JP4314448B2 - Tempered high strength steel and continuous cast slab for the steel - Google Patents

Tempered high strength steel and continuous cast slab for the steel Download PDF

Info

Publication number
JP4314448B2
JP4314448B2 JP16606599A JP16606599A JP4314448B2 JP 4314448 B2 JP4314448 B2 JP 4314448B2 JP 16606599 A JP16606599 A JP 16606599A JP 16606599 A JP16606599 A JP 16606599A JP 4314448 B2 JP4314448 B2 JP 4314448B2
Authority
JP
Japan
Prior art keywords
steel material
slab
less
steel
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16606599A
Other languages
Japanese (ja)
Other versions
JP2000355728A (en
Inventor
知哉 藤原
秀治 岡口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16606599A priority Critical patent/JP4314448B2/en
Publication of JP2000355728A publication Critical patent/JP2000355728A/en
Application granted granted Critical
Publication of JP4314448B2 publication Critical patent/JP4314448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高度の安全性が要求される揚水型発電所の水圧鉄管や氷海域の海洋構造物などへの使用に好適な、引張強さが800MPa以上の優れた靱性、溶接性および経済性を兼ね備えた調質型高強度鋼材とその製造方法、およびその鋼材用の連続鋳造鋳片とその連続鋳造方法に関する。
【0002】
【従来の技術】
近年、溶接鋼構造物の大型化の傾向は顕著になり、これらに使用される厚鋼材には高強度化が求められている。たとえば、揚水型水力発電所の水圧鉄管用に、厚さ50mm程度で950MPa級の調質型高強度鋼材が使用されている。このような高強度鋼材では、靱性と溶接性の低下を避けるために、通常、高価なNiが多く添加されているため、経済的でない。
【0003】
特開昭59−136418号公報では、Niを添加しない調質型高強度鋼の製造方法が提案されているが、C含有量が0.1重量%以下であり、優れた靱性を維持したまま高強度を得るには、C含有量が不足しており、十分な靱性が得られない。
【0004】
特公昭63−58906号公報では、金属組織が焼戻しマルテンサイトと下部ベイナイトの混合組織となる調質型高強度鋼およびその製造法が記されているが、Tiを添加していないため鋼片を圧延するために加熱するときにγ粒が粗大化するため、鋼材の靱性が劣化しやすい。また、Tiを添加していないため、鋳片表面に割れが発生しやすく、鋳片表面の手入れなどが必要であり、製造コストが高いという問題がある。
【0005】
高強度で低温靱性などに優れた鋼材を安価に製造する方法として、比較的安価なMnの含有率を高めて、連続鋳造法により鋳片を得るのが効果的な方法であるが、Mn含有率が1%を超えるような鋼の連続鋳造鋳片では、鋳片の厚み中心部にMnが著しく偏析しやすい。厚み中心部にMnが偏析すると、その鋳片を素材とした鋼材の低温靱性は著しく低下するという問題がある。
【0006】
特開平8−143955号公報では、直接焼入れ焼戻し型の調質型高強度鋼の製造方法に関し、焼戻しを行う炉の温度を焼戻し温度よりかなり高めに設定し、板厚方向に焼戻し温度の傾斜をつける方法が提案されている。しかし、この方法では、わずかな焼戻し温度の変化によって靱性が著しく変動するため、不安定な製造法であり、高靱性の高強度鋼を安定して製造するには適していない。
【0007】
上述するように、厚さ50mm程度で950MPa級の高強度鋼材において、優れた靱性、溶接性および経済性を兼ね備えた調質型高強度鋼材とその製造方法、およびその鋼材用の連続鋳造鋳片とその連続鋳造方法は、実用化されていないのが現状である。
【0008】
【発明が解決しようとする課題】
揚水型水力発電所の水圧鉄管用などに用いられるような調質型高強度鋼材とその鋼材用連続鋳造鋳片、およびそれらの製造方法には、次に示すような問題点がある。
【0009】
▲1▼靱性と溶接性を確保するために、Niを添加することが行われるが、高価なNiを用いるので経済的でない。
【0010】
▲2▼経済性の確保を目的に、NiやTiを含有せず、かつ連続鋳造した鋳片では、鋳片表面に割れや鋳片内部に中心偏析が発生しやすい。そのため、その鋳片を素材とした鋼材では、表面欠陥が発生したり、低温靱性が悪くなる。
【0011】
▲3▼鋼材の全厚みにわたって均一な金属組織や靱性などの性能を確保するために、炉の温度を焼戻し温度よりかなり高めに設定する方法では、わずかな焼戻し温度の変化によって靱性が著しく変動する。
【0012】
本発明は、引張強さが800MPa以上の優れた強度、靱性、溶接性および経済性を兼ね備えた調質型高強度鋼材とその製造方法、およびその鋼材用の連続鋳造鋳片とその連続鋳造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の要旨は、下記(1)〜(4)に示す調質型高強度鋼材とその製造方法および連続鋳造鋳片とその連続鋳造方法にある。
【0014】
(1)質量%で、C:0.1%を超えて0.2%まで、Si:0.6%以下、Mn:1.5%を超えて2.5%まで、Cu:0.01〜0.6%、Ni:0.01〜0.3%未満、Cr:0.21〜1.0%、Mo:0.15〜1.0%、V:0.001〜0.1%、Nb:0.005〜0.06%、B:0.0005〜0.0025%、Al:0.07%以下、N:0.006%以下を含有し、残部はFeおよび不可避的不純物からなり、かつ、下記(A)式を満足する化学組成を有し、旧γ粒のアスペクト比が、鋼材の厚み中心部では2以上、厚みの1/4部では3以上であり、金属組織の90%以上が焼戻しマルテンサイトと下部ベイナイトの混合組織である靱性と溶接性に優れた調質型高強度鋼材。
【0015】
0.05%≦Vs≦0.25% ・・・(A)
ここで、Vs=C+0.2×Mn−0.1×Ni−0.7×Mo+0.1×Cu
式中の元素記号は、各々の元素の含有率(質量%)を表す。
【0016】
(2)上記(1)に記載の鋼材用の素材を熱間で圧延する前に、900℃以上1100℃未満に加熱したあと、仕上げ温度が750℃以上900℃以下となる圧延を施したのち、700℃以上から水冷し、その後、Ac1点以下の温度で焼戻す靱性と溶接性に優れた調質型高強度鋼材の製造方法。
【0017】
(3)質量%で、C:0.1%を超えて0.2%まで、Si:0.6%以下、Mn:1.5%超えて2.5%まで、Cu:0.01〜0.6%、Ni:0.01〜0.3%未満、Cr:0.21〜1.0%、Mo:0.15〜1.0%、V:0.001〜0.1%、Nb:0.005〜0.06%、B:0.0005〜0.0025%、Al:0.07%以下、N:0.006%以下を含有し、残部はFeおよび不可避的不純物からなり、かつ、下記(A)式を満足する化学組成を有する上記(1)に記載の鋼材の製造用の連続鋳造鋳片。
【0018】
0.05%≦Vs≦0.25% ・・・(A)
ここで、Vs=C+0.2×Mn−0.1×Ni−0.7×Mo+0.1×Cu
式中の元素記号は、各々の元素の含有率(質量%)を表す。
【0019】
(4)上記(3)に記載の連続鋳造鋳片を鋳造するに際し、下記(a)もしくは(b)、またはその両方の処置を施す連続鋳造方法。
【0020】
(a)鋳型から引き抜かれた鋳片をいったんバルジングさせ、その後、凝固完了位置までに、未凝固部を含む鋳片を圧下する。
(b)凝固完了位置の手前で、鋳片に電磁力を作用させ、未凝固溶鋼を攪拌する。
【0021】
本発明者らは、前述の本発明の課題を、次のようにして解決した。
(イ)Tiを含有せず、またNiを含有しないか、含有する場合でも、その含有率を抑え、Mnを1.5%を超えて2.5%まで含有する鋼を連続鋳造する場合に、鋳片表面に割れや鋳片内部に中心偏析が発生しやすい。本発明の鋳片およびその連続鋳造方法では、AlおよびNの含有率を制限し、鋳片表面の割れの原因であるAlNの析出を極力抑制することにより、Tiを含有していない場合でも鋳片表面の割れを防止する。
【0022】
(ロ)前述する(A)式で示すようにVsを適正な範囲の値とすることにより、Mnが鋳片の厚み中心部に偏析することを防止できる。また、本発明の方法では、鋳片をいったんバルジングさせ、その後、凝固完了位置までに未凝固部を含む鋳片の位置を圧下するか、または電磁力を作用させて未凝固溶鋼を攪拌する処置を施す。もしくは、両方の処置を施す。これにより、さらに、中心偏析の発生を防止できる。
【0023】
(ハ)鋳片を熱間で鋼材に加工する前の加熱工程で、900〜1100℃未満に加熱し、圧延の仕上げ温度を750〜900℃とし、その後直接焼入れするときに、700℃以上から水冷し、その後、Ac1点以下の温度で焼戻す。これにより、微細なγ粒となり、金属組織の90%以上を焼戻しマルテンサイトと下部ベイナイトの混合組織とすることができ、また、旧γ粒のアスペクト比が、板厚の中心部で2以上、厚みの1/4部で3以上とすることができる。したがって、強靱性の高強度鋼材を得ることができる。このような鋼材は、高度の安全性が要求される揚水型発電所の水圧鉄管や氷海域の海洋構造物などへの使用に好適である。
【0024】
【発明の実施の形態】
本発明が対象とする調質型高強度鋼材を製造するのに好適な鋳片の化学組成、連続鋳造方法、鋼材の化学組成と金属組織および鋼材の製造方法について、以下に詳しく説明する。なお、各成分の含有率の%表示は質量%を意味する。
【0025】
(1)化学組成
鋳片および鋼材の化学組成は同じであるので、下記に一括して説明する。
【0026】
C:0.1%を超えて0.2%まで
Cは、鋼材の強度を確保する目的で添加する。0.1%以下では焼入性が不足して800MPaの引張強さを確保するのが困難であり、また靱性も劣化する。強度と靱性を確保するために、0.1%を超えて添加することが必要である。しかし、C含有率が0.2%を超えると、鋼材の靱性が低下するだけでなく、溶接時の熱影響部の硬度が上昇しやすい。すなわち、溶接割れ感受性が高くなる。したがって、C含有率は0.1%を超えて0.2%までとする。
【0027】
Si:0.02〜0.6%
Siは、鋼の脱酸を目的に精錬中に添加される。脱酸の効果を発揮するために、0.02%以上含有させる。しかし、Si含有率が0.6%を超えると、鋼材および溶接時の熱影響部の靱性を劣化させる。したがって、Si含有率は0.6%以下とする。
【0028】
Mn:1.5%を超えて2.5%まで
Mnは、本発明において重要な元素で、鋼材の強度を上昇させる。本発明が対象とする揚水型発電所の水圧鉄管や氷海域の海洋構造物などに使用される引張強さが800MPa以上の高強度鋼用鋼材には、1.5%を超えるMn含有率が必要である。しかし、Mn含有率が2.5%を超えると、鋳片の厚み中心部のMnの偏析が顕著になり、そのため、鋼材やその溶接部の靱性が劣化する。したがって、Mn含有率は1.5%を超えて2.5%までとする。望ましい範囲は、1.5%を超えて2.0%まで、さらに望ましい範囲は、1.5%を超えて1.8%までである。
【0029】
Cu:0.01〜0.6%
Cuは、必要に応じて添加する元素である。Cuは、焼入性を向上し鋼材の強度を上昇させる効果があるしかし、Cu含有率が0.6%を超えると、鋼材とその溶接部の靱性が劣化する。したがって、Cu含有率は0.01〜0.6%とする。添加する場合の望ましい範囲は、0.15〜0.6%である。焼入性を向上し鋼材の強度を上昇させるためには、0.15%以上含有させるのが望ましい。
【0030】
Ni:0.01〜0.3%未満
Niは、必要に応じて添加する元素である。Niは、低温靱性、とくに、脆性亀裂伝播停止特性や溶接性に重要な元素である。しかし、Niは高価な元素であり、0.3%以上含有させると、経済性が悪くなる。したがって、Ni含有率は0.01〜0.3%未満とする。さらに望ましい範囲は、0.01〜0.1%である。
【0031】
Cr:0.21〜1.0%
Crは、必要に応じて添加する元素である。Crは、主として鋼材の焼入性を向上させることにより、厚みの厚い鋼材の内部の強度および靱性を改善する。これらの効果を得るためには、0.21%以上含有させるのが望ましい。しかし、Cr含有率が1.0%を超えると、鋼材の靱性や溶接性が劣化する。したがって、Cr含有率は0.21〜1.0%とする。強靱性などの観点から、望ましい範囲は、0.21〜0.6%である。
【0032】
Mo:0.15〜1.0%
Moは、必要に応じて添加する元素である。Moは、鋼材の焼入性および焼戻軟化抵抗を向上させる。これらの効果を得るためには、0.15%以上含有させるのが望ましい。しかし、Mo含有率が1.0%を超えると、鋼材の強度が高くなりすぎ、鋼材の靱性、とくに、溶接時の熱影響部の靱性が劣化する。したがって、Mo含有率は0.15〜1.0%とする。MoもNiと同様に高価な元素であるので、望ましい範囲は、0.15〜0.6%である。
【0033】
V:0.001〜0.1%
Vは、必要に応じて添加する元素である。Vは、鋼材の焼戻軟化抵抗を増大させる。そのため、焼戻し温度を十分高温にすることが可能となるので、鋼材の強度および靱性が向上するしかし、V含有率が0.1%を超えると、鋼材の靱性が劣化する。したがって、V含有率は0.001〜0.1%とする。これらの効果を得るためには、0.01%以上含有させるのが望ましい。
【0034】
Nb:0.005〜0.06%
Nbは、γ温度域の低温側で微細なNb炭窒化物を形成するので、γ粒が微細になる。さらに、析出したNb炭窒化物は、圧延によって加工を受けた未再結晶γ粒の回復および再結晶を抑制する効果があるので、鋼材の靱性の確保に効果的である。これらの効果を得るためには、0.005%以上含有させる必要がある。しかし、Nb含有率が0.06%を超えると、鋼材の溶接時の熱影響部の靱性を著しく劣化させる。したがって、Nb含有率は0.005〜0.06%とする。望ましい範囲は、0.005〜0.03%である。
【0035】
B:0.0005〜0.0025%
Bは、微量含有するだけで、鋼材の焼入性を向上させ、鋼材の厚み中心部の組織をマルテンサイトと下部ベイナイトの混合組織とする。この効果を得るためには、0.0005%以上含有させる必要がある。しかし、B含有率が0.0025%を超えると、鋼材および溶接時の熱影響部の靱性が大幅に劣化する。したがって、B含有率は0.0005〜0.0025%とする。望ましい範囲は、0.0005〜0.0020%である。
【0036】
Al:0.07%以下
Alは、一般に脱酸および組織の微細化のために添加される元素である。しかし、後述するN含有率を条件にした場合に、Al含有率が0.09%を超えると鋳片表面に割れが発生する場合がある。また、0.07%を超えると、鋼材の溶接時の熱影響部の靱性が劣化し、また熱処理によって鋼材の金属組織を微細化しても、靱性、とくに脆性亀裂伝播停止特性が悪くなる。したがって、Al含有率は0.07%以下とする。望ましい範囲は、0.03〜0.07%である。0.03%未満では、鋳片の加熱時にAlNが固溶し、そのため、鋼材の冷却時にBNが生成するので、Bの焼入性が著しく損なわれる。
【0037】
N:0.006%以下
Nは、不可避的不純物であり、含有率は少ないほどよい。前述するようなAl含有率を条件に、N含有率が0.008%を超えると、と鋳片表面に割れが発生する場合がある。また、0.006%を超えると、鋼材および溶接時の熱影響部の靱性が著しく低下する。したがって、N含有率は0.006%以下とする。
【0038】
Vs:0.05〜0.25%
Vsは、前述した(A)式で定義する式であり、連続鋳造鋳片の厚み中心部に発生するMnの偏析の発生のしやすさを表す式である。Vsが0.25%を超えると、連続鋳造鋳片にMnの中心偏析が著しく発生しやすくなる。また、0.05%未満では、鋼材の強度を確保できない。したがって、Vsは0.05〜0.25%とする。好ましい範囲は、0.08〜0.15%である。
【0039】
Pcm:Pcmは、一般に用いられる溶接割れ感受性組成で、下記(B)式で定義される式である。気温30℃、湿度80%の雰囲気で溶接するとき、本発明が対象とする鋼材の溶接時の低温割れが防止できる予熱温度を150℃以下とするためには、Pcmを0.32%以下とするのが望ましい。
【0040】
Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5×B ・・・(B)
(2)連続鋳造方法
本発明が対象とする鋼材の鋳片を連続鋳造する場合に、特開平9−57410公報などに開示される技術を利用するのが好適である。すなわち、鋳型から引き抜かれた鋳片を、いったんバルジングさせ、凝固完了位置までに圧下ロール対により、バルジング相当量の厚みを圧下する方法である。ただし、バルジングさせた鋳片の厚み相当量全てを圧下するかどうかは、その鋼の化学組成ごとに決めればよい。中心偏析が発生しにくい化学組成の鋼の場合には、バルジング相当量以下でも構わない。また、鋳片の凝固完了位置までに、電磁攪拌装置を用いて鋳片内部の未凝固溶鋼を攪拌するのがよい。これらのバルジング後圧下や電磁攪拌により、Mn含有率の多い鋳片厚み中心部の中心偏析の発生をより効果的に防止できる。
【0041】
本発明で規定する化学組成を有し、前述する(A)式を満足する化学組成のとき、鋳片のMnの中心偏析度は3以下となる。Mnの中心偏析度とは、鋳片厚み中心部のMn含有率をMnのレードル分析値で除した値Mn/Mn0 である。このMnの中心偏析度が3以下では、鋳片の中心偏析が鋼材には残存しなくなる。
【0042】
(3)鋼材の金属組織
本発明が対象とする引張強さが800MPa以上の調質型高強度鋼では、調質後の鋼材は、焼戻しマルテンサイト、下部ベイナイト、上部ベイナイト組織とするのがよい。鋼材の強度は、焼戻しマルテンサイト、下部ベイナイト、上部ベイナイトの順に高く、上部ベイナイト組織がもっとも強度が低い。したがって、高い強度を得るために、焼戻しマルテンサイトを利用することが効果的であるが、焼戻しマルテンサイト一相の金属組織とするよりも、焼戻しマルテンサイトと下部ベイナイトの混合組織とすることによって、衝撃試験の破面における破面単位が小さくなり、高強度と高靱性を両立させることができる。したがって、本発明では、焼戻マルテンサイトと下部ベイナイトの混合組織が90%以上存在する金属組織とする。
【0043】
また、旧γ粒のアスペクト比については、板厚の中心部で2以上、厚みの1/4部で3以上とする。このような金属組織は、仕上げ温度を750〜900℃である未再結晶γ温度域の低温域とすることにより得られる。旧γ粒中にマルテンサイトや下部ベイナイトの核生成サイトとなる箇所を数多く導入することを目的とし、核生成サイトを数多く導入することにより、再結晶γから変態するよりも微細で強度および靱性に優れた金属組織を得ることができる。ただし、アスペクト比が大きすぎると、機械的特性の異方性が大きくなるため、アスペクト比は30以下とするのが望ましい。
【0044】
(4)鋼材の製造方法
鋳片を熱間で鋼材に圧延する前の加熱工程で、900〜1100℃未満に加熱する。鋳片の加熱温度を900℃以上とすることにより、鋳片全体の金属組織を完全にγ組織とするためである。加熱温度の上限を1100℃未満とするのは、1100℃以上では、鋳片中のAlNの固溶が著しく起こり、固定されないNが生成する。この固定されていないNは、圧延中または圧延後の冷却時に、Bと結合するために、BNが析出する。そのため、鋼材の焼入性が著しく損なわれる。したがって、鋳片の加熱温度は900〜1100℃未満とする。
【0045】
圧延仕上げ温度は750〜900℃とする。仕上げ温度は低い程、優れた靱性を得ることが可能であるが、750℃未満では、後述する水冷開始温度を700℃以上とすることができない。仕上げ温度が900℃を超える場合には、未再結晶γ温度域で十分な圧延を行えない。したがって、圧延仕上げ温度は750〜900℃とする。
【0046】
圧延後に直接焼入れする場合、水冷開始温度は700℃以上とする。700℃未満では、焼戻し後の金属組織を、焼戻しマルテンサイトと下部ベイナイトの混合組織が90%以上存在する金属組織とすることができず、強度と靱性ともに劣化する。
【0047】
焼戻し温度はAc1点以下とする。Ac1点を超える場合には、焼戻しした金属組織中にγ組織が生成し、強度が劣化する。したがって、Ac1点以下とする。
【0048】
【実施例】
湾曲型連続鋳造機を用いて、表1に示すX1〜X24の化学組成の鋼を、厚み200mm、幅2000mmの矩形断面鋳片に、速度1.0m/分で鋳造した。なお、以下の記載では、各成分の含有率の%表示は質量%を意味する。
【0049】
【表1】

Figure 0004314448
【0050】
一部の試験では、未凝固部を含む鋳片を総バルジング量30mmまでいったんバルジングさせ、その後、凝固完了位置までにバルジング相当量の厚みを圧下するか、または、鋳片の二次冷却帯に配置した電磁攪拌装置を作動させて、未凝固溶鋼を攪拌した。その他の試験では、両者を行うか、両者とも行わなかった。表2に、各試験毎の連続鋳造における試験条件を示す。
【0051】
【表2】
Figure 0004314448
【0052】
各試験において、定常の鋳造状態に相当する鋳片の部分から、鋳造方向の長さ1mの鋳片サンプルを採取した。これらの鋳片サンプルの鋳片の幅方向および厚み方向の中心部から、直径2mmのドリル刃により切り削を採取して、Mnを分析した。この分析値MnをレードルMn分析値Mn0 で除したMnの中心偏析度Mn/Mn0 を求めた。
【0053】
得られた各試験条件毎の鋳片を素材として、50〜72mm厚みの鋼材に熱間圧延を行い、さらに、直接焼入れを行った。その後、焼戻しの熱処理を行った。表3に、熱間圧延試験および焼入れ、焼戻しの熱処理条件を示す。
【0054】
【表3】
Figure 0004314448
【0055】
また、得られた鋼材について、以下に示す試験を行った。引張試験は、JISZ 2201で規定される4号試験片を、またシャルピー衝撃試験は、JISZ 2202で規定される4号試験片を、それぞれ鋼材の厚み中心部相当の位置から圧延方向に垂直な方向に採取して、試験を行った。
【0056】
得られた鋼材の金属組織観察を、次のように行い、焼戻しマルテンサイトと下部ベイナイト組織の合計の割合およびアスペクト比を調査した。焼戻しマルテンサイトと下部ベイナイト組織の割合は、透過型電子顕微鏡により20視野以上観察して測定した。アスペクト比は、鋼材の厚み(t)方向で1/2t部および1/4t部から試験片を採取し、2%ナイタール腐食を行った後、200倍の光学顕微鏡で観察して測定した。
【0057】
低温割れ防止温度は、JIS Z 3158で規定されるy割れ試験において、気温30℃、湿度80%の雰囲気で溶接し、割れが発生しない予熱温度を測定した。さらに、溶接熱影響部の靱性については、JIS Z 2202で規定される4号試験片を、溶接熱影響部の位置から採取して、入熱5kJ/mm相当の熱サイクルを与え、0℃でシャルピー衝撃試験を行った。
【0058】
各試験条件および各試験結果を表4〜表6に示す。
【0059】
【表4】
Figure 0004314448
【0060】
【表5】
Figure 0004314448
【0061】
【表6】
Figure 0004314448
【0062】
本発明例の試験No.1〜No.5および比較例の試験No.6〜No.9では、Mn、Al、Nおよび前述する(A)式で表されるVsの化学組成と、バルジング後圧下および電磁攪拌とが、鋳片表面の割れやMnの中心偏析度に及ぼす影響調査の試験を行った。
【0063】
本発明で規定する化学組成の条件範囲内である試験No.1〜No.5では、鋳片表面およびMnの中心偏析度とも、良好な結果であった。Mnの中心偏析度は、バルジング後圧下と電磁攪拌を行わなくても、良好であったが、両者を行った方が、Mnの中心偏析度は小さかった。
【0064】
試験No.6およびNo.7では、鋳片に割れは発生しなかったが、Mnの中心偏析度が3.1〜3.2で悪かった。前述する(A)式で表されるVsが0.324〜0.390で高かったためである。試験No.8およびNo.9では、Mnの中心偏析度は良好であったが、鋳片表面に横割れが著しく発生した。AlまたはN含有率が高かったためである。
【0065】
本発明例の試験No.10〜No.20では、表1に示す鋼の内の本発明で規定する化学組成とVsを満足する鋼X1〜X9を用い、表3に示す圧延条件および焼入れ焼戻し熱処理の内の本発明で規定する条件を満足する条件A〜Dで試験した。連続鋳造では、試験No.17ではバルジング後の圧下を行わず、電磁攪拌は実施し、試験No.18では、バルジング後の圧下および電磁攪拌も実施しなかった。
【0066】
鋳片のMnの中心偏析度Mn/Mn0 は、試験No.18で2.2と高めであったが、それ以外では、1.1〜1.8で低かった。これらの鋳片を素材とした鋼材は、焼戻しマルテンサイトと下部ベイナイトの混合組織が91〜98%存在する金属組織で、本発明で規定する条件を満足した。また、鋼材の厚み中心部と1/4t部の旧γ粒のアスペクト比は、本発明で規定する条件を満足し、それぞれ3.2以上、5.1であった。鋼材の引張強さは883〜1004MPa、vTsは−66〜−72℃であり、高強度高靱性の鋼材であった。さらに、溶接時の低温割れが防止できる予熱温度が125℃以下、熱影響部のvEoは58〜92Jとなり、優れた溶接性および溶接部靱性が得られた。
【0067】
比較例の試験No.21では、本発明で規定する化学組成の鋼を用い、鋼材の製造条件の鋳片の加熱温度を本発明で規定する下限外の880℃で加熱して圧延した。加熱温度が低すぎて、十分なγ組織とならなかったために、焼戻しマルテンサイトと下部ベイナイトの混合組織が、本発明で規定する下限外の76%にしかならず、さらに、引張り強さが746MPaと低かった。
【0068】
比較例の試験No.22およびNo.23では、本発明で規定する化学組成の鋼を用い、鋼材の製造条件の鋳片の加熱温度を本発明で規定する上限外の1120℃で加熱し、かつ、圧延の仕上げ温度を本発明で規定する上限外の940℃で圧延した。加熱温度が高すぎるために、AlNの再溶解が起こり、焼入性が低下し、とくに、Mn含有率が低めの試験No.22では、焼戻しマルテンサイトと下部ベイナイトの混合組織が、本発明で規定する下限外の71%にしかならず、引張り強さが734MPaと低かった。また、仕上げ温度が高いため、未再結晶γ温度域での圧延が十分に行えず、鋼材のアスペクト比が低く、とくに、試験No.23では、vTsが−42℃と高くなり、靱性が悪かった。
【0069】
比較例の試験No.24では、本発明で規定する化学組成などの鋼を用い、鋼材の製造条件の鋳片の加熱温度を本発明で規定する上限外の1120℃で加熱して圧延し、かつ、圧延の仕上げ温度を本発明で規定する下限外の730℃で圧延した。さらに、その後の直接焼入れ時の水冷開始温度を、本発明で規定する下限外の670℃で焼入れ開始した。焼入れ開始温度が低すぎて、焼入性が悪く、焼戻しマルテンサイトと下部ベイナイトの混合組織が、本発明で規定する下限外の71%にしかなく、引張り強さが783MPaと低かった。
【0070】
比較例の試験No.25では、本発明で規定する化学組成の内、Crの含有率が本発明で規定する上限外の1.12%の鋼を用い、鋳片の加熱温度を本発明で規定する上限外の1140℃で加熱して圧延し、かつ、圧延後の焼戻し温度を本発明で規定する上限外の670℃で行った。焼戻した鋼材の金属組織にγ組織が生成したため、引張り強さが783MPaしかなかった。
【0071】
比較例の試験No.26〜No.40では、本発明で規定する化学組成または望ましいPcmの範囲を外れる鋼を用い、鋼材の製造条件は、本発明で規定する条件の範囲内でそれぞれ試験した。
【0072】
試験No.26では、本発明で規定するC含有率の下限外のC含有率が0.06%であるため、焼入性が悪く、焼戻しマルテンサイトと下部ベイナイトの混合組織が68%しか得られず、また、引張強さが747MPaと低強度しか得られなかった。
【0073】
試験No.27では、本発明で規定するC含有率の上限外のC含有率が0.22%であるため、vTsが−26℃と高温となり、また、Mnの中心偏析度が3.2と高いこともあって、溶接熱影響部のvEoが19Jと低く、鋼材および溶接時の熱影響部の靱性が悪かった。
【0074】
試験No.28では、本発明で規定するSi含有率の上限外のSi含有率が0.75%であるため、溶接熱影響部のvEoが40Jと低く、溶接時の熱影響部の靱性が悪かった。
【0075】
試験No.29では、本発明で規定するMn含有率の下限外のMn含有率が1.21%であるため、焼入性が悪く、焼戻しマルテンサイトと下部ベイナイトの混合組織が66%しか得られず、また、引張強さが786MPaと低強度しか得られなかった。
【0076】
試験No.30では、本発明で規定するMn含有率の上限外のMn含有率が2.70%であるため、鋳片のMnの中心偏析度Mn/Mnoが3.2であり、この鋳片の中心偏析が鋼材にまで残存し、溶接熱影響部のvEoが32Jしかなく、溶接時の熱影響部の靱性が悪かった。
【0077】
Cu、Cr、Mo、V、Nb、B、Al、Nのいずれかが、本発明で規定するそれぞれの含有率の上限外であり、かつ、Mnの中心偏析度が高いか、NbまたはN含有率が高いか、の条件に当てはまる試験No.31〜No.34および試験No.36〜No.39では、鋼材のvTsが−38〜−53℃と高いか、または溶接熱影響部のvEoが24〜47Jと低く、あるいは、それらの鋼材のvTsと溶接熱影響部のvEoが同時に悪く、鋼材および溶接時の熱影響部の靱性が悪かった。
【0078】
Nbが、本発明で規定する下限外の含有率0.001%である試験No.35では、Nb炭窒化物の生成が少ないのでγ粒が微細化されず、また、未再結晶γ粒が再結晶したため、鋼材のアスペクト比が本発明で規定する下限外の低い値となり、鋼材のvTsが−48と高く、鋼材の靱性が悪かった。
【0079】
Pcmの値が望ましい上限外の0.339である試験No.40では、溶接時の低温割れが防止できる予熱温度が150℃と高くなって、溶接性が悪かった。
【0080】
【発明の効果】
本発明の調質型高強度鋼材とその製造方法および連続鋳造鋳片とその鋳造方法を適用することにより、高度の安全性が要求される揚水型発電所の水圧鉄管や氷海域の海洋構造物などへの使用に好適な、引張強さが800MPa以上の優れた靱性、溶接性および経済性を兼ね備えた調質型高強度鋼を得ることができる。[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is excellent in toughness, weldability and economical efficiency with a tensile strength of 800 MPa or more, suitable for use in a hydraulic iron pipe of a pumped-storage power plant that requires a high degree of safety or an offshore structure in an ice sea area. The present invention relates to a tempered high-strength steel material and a method for producing the same, a continuous cast slab for the steel material, and a continuous casting method for the steel material.
[0002]
[Prior art]
In recent years, the tendency to increase the size of welded steel structures has become prominent, and thick steel materials used for these have been required to have high strength. For example, a 950 MPa grade tempered high strength steel material having a thickness of about 50 mm is used for a hydraulic iron pipe of a pumped-up hydroelectric power plant. In such high-strength steel materials, in order to avoid deterioration of toughness and weldability, a large amount of expensive Ni is usually added, which is not economical.
[0003]
In Japanese Patent Laid-Open No. 59-136418, a method for producing a tempered high-strength steel not containing Ni has been proposed, but the C content is 0.1% by weight or less, and excellent toughness is maintained. In order to obtain high strength, the C content is insufficient and sufficient toughness cannot be obtained.
[0004]
Japanese Examined Patent Publication No. 63-58906 describes a tempered high-strength steel in which the metal structure is a mixed structure of tempered martensite and lower bainite and a manufacturing method thereof. Since the γ grains become coarse when heated for rolling, the toughness of the steel material tends to deteriorate. Further, since Ti is not added, there is a problem in that cracks are likely to occur on the surface of the slab, care for the surface of the slab is required, and manufacturing costs are high.
[0005]
As a method for inexpensively producing a steel material with high strength and excellent low-temperature toughness, it is an effective method to increase the content of relatively inexpensive Mn and obtain a slab by a continuous casting method. In a continuous cast slab of steel having a rate exceeding 1%, Mn is remarkably easily segregated at the thickness center of the slab. When Mn segregates in the center of thickness, there is a problem that the low-temperature toughness of a steel material made from the cast slab is significantly reduced.
[0006]
JP-A-8-143955 relates to a method for producing a tempered high-strength steel of a direct quenching and tempering type, setting the temperature of the furnace for tempering to be considerably higher than the tempering temperature, and setting the gradient of the tempering temperature in the thickness direction. A method of attaching is proposed. However, this method is an unstable production method because the toughness significantly fluctuates due to a slight change in the tempering temperature, and is not suitable for stably producing a high strength steel having high toughness.
[0007]
As described above, a tempered high-strength steel material having excellent toughness, weldability and economy in a high-strength steel material having a thickness of about 50 mm and a 950 MPa class, a method for producing the same, and a continuous cast slab for the steel material At present, the continuous casting method has not been put into practical use.
[0008]
[Problems to be solved by the invention]
The tempered high-strength steel material used for the hydraulic iron pipe of a pumped-up hydroelectric power plant, the continuous cast slab for the steel material, and the manufacturing method thereof have the following problems.
[0009]
(1) Ni is added to ensure toughness and weldability, but it is not economical because expensive Ni is used.
[0010]
{Circle around (2)} For slabs that do not contain Ni or Ti and are continuously cast for the purpose of ensuring economic efficiency, cracks on the slab surface and central segregation within the slabs are likely to occur. Therefore, in the steel material using the slab as a raw material, a surface defect occurs or low temperature toughness deteriorates.
[0011]
(3) In order to ensure uniform metal structure and toughness over the entire thickness of the steel, the method of setting the furnace temperature considerably higher than the tempering temperature causes the toughness to fluctuate significantly due to slight changes in the tempering temperature. .
[0012]
The present invention relates to a tempered high-strength steel material having excellent tensile strength of 800 MPa or more, toughness, weldability, and economical efficiency, and a method for producing the same, and a continuous cast slab for the steel material and a continuous casting method therefor The purpose is to provide.
[0013]
[Means for Solving the Problems]
The gist of the present invention resides in a tempered high-strength steel material and its manufacturing method, a continuous cast slab and its continuous casting method shown in the following (1) to (4).
[0014]
  (1)mass%C: more than 0.1% to 0.2%, Si: 0.6% or less, Mn: more than 1.5% to 2.5%, Cu:0.01~ 0.6%, Ni:0.01~ <0.3%, Cr:0.21-1.0%, Mo:0.15-1.0%, V:0.001-0.1%, Nb: 0.005-0.06%, B: 0.0005-0.0025%, Al: 0.07% or less, N: 0.006% or less, the balance being Fe And the chemical composition that satisfies the following formula (A), the aspect ratio of the old γ grain is 2 or more at the thickness center of the steel material, and 3 or more at 1/4 part of the thickness Yes, 90% or more of the metal structure is a mixed structure of tempered martensite and lower bainite.
[0015]
  0.05% ≦ Vs ≦ 0.25% (A)
Here, Vs = C + 0.2 × Mn−0.1 × Ni−0.7 × Mo + 0.1 × Cu
The element symbol in the formula is the content of each element (mass%).
[0016]
(2) After the steel material described in (1) above is hot-rolled, after being heated to 900 ° C. or higher and lower than 1100 ° C., after rolling to a finishing temperature of 750 ° C. or higher and 900 ° C. or lower A method for producing a tempered high-strength steel material excellent in toughness and weldability after water cooling from 700 ° C. or higher and then tempering at a temperature of Ac1 or lower.
[0017]
  (3)mass%C: more than 0.1% to 0.2%, Si: 0.6% or less, Mn: more than 1.5% to 2.5%, Cu:0.01~ 0.6%, Ni:0.01~ <0.3%, Cr:0.21-1.0%, Mo:0.15-1.0%, V:0.001-0.1%, Nb: 0.005-0.06%, B: 0.0005-0.0025%, Al: 0.07% or less, N: 0.006% or less, the balance being Fe And a continuous cast slab for producing a steel material according to (1) above, which has a chemical composition consisting of inevitable impurities and satisfying the following formula (A).
[0018]
  0.05% ≦ Vs ≦ 0.25% (A)
Here, Vs = C + 0.2 × Mn−0.1 × Ni−0.7 × Mo + 0.1 × Cu
The element symbol in the formula is the content of each element (mass%).
[0019]
(4) A continuous casting method in which the following (a) or (b) or both of the following treatments are performed when casting the continuous cast slab described in (3).
[0020]
(A) The slab drawn from the mold is bulged once, and then the slab including the unsolidified portion is rolled down to the solidification completion position.
(B) Immediately before the solidification completion position, electromagnetic force is applied to the slab to stir the unsolidified molten steel.
[0021]
The present inventors have solved the above-described problems of the present invention as follows.
(B) Even when Ti is not contained or Ni is not contained or contained, the content is suppressed, and when continuously casting steel containing Mn exceeding 1.5% to 2.5% Cracks on the slab surface and central segregation easily occur inside the slab. In the slab of the present invention and the continuous casting method thereof, the content ratio of Al and N is limited, and the precipitation of AlN that causes cracks on the surface of the slab is suppressed as much as possible. Prevent cracking on one surface.
[0022]
(B) By setting Vs to a value in an appropriate range as shown by the above-described formula (A), it is possible to prevent Mn from segregating in the thickness center of the slab. Further, in the method of the present invention, the slab is temporarily bulged, and thereafter, the position of the slab including the unsolidified portion is reduced to the solidification completion position or the electromagnetic force is applied to stir the unsolidified molten steel. Apply. Or, take both measures. Thereby, generation | occurrence | production of center segregation can be prevented further.
[0023]
(C) In the heating step before the slab is hot-worked into a steel material, it is heated to 900 to less than 1100 ° C., the rolling finishing temperature is set to 750 to 900 ° C., and then directly quenched, from 700 ° C. or higher. Water-cool, and then temper at a temperature below Ac1 point. Thereby, it becomes fine γ grains, 90% or more of the metal structure can be a mixed structure of tempered martensite and lower bainite, and the aspect ratio of the prior γ grains is 2 or more at the center of the plate thickness, It can be set to 3 or more by 1/4 part of thickness. Therefore, a tough high strength steel material can be obtained. Such a steel material is suitable for use in a hydraulic iron pipe of a pumped-storage power plant that requires a high degree of safety, an offshore structure in an ice sea area, or the like.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
  The chemical composition of the slab, the continuous casting method, the chemical composition of the steel material, the metal structure, and the manufacturing method of the steel material, which are suitable for producing the tempered high strength steel material targeted by the present invention, will be described in detail below. In addition, the percentage display of the content of each component ismass%Means.
[0025]
(1) Chemical composition
Since the chemical composition of the slab and the steel material are the same, they will be described collectively below.
[0026]
C: Over 0.1% to 0.2%
C is added for the purpose of securing the strength of the steel material. If it is 0.1% or less, hardenability is insufficient, and it is difficult to secure a tensile strength of 800 MPa, and toughness is also deteriorated. In order to ensure strength and toughness, it is necessary to add over 0.1%. However, if the C content exceeds 0.2%, not only the toughness of the steel material is lowered, but also the hardness of the heat-affected zone during welding tends to increase. That is, the weld crack sensitivity is increased. Therefore, the C content exceeds 0.1% and reaches 0.2%.
[0027]
Si: 0.02 to 0.6%
Si is added during refining for the purpose of deoxidizing steel. In order to exhibit the effect of deoxidation, 0.02% or more is contained. However, if the Si content exceeds 0.6%, the toughness of the steel material and the heat-affected zone during welding is deteriorated. Therefore, the Si content is set to 0.6% or less.
[0028]
Mn: over 1.5% to 2.5%
Mn is an important element in the present invention, and increases the strength of the steel material. Steel materials for high-strength steel with a tensile strength of 800 MPa or more used for hydraulic iron pipes of pumped-storage power plants and marine structures in ice sea areas targeted by the present invention have a Mn content exceeding 1.5%. is necessary. However, if the Mn content exceeds 2.5%, the segregation of Mn at the thickness center of the slab becomes prominent, so that the toughness of the steel material and its welded portion deteriorates. Accordingly, the Mn content exceeds 1.5% and reaches 2.5%. A desirable range is greater than 1.5% to 2.0%, and a more desirable range is greater than 1.5% to 1.8%.
[0029]
  Cu:0.01~ 0.6%
  Cu is an element added as necessary. Cu has the effect of improving the hardenability and increasing the strength of the steel material..However, if the Cu content exceeds 0.6%, the toughness of the steel material and its welded portion deteriorates. Therefore, the Cu content is0.01~ 0.6%. A desirable range in the case of adding is 0.15 to 0.6%. In order to improve the hardenability and increase the strength of the steel material, it is desirable to contain 0.15% or more.
[0030]
  Ni:0.01Less than ~ 0.3%
  Ni is an element added as necessary. Ni is an element important for low-temperature toughness, in particular, brittle crack propagation stopping characteristics and weldability. However, Ni is an expensive element, and if it is contained in an amount of 0.3% or more, the economy becomes worse. Therefore, the Ni content is0.01-Less than 0.3%. A more desirable range is0.01~ 0.1%.
[0031]
  Cr:0.21~ 1.0%
  Cr is an element added as necessary. Cr improves the internal strength and toughness of a thick steel material mainly by improving the hardenability of the steel material. To get these effects,0.21It is desirable to contain at least%. However, if the Cr content exceeds 1.0%, the toughness and weldability of the steel material deteriorate. Therefore, the Cr content is0.21-1.0%. From the viewpoint of toughness, the desirable range is0.21~ 0.6%.
[0032]
  Mo:0.15~ 1.0%
  Mo is an element added as necessary. Mo improves the hardenability and temper softening resistance of the steel material. In order to obtain these effects, it is desirable to contain 0.15% or more. However, if the Mo content exceeds 1.0%, the strength of the steel material becomes too high, and the toughness of the steel material, in particular, the toughness of the heat-affected zone during welding deteriorates. Therefore, the Mo content is0.15-1.0%. Since Mo is an expensive element like Ni, the desirable range is0.15~ 0.6%.
[0033]
  V:0.001~ 0.1%
  V is an element added as necessary. V increases the temper softening resistance of the steel material. Therefore, the tempering temperature can be made sufficiently high, and the strength and toughness of the steel material are improved..However, if the V content exceeds 0.1%, the toughness of the steel material deteriorates. Therefore, the V content is0.001-0.1%.In order to obtain these effects, it is desirable to contain 0.01% or more.
[0034]
Nb: 0.005 to 0.06%
Nb forms fine Nb carbonitrides on the low temperature side of the γ temperature range, so the γ grains become fine. Further, the precipitated Nb carbonitride has an effect of suppressing recovery and recrystallization of unrecrystallized γ grains that have been processed by rolling, which is effective in ensuring the toughness of the steel material. In order to acquire these effects, it is necessary to make it contain 0.005% or more. However, if the Nb content exceeds 0.06%, the toughness of the heat-affected zone during welding of the steel material is significantly deteriorated. Therefore, the Nb content is set to 0.005 to 0.06%. A desirable range is 0.005 to 0.03%.
[0035]
B: 0.0005 to 0.0025%
B contains only a trace amount, improves the hardenability of the steel material, and makes the structure of the thickness center part of the steel material a mixed structure of martensite and lower bainite. In order to acquire this effect, it is necessary to contain 0.0005% or more. However, if the B content exceeds 0.0025%, the toughness of the steel material and the heat-affected zone during welding is significantly deteriorated. Therefore, the B content is set to 0.0005 to 0.0025%. A desirable range is 0.0005 to 0.0020%.
[0036]
Al: 0.07% or less
Al is an element generally added for deoxidation and refinement of the structure. However, when the N content described later is used as a condition, if the Al content exceeds 0.09%, cracks may occur on the surface of the slab. On the other hand, if it exceeds 0.07%, the toughness of the heat-affected zone at the time of welding of the steel material deteriorates, and even if the metal structure of the steel material is refined by heat treatment, the toughness, particularly the brittle crack propagation stoppage property, deteriorates. Therefore, the Al content is set to 0.07% or less. A desirable range is 0.03 to 0.07%. If it is less than 0.03%, AlN is solid-dissolved when the slab is heated, and therefore BN is generated when the steel is cooled, so that the hardenability of B is significantly impaired.
[0037]
N: 0.006% or less
N is an inevitable impurity, and the smaller the content, the better. If the N content exceeds 0.008% on the condition of the Al content as described above, cracks may occur on the surface of the slab. Moreover, when it exceeds 0.006%, the toughness of the heat affected zone at the time of steel materials and welding will fall remarkably. Therefore, the N content is set to 0.006% or less.
[0038]
Vs: 0.05 to 0.25%
Vs is an expression defined by the above-described expression (A), and is an expression representing the ease of occurrence of segregation of Mn generated at the thickness center portion of the continuous cast slab. When Vs exceeds 0.25%, central segregation of Mn is remarkably easily generated in the continuous cast slab. If it is less than 0.05%, the strength of the steel material cannot be secured. Therefore, Vs is set to 0.05 to 0.25%. A preferable range is 0.08 to 0.15%.
[0039]
Pcm: Pcm is a commonly used weld cracking susceptibility composition and is an equation defined by the following equation (B). In order to make the preheating temperature which can prevent the low temperature cracking at the time of welding of the steel material targeted by the present invention to be 150 ° C. or lower when welding in an atmosphere with an air temperature of 30 ° C. and a humidity of 80%, Pcm is set to 0.32% or less. It is desirable to do.
[0040]
Pcm = C + Si / 30 + (Mn + Cu + Cr) / 20 + Ni / 60 + Mo / 15 + V / 10 + 5 × B (B)
(2) Continuous casting method
When continuously casting a steel slab targeted by the present invention, it is preferable to use the technique disclosed in JP-A-9-57410. That is, the slab drawn from the mold is bulged once, and the bulging equivalent thickness is reduced by a pair of reduction rolls until the solidification completion position. However, whether or not to reduce all the thickness equivalent of the bulged slab can be determined for each chemical composition of the steel. In the case of a steel having a chemical composition in which central segregation is unlikely to occur, the amount may be equal to or less than the bulging amount. Moreover, it is good to stir the non-solid molten steel inside a slab using an electromagnetic stirring apparatus by the solidification completion position of a slab. By these post-bulging pressure reduction and electromagnetic stirring, it is possible to more effectively prevent the center segregation at the center of the slab thickness with a high Mn content.
[0041]
When the chemical composition has the chemical composition defined in the present invention and satisfies the formula (A) described above, the central segregation degree of Mn of the slab is 3 or less. The central segregation degree of Mn is a value obtained by dividing the Mn content at the center of the slab thickness by the Mn ladle analysis value Mn / Mn0It is. When the central segregation degree of Mn is 3 or less, the central segregation of the slab does not remain in the steel material.
[0042]
(3) Metal structure of steel
In the tempered high strength steel having a tensile strength of 800 MPa or more, which is the subject of the present invention, the tempered steel material is preferably tempered martensite, lower bainite, and upper bainite structure. The strength of the steel material is higher in the order of tempered martensite, lower bainite, and upper bainite, and the upper bainite structure has the lowest strength. Therefore, in order to obtain high strength, it is effective to use tempered martensite, but by making it a mixed structure of tempered martensite and lower bainite rather than a metal structure of tempered martensite one phase, The fracture surface unit in the fracture surface of the impact test is reduced, and both high strength and high toughness can be achieved. Therefore, in this invention, it is set as the metal structure in which the mixed structure of tempered martensite and a lower bainite exists 90% or more.
[0043]
The aspect ratio of the old γ grains is 2 or more at the center of the plate thickness and 3 or more at 1/4 part of the thickness. Such a metal structure can be obtained by setting the finishing temperature to a low temperature range of the non-recrystallized γ temperature range of 750 to 900 ° C. The purpose is to introduce many nucleation sites of martensite and lower bainite into the old γ grains. By introducing a large number of nucleation sites, it becomes finer and stronger and tougher than transformation from recrystallized γ. An excellent metal structure can be obtained. However, if the aspect ratio is too large, the anisotropy of the mechanical characteristics increases, so the aspect ratio is desirably 30 or less.
[0044]
(4) Steel production method
In the heating step before the slab is hot-rolled into a steel material, the slab is heated to less than 900 to 1100 ° C. This is because when the heating temperature of the slab is set to 900 ° C. or higher, the metal structure of the entire slab is completely made into a γ structure. The upper limit of the heating temperature is less than 1100 ° C. When the temperature is 1100 ° C. or higher, solid solution of AlN in the slab occurs remarkably and non-fixed N is generated. Since this non-fixed N is combined with B during rolling or cooling after rolling, BN precipitates. Therefore, the hardenability of the steel material is significantly impaired. Therefore, the heating temperature of a slab shall be 900-1100 degreeC.
[0045]
Rolling finishing temperature shall be 750-900 degreeC. The lower the finishing temperature, the better the toughness can be obtained, but if it is less than 750 ° C., the water cooling start temperature described later cannot be 700 ° C. or higher. When the finishing temperature exceeds 900 ° C., sufficient rolling cannot be performed in the non-recrystallized γ temperature range. Therefore, the rolling finishing temperature is 750 to 900 ° C.
[0046]
When quenching directly after rolling, the water cooling start temperature is 700 ° C. or higher. If it is less than 700 degreeC, the metal structure after tempering cannot be made into the metal structure in which 90% or more of the mixed structure of tempered martensite and lower bainite exists, and both strength and toughness deteriorate.
[0047]
Tempering temperature shall be Ac1 point or less. When it exceeds the Ac1 point, a γ structure is formed in the tempered metal structure and the strength is deteriorated. Therefore, it is set to Ac1 point or less.
[0048]
【Example】
  Using a curved continuous casting machine, steel having a chemical composition of X1 to X24 shown in Table 1 was cast on a rectangular cross-section slab having a thickness of 200 mm and a width of 2000 mm at a speed of 1.0 m / min. In the following description, the percentage display of the content of each component ismass%Means.
[0049]
[Table 1]
Figure 0004314448
[0050]
In some tests, the slab containing the unsolidified part is once bulged to a total bulging amount of 30 mm, and then the thickness corresponding to the bulging is reduced to the solidification completion position, or the slab is placed in the secondary cooling zone. The placed electromagnetic stirrer was activated to stir the unsolidified molten steel. In other tests, both were performed or both were not performed. Table 2 shows test conditions in continuous casting for each test.
[0051]
[Table 2]
Figure 0004314448
[0052]
In each test, a slab sample having a length of 1 m in the casting direction was taken from a slab portion corresponding to a steady casting state. From the center part of the width direction and thickness direction of the slab of these slab samples, cutting was sampled with a drill blade having a diameter of 2 mm, and Mn was analyzed. This analysis value Mn is converted into a ladle Mn analysis value Mn.0Degree of center segregation of Mn divided by Mn / Mn0Asked.
[0053]
Using the obtained slab for each test condition as a raw material, a steel material having a thickness of 50 to 72 mm was hot-rolled and further directly quenched. Thereafter, a tempering heat treatment was performed. Table 3 shows the hot rolling test and the heat treatment conditions for quenching and tempering.
[0054]
[Table 3]
Figure 0004314448
[0055]
Moreover, the test shown below was done about the obtained steel materials. The tensile test is the No. 4 test piece specified by JISZ 2201, and the Charpy impact test is the No. 4 test piece specified by JISZ 2202, each in the direction perpendicular to the rolling direction from the position corresponding to the thickness center of the steel material. Were collected and tested.
[0056]
Observation of the metal structure of the obtained steel was performed as follows, and the total ratio and aspect ratio of the tempered martensite and the lower bainite structure were investigated. The ratio of the tempered martensite and the lower bainite structure was measured by observing 20 fields of view or more with a transmission electron microscope. The aspect ratio was measured by observing with a 200-fold optical microscope after collecting specimens from 1 / 2t part and 1 / 4t part in the thickness (t) direction of the steel material and performing 2% nital corrosion.
[0057]
The low-temperature cracking prevention temperature was measured in a y-cracking test defined by JIS Z 3158 in a temperature of 30 ° C. and humidity of 80%, and a preheating temperature at which cracking did not occur was measured. Further, regarding the toughness of the weld heat affected zone, a No. 4 test piece defined by JIS Z 2202 was taken from the position of the weld heat affected zone, and a heat cycle corresponding to heat input of 5 kJ / mm was given, at 0 ° C. A Charpy impact test was performed.
[0058]
Each test condition and each test result are shown in Tables 4-6.
[0059]
[Table 4]
Figure 0004314448
[0060]
[Table 5]
Figure 0004314448
[0061]
[Table 6]
Figure 0004314448
[0062]
Test no. 1-No. No. 5 and Comparative Example No. 6-No. 9 shows the investigation of the effects of Mn, Al, N and the chemical composition of Vs represented by the above-mentioned formula (A), post-bulging pressure reduction and electromagnetic stirring on cracks on the slab surface and the central segregation degree of Mn. A test was conducted.
[0063]
Test No. within the range of the chemical composition defined in the present invention. 1-No. In No. 5, the slab surface and the central segregation degree of Mn were good results. Although the central segregation degree of Mn was good without performing pressure reduction after bulging and electromagnetic stirring, the central segregation degree of Mn was smaller when both were performed.
[0064]
Test No. 6 and no. In No. 7, cracks did not occur in the slab, but the central segregation degree of Mn was 3.1 to 3.2, which was bad. This is because Vs represented by the above-described formula (A) was high at 0.324 to 0.390. Test No. 8 and no. In No. 9, the central segregation degree of Mn was good, but lateral cracks were remarkably generated on the surface of the slab. This is because the Al or N content was high.
[0065]
Test no. 10-No. No. 20, steels X1 to X9 satisfying the chemical composition and Vs defined in the present invention among the steels shown in Table 1 and the conditions defined in the present invention in the rolling conditions and quenching and tempering heat treatments shown in Table 3 are used. The test was performed under satisfying conditions A to D. In continuous casting, test no. In No. 17, no pressure reduction after bulging was performed, and electromagnetic stirring was performed. In No. 18, no pressure reduction or electromagnetic stirring after bulging was performed.
[0066]
Center segregation degree Mn / Mn of slab0Test No. 18 was as high as 2.2, but otherwise it was as low as 1.1 to 1.8. These steel slabs were made of a metal structure containing 91 to 98% of a mixed structure of tempered martensite and lower bainite, and satisfied the conditions specified in the present invention. Further, the aspect ratio of the old γ grains at the thickness center portion and the 1/4 t portion of the steel material satisfied the conditions defined in the present invention, and was 3.2 or more and 5.1, respectively. The steel material had a tensile strength of 883 to 1004 MPa and a vTs of −66 to −72 ° C., and was a steel material having high strength and high toughness. Furthermore, the preheating temperature which can prevent the low temperature crack at the time of welding was 125 ° C. or less, and the vEo of the heat affected zone was 58 to 92 J, and excellent weldability and weld zone toughness were obtained.
[0067]
Test No. of the comparative example. In No. 21, steel having a chemical composition defined in the present invention was used, and the slab heating temperature of the steel material production conditions was heated at 880 ° C. outside the lower limit defined in the present invention and rolled. Since the heating temperature was too low to obtain a sufficient γ structure, the mixed structure of tempered martensite and lower bainite was only 76% outside the lower limit prescribed in the present invention, and the tensile strength was as low as 746 MPa. It was.
[0068]
Test No. of the comparative example. 22 and no. In No. 23, steel having a chemical composition defined in the present invention is used, the heating temperature of the slab under the production conditions of the steel material is heated at 1120 ° C. outside the upper limit defined in the present invention, and the finishing temperature of rolling is determined in the present invention. It rolled at 940 degreeC outside the upper limit to prescribe | regulate. Since the heating temperature is too high, the remelting of AlN occurs, the hardenability is lowered, and in particular, Test No. with a lower Mn content. In No. 22, the mixed structure of tempered martensite and lower bainite was only 71% outside the lower limit specified in the present invention, and the tensile strength was as low as 734 MPa. Further, since the finishing temperature is high, rolling in the non-recrystallized γ temperature range cannot be performed sufficiently, and the aspect ratio of the steel material is low. 23, vTs was as high as −42 ° C., and the toughness was poor.
[0069]
Test No. of the comparative example. 24, using steel having a chemical composition or the like specified in the present invention, heating the slab under the production conditions of the steel material at 1120 ° C outside the upper limit specified in the present invention, and rolling, and finishing temperature of rolling Was rolled at 730 ° C. outside the lower limit specified in the present invention. Furthermore, the water cooling start temperature at the time of subsequent direct quenching was quenched at 670 ° C. outside the lower limit defined in the present invention. The quenching start temperature was too low, the hardenability was poor, the mixed structure of tempered martensite and lower bainite was only 71% outside the lower limit specified in the present invention, and the tensile strength was as low as 783 MPa.
[0070]
Test No. of the comparative example. No. 25, steel having a Cr content of 1.12% outside the upper limit specified in the present invention is used in the chemical composition specified in the present invention, and the heating temperature of the slab is outside the upper limit specified in the present invention 1140. The film was rolled by heating at 0 ° C., and the tempering temperature after rolling was 670 ° C. outside the upper limit defined in the present invention. Since a γ structure was generated in the metal structure of the tempered steel material, the tensile strength was only 783 MPa.
[0071]
Test No. of the comparative example. 26-No. In No. 40, steels outside the range of the chemical composition or desirable Pcm specified in the present invention were used, and the production conditions of the steel materials were tested within the range specified in the present invention.
[0072]
Test No. 26, since the C content outside the lower limit of the C content defined in the present invention is 0.06%, the hardenability is poor, and only 68% of the mixed structure of tempered martensite and lower bainite is obtained, Moreover, the tensile strength was only 747 MPa and low strength was obtained.
[0073]
Test No. 27, since the C content outside the upper limit of the C content specified in the present invention is 0.22%, vTs is as high as −26 ° C., and the central segregation degree of Mn is as high as 3.2. For this reason, the vEo of the weld heat affected zone was as low as 19 J, and the toughness of the steel material and the heat affected zone during welding was poor.
[0074]
Test No. In No. 28, since the Si content outside the upper limit of the Si content defined in the present invention was 0.75%, the vEo of the heat affected zone was as low as 40 J, and the toughness of the heat affected zone during welding was poor.
[0075]
Test No. 29, since the Mn content outside the lower limit of the Mn content defined in the present invention is 1.21%, the hardenability is poor, and only 66% of the mixed structure of tempered martensite and lower bainite is obtained. Further, only a low strength of 786 MPa was obtained.
[0076]
Test No. No. 30, since the Mn content outside the upper limit of the Mn content specified in the present invention is 2.70%, the center segregation degree Mn / Mno of Mn of the slab is 3.2. Segregation remained in the steel material, and vEo of the weld heat affected zone was only 32 J, and the toughness of the heat affected zone during welding was poor.
[0077]
Any of Cu, Cr, Mo, V, Nb, B, Al, and N is outside the upper limit of each content defined in the present invention, and the center segregation degree of Mn is high, or Nb or N is contained Test No. that meets the condition of high rate. 31-No. 34 and test no. 36-No. 39, the steel vTs is as high as −38 to −53 ° C. or the welding heat affected zone vEo is as low as 24 to 47 J, or the vTs of these steel materials and the welding heat affected zone vEo are poor at the same time. The toughness of the heat affected zone during welding was poor.
[0078]
Test No. Nb having a content of 0.001% outside the lower limit defined in the present invention. In 35, since the production of Nb carbonitride is small, the γ grains are not refined, and the non-recrystallized γ grains are recrystallized, so that the aspect ratio of the steel becomes a low value outside the lower limit defined in the present invention. The vTs of the steel was as high as -48, and the toughness of the steel material was poor.
[0079]
Test No. with a Pcm value of 0.339 outside the desirable upper limit. In No. 40, the preheating temperature which can prevent the low temperature crack at the time of welding became high with 150 degreeC, and weldability was bad.
[0080]
【The invention's effect】
The tempered high-strength steel material of the present invention, its manufacturing method, and the continuous cast slab and its casting method are used to apply the high pressure safety of the iron pipes and offshore structures in the ice sea area. It is possible to obtain a tempered high-strength steel having excellent toughness, weldability, and economy that have a tensile strength of 800 MPa or more, which is suitable for use in the above.

Claims (4)

質量%で、C:0.1%を超えて0.2%まで、Si:0.6%以下、Mn:1.5%を超えて2.5%まで、Cu:0.01〜0.6%、Ni:0.01〜0.3%未満、Cr:0.21〜1.0%、Mo:0.15〜1.0%、V:0.001〜0.1%、Nb:0.005〜0.06%、B:0.0005〜0.0025%、Al:0.07%以下、N:0.006%以下を含有し、残部はFeおよび不可避的不純物からなり、かつ、下記(A)式を満足する化学組成を有し、旧γ粒のアスペクト比が、鋼材の厚み中心部では2以上、厚みの1/4部では3以上であり、金属組織の90%以上が焼戻しマルテンサイトと下部ベイナイトの混合組織であることを特徴とする靱性と溶接性に優れた調質型高強度鋼材。
0.05%≦Vs≦0.25% ・・・(A)
ここで、Vs=C+0.2×Mn−0.1×Ni−0.7×Mo+0.1×Cu
式中の元素記号は、各々の元素の含有率(質量%)を表す。
By mass% , C: more than 0.1% to 0.2%, Si: 0.6% or less, Mn: more than 1.5% to 2.5%, Cu: 0.01 to 0.00. 6%, Ni: 0.01 to less than 0.3%, Cr: 0.21 to 1.0%, Mo: 0.15 to 1.0%, V: 0.001 to 0.1%, Nb: 0.005 to 0.06%, B: 0.0005 to 0.0025%, Al: 0.07% or less, N: 0.006% or less, with the balance being Fe and inevitable impurities, and , Having a chemical composition satisfying the following formula (A), the aspect ratio of the old γ grain is 2 or more at the thickness center of the steel material, 3 or more at 1/4 part of the thickness, and 90% or more of the metal structure Is a tempered high-strength steel material excellent in toughness and weldability, characterized by having a mixed structure of tempered martensite and lower bainite.
0.05% ≦ Vs ≦ 0.25% (A)
Here, Vs = C + 0.2 × Mn−0.1 × Ni−0.7 × Mo + 0.1 × Cu
The element symbol in the formula represents the content ( % by mass ) of each element.
請求項1に記載の鋼材用の素材を熱間で圧延する前に、900℃以上1100℃未満に加熱したあと、仕上げ温度が750℃以上900℃以下となる圧延を施したのち、700℃以上から水冷し、その後、Ac1点以下の温度で焼戻すことを特徴とする靱性と溶接性に優れた調質型高強度鋼材の製造方法。  Before the steel material according to claim 1 is hot-rolled, it is heated to 900 ° C. or higher and lower than 1100 ° C., and then subjected to rolling at a finishing temperature of 750 ° C. or higher and 900 ° C. or lower, and then 700 ° C. or higher. A method for producing a tempered high-strength steel material excellent in toughness and weldability, characterized in that it is cooled with water and then tempered at a temperature of Ac1 or lower. 質量%で、C:0.1%を超えて0.2%まで、Si:0.6%以下、Mn:1.5%を超えて2.5%まで、Cu:0.01〜0.6%、Ni:0.01〜0.3%未満、Cr:0.21〜1.0%、Mo:0.15〜1.0%、V:0.001〜0.1%、Nb:0.005〜0.06%、B:0.0005〜0.0025%、Al:0.07%以下、N:0.006%以下を含有し、残部はFeおよび不可避的不純物からなり、かつ、下記(A)式を満足する化学組成を有することを特徴とする請求項1に記載の鋼材の製造用の連続鋳造鋳片。
0.05%≦Vs≦0.25% ・・・(A)
ここで、Vs=C+0.2×Mn−0.1×Ni−0.7×Mo+0.1×Cu
式中の元素記号は、各々の元素の含有率(質量%)を表す。
By mass% , C: more than 0.1% to 0.2%, Si: 0.6% or less, Mn: more than 1.5% to 2.5%, Cu: 0.01 to 0.00. 6%, Ni: 0.01 to less than 0.3%, Cr: 0.21 to 1.0%, Mo: 0.15 to 1.0%, V: 0.001 to 0.1%, Nb: 0.005 to 0.06%, B: 0.0005 to 0.0025%, Al: 0.07% or less, N: 0.006% or less, with the balance being Fe and inevitable impurities, and The continuous cast slab for producing a steel material according to claim 1, having a chemical composition satisfying the following formula (A):
0.05% ≦ Vs ≦ 0.25% (A)
Here, Vs = C + 0.2 × Mn−0.1 × Ni−0.7 × Mo + 0.1 × Cu
The element symbol in the formula represents the content ( % by mass ) of each element.
請求項3に記載の連続鋳造鋳片を鋳造するに際し、下記(a)もしくは(b)、またはその両方の処置を施すことを特徴とする連続鋳造方法。
(a)鋳型から引き抜かれた鋳片をいったんバルジングさせ、その後、凝固完了位置までに、未凝固部を含む鋳片を圧下する。
(b)凝固完了位置の手前で、鋳片に電磁力を作用させ、未凝固溶鋼を攪拌する。
4. The continuous casting method according to claim 3, wherein when the continuous cast slab according to claim 3 is cast, the following treatment (a) or (b) or both of them are performed.
(A) The slab drawn from the mold is bulged once, and then the slab including the unsolidified portion is rolled down to the solidification completion position.
(B) Immediately before the solidification completion position, electromagnetic force is applied to the slab to stir the unsolidified molten steel.
JP16606599A 1999-06-11 1999-06-11 Tempered high strength steel and continuous cast slab for the steel Expired - Fee Related JP4314448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16606599A JP4314448B2 (en) 1999-06-11 1999-06-11 Tempered high strength steel and continuous cast slab for the steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16606599A JP4314448B2 (en) 1999-06-11 1999-06-11 Tempered high strength steel and continuous cast slab for the steel

Publications (2)

Publication Number Publication Date
JP2000355728A JP2000355728A (en) 2000-12-26
JP4314448B2 true JP4314448B2 (en) 2009-08-19

Family

ID=15824336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16606599A Expired - Fee Related JP4314448B2 (en) 1999-06-11 1999-06-11 Tempered high strength steel and continuous cast slab for the steel

Country Status (1)

Country Link
JP (1) JP4314448B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234643B (en) * 2018-10-11 2020-01-07 鞍钢股份有限公司 Rolling method of ultrahigh-strength rack steel for ocean platform
CN115094316B (en) * 2022-06-21 2023-06-20 日钢营口中板有限公司 Super-thick steel plate with excellent core low-temperature impact toughness and manufacturing method thereof

Also Published As

Publication number Publication date
JP2000355728A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
CN110050082B (en) High Mn steel sheet and method for producing same
JP5124988B2 (en) High-tensile steel plate with excellent delayed fracture resistance and tensile strength of 900 MPa or more and method for producing the same
JP4379550B2 (en) Low alloy steel with excellent resistance to sulfide stress cracking and toughness
JP5370016B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility and method for producing the same
JP5433964B2 (en) Method for producing high-tensile steel sheet with excellent bending workability and low-temperature toughness
JP5708431B2 (en) Steel sheet excellent in toughness of weld heat-affected zone and method for producing the same
CN111971407A (en) Wear-resistant steel and method for producing same
CN107747043B (en) A kind of yield strength 650MPa and above rank is weather-resistance hot rolled H-shaped and its manufacturing method
JP4311740B2 (en) Thick steel plate with high heat input welded joint toughness
JP5181775B2 (en) High strength steel material excellent in bending workability and low temperature toughness and method for producing the same
JP2012122111A (en) Method for producing tmcp and tempering process type high-strength thick steel plate having both excellent productivity and weldability, and excellent in drop-weight characteristic after pwht
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP3719037B2 (en) Continuous cast slab having no surface crack and method for producing non-tempered high strength steel using this slab
TW202113098A (en) Wear-resistant steel sheet and method for producing same
CN114107822B (en) 15.9-grade high-strength bolt steel and production method and heat treatment method thereof
JP5223706B2 (en) Steel material excellent in toughness of heat-affected zone with high heat input and manufacturing method thereof
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
JP4344919B2 (en) High strength steel plate excellent in weldability without preheating, its manufacturing method and welded steel structure
CN111051555B (en) Steel sheet and method for producing same
JP4314448B2 (en) Tempered high strength steel and continuous cast slab for the steel
JP6631702B2 (en) High-strength steel sheet with excellent low-temperature toughness
JP2004323917A (en) High strength high toughness steel sheet
JP4311020B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP2003105499A (en) Pearlitic rail having excellent toughness and ductility, and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090505

R150 Certificate of patent or registration of utility model

Ref document number: 4314448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees