rate of the HAZ part is slowed, and the hardenability of the HAZ part is lowered accordingly, and a coarse island martensite structure is generated to produce toughness. However, in order to improve the HAZ toughness, an important issue is how to suppress the formation of island martensite structures even when the cooling rate is low.
[0009]
[Problems to be solved by the invention]
This invention is made paying attention to the said situation, The objective is to provide the high-tensile steel plate of 590 MPa or more and less than 780 MPa excellent in weldability (high heat input HAZ toughness and weld crack resistance). is there.
[0010]
[Means for Solving the Problems]
The high-strength steel sheet having excellent weldability according to the present invention that can solve the above-mentioned problems is C: 0.010 to 0.06%, Mn: 1.0 to 2.5%, Cr: 0.1 to 0.1% 2.0%, Mo: 1.5% or less (including 0%), V: 0.1% or less (including 0%), Nb: 0.1% or less (including 0%), Ti: 0 0.005 to 0.03%, B: 0.0006 to 0.005%, N: 0.002 to 0.01%, Si: 1% or less (excluding 0%), Al: 0.2% or less (Not including 0%), the balance consists of steel with Fe and inevitable impurities,
2.4% ≦ KP ≦ 4.5%
And (1) an average crystal grain size of 10 μm or less and / or (2) a grain size: 10 to 250 nm of NaCl-type carbon / nitride is present at 1 × 10 4 pieces / mm 2 or more. It has a gist.
However,
KP (%) = [Mn] + 1.5 × [Cr] + 2 × [Mo]
<< In formula, [] means content (mass%) of each element. >>
The high-tensile steel plate of the present invention preferably satisfies KV ≦ 0.12 (%), and by satisfying these requirements, the high heat input HAZ toughness can be further improved.
However,
KV (%) = [V] + [Nb]
<< In formula, [] means content (mass%) of each element. >>
[0011]
In the high-tensile steel sheet of the present invention, (a) Ni: 5% or less (not including 0%), (b) Cu: 3% or less (not including 0%), (c) Ca: 0 as necessary. 0.005% or less (not including 0%), (d) Mg: 0.005% or less (not including 0%) and / or Zr: 0.05% or less (not including 0%), etc. This is also effective, and the properties of the high-tensile steel sheet are further improved depending on the types of components contained. Moreover, the high-tensile steel sheet of the present invention has a thickness of 80 mm or more and has good weldability and base material strength.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
According to a study by the present inventors, in the 490 MPa class steel sheet, it was possible to achieve both the improvement of the weld crack resistance and the securing of the base material strength by controlling the Pcm, but in the 590 MPa class steel sheet, the component control by the Pcm. However, it has been found that it is difficult to satisfy both characteristics particularly for thick materials.
[0013]
In general, when upper bainite is generated during high heat input welding, island martensite is generated, and the HAZ toughness of the steel deteriorates. Therefore, in the case of a 490 MPa grade steel plate, Ceq is used to actively generate ferrite in the HAZ. Has been tried to improve the high heat input HAZ toughness, which is contrary to the increase in strength and thickness, and the improvement in the high heat input HAZ toughness and the thick wall in the 590 MPa class steel plate. It was also difficult to achieve compatibility.
[0014]
Therefore, in the present invention, in the component design, the weld crack resistance and large resistance are not determined by completely different parameters, but Pcm, which has been used as an index of weld crack resistance, and Ceq, which has been used as an index of ensuring high heat input HAZ toughness. The inventors studied diligently whether the heat input HAZ toughness could be controlled. As a result, good weld crack resistance, high heat input HAZ toughness and base metal by using KP and KV represented by the above formulas considering the steel structure, further reducing the amount of C, and adding B Since it was found that the strength could be achieved and its technical significance was recognized, it has been filed earlier (Japanese Patent Application No. 2001-154512).
[0015]
The present inventors made further studies aiming at further improvement of the characteristics even after realizing the above-described high-tensile steel sheet. As a result, the KP value was controlled within an appropriate range, and (1) an average crystal grain size of 10 μm or less, and (2) a grain size: 10 × 250 nm NaCl-type carbon / nitride 1 × 10 4 / When at least one of the requirements such as the presence of mm 2 or more is satisfied, the characteristics are further improved, and the present invention has been completed.
[0016]
First, the principle of improving weld crack resistance and high heat input HAZ toughness in the present invention will be described. As described above, in the present invention, after limiting C to extremely low C, Mn and Cr, which are hardenability improving elements, and in some cases, further actively adding Mo, are determined by the content of the quenching improving element. The appropriate KP value is controlled, and if necessary, the KV value in which the addition of V and Nb, which are large heat input HAZ toughness reducing elements, is defined in relation to B is appropriately controlled. By appropriately adding these components, the continuous cooling curve of bainite (see the CCT diagram in FIG. 1) moves to the short time side and the low temperature side, and the CCT line of ferrite moves to the long time side. (Moving from solid line to broken line).
[0017]
Conventionally, martensite is generated at a high cooling rate, and ferrite or upper bainite is generated at a low cooling rate. Therefore, the hardness is highly sensitive to the cooling rate, and the hardness of the HAZ part is reduced during welding with low heat input (weld crack resistance). However, according to the present invention, low-temperature transformation bainite is generated at both high cooling rate and low cooling rate, and hard hardening cannot be achieved. This reduced the sensitivity of the cooling rate, and made it possible to reduce the hardness of the HAZ part during welding (improvement of weld crack resistance) and ensure the strength of the base material.
[0018]
On the other hand, in the case of high heat input welding, since the cooling rate of HAZ is slow, conventionally, ferrite or upper bainite was generated, and a coarse and massive island-like martensite structure was generated accordingly, and HAZ toughness was deteriorated. However, in the present invention, low-temperature transformation bainite is generated even if the cooling rate is low, so that it becomes a film-like martensite structure instead of a lump, and at the same time, because it is extremely low C, the generated martensite structure becomes fine, and the HAZ toughness I was able to secure it.
[0019]
From the above viewpoint, in the present invention, the KP value ([Mn] + 1.5 × [Cr] + 2 × [Mo]) needs to be in the range of 2.4 to 4.5%. If this KP value is less than 2.4%, the above effect cannot be exhibited effectively, and a base material strength of 590 MPa or more cannot be achieved. On the other hand, if the KP value exceeds 4.5%, the high heat input HAZ toughness is lowered. The preferable lower limit of the KP value is 2.5%. Moreover, the upper limit with preferable KP value is 4.3%, More preferably, it is 4.0%, More preferably, it is 3.5%.
[0020]
In the high-tensile steel plate of the present invention, (1) the average crystal grain size is 10 μm or less, and (2) the NaCl type carbon / nitride having a grain size of 10 to 250 nm is present at 1 × 10 4 pieces / mm 2 or more. By satisfying at least one of the requirements, the characteristics are further improved. The effect of defining these requirements is as follows.
[0021]
In the component system (described later) of the present invention, higher base material toughness can be obtained by refining the average crystal grain size of the structure to 10 μm or less. That is, when the average crystal grain size of the structure exceeds 10 μm, the base material toughness is lowered. The average crystal grain size is preferably 4 μm or less.
[0022]
There are various means for reducing the crystal grain size, and there is no particular limitation. For example, lowering the heating temperature or the rolling end temperature (FRT) during the quenching heat treatment can be mentioned as an effective means. It is also effective to repeat the quenching process a plurality of times. Specifically, there is a method in which the FRT is set to 850 ° C. or lower, the heating temperature during quenching heat treatment is set to Ac 3 point to 940 ° C., and this quenching treatment is repeated a plurality of times as necessary. However, such a structure can be obtained even with non-heat treated steel that omits the heat treatment after rolling. Incidentally, the crystal grain size in the present invention is determined by a method using EBSP (Electron Backscatter Diffraction Pattern) as shown in Examples described later.
[0023]
On the other hand, the presence of 1 × 10 4 pieces / mm 2 or more of NaCl-type charcoal / nitride having a particle size of 10 to 250 nm is suppressed (precipitated), thereby suppressing the coarsening of γ grains during large heat input welding. Thermal HAZ toughness can be improved. The carbon / nitride targeted in the present invention includes any of carbides, nitrides and carbonitrides (in the present invention, this is referred to as “carbon / nitride”), but mainly composed of TiN. Become. Further, the reason why the particle size of the carbon / nitride is 10 to 250 nm is that the Ti content needs to be less than 0.005% in order to make it less than 10 nm (see Ti content described later), and 250 nm. If it exceeds, the effect (precipitation effect) is not sufficiently achieved. Furthermore, this carbon / nitride is limited to the NaCl type because it is stable even at high temperatures, and therefore acts as a pinning site during γ grain growth.
[0024]
The carbon / nitride as described above needs to be present in an amount of 1 × 10 4 pieces / mm 2 or more in order to exert its effect, but preferably 5 × 10 4 pieces / mm 2 or more. . Further, the upper limit of the number of the carbon / nitride existing is not particularly limited, but is about 1 × 10 5 pieces / mm 2 from the viewpoint of the γ particle size of HAZ (about 100 μm). It is preferable.
[0025]
There are various means for depositing carbon / nitride as described above, and there is no particular limitation. For example, (A) the component balance of Ti and N is optimized, (B) slab thickness during melt solidification Examples of effective means include reducing the thickness (for example, 300 mm or less), (C) increasing the cooling rate during melt-solidification by water cooling or the like.
[0026]
In the high-tensile steel plate of the present invention, it is also effective to control the KV value ([V] + [Nb]) to 0.12% or less. That is, since V and Nb are elements that reduce the high heat input HAZ toughness, the high heat input HAZ toughness can be improved by controlling the KV value defined by these elements within an appropriate range. From this point of view, it is recommended that V and Nb be set as low as possible within the range of the necessary content described later, more preferably 0.06% or less, still more preferably 0.04% or less. good.
[0027]
In the high-tensile steel plate of the present invention, in order to exert the above-mentioned effects, the chemical component composition must be adjusted appropriately, but C, Mn, Cr, Mo, V, Nb, which are basic components in the steel plate of the present invention. The reasons for limiting the range of Ti, B, N, etc. are as follows.
[0028]
C: 0.010 to 0.06%
C is an important element for achieving both the weld crack resistance of the HAZ part during welding and the strength of the base material and improving the high heat input HAZ toughness. In order to exert such an effect, it is necessary to contain at least 0.010% or more, but when it exceeds 0.06%, martensite is generated instead of low-temperature transformation bainite on the high cooling rate side, and welding resistance is increased. Crackability and high heat input HAZ toughness are not improved. The preferable lower limit of the C content is 0.020%, more preferably 0.025% or more, and the preferable upper limit is 0.050%, more preferably 0.045% or less. good.
[0029]
Mn: 1.0 to 2.5%
Mn has the effect of improving hardenability and makes it easy to produce low-temperature transformation bainite at a high cooling rate or a low cooling rate. If the Mn content is less than 1.0%, the desired hardenability improving effect is not exhibited and the base material strength is insufficient. However, when the Mn content is excessive and exceeds 2.5%, the weld crack resistance of the HAZ part is deteriorated. The minimum with preferable Mn content is 1.25%, and a preferable upper limit is 2.0%, More preferably, it is good to set it as 1.6% or less.
[0030]
Cr: 0.1 to 2.0%
Cr, like Mn, has the effect of improving the hardenability and facilitates the formation of low-temperature transformation bainite at high or low cooling rates. If the Cr content is less than 0.1%, the desired hardenability improving effect is not exhibited and the base material strength is insufficient. However, if the Cr content becomes excessive and exceeds 2.0%, the weld crack resistance of the HAZ part will deteriorate. The preferable lower limit of the Cr content is 0.5%, more preferably 0.6% or more, and the preferable upper limit is 1.5%, more preferably 1.2% or less. good.
[0031]
Mo: 1.5% or less (including 0%)
Mo, like Mn and Cr, has the effect of improving hardenability and facilitates the formation of low-temperature transformation bainite at high or low cooling rates. However, if it is excessively contained, weld crack resistance of the HAZ part Since it deteriorates, you may contain 1.5% as an upper limit. The upper limit with preferable Mo content is 1.0%, More preferably, it is good to set it as 0.5% or less.
[0032]
V: 0.1% or less (including 0%)
V has the effect of increasing hardenability and temper softening resistance when added in a small amount. However, if the content exceeds 0.1%, the high heat input HAZ toughness decreases. The upper limit with preferable V content is 0.06%, More preferably, it is good to set it as 0.04% or less.
[0033]
Nb: 0.1% or less (including 0%)
Nb refines the γ grain size, thereby minimizing the bainite block size after transformation, thereby contributing to the improvement of the base metal toughness. However, if the amount of Nb added exceeds 0.1%, the high heat input HAZ toughness decreases. The upper limit with preferable Nb content is 0.06%, More preferably, it is good to set it as 0.04% or less.
[0034]
Ti: 0.005 to 0.03%
Ti is useful in that it forms nitrides with N to refine γ grains in the HAZ part during high heat input welding and contributes to improvement in HAZ toughness. In order to exert such an effect, Ti needs to be contained in an amount of 0.005% or more. However, if the Ti content exceeds 0.03%, the HAZ toughness is conversely lowered. The preferable lower limit of the Ti content is 0.007%, and the preferable upper limit is about 0.02%.
[0035]
B: 0.0006 to 0.005%
B is an element for improving hardenability, and is an element useful for making low temperature transformation bainite easy to generate at a low cooling rate and at the same time ensuring both the weld crack resistance of the HAZ part and the strength of the base metal at the time of small heat input welding. . If the B content is less than 0.0006%, the effect of improving hardenability cannot be expected, and the base material strength is insufficient. Preferably it is 0.0007% or more, More preferably, it is 0.001% or more. However, if the B content exceeds 0.005%, the hardenability deteriorates and the base material strength is insufficient. Preferably it is 0.003% or less.
[0036]
N: 0.002 to 0.01%
As described above, N is useful in that it forms Ti and nitrides and contributes to the improvement of HAZ toughness during high heat input welding. However, N combines with B to reduce the solid solution B, inhibits the hardenability improving effect of B, and also has the effect of lowering the toughness of the base metal and the high heat input HAZ toughness. When the content exceeds 0.01%, the effect becomes remarkable. Preferably it is 0.008% or less. On the other hand, if the N content is less than 0.002%, the effect of improving the high heat input HAZ toughness by forming a nitride with Ti is not sufficient. Preferably it is 0.0030% or more.
[0037]
In the high-tensile steel sheet of the present invention, in addition to the above basic components (the balance) is substantially composed of iron, but may contain trace components other than these, and such a high-tensile steel sheet is also of the present invention. It is included in the range. Examples of the trace component include impurities, especially inevitable impurities such as P and S, and these are allowed to the extent that the effects of the present invention are not impaired. From such a viewpoint, it is preferable to suppress P and S as inevitable impurities to P: 0.02% or less and S: 0.01% or less, respectively.
[0038]
In addition, it is also effective to add Ni, Cu, Ca, Mg, Zr, Si, Al, etc. to the high-tensile steel plate of the present invention as necessary, and the properties of the high-tensile steel plate depend on the types of components contained. Further improvement. The reasons for limiting the range of elements contained as necessary are as follows.
[0039]
Ni: 5% or less (excluding 0%)
Ni is an element useful for improving the base material toughness, but if added over 5%, scale flaws are likely to occur, so the upper limit is preferably made 5%. More preferably, it is 3% or less, and more preferably 2% or less.
[0040]
Cu: 3% or less (excluding 0%)
Cu is an element that improves the strength of the base metal by solid solution strengthening and precipitation strengthening and also has an effect of improving hardenability. However, if added over 3%, the high heat input HAZ toughness decreases, so the upper limit is preferably made 3%. More preferably, it is 2% or less, and further preferably 1.2% or less.
[0041]
Ca: 0.005% or less (excluding 0%)
Ca is an element having an effect of reducing the anisotropy of inclusions by spheroidizing MnS. In order to exert such effects, it is preferable to add 0.0005% or more. More preferably, it is 0.001% or more. However, if the content exceeds 0.005%, the toughness of the base material decreases, so the upper limit is preferably made 0.005%. More preferably, it is 0.004% or less.
[0042]
Mg: 0.005% or less (not including 0%) and / or Zr: 0.05% or less ( not including 0 %)
Mg and Zr are effective elements for improving the HAZ toughness. However, if excessively contained, the HAZ toughness deteriorates. Therefore, it is preferable that the Mg content is 0.005% or less and the Zr content is 0.05 or less. More preferably, Mg: 0.003% or less and Zr: 0.03% or less are preferable.
[0043]
Si: 1% or less (not including 0%) and / or Al: 0.2% or less (not including 0%)
Si and Al are useful elements as deoxidizers. Further, Al fixes N and increases the solid solution B, thereby exhibiting the effect of improving the hardenability based on B. These effects increase as the content increases. However, if the Si content exceeds 1% and Al exceeds 0.2%, the base material toughness (base material toughness and weldability in Si) increases. descend. More preferably, the Si content is 0.6% or less, the Al content is 0.1% or less, the Si content is 0.3% or less, and the Al content is 0.05% or less.
[0044]
In order to produce the high-tensile steel plate of the present invention, (1) the average crystal grain size is 10 μm or less, (2) the grain size is 1 × 10 4 pieces / mm 2 or more of NaCl-type charcoal / nitride of 10 to 250 nm, In addition to considering the production conditions for satisfying the above, steel that satisfies the above chemical composition is used, and the production process and conditions (temperature, time, etc.) of a high-strength steel plate that is usually used may be adopted as appropriate. The high-tensile steel sheet of the present invention has good weldability and base material strength even when the thickness is 80 mm or more, but such characteristics can be obtained even when the thickness is less than 80 mm. Of course.
[0045]
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. It is included in the range.
[0046]
【Example】
Example 1
A steel having the chemical composition shown in Table 1 below is melted by a normal melting method to form a slab, and then hot-rolled and heat-treated under the conditions shown in Table 2 below to obtain a high-tensile steel plate having a predetermined thickness. Manufactured. The heat treatment of “heat treatment condition 2” was performed after the heat treatment of “heat treatment condition 1”. In addition, Experiment No. In the case of 12, heat treatment condition 1 was performed twice.
[0047]
[Table 1]
Figure 0003746707
[0048]
[Table 2]
Figure 0003746707
[0049]
For each steel sheet thus obtained, the average crystal grain size, the size and number of precipitates were measured in the following manner, and the base material properties [strength and toughness (vE- 60 )] were evaluated. Moreover, the weldability (weld crack resistance and high heat input HAZ toughness) was further evaluated for materials that cleared the base material level (590 MPa ≦ tensile strength <780 MPa, vE− 60 ≧ 47 J) as a reference in the present invention. .
[0050]
[Average crystal grain size]
Orientation analysis was performed using EBSP, and a crystal grain size was determined with a boundary having an inclination angle of 10 ° or more as a grain boundary. At this time, the measurement position is a 1/4 thickness portion of each steel plate, measurement region: 70 μ square, measurement step: 0.2 μm interval, and a confidence index indicating the reliability of the measurement orientation is 0.1 or less. Measurement points were deleted from the measurement target. Further, a crystal having a crystal grain size of 0.5 μm or less was judged as measurement noise, and was excluded from the calculation of the average crystal grain size. Further, the crystal grains applied to the end of the measurement region were also excluded from the average crystal grain size calculation. The main structure of the steel sheet of the present invention is bainite, but the crystal grain size can be determined by the above method even in a structure containing ferrite, pearlite, and martensite.
[0051]
[Size and number of precipitates]
After extracting the precipitate (NaCl type charcoal / nitride) by the extraction replica method, the size and number were measured by observation with a transmission electron microscope (TEM). In the measurement of NaCl-type charcoal / nitride, what is seen as a substantially square shape by TEM observation is judged as NaCl-type charcoal / nitride, and those that are not substantially square-shaped are determined by X-ray analysis. The element contained in the precipitate was investigated. For example, if Ti and N were analyzed, the precipitate was determined to be TiN, and it was determined from the type of the compound whether the precipitate was a NaCl type (for other compounds as well). The same). At this time, an area of 2 μm square with an observation magnification of 40,000 was photographed at n = 10, and the number of particles having a particle size of 10 to 250 nm was counted by an image analyzer.
[0052]
[Base material characteristics test]
(1) Tensile test: A JIS No. 4 test piece was taken from a 1/4 thickness portion of each steel plate, and 0.2% proof stress and tensile strength were measured by conducting a tensile test. 590 MPa ≦ tensile strength <780 MPa was regarded as acceptable. In addition, the yield ratio was also measured during the tensile test.
{Circle around (2)} Impact test: JIS No. 4 test specimens were collected from a 1/4 thickness part of each steel plate and subjected to Charpy impact test to obtain absorbed energy (vE- 60 ). vE -60 ≧ 47J was accepted.
[0053]
[Weldability test]
(1) HAZ toughness: Welding is performed with a heat input of 80 to 120 kJ / mm (electroslag welding method), and a JIS No. 4 specimen is taken from the site shown in FIG. vE- 20 ) was determined. vE -20 ≧ 15 J was accepted.
(2) Weld crack resistance: Based on the y-type weld crack test method described in JIS Z 3158, covered arc welding was performed at a heat input of 1.7 kJ / mm, and the root crack prevention preheating temperature was measured. 25 degrees C or less was set as the pass.
[0054]
These test results are shown in the following Table 3 together with the average crystal grain size and the number of precipitates, and satisfy the requirements specified in the present invention (Nos. 1, 2, 4 to 6, 9, 10, 12 to 18, 28 to 37), it can be seen that both the base material characteristics and the weldability are excellent. On the other hand, those lacking any of the requirements defined in the present invention (Nos. 3, 7, 8, 11, 19 to 27) are resistant to weld cracking, high heat input HAZ toughness, and base material properties (strength). , Toughness) is found to be reduced.
[0055]
[Table 3]
Figure 0003746707
[0056]
【The invention's effect】
The present invention is configured as described above, and can provide a steel plate of 590 MPa or more and less than 780 MPa that is excellent in weldability (weld crack resistance and high heat input HAZ toughness). According to the present invention, a high-tensile steel plate having the above characteristics can be provided even if the plate thickness is 80 mm or more.
[Brief description of the drawings]
FIG. 1 is a schematic CCT diagram for explaining the concept of component design of the present invention.
FIG. 2 is a schematic explanatory view showing a test piece collection position of bond toughness during electroslag welding.

Claims (9)

C :0.010〜0.06%(質量%の意味、以下同じ),
Mn:1.0〜2.5%,
Cr:0.1〜2.0%,
Mo:1.5%以下(0%を含む),
V :0.1%以下(0%を含む),
Nb:0.1%以下(0%を含む),
Ti:0.005〜0.03%,
B :0.0006〜0.005%,
N :0.002〜0.01%
Si:1%以下(0%を含まない),
Al:0.2%以下(0%を含まない)
を満たし、残部がFeおよび不可避不純物である鋼からなり、
2.4%≦KP≦4.5%
を満足すると共に、平均結晶粒径が10μm以下であることを特徴とする溶接性に優れた高張力鋼板。
但し、
KP(%)=[Mn]+1.5×[Cr]+2×[Mo]
《式中、[ ]は各元素の含有量(質量%)を意味する。》
C: 0.010 to 0.06% (meaning mass%, the same shall apply hereinafter),
Mn: 1.0 to 2.5%,
Cr: 0.1 to 2.0%,
Mo: 1.5% or less (including 0%),
V: 0.1% or less (including 0%),
Nb: 0.1% or less (including 0%),
Ti: 0.005 to 0.03%,
B: 0.0006 to 0.005%,
N: 0.002 to 0.01% ,
Si: 1% or less (excluding 0%),
Al: 0.2% or less (excluding 0%)
Consisting of steel with the balance being Fe and inevitable impurities,
2.4% ≦ KP ≦ 4.5%
And a high-tensile steel sheet excellent in weldability, characterized in that the average crystal grain size is 10 μm or less.
However,
KP (%) = [Mn] + 1.5 × [Cr] + 2 × [Mo]
<< In formula, [] means content (mass%) of each element. >>
C :0.010〜0.06%,
Mn:1.0〜2.5%,
Cr:0.1〜2.0%,
Mo:1.5%以下(0%を含む),
V :0.1%以下(0%を含む),
Nb:0.1%以下(0%を含む),
Ti:0.005〜0.03%,
B :0.0006〜0.005%,
N :0.002〜0.01%
Si:1%以下(0%を含まない),
Al:0.2%以下(0%を含まない)
を満たし、残部がFeおよび不可避不純物である鋼からなり、
2.4%≦KP≦4.5%
を満足すると共に、粒径:10〜250nmのNaCl型炭・窒化物が1×10個/mm以上存在するものであることを特徴とする溶接性に優れた高張力鋼板。
但し、
KP(%)=[Mn]+1.5×[Cr]+2×[Mo]
《式中、[ ]は各元素の含有量(質量%)を意味する。》
C: 0.010 to 0.06%,
Mn: 1.0 to 2.5%,
Cr: 0.1 to 2.0%,
Mo: 1.5% or less (including 0%),
V: 0.1% or less (including 0%),
Nb: 0.1% or less (including 0%),
Ti: 0.005 to 0.03%,
B: 0.0006 to 0.005%,
N: 0.002 to 0.01% ,
Si: 1% or less (excluding 0%),
Al: 0.2% or less (excluding 0%)
Consisting of steel with the balance being Fe and inevitable impurities,
2.4% ≦ KP ≦ 4.5%
And a high-tensile steel sheet with excellent weldability, characterized in that NaCl type charcoal / nitride having a particle size of 10 to 250 nm is present at 1 × 10 4 pieces / mm 2 or more.
However,
KP (%) = [Mn] + 1.5 × [Cr] + 2 × [Mo]
<< In formula, [] means content (mass%) of each element. >>
C :0.010〜0.06%,
Mn:1.0〜2.5%,
Cr:0.1〜2.0%,
Mo:1.5%以下(0%を含む),
V :0.1%以下(0%を含む),
Nb:0.1%以下(0%を含む),
Ti:0.005〜0.03%,
B :0.0006〜0.005%,
N :0.002〜0.01%
Si:1%以下(0%を含まない),
Al:0.2%以下(0%を含まない)
を満たし、残部がFeおよび不可避不純物である鋼からなり、
2.4%≦KP≦4.5%
を満足すると共に、平均結晶粒径が10μm以下であり、且つ粒径:10〜250nmのNaCl型炭・窒化物が1×10個/mm以上存在するものであることを特徴とする溶接性に優れた高張力鋼板。
但し、
KP(%)=[Mn]+1.5×[Cr]+2×[Mo]
《式中、[ ]は各元素の含有量(質量%)を意味する。》
C: 0.010 to 0.06%,
Mn: 1.0 to 2.5%,
Cr: 0.1 to 2.0%,
Mo: 1.5% or less (including 0%),
V: 0.1% or less (including 0%),
Nb: 0.1% or less (including 0%),
Ti: 0.005 to 0.03%,
B: 0.0006 to 0.005%,
N: 0.002 to 0.01% ,
Si: 1% or less (excluding 0%),
Al: 0.2% or less (excluding 0%)
Consisting of steel with the balance being Fe and inevitable impurities,
2.4% ≦ KP ≦ 4.5%
And having an average crystal grain size of 10 μm or less and a grain size of 10 to 250 nm of NaCl-type charcoal / nitride of 1 × 10 4 pieces / mm 2 or more. High-strength steel sheet with excellent properties.
However,
KP (%) = [Mn] + 1.5 × [Cr] + 2 × [Mo]
<< In formula, [] means content (mass%) of each element. >>
KV≦0.12(%)を満足するものである請求項1〜3のいずれかに記載の高張力鋼板。
但し、
KV(%)=[V]+[Nb]
《式中、[ ]は各元素の含有量(質量%)を意味する。》
The high-tensile steel plate according to any one of claims 1 to 3, which satisfies KV≤0.12 (%).
However,
KV (%) = [V] + [Nb]
<< In formula, [] means content (mass%) of each element. >>
更にNi:5%以下(0%を含まない)を含有するものである請求項1〜4のいずれかに記載の高張力鋼板。  Furthermore, Ni: 5% or less (0% is not included) is contained, The high-tensile steel plate in any one of Claims 1-4. 更にCu:3%以下(0%を含まない)を含有するものである請求項1〜5のいずれかに記載の高張力鋼板。  The high-tensile steel sheet according to any one of claims 1 to 5, further comprising Cu: 3% or less (not including 0%). 更にCa:0.005%以下(0%を含まない)を含有するものである請求項1〜6のいずれかに記載の高張力鋼板。  The high-tensile steel plate according to any one of claims 1 to 6, further containing Ca: 0.005% or less (excluding 0%). 更にMg:0.005%以下(0%を含まない)および/またはZr:0.05%以下(0%を含まない)含有するものである請求項1〜7のいずれかに記載の高張力鋼板。Further Mg: 0.005% or less (not including 0%) and / or Zr: 0.05% or less (not including 0%) High according to claim 1 are those which contain Tensile steel plate. 肉厚が80mm以上である請求項1〜8のいずれかに記載の高張力鋼板。The high-tensile steel plate according to any one of claims 1 to 8 , wherein the thickness is 80 mm or more.
JP2001359969A 2001-11-26 2001-11-26 High-tensile steel plate with excellent weldability Expired - Fee Related JP3746707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001359969A JP3746707B2 (en) 2001-11-26 2001-11-26 High-tensile steel plate with excellent weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001359969A JP3746707B2 (en) 2001-11-26 2001-11-26 High-tensile steel plate with excellent weldability

Publications (2)

Publication Number Publication Date
JP2003160834A JP2003160834A (en) 2003-06-06
JP3746707B2 true JP3746707B2 (en) 2006-02-15

Family

ID=19170870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001359969A Expired - Fee Related JP3746707B2 (en) 2001-11-26 2001-11-26 High-tensile steel plate with excellent weldability

Country Status (1)

Country Link
JP (1) JP3746707B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103037B2 (en) * 2007-03-09 2012-12-19 株式会社神戸製鋼所 Thick steel plate with excellent toughness of base metal and weld heat affected zone
JP5297692B2 (en) * 2008-05-20 2013-09-25 株式会社神戸製鋼所 High-tensile steel plate excellent in toughness of weld heat-affected zone and suppression of fatigue crack growth and manufacturing method thereof
JP5729803B2 (en) * 2010-05-27 2015-06-03 株式会社神戸製鋼所 High-tensile steel plate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003160834A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
JP5124988B2 (en) High-tensile steel plate with excellent delayed fracture resistance and tensile strength of 900 MPa or more and method for producing the same
JP5462069B2 (en) High-strength steel plate with excellent drop weight characteristics and base metal toughness
JP5172391B2 (en) Steel sheet with excellent toughness and uniform elongation of weld heat affected zone
JP4311740B2 (en) Thick steel plate with high heat input welded joint toughness
KR20160088375A (en) Steel plate and method for manufacturing same
JP2007009325A (en) High strength steel product having excellent low temperature crack resistance, and method for producing the same
JP2015183279A (en) Thick steel sheet for marine vessel, for marine structure and for hydraulic pressure steel pipe excellent in brittle crack arrest property
JP4044470B2 (en) High toughness steel sheet excellent in low temperature base metal toughness and low temperature HAZ toughness, and method for producing the same
JP3668713B2 (en) High tensile steel plate with excellent weldability and uniform elongation
JP3854807B2 (en) High tensile steel plate with excellent weldability and uniform elongation
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JP4344919B2 (en) High strength steel plate excellent in weldability without preheating, its manufacturing method and welded steel structure
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP4259145B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP3746707B2 (en) High-tensile steel plate with excellent weldability
JP3970801B2 (en) High strength high toughness steel plate
JP3863413B2 (en) High toughness high tension non-tempered thick steel plate and manufacturing method thereof
JP2002161330A (en) Wear resistant steel
JP4655372B2 (en) Method for producing high-tensile steel with high yield point
JP3739997B2 (en) High-tensile steel plate with excellent weldability
KR101207722B1 (en) High strength steel plate for welding structure with superior haz toughness for high heat input welding and method for manufacturing the same
JP3602396B2 (en) Low yield ratio high strength steel sheet with excellent weldability
JP2004010996A (en) Wear resistant steel having excellent low temperature toughness and method for producing the same
JP2009179868A (en) High tensile strength steel plate having excellent weldability
JPH10158778A (en) High tensile strength steel plate excellent in toughness and weldability, and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3746707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees