JP2004010996A - Wear resistant steel having excellent low temperature toughness and method for producing the same - Google Patents

Wear resistant steel having excellent low temperature toughness and method for producing the same Download PDF

Info

Publication number
JP2004010996A
JP2004010996A JP2002168560A JP2002168560A JP2004010996A JP 2004010996 A JP2004010996 A JP 2004010996A JP 2002168560 A JP2002168560 A JP 2002168560A JP 2002168560 A JP2002168560 A JP 2002168560A JP 2004010996 A JP2004010996 A JP 2004010996A
Authority
JP
Japan
Prior art keywords
low
steel
temperature toughness
temperature
resistant steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002168560A
Other languages
Japanese (ja)
Inventor
Tomoyuki Yokota
横田 智之
Yasuhiro Murota
室田 康宏
Masayuki Hashimoto
橋本 正幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002168560A priority Critical patent/JP2004010996A/en
Publication of JP2004010996A publication Critical patent/JP2004010996A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide wear resistant steel which has excellent low temperature toughness, and to provide a method for producing the same. <P>SOLUTION: Steel having a componential composition comprising, by mass, 0.05 to 0.30% C, 0.05 to 1.0% Si, 0.1 to 2.0% Mn, 0.2 to 0.5% V, 0.005 to 0.1% Ti, and 0.0003 to 0.01% B, and, if required, comprising one or more kinds of metals selected from 0.03 to 2.0% Cu, 0.03 to 2.0% Ni, 0.03 to 2.0% Cr, 0.03 to 1.0% Mo, and 0.005 to 0.1% Nb, and the balance Fe with inevitable impurities is hot-rolled at a finishing temperature of ≥800°C, is thereafter subjected to accelerated cooling to ≤300°C, is reheated to 850 to 950°C, and is subsequently subjected to water quenching. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、産業機械や運搬機器などに用いられる耐摩耗鋼に関し、特にー40℃近傍の低温での母材靭性に優れたものに関する。
【0002】
【従来の技術】
建設、土木、鉱山採掘に使用される産業機械、部品、運搬機器(例えば、パワーシャベル、ブルドーザ、ホッパー、バケット等)には耐摩耗鋼が用いられ、最近では寒冷地で使用される場合も増加している。
【0003】
耐摩耗鋼は高C系鋼の表面を焼入れ組織とし表面硬度を高くすることが一般的であるが、低温靭性が低く、低温溶接割れ感受性に劣ることが多く、寒冷地で使用する場合、これらの特性を向上させることが必要であった。
【0004】
特開平8−41535号公報、特開平2−179842号公報および特開昭61−166954号公報には、Cr,Moなど多量に添加し、低温靭性を向上させることが記載されている。Crは焼入れ性を向上させ、Moは焼入れ性を向上させるとともに、粒界強度を強化するため添加されている。
【0005】
特開2002−20837号公報は製造プロセスの工夫により低温靭性を向上させるもので、オースフォーミングにより、旧γ粒界を展伸させ、靭性を改善することが記載されている。
【0006】
【発明が解決しようとする課題】
しかしながら、特開平8−41535号公報、特開平2−179842号公報および特開昭61−166954号公報に記載されているように合金元素を多量に添加するものは製品コストが上昇し、特開2002−20837号公報に記載されているものは製造プロセスが複雑で実機適用は容易ではない。
【0007】
そこで、本発明は安価な成分組成で低温靭性に優れた耐摩耗鋼および実製造適用が容易な製造プロセスを提供する。
【0008】
【課題を解決するための手段】
本発明者らは上述した課題を解決すべく、成分組成、製造プロセスについて鋭意検討をおこない、以下の知見を得た。
【0009】
▲1▼耐摩耗鋼における低温靭性改善には細粒化が最も効果的で、Vを適量添加し、再加熱焼入れ時の加熱γ粒径を微細化した場合、低温靭性は向上する。
【0010】
▲2▼V添加による細粒化は、γ粒をピンニングするV炭化物によるものであるが、その効果は熱間圧延後の放冷時に析出するものに対し、熱間圧延後の再加熱時に固溶状態から析出し、より微細となるV炭化物によるほうが大きい。
【0011】
▲3▼圧延後の再加熱により微細なV炭化物を析出させるため、圧延後加速冷却することが有効で、特に加速冷却停止温度を300℃以下とすることが効果的である。
【0012】
▲4▼板厚中心での低温靭性向上には、板厚中心部を旧γ粒径の細粒化により微細組織とし、かつ十分焼きの入った焼入れ組織とすることが必要で、V,TiおよびBの複合添加により焼入れ性を向上させることが有効である。
【0013】
▲5▼V添加量と再加熱温度域の適切な組合せによって、再加熱焼入れ時のγ粒径の微細化に有効なV炭化物の確保と再加熱焼入れ時、板厚中心部の焼入れ性確保に必要な固溶Vの確保が可能となる。
【0014】
本発明は以上の知見をもとに更に検討を加えてなされたものであり、すなわち、本発明は、
1.質量%で、C:0.05〜0.30%、Si:0.05〜1.0%、Mn:0.1〜2.0%、V:0.2〜0.5%、Ti:0.005〜0.1%、B:0.0003〜0.01%、残部Fe及び不可避的不純物からなる低温靭性に優れた耐摩耗鋼。
【0015】
2.1記載の鋼成分に更に質量%で、Cu:0.03〜2.0%、Ni:0.03〜2.0%、Cr:0.03〜2.0%、Mo:0.03〜1.0%、Nb:0.005〜0.1%の一種または二種以上を含有したことを特徴とする低温靭性に優れた耐摩耗鋼。
【0016】
3.1または2に記載の化学成分を有する鋼を熱間圧延後、850〜950℃に再加熱し、その後水焼入れを行うことを特徴とする低温靭性に優れた耐摩耗鋼の製造方法。
【0017】
4.3記載の製造方法において、熱間圧延の仕上温度を800℃以上とし、熱間圧延後300℃以下まで加速冷却することを特徴とする低温靭性に優れた耐摩耗鋼の製造方法。
【0018】
【発明の実施の形態】
本発明における化学成分の限定理由、製造条件の限定について詳細に説明する。
1.成分組成

Cは鋼の強度を確保するため添加する。耐摩耗鋼として必要なブリネル硬さ300以上を得るため0.05%以上添加する。一方、0.30%を超えて添加すると低温靭性、溶接性および加工性が劣化するため0.05〜0.30%とする。
【0019】
Si
Siは脱酸元素、固溶強化元素として0.05%以上添加する。一方、1.0%を超えて添加すると延性、靭性が低下し、介在物が増加するため0.05〜1.0%とする。
【0020】
Mn
Mnは焼入れ性を確保するため0.1%以上添加する。一方、2.0%を超えて添加すると溶接性が劣化するため0.1〜2.0%とする。
【0021】

Vは本発明では重要な元素で、母材組織を十分焼きの入った細粒組織とするため添加する。熱間圧延後の再加熱温度を850〜950℃とした場合、V炭化物と固溶Vが並存し、前者によるγ粒のピンニング作用と後者による焼入れ性向上作用により所望の組織が得られる。
【0022】
このような作用を得るため0.2%以上添加する。一方、0.5%を超えると介在物が粗大化し、低温靭性が劣化し、溶接性も悪くなるため0.2〜0.5%とする。
【0023】
Ti
TiはTiNを形成することによりBNの生成を妨げ焼入れ性に必要な固溶Bを確保する。そのような効果を期待するため0.005%以上添加する。一方、0.1%を超えると介在物が粗大化し、低温靭性が低下するため0.005〜0.1%とする。
【0024】

Bは焼入れ性を向上させるため、0.0003%以上添加する。一方、0.01%を超えて添加すると焼入れ性が飽和し、溶接性も劣化するため0.0003〜0.01%とする。尚、Bの焼入れ性向上効果はV,Tiと複合添加した場合、特に効果的である。
【0025】
以上が本発明の基本的元素であるが、更に特性を向上させるためCu,Ni,Cr,Mo,Nbの一種または二種以上を添加する。
【0026】
Cu
Cuは焼入れ性を向上させる場合、添加する。0.03%未満ではそのような効果が得られず、一方、2.0%を超えると熱間加工性が低下し、生産コストも上昇するため0.03〜2.0%、好ましくは0.1〜2.0%を添加する。
【0027】
Ni
Niは焼入れ性、低温靭性を向上させる場合、添加する。0.03%未満ではそのような効果が得られず、一方、2.0%を超えると生産コストが上昇するため0.03〜2.0%、好ましくは0.1〜2.0%を添加する。
【0028】
Cr
Crは焼入れ性を向上させる場合、添加する。0.03%未満ではそのような効果が得られず、一方、2.0%を超えると溶接性が劣化し、生産コストが上昇するため0.03〜2.0%、好ましくは0.1〜2.0%を添加する。
【0029】
Mo
Moは焼入れ性および粒界強度を向上させる場合、添加する。0.03%未満ではそのような効果が得られず、一方、1.0%を超えると溶接性が劣化し、生産コストが上昇するため0.03〜1.0%を添加する。
【0030】
Nb
Nbは析出強化に有効であり強度を向上させる。また、組織微細化効果があり、靭性を向上させる。0.005%未満ではそのような効果が得られず、、一方、0.1%を超えると溶接性が劣化するため0.005〜0.1%を添加する。
【0031】
尚、本発明鋼の組成において残部は鉄及び不可避的不純物であるが、本発明の作用効果を損なわない範囲で微量元素を含むことは差し支えない。
2.製造条件
本発明鋼は熱間圧延後、再加熱焼入れして製造するが、熱間圧延の仕上げ温度を800℃以上とし、熱間圧延後、冷却停止温度300℃以下とする加速冷却をした後、850〜900℃に再加熱することが好ましい。
【0032】
熱間圧延
熱間圧延は、仕上げ温度を800℃以上とすることが好ましい。仕上げ温度800℃未満とした場合、圧延後の冷却においてV炭化物の析出が促進され、冷却後の固溶V量が減少し、再加熱された際、固溶状態からの析出量が減少する。
【0033】
熱間圧延後の冷却
熱間圧延後、直ちに冷却する。冷却はV炭化物が析出しないように加速冷却により行い、冷却停止温度は300℃以下とすることが好ましい。300℃超えで冷却停止するとV析出物が多く析出し、再加熱前の固溶V量が減少し、ピンニングに必要なV炭化物が十分得られない。
【0034】
再加熱処理
焼入れ時の再加熱温度は850〜950℃とすることが好ましい。850℃未満では焼入れに必要なオーステナイ化が不充分で、一方、950℃超えではVは一部が固溶し、オーステナイト粒の微細化に必要なV炭化物の量が十分確保できない。
【0035】
再加熱処理後、焼入れを行う。焼入れは十分な焼入れ組織が得られれば良く冷却方法は特に規定しないが水焼入れが好ましい。
【0036】
尚、焼入れ後、靭性を回復させ、耐水素脆化特性を向上させるため焼戻し処理することも可能である。本発明鋼は焼戻し処理により固溶Vが析出するため、軟化されることが少なく、耐摩耗性を損なうことはない。焼戻しは600℃以下とすることが好ましい。
【0037】
【実施例】
[実施例1]
表1に示す化学成分のスラブ(板厚100mm)を、1150℃に加熱後、仕上げ温度850℃で熱間圧延し、室温まで放冷して板厚19mmまたは35mmとした。その後、これらの鋼板を900℃まで再加熱し水焼入れを行い、一部のものについては焼戻しを行った。
【0038】
鋼No.1〜17は本発明鋼で、No.4,5については500℃で焼戻しを行った。鋼No.18〜22は比較鋼である。得られた鋼板について、表面硬度、引張強度、低温靭性を調査した。
【0039】
表面硬度は、JISZ2243に準拠し、5点の表面硬度の平均値とした。引張強度は、JISZ2241に準拠し、板厚19mm材についてはJISZ2201 5号試験片、板厚35mm材はJISZ2201 1A試験片を用いた。低温靭性はJISZ2242に準拠し、−40℃でのシャルピー衝撃吸収エネルギーを求めた。得られた試験結果を表1に示す。
【0040】
本発明鋼のNo.1〜17は表面硬度331HB以上で且つ−40℃でのシャルピー衝撃吸収エネルギーが51J以上の優れた低温靭性が得られている。
【0041】
一方、比較鋼18はC量が0.03%と低く、表面硬度および引張強度が低い。比較鋼19はC量が0.35%と高く、−40℃でのシャルピー衝撃吸収エネルギーが低い。比較鋼20はV量が低く表面硬度は高いが、オーステナイト粒径が粗大化し−40℃でのシャルピー衝撃吸収エネルギーが低い。
【0042】
比較鋼21はV添加量が本発明範囲外で多く、粗大なVN介在物が生成し、低温靭性が著しく劣化する。比較鋼22はTi,Bfree系のため、焼入れ性が低下し、引張強度が低く、また不完全焼入れ組織により−40℃でのシャルピー衝撃吸収エネルギーが低い。
【0043】
【表1】

Figure 2004010996
【0044】
[実施例2]
製造条件が表面硬度、引張強度、低温靭性に及ぼす影響を表1記載の発明鋼No.6(板厚19mm材)の化学成分の鋼を用いて調査した。製造条件において圧延仕上げ温度(℃)、加速冷却停止温度(℃)及び再加熱温度(℃)を変化させ、その他の条件および試験方法は実施例1に準じた。
【0045】
表2に試験条件および試験結果を示す。No.aは熱間圧延後の加速冷却がなく、加速冷却をしたNo.b、dに対し低温靭性が劣る。No.cは圧延仕上げ温度が低く表面硬度が低い。
【0046】
No.eは熱間圧延後、加速冷却を行ったが、冷却停止温度が455℃と高いため、No.b,dに対し低温靭性が低い。No.fは再加熱温度が1050℃と高く、No.gは再加熱温度が800℃と低く、いずれもγ粒径の微細化が不充分で、低温靭性に劣る。
【0047】
【表2】
Figure 2004010996
【0048】
【発明の効果】
本発明によれば、−40℃程度の低温靭性に優れた耐摩耗鋼が得られ、産業上極めて有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wear-resistant steel used for industrial machines, transport equipment, and the like, and more particularly to a steel excellent in base metal toughness at a low temperature of around −40 ° C.
[0002]
[Prior art]
Industrial machines, parts, and transport equipment (eg, power shovels, bulldozers, hoppers, buckets, etc.) used for construction, civil engineering, and mining use wear-resistant steel, and are increasingly used in cold climates. are doing.
[0003]
Wear-resistant steels generally have a hardened structure on the surface of high-C steels to increase the surface hardness, but they often have low low-temperature toughness and poor low-temperature weld cracking susceptibility. It was necessary to improve the characteristics of the above.
[0004]
JP-A-8-41535, JP-A-2-179842 and JP-A-61-166954 describe that a large amount of Cr, Mo or the like is added to improve low-temperature toughness. Cr improves quenching properties, while Mo improves quenching properties and is added to enhance grain boundary strength.
[0005]
Japanese Patent Application Laid-Open No. 2002-20837 describes improving the low-temperature toughness by devising a manufacturing process, and describes that an old γ grain boundary is extended by ausforming to improve the toughness.
[0006]
[Problems to be solved by the invention]
However, as described in JP-A-8-41535, JP-A-2-179842 and JP-A-61-166954, the addition of a large amount of alloy elements increases the product cost, Japanese Patent Application Laid-Open No. 2002-20837 has a complicated manufacturing process and is not easy to apply to an actual machine.
[0007]
Therefore, the present invention provides a wear-resistant steel having an inexpensive component composition and excellent in low-temperature toughness, and a manufacturing process which is easy to apply to actual manufacturing.
[0008]
[Means for Solving the Problems]
The present inventors have intensively studied the component composition and the manufacturing process in order to solve the above-mentioned problems, and have obtained the following knowledge.
[0009]
{Circle around (1)} The grain refinement is most effective for improving the low-temperature toughness of wear-resistant steel. When an appropriate amount of V is added and the heated γ grain size during reheating and quenching is reduced, the low-temperature toughness is improved.
[0010]
{Circle around (2)} The grain refinement due to the addition of V is due to V carbides that pin the γ grains. The effect is that the precipitation occurs when the steel is allowed to cool after hot rolling, but the solidification occurs when reheating after hot rolling. It is larger due to V carbide, which precipitates from the molten state and becomes finer.
[0011]
(3) Accelerated cooling after rolling is effective for precipitating fine V carbides by reheating after rolling, and it is particularly effective to set the accelerated cooling stop temperature to 300 ° C. or less.
[0012]
{Circle around (4)} In order to improve the low temperature toughness at the center of the sheet thickness, it is necessary to make the center part of the sheet thickness a fine structure by refining the old γ grain size and a hardened structure sufficiently hardened. It is effective to improve the quenchability by the combined addition of B and B.
[0013]
(5) By appropriate combination of V addition amount and reheating temperature range, to secure V carbide effective for refining γ grain size during reheating quenching and to secure hardenability at the center of sheet thickness during reheating quenching Necessary solid solution V can be secured.
[0014]
The present invention has been made by further study based on the above findings, that is, the present invention,
1. In mass%, C: 0.05 to 0.30%, Si: 0.05 to 1.0%, Mn: 0.1 to 2.0%, V: 0.2 to 0.5%, Ti: 0.005 to 0.1%, B: 0.0003 to 0.01%, wear-resistant steel excellent in low-temperature toughness consisting of balance Fe and inevitable impurities.
[0015]
2.1: Cu: 0.03 to 2.0%, Ni: 0.03 to 2.0%, Cr: 0.03 to 2.0%, Mo: 0. A wear-resistant steel excellent in low-temperature toughness, characterized in that it contains one or more of Nb: 0.005 to 0.1% and Nb: 0.005 to 0.1%.
[0016]
3.1 A method for producing a wear-resistant steel having excellent low-temperature toughness, comprising hot-rolling a steel having the chemical composition described in 1 or 2 and then reheating the steel to 850 to 950 ° C, followed by water quenching.
[0017]
4.3. The method for producing a wear-resistant steel excellent in low-temperature toughness according to the method described in 4.3, wherein the finishing temperature of the hot rolling is 800 ° C. or more, and the hot rolling is accelerated and cooled to 300 ° C. or less.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The reasons for limiting the chemical components and the limitations on the production conditions in the present invention will be described in detail.
1. Component composition C
C is added to secure the strength of the steel. In order to obtain a Brinell hardness of 300 or more required as wear-resistant steel, 0.05% or more is added. On the other hand, if added in excess of 0.30%, the low-temperature toughness, weldability and workability deteriorate, so the content is made 0.05 to 0.30%.
[0019]
Si
Si is added as a deoxidizing element and a solid solution strengthening element in an amount of 0.05% or more. On the other hand, if added in excess of 1.0%, ductility and toughness decrease, and inclusions increase.
[0020]
Mn
Mn is added in an amount of 0.1% or more to ensure hardenability. On the other hand, if added over 2.0%, the weldability deteriorates, so the content is made 0.1 to 2.0%.
[0021]
V
V is an important element in the present invention, and is added to make the base material structure into a fine-grained structure that is sufficiently hardened. When the reheating temperature after hot rolling is 850 to 950 ° C., V carbide and solid solution V coexist, and a desired structure can be obtained by the former pinning action of γ grains and the latter action of improving hardenability.
[0022]
To obtain such an effect, 0.2% or more is added. On the other hand, if it exceeds 0.5%, the inclusions become coarse, the low-temperature toughness deteriorates, and the weldability also deteriorates.
[0023]
Ti
By forming TiN, Ti prevents the formation of BN and secures solid solution B necessary for hardenability. In order to expect such an effect, 0.005% or more is added. On the other hand, if it exceeds 0.1%, the inclusions become coarse and the low-temperature toughness decreases, so the content is made 0.005 to 0.1%.
[0024]
B
B is added in an amount of 0.0003% or more to improve hardenability. On the other hand, if added over 0.01%, the quenchability will be saturated and the weldability will also deteriorate, so the content is made 0.0003 to 0.01%. The effect of improving the hardenability of B is particularly effective when added in combination with V and Ti.
[0025]
The above are the basic elements of the present invention, but one or more of Cu, Ni, Cr, Mo, and Nb are added to further improve the characteristics.
[0026]
Cu
Cu is added when the hardenability is improved. If it is less than 0.03%, such an effect cannot be obtained. On the other hand, if it exceeds 2.0%, the hot workability decreases and the production cost increases, so that 0.03 to 2.0%, preferably 0%. Add 0.1-2.0%.
[0027]
Ni
Ni is added in order to improve hardenability and low-temperature toughness. If it is less than 0.03%, such an effect cannot be obtained. On the other hand, if it exceeds 2.0%, the production cost increases, so that 0.03 to 2.0%, preferably 0.1 to 2.0% Added.
[0028]
Cr
Cr is added to improve the hardenability. If it is less than 0.03%, such an effect cannot be obtained. On the other hand, if it exceeds 2.0%, the weldability deteriorates and the production cost increases, so that 0.03 to 2.0%, preferably 0.1 to 2.0%. Add ~ 2.0%.
[0029]
Mo
Mo is added to improve the hardenability and the grain boundary strength. If it is less than 0.03%, such an effect cannot be obtained. On the other hand, if it exceeds 1.0%, the weldability deteriorates and the production cost increases, so 0.03 to 1.0% is added.
[0030]
Nb
Nb is effective for precipitation strengthening and improves the strength. Further, there is an effect of making the structure finer, and the toughness is improved. If it is less than 0.005%, such an effect cannot be obtained. On the other hand, if it exceeds 0.1%, the weldability deteriorates, so 0.005 to 0.1% is added.
[0031]
In the composition of the steel of the present invention, the balance is iron and unavoidable impurities, but trace elements may be contained as long as the effects of the present invention are not impaired.
2. Manufacturing conditions The steel of the present invention is manufactured by hot-rolling and then reheating and quenching. After hot rolling, the finishing temperature is set to 800 ° C or higher, and after hot rolling, the cooling stop temperature is set to 300 ° C or lower. 850-900 ° C.
[0032]
Hot rolling The hot rolling preferably has a finishing temperature of 800 ° C. or higher. When the finishing temperature is lower than 800 ° C., precipitation of V carbide is promoted in cooling after rolling, the amount of solid solution V after cooling decreases, and when reheated, the amount of precipitation from the solid solution state decreases.
[0033]
Cooling after hot rolling After hot rolling, cooling is performed immediately. Cooling is performed by accelerated cooling so that V carbide is not precipitated, and the cooling stop temperature is preferably set to 300 ° C. or less. When cooling is stopped at a temperature higher than 300 ° C., a large amount of V precipitates precipitate, the amount of solid solution V before reheating decreases, and a sufficient amount of V carbide required for pinning cannot be obtained.
[0034]
The reheating temperature during the reheating quenching is preferably 850 to 950 ° C. If the temperature is lower than 850 ° C., the austenization required for quenching is insufficient, while if the temperature exceeds 950 ° C., a part of V forms a solid solution, and the amount of V carbide necessary for refining austenite grains cannot be sufficiently secured.
[0035]
After the reheating treatment, quenching is performed. The quenching is not particularly limited as long as a sufficient quenched structure can be obtained, but water quenching is preferred.
[0036]
After quenching, it is also possible to perform a tempering treatment to recover toughness and improve hydrogen embrittlement resistance. In the steel of the present invention, since solid solution V is precipitated by the tempering treatment, the steel is hardly softened and the wear resistance is not impaired. Tempering is preferably performed at 600 ° C. or lower.
[0037]
【Example】
[Example 1]
A slab (sheet thickness 100 mm) having the chemical composition shown in Table 1 was heated to 1150 ° C., then hot-rolled at a finishing temperature of 850 ° C., and allowed to cool to room temperature to have a sheet thickness of 19 mm or 35 mm. Thereafter, these steel sheets were reheated to 900 ° C. and water-quenched, and some of them were tempered.
[0038]
Steel No. Nos. 1 to 17 are steels of the present invention. Tempering was performed at 500 ° C. for samples 4 and 5. Steel No. 18-22 are comparative steels. About the obtained steel plate, surface hardness, tensile strength, and low temperature toughness were investigated.
[0039]
The surface hardness was an average value of the surface hardness at five points according to JISZ2243. The tensile strength was based on JISZ2241. For a 19 mm thick material, a JISZ22015 No. 5 test piece was used, and for a 35 mm thick material, a JISZ2201 1A test piece was used. The low-temperature toughness was based on JISZ2242, and the Charpy impact absorption energy at −40 ° C. was determined. Table 1 shows the obtained test results.
[0040]
No. of the steel of the present invention. Nos. 1 to 17 have excellent low-temperature toughness having a surface hardness of 331 HB or more and a Charpy impact absorption energy at −40 ° C. of 51 J or more.
[0041]
On the other hand, the comparative steel 18 has a low C content of 0.03% and low surface hardness and tensile strength. Comparative steel 19 has a high C content of 0.35% and a low Charpy impact absorption energy at -40 ° C. Comparative Steel 20 has a low V content and a high surface hardness, but has a coarse austenite grain size and low Charpy impact absorption energy at -40 ° C.
[0042]
The comparative steel 21 has a large amount of V added outside the range of the present invention, generates coarse VN inclusions, and significantly deteriorates low-temperature toughness. Since the comparative steel 22 is a Ti and Bfree system, the hardenability is reduced, the tensile strength is low, and the Charpy impact absorption energy at -40 ° C is low due to the incompletely hardened structure.
[0043]
[Table 1]
Figure 2004010996
[0044]
[Example 2]
The effects of the manufacturing conditions on surface hardness, tensile strength, and low-temperature toughness are shown in Table 1 below. Investigation was conducted using 6 (steel thickness: 19 mm) steel of chemical composition. Rolling finish temperature (° C.), accelerated cooling stop temperature (° C.) and reheating temperature (° C.) were changed in the production conditions, and other conditions and test methods were the same as in Example 1.
[0045]
Table 2 shows test conditions and test results. No. No. a, which did not have accelerated cooling after hot rolling, and did accelerated cooling. Low temperature toughness is inferior to b and d. No. c has a low rolling finish temperature and a low surface hardness.
[0046]
No. e was subjected to accelerated cooling after hot rolling. However, since the cooling stop temperature was as high as 455 ° C., no. Low temperature toughness is lower than b and d. No. No. f has a high reheating temperature of 1050 ° C. g has a low reheating temperature of 800 ° C., and all have insufficient refining of the γ particle size and are inferior in low-temperature toughness.
[0047]
[Table 2]
Figure 2004010996
[0048]
【The invention's effect】
According to the present invention, a wear-resistant steel excellent in low-temperature toughness of about −40 ° C. can be obtained, which is extremely useful in industry.

Claims (4)

質量%で、C:0.05〜0.30%、Si:0.05〜1.0%、Mn:0.1〜2.0%、V:0.2〜0.5%、Ti:0.005〜0.1%、B:0.0003〜0.01%、残部Fe及び不可避的不純物からなる低温靭性に優れた耐摩耗鋼。In mass%, C: 0.05 to 0.30%, Si: 0.05 to 1.0%, Mn: 0.1 to 2.0%, V: 0.2 to 0.5%, Ti: 0.005 to 0.1%, B: 0.0003 to 0.01%, wear-resistant steel excellent in low-temperature toughness consisting of balance Fe and inevitable impurities. 請求項1記載の鋼成分に更に質量%で、Cu:0.03〜2.0%、Ni:0.03〜2.0%、Cr:0.03〜2.0%、Mo:0.03〜1.0%、Nb:0.005〜0.1%の一種または二種以上を含有したことを特徴とする低温靭性に優れた耐摩耗鋼。The steel component according to claim 1, further in mass%, Cu: 0.03 to 2.0%, Ni: 0.03 to 2.0%, Cr: 0.03 to 2.0%, Mo: 0. A wear-resistant steel excellent in low-temperature toughness, characterized in that it contains one or more of Nb: 0.005 to 0.1% and Nb: 0.005 to 0.1%. 請求項1または2に記載の化学成分を有する鋼を熱間圧延後、850〜950℃に再加熱し、その後水焼入れを行うことを特徴とする低温靭性に優れた耐摩耗鋼の製造方法。3. A method for producing a wear-resistant steel excellent in low-temperature toughness, comprising hot-rolling a steel having the chemical composition according to claim 1 or 2 and then reheating the steel to 850 to 950 ° C., followed by water quenching. 請求項3記載の製造方法において、熱間圧延の仕上温度を800℃以上とし、熱間圧延後300℃以下まで加速冷却することを特徴とする低温靭性に優れた耐摩耗鋼の製造方法。4. The method according to claim 3, wherein the hot rolling is performed at a finishing temperature of 800 ° C. or more, and after hot rolling, accelerated cooling to 300 ° C. or less is performed.
JP2002168560A 2002-06-10 2002-06-10 Wear resistant steel having excellent low temperature toughness and method for producing the same Pending JP2004010996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002168560A JP2004010996A (en) 2002-06-10 2002-06-10 Wear resistant steel having excellent low temperature toughness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002168560A JP2004010996A (en) 2002-06-10 2002-06-10 Wear resistant steel having excellent low temperature toughness and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004010996A true JP2004010996A (en) 2004-01-15

Family

ID=30435436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002168560A Pending JP2004010996A (en) 2002-06-10 2002-06-10 Wear resistant steel having excellent low temperature toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004010996A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138705A1 (en) 2006-06-01 2007-12-06 Japan As Represented By Director General Of Agency Of National Cancer Center Tumor suppressor
US8097099B2 (en) 2005-09-09 2012-01-17 Nippon Steel Corporation High toughness abrasion resistant steel with little change in hardness during use and method of production of same
CN104178699A (en) * 2013-05-21 2014-12-03 通用电气公司 A martensitic alloy component and process of forming a martensitic alloy component
CN104711489A (en) * 2015-03-03 2015-06-17 山东钢铁股份有限公司 High ductility steel for semifocal chord pipe for spud leg and manufacturing method of high ductility steel
CN106756517A (en) * 2017-02-17 2017-05-31 上海海事大学 A kind of steel plate and its manufacture method for polar region ship
CN114395729A (en) * 2021-12-13 2022-04-26 唐山中厚板材有限公司 NM 450-grade wear-resistant steel plate without quenching heat treatment and production method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8097099B2 (en) 2005-09-09 2012-01-17 Nippon Steel Corporation High toughness abrasion resistant steel with little change in hardness during use and method of production of same
WO2007138705A1 (en) 2006-06-01 2007-12-06 Japan As Represented By Director General Of Agency Of National Cancer Center Tumor suppressor
CN104178699A (en) * 2013-05-21 2014-12-03 通用电气公司 A martensitic alloy component and process of forming a martensitic alloy component
CN104711489A (en) * 2015-03-03 2015-06-17 山东钢铁股份有限公司 High ductility steel for semifocal chord pipe for spud leg and manufacturing method of high ductility steel
CN106756517A (en) * 2017-02-17 2017-05-31 上海海事大学 A kind of steel plate and its manufacture method for polar region ship
CN114395729A (en) * 2021-12-13 2022-04-26 唐山中厚板材有限公司 NM 450-grade wear-resistant steel plate without quenching heat treatment and production method thereof
CN114395729B (en) * 2021-12-13 2023-09-01 唐山中厚板材有限公司 NM 450-grade wear-resistant steel plate without quenching heat treatment and production method thereof

Similar Documents

Publication Publication Date Title
WO2021169941A1 (en) Chain steel for use in mine and manufacturing method therefor
JP4650013B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
TWI412609B (en) High strength steel sheet and method for manufacturing the same
JP4379550B2 (en) Low alloy steel with excellent resistance to sulfide stress cracking and toughness
WO2014154140A1 (en) Low-alloy high-performance wear-resistant steel plate and manufacturing method therefor
JP5194572B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP2002020837A (en) Wear resistant steel excellent in toughness and its production method
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JP2005240135A (en) Method for manufacturing wear-resistant steel having excellent bendability, and wear-resistant steel
JP2004010996A (en) Wear resistant steel having excellent low temperature toughness and method for producing the same
JP3499705B2 (en) 950N / mm2 class tempered high-strength steel sheet having excellent homogeneity in thickness direction and low anisotropy of toughness, and method for producing the same
JP7048379B2 (en) High strength and high ductility steel sheet
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP5170212B2 (en) Method for producing high-tensile steel with high yield point
JP3863413B2 (en) High toughness high tension non-tempered thick steel plate and manufacturing method thereof
JP4655372B2 (en) Method for producing high-tensile steel with high yield point
JP2828754B2 (en) Manufacturing method of low yield ratio 70kg / fmm / mm2 upper grade steel sheet with excellent weldability
JP3535754B2 (en) B-containing steel excellent in cold workability and delayed fracture resistance, its manufacturing method and bolt
JP2004217980A (en) High-strength and high-toughness steel sheet with low yield ratio, and manufacturing method therefor
JPH07173534A (en) Production of ni-containing steel sheet excellent in toughness and workability
JP3746707B2 (en) High-tensile steel plate with excellent weldability
JP3739997B2 (en) High-tensile steel plate with excellent weldability
JP2546888B2 (en) Manufacturing method of high-strength steel sheet with excellent weldability and toughness
JP4314448B2 (en) Tempered high strength steel and continuous cast slab for the steel
JP3956634B2 (en) Steel sheet with excellent toughness and method for producing the same