JP5699798B2 - Low yield ratio high strength steel with excellent toughness of heat affected zone of high heat input welding and its manufacturing method - Google Patents

Low yield ratio high strength steel with excellent toughness of heat affected zone of high heat input welding and its manufacturing method Download PDF

Info

Publication number
JP5699798B2
JP5699798B2 JP2011110903A JP2011110903A JP5699798B2 JP 5699798 B2 JP5699798 B2 JP 5699798B2 JP 2011110903 A JP2011110903 A JP 2011110903A JP 2011110903 A JP2011110903 A JP 2011110903A JP 5699798 B2 JP5699798 B2 JP 5699798B2
Authority
JP
Japan
Prior art keywords
affected zone
toughness
steel
weld heat
yield ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011110903A
Other languages
Japanese (ja)
Other versions
JP2012241214A (en
Inventor
幸雄 真保
幸雄 真保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011110903A priority Critical patent/JP5699798B2/en
Publication of JP2012241214A publication Critical patent/JP2012241214A/en
Application granted granted Critical
Publication of JP5699798B2 publication Critical patent/JP5699798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、建築、橋梁、造船分野などの構造物で使用される鋼材に関するものであり、特に、低降伏比が要求され、大入熱溶接が施工される鋼材で引張強度;TSが590MPa以上で降伏比;YR(=YS/TS、YS;降伏強度)が80%以下の高張力鋼材およびその製造方法に関するものである。   The present invention relates to steel materials used in structures such as buildings, bridges and shipbuilding fields, and in particular, steel materials that require a low yield ratio and are subjected to high heat input welding; tensile strength; TS is 590 MPa or more. The yield ratio; YR (= YS / TS, YS; yield strength) is about 80% or less of high-tensile steel material and its manufacturing method.

建築構造物のボックス柱の組立て溶接に適用されるサブマージアーク溶接やエレクトロスラグ溶接等では、施工能率の向上のため500kJ/cmを超える大入熱溶接が施されることがある。一般に、溶接入熱量が大きくなると溶接熱影響部の組織が粗大化し靭性が低下する。これまでにも溶接熱影響部の靭性を改善する方法が種種、提案されている。   In submerged arc welding, electroslag welding, and the like applied to assembly welding of box columns of building structures, large heat input welding exceeding 500 kJ / cm may be performed in order to improve construction efficiency. In general, when the heat input of welding increases, the structure of the weld heat affected zone becomes coarse and the toughness decreases. Various methods for improving the toughness of the weld heat affected zone have been proposed so far.

また建築物や構造物に用いられる高張力鋼材には地震時の塑性変形によるエネルギー吸収を保証するため低降伏比が要求される。このような低降伏比を実現するための製造方法も提案されている。   In addition, high-strength steel materials used in buildings and structures are required to have a low yield ratio in order to guarantee energy absorption due to plastic deformation during earthquakes. A manufacturing method for realizing such a low yield ratio has also been proposed.

特許文献1には溶接熱影響部の靭性に優れたTSが590MPa以上で降伏比が80%以下の低降伏比鋼材およびその製造方法が開示されている。ここでは、希土類元素(REM)とZrを添加し、これらを含有する介在物(酸化物、硫化物、炭化物、窒化物または酸硫化物およびこれらが複合したもの)を鋼中に微細分散させて溶接熱影響部の靭性の改善を図っている。   Patent Document 1 discloses a low yield ratio steel material having a TS of 590 MPa or more and a yield ratio of 80% or less, and a method for manufacturing the same, which are excellent in toughness of the weld heat affected zone. Here, rare earth elements (REM) and Zr are added, and inclusions (oxides, sulfides, carbides, nitrides or oxysulfides and composites thereof) containing them are finely dispersed in the steel. The toughness of the weld heat affected zone is improved.

これらの介在物は、溶接時に熱影響を受けて1400℃以上の高温になっても固溶消失しないため、これらの介在物を鋼材に含有させれば、溶接熱影響部において、オーステナイト粒の粗大化を抑制し、また冷却時における粒内変態を促進することができるため溶接熱影響部の組織を微細化でき、溶接熱影響部の靭性を一段と改善できるとしている。   Since these inclusions are affected by heat during welding and do not lose their solid solution even at a high temperature of 1400 ° C. or higher, if these inclusions are contained in the steel material, the austenite grains are coarse in the weld heat affected zone. It is said that the structure of the weld heat-affected zone can be made finer and the toughness of the weld heat-affected zone can be further improved.

また、特許文献1には鋼材の低降伏比を実現するために、熱間圧延した後、Ar3 点以上の温度域から焼入れ、Ac1 点〜Ac3 点の温度域から焼入れ、Ac1 点未満の温度域で焼き戻しの各工程を順次行なう、焼入れ、2相域焼入れ、焼き戻しの3段熱処理による製造方法が開示されている。 Further, in Patent Document 1, in order to realize a low yield ratio of steel, after hot rolling, quenching is performed from a temperature range of Ar 3 point or higher, quenching is performed from a temperature range of Ac 1 point to Ac 3 point, Ac 1 point. A manufacturing method by three-stage heat treatment of quenching, two-phase zone quenching, and tempering, in which each step of tempering is sequentially performed in a temperature range below is disclosed.

特許文献2には、溶接熱影響部の靭性に優れたTSが520MPa以上で降伏比が80%以下の低降伏比鋼材およびその製造方法が開示されている。CuおよびNiの適正量の含有と、それに加え、Ti、B、NおよびAl量のバランス適正化、極低S且つCa量の適正化により溶接熱影響部靭性の改善を図っている。   Patent Document 2 discloses a low yield ratio steel material having a TS of 520 MPa or more and a yield ratio of 80% or less, which is excellent in the toughness of the weld heat affected zone, and a method for producing the same. In addition to the proper amount of Cu and Ni, in addition to that, the balance of Ti, B, N and Al is optimized, and the toughness of the weld heat affected zone is improved by optimizing the extremely low S and Ca content.

また、特許文献2には低降伏比特性を得るためには鋼材の組織を軟質相と硬質相とからなる複合組織にすることが好ましいとされている。さらに鋼材の組織を上記のような複合組織にするための製造方法として、鋼材の熱間圧延後、冷却開始表面温度をAr変態点±20℃、冷却停止温度を400℃±20℃、冷却速度を10℃/秒以上とする加速冷却を行い、引き続き、熱処理として、Ac 点とAc点の平均温度から、+60℃および−20℃の温度範囲に加熱し、そのまま焼入れ処理を施し、更に450〜650℃の温度範囲において、焼戻し処理を行う方法が開示されている。 Patent Document 2 states that in order to obtain a low yield ratio characteristic, it is preferable that the steel material has a composite structure composed of a soft phase and a hard phase. Further, as a manufacturing method for making the steel structure into the composite structure as described above, after hot rolling of the steel material, the cooling start surface temperature is Ar 3 transformation point ± 20 ° C., the cooling stop temperature is 400 ° C. ± 20 ° C. Accelerated cooling is performed at a rate of 10 ° C./second or higher, and subsequently, as a heat treatment, heating is performed from the average temperature of Ac 1 point and Ac 3 point to a temperature range of + 60 ° C. and −20 ° C. Furthermore, a method of performing a tempering treatment in a temperature range of 450 to 650 ° C. is disclosed.

特許文献3には溶接性(耐低温割れ性及び溶接熱影響部靭性)に優れると共に、降伏比の低減された(特にYR≦82%)、TSが780MPa以上の高張力鋼材およびその製造方法が開示されている。   Patent Document 3 discloses a high-tensile steel material having excellent weldability (cold crack resistance and weld heat-affected zone toughness), a reduced yield ratio (particularly YR ≦ 82%), and a TS of 780 MPa or more, and a method for producing the same. It is disclosed.

ここでは、鋼中のCの含有量を極力少なくすると共に、焼入れ性向上元素であるMn、Cr及びMoを積極的に添加し、Mn、Cr、Mo量を適切に制御すると共に、更にBを添加することにより高冷却速度、低冷却速度のいずれにおいても低温ベイナイトが生成するように鋼材の成分を制御している。このような成分系においては、低入熱溶接による高冷却速度でも溶接熱影響部の硬さが抑制されるため耐低温割れ性が向上し、また大入熱溶接による低冷却速度でも靭性を低下させる粗大な島状マルテンサイトの生成が抑制され溶接熱影響部靭性を確保することができるとしている。   Here, the content of C in the steel is reduced as much as possible, and Mn, Cr and Mo, which are hardenability improving elements, are positively added, and the amount of Mn, Cr and Mo is appropriately controlled, and further B is added. By adding, the components of the steel material are controlled so that low-temperature bainite is generated at both high cooling rate and low cooling rate. In such a component system, the hardness of the weld heat-affected zone is suppressed even at a high cooling rate by low heat input welding, so that low temperature cracking resistance is improved, and toughness is reduced even at a low cooling rate by high heat input welding. The generation of coarse island-shaped martensite to be suppressed is suppressed, and the weld heat-affected zone toughness can be secured.

また、特許文献3では降伏比の低減を達成する為に島状マルテンサイトを積極的に利用することが示されており、島状マルテンサイトを微細分散させるため鋼材を熱間圧延後に加速冷却し必要に応じ焼き戻す製造方法が開示されている。   Further, Patent Document 3 shows that island martensite is actively used to achieve a reduction in yield ratio. In order to finely disperse island martensite, steel material is accelerated and cooled after hot rolling. A manufacturing method for tempering as required is disclosed.

特開2010−121200号公報JP 2010-121200 A 特開2008−240033号公報JP 2008-240033 A 特許3602396号公報Japanese Patent No. 3602396

特許文献1に開示される鋼材では製鋼段階で溶鋼中の溶存酸素量をコントロールしてREMとZrを添加して鋳造することでREMとZrを含有する介在物が微細に分散した鋼を得ている。   In the steel material disclosed in Patent Document 1, a steel in which inclusions containing REM and Zr are finely dispersed is obtained by adding and removing REM and Zr by controlling the amount of dissolved oxygen in the molten steel in the steelmaking stage. Yes.

しかし溶鋼中での酸素とREM、Zrの反応速度は極めて速く、生成したREM、Zrの酸化物は凝集粗大化しやすい。したがって、望ましい形態にREMとZrを含有する介在物を分散させるには溶存酸素量ばかりでなく溶鋼温度やREMとZrを添加してから鋳造するまでの時間などを厳密にコントロールする必要があり、溶接熱影響部靭性向上に有効に作用する介在物が分散した鋼材を得ることは容易でない。   However, the reaction rate of oxygen, REM, and Zr in molten steel is extremely high, and the generated REM and Zr oxides are likely to be aggregated and coarsened. Therefore, in order to disperse inclusions containing REM and Zr in a desired form, it is necessary to strictly control not only the amount of dissolved oxygen but also the molten steel temperature and the time from the addition of REM and Zr to the casting, It is not easy to obtain a steel material in which inclusions that effectively act to improve the weld heat affected zone toughness are dispersed.

また特許文献1に開示される鋼材の製造方法では熱間圧延後に、焼入れ、2相域焼入れ、焼き戻しの3段熱処理を行い、降伏比を下げているが、3回の熱処理工程を必要とし、熱処理コストおよび処理時間がかかり、製造コストを押し上げるとともに製造工期も長くなる。   In addition, in the method for manufacturing a steel material disclosed in Patent Document 1, after the hot rolling, a three-stage heat treatment of quenching, two-phase quenching, and tempering is performed to reduce the yield ratio, but three heat treatment steps are required. The heat treatment cost and the processing time are increased, and the manufacturing cost is increased and the manufacturing period is lengthened.

特許文献2に開示される製造方法では圧延後に加速冷却し、その後、2相域焼入れ、焼き戻しをしている。加速冷却では冷却開始温度、冷却速度、冷却停止温度を正確にコントロールすることが難しく、これらの冷却条件のばらつきは鋼材の特性のばらつきにつながりやすい。また加速冷却では鋼材表面を水冷するため、鋼材表面と内部の特性に差がついてしまうほか、水冷による鋼材の冷却が冷却水量や鋼材の表面状態に影響されるため、鋼材内で特性のばらつきが出やすい。また鋼材の熱処理として熱間圧延−加速冷却後に、2相域焼入れ、焼き戻しを必要とするため熱処理コストおよび処理時間がかかる。   In the production method disclosed in Patent Document 2, accelerated cooling is performed after rolling, and then two-phase region quenching and tempering are performed. In accelerated cooling, it is difficult to accurately control the cooling start temperature, cooling rate, and cooling stop temperature, and variations in these cooling conditions tend to lead to variations in the characteristics of steel materials. In accelerated cooling, the steel surface is water-cooled, resulting in a difference in the characteristics between the steel surface and the interior, and the cooling of the steel material by water cooling is affected by the amount of cooling water and the surface condition of the steel material. Easy to come out. In addition, since heat treatment of the steel material requires hot rolling and accelerated cooling, followed by two-phase quenching and tempering, heat treatment costs and processing time are required.

特許文献3に開示の技術では本発明が対象としている入熱500kJ/cm以上の溶接での溶接熱影響部靭性は考慮されておらず、入熱150kJ/cmまでの溶接熱影響部靭性しか考慮していない。また特許文献3に開示の製造方法では降伏比を低減するため鋼材を熱間圧延後に加速冷却し必要に応じ焼き戻しているが、すでに述べたように加速冷却では特性のばらつきが出やすい。   The technique disclosed in Patent Document 3 does not consider the weld heat-affected zone toughness in welding with a heat input of 500 kJ / cm or more, which is the subject of the present invention, but considers only the weld heat-affected zone toughness up to a heat input of 150 kJ / cm. Not done. In addition, in the manufacturing method disclosed in Patent Document 3, the steel material is accelerated and cooled after hot rolling and tempered as necessary in order to reduce the yield ratio.

本発明はこのような状況に鑑みてなされたものであって、その目的は、入熱量が500kJ/cm以上の大入熱溶接を行った場合であっても溶接熱影響部靭性に優れると共に、耐震性の観点から要求される低降伏比を実現できるようなTSが590MPa以上の低降伏比鋼材を特別な加速冷却や熱処理を必要とせずに工業的に安定して提供することにある。   The present invention has been made in view of such a situation, and the purpose thereof is excellent in weld heat-affected zone toughness even when large heat input with a heat input of 500 kJ / cm or more is performed, It is to provide industrially stable low yield ratio steel material having a TS of 590 MPa or more that can realize the low yield ratio required from the viewpoint of earthquake resistance, without requiring special accelerated cooling or heat treatment.

本発明の大入熱溶接熱影響部の靭性に優れた低降伏比高張力鋼およびその製造方法とは以下を趣旨とする。
(1)質量%で、C:0.025〜0.050%、Si:0.01〜0.40%、Mn:1.20〜2.50%、P:0.003〜0.050%、S:0.0004〜0.0100%、Cr:1.50〜3.50%、Mo:0.10〜0.50%、Al:0.010〜0.050%、Ti:0.005〜0.050%、N:0.0015〜0.0060%を各々含有し、Bを0.0003%以下に制限し、Mn+0.4Crが2.50〜3.00%であり、残部が鉄および不可避不純物である大入熱溶接熱影響部の靱性に優れた低降伏比高張力鋼材。ただし、式中Mn、Crはそれぞれの元素の含有量(質量%)を示す。
(2)鋼材が、更に、質量%で、Ni:0.05〜2.00%、Cu:0.02〜2.00%、Nb:0.002〜0.050%、V:0.010〜0.150%、およびCa:0.0005〜0.0100%のうち1種以上を含有する(1)に記載の大入熱溶接熱影響部の靱性に優れた低降伏比高張力鋼材。
(3)鋼スラブを1000℃以上1250℃以下に加熱し熱間圧延し空冷で冷却することを特徴とする(1)または(2)に記載の大入熱溶接熱影響部の靱性に優れた低降伏比高張力鋼材の製造方法。
The low-yield-ratio high-strength steel excellent in the toughness of the heat-affected zone with high heat input welding according to the present invention and the manufacturing method thereof are as follows.
(1) By mass%, C: 0.025 to 0.050%, Si: 0.01 to 0.40%, Mn: 1.20 to 2.50%, P: 0.003 to 0.050% , S: 0.0004 to 0.0100%, Cr: 1.50 to 3.50%, Mo: 0.10 to 0.50%, Al: 0.010 to 0.050%, Ti: 0.005 -0.050%, N: 0.0015-0.0060% each, B is limited to 0.0003% or less, Mn + 0.4Cr is 2.50-3.00%, the balance is iron And low yield ratio high strength steel with excellent toughness of heat-affected zone with high heat input, which is an inevitable impurity. However, Mn and Cr in the formula indicate the content (mass%) of each element.
(2) The steel material is further mass%, Ni: 0.05 to 2.00%, Cu: 0.02 to 2.00%, Nb: 0.002 to 0.050%, V: 0.010. The low yield ratio high-tensile steel material excellent in toughness of the high heat input welding heat-affected zone according to (1), which contains at least one of ˜0.150% and Ca: 0.0005 to 0.0100%.
(3) The steel slab is heated to 1000 ° C. or more and 1250 ° C. or less, hot-rolled, and cooled by air cooling, which is excellent in toughness of the high heat input welding heat-affected zone according to (1) or (2) A method for producing high yield steel with low yield ratio.

本発明の鋼材では、降伏比を下げるために特別な熱処理や加速冷却を必要とせず、通常の熱間圧延を行い空冷するだけで低降伏比高張力鋼材が得られるため、鋼材の特性が安定し、鋼材歩留まりの向上や鋼材製造工期の短縮が図れ、生産性に優れる。   The steel of the present invention does not require special heat treatment or accelerated cooling to lower the yield ratio, and a high yield steel with a low yield ratio can be obtained simply by air-cooling by ordinary hot rolling. In addition, the steel material yield can be improved and the steel material manufacturing period can be shortened, resulting in excellent productivity.

また、本発明の鋼材を用いることで500kJ/cmを超える大入熱溶接を施した場合にも、優れた溶接熱影響部靭性を確保でき、安全性の高い建築構造物等を高能率で製造することができる。   Moreover, even when high heat input welding exceeding 500 kJ / cm is performed by using the steel material of the present invention, excellent weld heat-affected zone toughness can be secured, and highly safe building structures and the like can be manufactured with high efficiency. can do.

本発明者は大入熱溶接を施した場合の溶接熱影響部の靭性に優れる高張力鋼材を得るべく鋭意研究を行った。その結果、熱影響部の高靭性を安定して確保するには、Cの含有量を極力少なくして溶接熱影響部での島状マルテンサイトの生成を抑え、Mn、Cr、Ni、Si、Moなどの焼入れ性を高める元素を添加して変態温度を低下させ溶接熱影響部の全体を均一なベイナイト組織とすることが必要であることが分かった。   The present inventor has intensively studied to obtain a high-tensile steel material having excellent toughness of the weld heat-affected zone when high heat input welding is performed. As a result, in order to stably secure the high toughness of the heat affected zone, the content of C is reduced as much as possible to suppress the formation of island martensite in the weld heat affected zone, and Mn, Cr, Ni, Si, It turned out that it is necessary to add the element which improves hardenability, such as Mo, and to lower a transformation temperature and to make the whole welding heat affected zone into a uniform bainite structure.

その上で、オーステナイト生成元素(Mn、Niなど)とフェライト生成元素(Cr、Si、Moなど)を同時添加し、オーステナイト生成元素量に対してフェライト生成元素量を適正にすると、溶接熱影響部のベイナイトラス間での島状マルテンサイトの生成が少なくなり、溶接熱影響部靱性に優れるようになることが分かった。   On top of that, when an austenite-generating element (Mn, Ni, etc.) and a ferrite-forming element (Cr, Si, Mo, etc.) are added at the same time and the ferrite-forming element amount is made appropriate relative to the austenite-forming element amount, It was found that the formation of island martensite between the bainite laths was reduced and the weld heat affected zone toughness became excellent.

Mnは強力なオーステナイト安定化元素であり変態温度を低下させベイナイト変態を促進する。しかしMn単独で多量に添加しても、Mnはオーステナイトを過度に安定化するため、島状マルテンサイトの生成が増え、溶接熱影響部靭性は向上しない。すなわち、Mn量が過剰であると、溶接熱影響部でベイナイト変態が起こる際に、ベイナイトラス間のCが濃化した部分が、Mnによりオーステナイトが過度に安定化されているためフェライトに変態せずに残留し、この部分がさらに低温でマルテンサイト変態して島状マルテンサイトとなるのである。   Mn is a strong austenite stabilizing element and lowers the transformation temperature and promotes bainite transformation. However, even if Mn alone is added in a large amount, Mn excessively stabilizes austenite, so that the formation of island martensite is increased and the weld heat affected zone toughness is not improved. That is, when the amount of Mn is excessive, when bainite transformation occurs in the weld heat affected zone, the portion where C between bainite laths is concentrated is transformed into ferrite because austenite is excessively stabilized by Mn. This portion remains, and this portion is further transformed into martensite by martensite transformation at a lower temperature.

NiはMnに次ぐ強力なオーステナイト安定化元素であり、変態温度を低下させベイナイト変態を促進するが、その効果はMnよりは小さい。このためNi単独で添加しても多量に添加しなければその効果は十分でない。Niを単独で多量に添加した場合、溶接熱影響部は均一なベイナイト組織となり、またMn添加の場合とは異なり溶接熱影響部のベイナイトラス間に靭性に有害な島状マルテンサイトの生成がほとんどないため優れた溶接熱影響部靭性を得ることができる。しかしながら、Niが高価である上、多量の添加を必要とするため鋼材の合金コストは極めて高くなってしまう。したがって、オーステナイト生成元素としてはMnを主とし、Niは補助的に用いることが実際的である。   Ni is a strong austenite stabilizing element next to Mn, and lowers the transformation temperature and promotes bainite transformation, but its effect is smaller than that of Mn. For this reason, even if Ni is added alone, the effect is not sufficient unless a large amount is added. When a large amount of Ni is added alone, the weld heat-affected zone has a uniform bainite structure, and unlike the case of Mn addition, almost no martensite is harmful to toughness between the bainite laths of the weld heat-affected zone. Therefore, excellent weld heat affected zone toughness can be obtained. However, since Ni is expensive and requires a large amount of addition, the alloy cost of the steel material becomes extremely high. Therefore, it is practical that Mn is mainly used as an austenite generating element and Ni is used as an auxiliary.

これらのオーステナイト生成元素に加えてフェライト定化元素を添加すると、Mn添加による過度のオーステナイト安定化が緩和され、ベイナイトラス間の島状マルテンサイトは減少し、溶接熱影響部靱性が優れるようになる。   Addition of ferrite-stabilizing elements in addition to these austenite-generating elements alleviates excessive austenite stabilization due to the addition of Mn, reduces island martensite between bainite laths, and improves weld heat-affected zone toughness. .

特にCrは強力なフェライト生成元素であり、Mnによる過度のオーステナイト安定化を抑える上で有効である。   In particular, Cr is a strong ferrite-forming element and is effective in suppressing excessive austenite stabilization due to Mn.

またSiも強力なフェライト生成元素であるが、Siはセメンタイトの生成を強く抑制するため、過剰に添加するとかえって島状マルテンサイトの生成が増えてしまう。   Si is also a strong ferrite-forming element. However, since Si strongly suppresses the formation of cementite, when it is added excessively, the generation of island martensite increases.

Moも強力なフェライト安定化元素であり、さらには焼き戻し脆化を防止するのに有効な元素であるが、高価であり、多量の添加はコスト増につながる。   Mo is also a strong ferrite stabilizing element and is an element effective for preventing temper embrittlement. However, it is expensive, and a large amount of addition leads to an increase in cost.

したがって、フェライト生成元素としてはCrを主とし、Si、Moは補助的に適量用いることが効果的である。   Therefore, it is effective to mainly use Cr as a ferrite-forming element and use a proper amount of Si and Mo in an auxiliary manner.

上記の通り溶接熱影響部靭性を高めると共に、鋼材(母材)の強度や靭性等その他の特性を具備させるには、成分の含有量を下記範囲内とする必要がある。なお、成分%はすべて質量%である。   As described above, in order to increase the weld heat-affected zone toughness and provide other properties such as the strength and toughness of the steel (base material), the content of the components needs to be within the following range. In addition, all the component% is the mass%.

〈C:0.025〜0.050%〉
Cは、母材強度の確保、およびオーステナイト粒の粗大化を抑制して溶接熱影響部靭性を確保するのに必要な元素であり、該効果を発揮させるには、0.025%以上含有させる必要がある。一方、C量が過剰になると島状マルテンサイトが増大するため溶接熱影響部靭性は劣化する。したがって、C量は0.050%以下とする。
<C: 0.025 to 0.050%>
C is an element necessary for ensuring the strength of the base metal and suppressing the coarsening of the austenite grains to ensure the toughness of the weld heat affected zone. There is a need. On the other hand, when the amount of C is excessive, island-shaped martensite increases, so that the weld heat affected zone toughness deteriorates. Therefore, the C amount is 0.050% or less.

〈Si:0.01〜0.40%〉
Siは、製鋼時の脱酸に必要な元素であるが、脱酸の目的を達すれば、添加量は少なくとも良い。脱酸のためには0.01%以上の添加が必要である。またSiは強力なフェライト生成元素でありMnによるオーステナイトの過度の安定化を抑制して島状マルテンサイトの生成を抑制する効果があるが、Siはセメンタイトの生成を強力に抑制するため、過剰の添加ではかえって島状マルテンサイトが増大して溶接熱影響部靭性が劣化するため0.40%以下とする。より好ましいSiの添加量は0.03〜0.20%である。
<Si: 0.01-0.40%>
Si is an element necessary for deoxidation at the time of steelmaking, but if the purpose of deoxidation is achieved, the addition amount is at least good. Addition of 0.01% or more is necessary for deoxidation. Si is a strong ferrite-forming element and has the effect of suppressing the excessive stabilization of austenite by Mn to suppress the formation of island martensite. However, since Si strongly suppresses the formation of cementite, On the other hand, island-shaped martensite increases and the weld heat-affected zone toughness deteriorates, so the content is made 0.40% or less. A more preferable Si addition amount is 0.03 to 0.20%.

〈Mn:1.20〜2.50%〉
Mnは強力なオーステナイト安定化元素であり、変態点を低下させて母材の強度を確保するのに有用な元素である。また、ベイナイト変態を促進する元素である。母材の強度を確保するため1.20%以上含有させる。しかしMnが過剰になると、オーステナイトが過度に安定化されベイナイトラス間に島状マルテンサイトが析出し、溶接熱影響部靭性が劣化する。よってMn量は、2.50%以下とする。より好ましいMnの添加量は1.65〜2.10%である。
<Mn: 1.20 to 2.50%>
Mn is a strong austenite stabilizing element and is an element useful for lowering the transformation point and ensuring the strength of the base material. It is an element that promotes bainite transformation. In order to ensure the strength of the base material, 1.20% or more is contained. However, when Mn is excessive, austenite is excessively stabilized, island-like martensite is precipitated between bainite laths, and the weld heat affected zone toughness deteriorates. Therefore, the Mn content is 2.50% or less. A more preferable amount of Mn is 1.65 to 2.10%.

〈P:0.003〜0.050%〉
Pは鋼材の靭性を損ねるため少ないほど好ましい。このため0.050%以下とする。しかしながら、製鋼プロセスでの脱りんコストも考慮して0.003%以上とする。
<P: 0.003 to 0.050%>
P is preferably as small as possible because it impairs the toughness of the steel material. For this reason, it is 0.050% or less. However, considering the dephosphorization cost in the steelmaking process, it is made 0.003% or more.

〈S:0.0004〜0.0100%〉
Sは鋼材の靭性を損ねるため少ないほど好ましい。このため0.0100%以下とする。しかしながら、製鋼プロセスでの脱硫コストも考慮して0.0004%以上とする。
<S: 0.0004 to 0.0100%>
The smaller the S, the more preferable it is because it impairs the toughness of the steel material. For this reason, it is made into 0.0100% or less. However, considering the desulfurization cost in the steelmaking process, the content is made 0.0004% or more.

〈Cr:1.50〜3.50%〉
Crは焼入れ性を向上させて母材の強度や靭性を確保するのに有用な元素であるとともにフェライト安定化元素であり、Mn添加によるオーステナイトの過度の安定化を防止し、島状マルテンサイトの発生を抑制するのに有用な元素である。これらの効果を発揮させるには、1.50%以上含有させる。しかし、Crが過剰に存在すると、溶接熱影響部の硬度が増大して溶接熱影響部靭性が劣化する。よってCrは3.50%以下とする。より好ましいCrの添加量は1.70〜2.40%である。
<Cr: 1.50 to 3.50%>
Cr is an element that is useful for improving the hardenability and securing the strength and toughness of the base metal and is a ferrite stabilizing element, and prevents excessive stabilization of austenite due to the addition of Mn. It is an element useful for suppressing the generation. In order to exhibit these effects, it is contained 1.50% or more. However, if Cr is present excessively, the hardness of the weld heat affected zone increases and the weld heat affected zone toughness deteriorates. Therefore, Cr is 3.50% or less. A more preferable addition amount of Cr is 1.70 to 2.40%.

〈Mo:0.10〜0.50%〉
Moは焼入れ性を向上させて母材の強度や靭性を確保するのに有用な元素であるとともにフェライト安定化元素であり、Mn添加によるオーステナイトの過度の安定化を防止し島状マルテンサイトの発生を抑制するのに有用な元素である。これらの効果を発揮させるには、0.10%以上含有させる。しかし、Moが過剰に存在すると、溶接熱影響部の硬度が増大して溶接熱影響部靭性が劣化する。よってMoは0.50%以下とする。
<Mo: 0.10 to 0.50%>
Mo is an element that is useful for improving the hardenability and ensuring the strength and toughness of the base metal and is a ferrite stabilizing element. It prevents the excessive stabilization of austenite due to the addition of Mn and the generation of island martensite. It is an element useful to suppress In order to exert these effects, the content is 0.10% or more. However, if Mo is present excessively, the hardness of the weld heat affected zone increases and the weld heat affected zone toughness deteriorates. Therefore, Mo is 0.50% or less.

〈Al:0.010〜0.050%〉
Alは製鋼時の脱酸に必要な元素であるが、脱酸の目的を達すれば添加量は少なくとも良い。脱酸のためには0.010%以上添加する。しかしAlが過剰になると、アルミナ等の粗大介在物が増加し、母材靭性が劣化する。加えて島状マルテンサイトが増加し、溶接熱影響部靭性も劣化するため、0.050%以下とする。
<Al: 0.010 to 0.050%>
Al is an element necessary for deoxidation at the time of steelmaking, but the addition amount is at least good if the purpose of deoxidation is achieved. Add 0.010% or more for deoxidation. However, when Al is excessive, coarse inclusions such as alumina increase and the base material toughness deteriorates. In addition, island martensite increases and the weld heat affected zone toughness deteriorates, so the content is made 0.050% or less.

〈Ti:0.005〜0.050%〉
TiはNと結合しTiNを形成する元素であり、このTiNは溶接熱影響部のオーステナイト粒の成長を抑制し溶接熱影響部靭性の向上に有効に寄与する。この効果を発揮させるには、Tiを0.005%以上添加する。一方、Tiが過剰になるとTiNが粗大化し、母材靭性、溶接熱影響部靭性が共に劣化するので、0.050%以下とする。より好ましいTiの添加量は0.010〜0.025%である。
<Ti: 0.005 to 0.050%>
Ti is an element that combines with N to form TiN, and this TiN effectively suppresses the growth of austenite grains in the weld heat affected zone and effectively contributes to the improvement of the weld heat affected zone toughness. In order to exert this effect, 0.005% or more of Ti is added. On the other hand, when Ti becomes excessive, TiN becomes coarse and both the base metal toughness and the weld heat affected zone toughness deteriorate, so the content is made 0.050% or less. A more preferable addition amount of Ti is 0.010 to 0.025%.

〈N:0.0015〜0.0060%〉
NはTiと結合しTiNを形成する元素であり、このTiNは溶接熱影響部のオーステナイト粒の成長を抑制し溶接熱影響部靭性の向上に有効に寄与する。この効果を発揮させるには、Nを0.0015%以上含有させる。一方、Tiが過剰になるとTiNが粗大化し、母材靭性、溶接熱影響部靭性が共に劣化するので、0.0060%以下とする。より好ましいNの含有量は0.0025%〜0.0050%である。
<N: 0.0015 to 0.0060%>
N is an element that combines with Ti to form TiN. This TiN suppresses the growth of austenite grains in the weld heat affected zone and effectively contributes to the improvement of the weld heat affected zone toughness. In order to exhibit this effect, N is contained 0.0015% or more. On the other hand, when Ti becomes excessive, TiN becomes coarse and both the base material toughness and the weld heat affected zone toughness deteriorate, so the content is made 0.0060% or less. A more preferable N content is 0.0025% to 0.0050%.

〈B:0.0003%以下〉
Bは極微量であってもオーステナイト粒界に偏析してオーステナイトからフェライトへの変態を強力に抑制する。より詳しくはオーステナイト粒界でのフェライトの核発生を抑制する。このため通常はベイナイト変態を促進する元素として取り扱われることもあるが、本発明のようにMnとCrを多量に含有し、通常よりも極めて焼入れ性の高い鋼種では過度にオーステナイトを安定化し、ベイナイトラス間に島状マルテンサイトが析出するようにするため、極微量であっても母材靭性、溶接熱影響部靭性を共に劣化させる。この点を考慮し、添加は行わないが、不純物として混入してくる場合にも0.0003%以下とする。
<B: 0.0003% or less>
Even if B is a very small amount, it segregates at the austenite grain boundary and strongly suppresses the transformation from austenite to ferrite. More specifically, ferrite nucleation at the austenite grain boundary is suppressed. For this reason, it is usually handled as an element that promotes the transformation of bainite. However, as in the present invention, it contains a large amount of Mn and Cr, and in the steel type that is extremely harder than usual, austenite is excessively stabilized. In order to deposit island martensite between the laths, both the base metal toughness and the weld heat affected zone toughness are deteriorated even in a very small amount. In consideration of this point, addition is not performed, but even when impurities are mixed, the content is made 0.0003% or less.

〈Mn+0.4Cr:2.50〜3.00%〉
Crの添加量はMnの添加量に応じて決定すべきであるが、Mn+0.4Cr≧2.50%(式中Mn、Crはそれぞれの元素の含有量(質量%)を示す)のCr添加でMnによるオーステナイトの過度の安定化を防止して島状マルテンサイトの発生を抑制し、また溶接熱影響部を適度な硬さを持った微細ベイナイト組織にするため溶接熱影響部靱性が優れるようになる。しかしCrが過剰になりMn+0.4Cr>3.00%となると、溶接熱影響部の硬さが硬くなりすぎて溶接熱影響部靱性が低下するので、Mn+0.4Cr≦3.00%とする。
<Mn + 0.4Cr: 2.50 to 3.00%>
Although the addition amount of Cr should be determined according to the addition amount of Mn, Cr addition of Mn + 0.4Cr ≧ 2.50% (wherein Mn and Cr indicate the content (mass%) of each element) This prevents excessive stabilization of austenite by Mn, suppresses the generation of island martensite, and makes the weld heat-affected zone a fine bainite structure with appropriate hardness so that the weld heat-affected zone toughness is excellent. become. However, if Cr becomes excessive and Mn + 0.4Cr> 3.00%, the hardness of the weld heat affected zone becomes too hard and the weld heat affected zone toughness decreases, so Mn + 0.4Cr ≦ 3.00%.

以上が本発明の基本成分であり、残部はFeおよび不可避的不純物である。
さらに本発明では上記基本成分に加え、必要に応じ、選択的に下記の元素を添加することができる。
The above is the basic component of the present invention, and the balance is Fe and inevitable impurities.
Furthermore, in the present invention, in addition to the above basic components, the following elements can be selectively added as necessary.

〈Ni:0.05〜2.00%〉
Niは強力なオーステナイト安定化元素であり、変態点を低下させて母材の強度を確保するのに有用な元素である。また、ベイナイト変態を促進する元素である。さらにマトリックスの靭性を高めることにより母材および溶接熱影響部の靭性を高める。このため、添加する場合には0.05%以上添加することが好ましい。しかし高価な元素であるため、合金コストの観点から2.00%以下とすることが好ましい。
<Ni: 0.05-2.00%>
Ni is a strong austenite stabilizing element and is an element useful for lowering the transformation point and ensuring the strength of the base material. It is an element that promotes bainite transformation. Furthermore, the toughness of the base material and the weld heat affected zone is increased by increasing the toughness of the matrix. For this reason, when adding, it is preferable to add 0.05% or more. However, since it is an expensive element, it is preferably made 2.00% or less from the viewpoint of alloy cost.

〈Cu:0.02〜2.00%〉
Cuは、鋼を固溶強化させる元素である。この目的のため0.02%以上添加することが好ましい。しかし2.00%を超えて含有させると、母材の靭性を低下させるため、Cuは2.00%以下とすることが好ましい。
<Cu: 0.02-2.00%>
Cu is an element that strengthens the steel by solid solution. For this purpose, 0.02% or more is preferably added. However, if the content exceeds 2.00%, the toughness of the base material is lowered, so Cu is preferably made 2.00% or less.

〈Nb:0.002〜0.050%以下〉
Nbは再結晶を抑制して組織の微細化に寄与し、母材および溶接熱影響部の靭性を向上する元素である。この目的のため0.002%以上添加することが好ましい。しかし0.050%を超えると組織が微細化し過ぎて降伏比が高くなるため、Nbは0.050%以下にすることが好ましい。
<Nb: 0.002 to 0.050% or less>
Nb is an element that contributes to refinement of the structure by suppressing recrystallization and improves the toughness of the base material and the weld heat affected zone. For this purpose, it is preferable to add 0.002% or more. However, if it exceeds 0.050%, the structure becomes too fine and the yield ratio becomes high, so Nb is preferably 0.050% or less.

〈V:0.010〜0.150%〉
Vは炭化物を生成し強度を上げる元素である。この目的のため0.010%以上添加することが好ましい。しかし0.150%を超えると溶接性が悪化すると共に、母材の靭性が劣化するため、Vは0.150%以下とすることが好ましい。
<V: 0.010 to 0.150%>
V is an element that generates carbides and increases strength. For this purpose, 0.010% or more is preferably added. However, if it exceeds 0.150%, the weldability deteriorates and the toughness of the base material deteriorates, so V is preferably 0.150% or less.

〈Ca:0.0005〜0.0100%〉
Caは、介在物の形態を制御して(具体的には、MnSを球状化して)靭性が向上する。この目的のため0.0005%以上添加することが好ましい。しかし過剰に添加すると、粗大な酸化物を形成し、靭性が却って劣化する。従ってCaは0.0100%以下とすることが好ましい。
<Ca: 0.0005 to 0.0100%>
Ca controls the form of inclusions (specifically, spheroidizes MnS) to improve toughness. For this purpose, 0.0005% or more is preferably added. However, if added excessively, a coarse oxide is formed, and the toughness deteriorates instead. Therefore, Ca is preferably 0.0100% or less.

次に、本発明の鋼材の製造方法について述べる。上述した成分組成を有する鋼を、転炉、電気炉などの溶製手段で常法により溶製し、連続鋳造法または造塊〜分塊法等で常法によりスラブなどの鋼素材とすることが好ましい。なお、溶製方法、鋳造方法については上記の方法に限定されるものではない。上述した組成成分を有するスラブを1000〜1250℃に加熱し、通常の熱間圧延を行い、空冷することでTSが590MPa以上で、降伏比が80%以下の鋼材が得られる。   Next, the manufacturing method of the steel material of this invention is described. The steel having the above-described composition is melted by a conventional method using a melting means such as a converter or an electric furnace, and is made into a steel material such as a slab by a conventional method using a continuous casting method or ingot-bundling method. Is preferred. The melting method and casting method are not limited to the above methods. A steel material having a TS of 590 MPa or more and a yield ratio of 80% or less is obtained by heating the slab having the above-described composition components to 1000 to 1250 ° C., performing normal hot rolling, and air cooling.

通常、TSが590MPa以上の鋼材は焼入れ焼き戻しまたは加速冷却を必要とするが、本発明の鋼材は Mn、Cr量が多く、焼入れ性が高いため、熱間圧延後、空冷してもTSが590MPa以上の鋼材が得られる。また、C量が極めて少ないため熱間圧延後、空冷するとYSがTSに比較して低く、低YRが実現する。   Usually, steel materials with TS of 590 MPa or more require quenching and tempering or accelerated cooling. However, the steel materials of the present invention have a large amount of Mn and Cr and high hardenability. A steel material of 590 MPa or more is obtained. In addition, since the amount of C is extremely small, after hot rolling and air cooling, YS is lower than TS and low YR is realized.

なお、本発明において、加熱温度、圧延仕上げ温度などは、スラブまたは鋼材(鋼板、形鋼など。以下、鋼板とする)の表面温度より板厚、熱伝導率などを考慮して計算により求めたスラブまたは鋼板の平均温度である。   In the present invention, the heating temperature, rolling finishing temperature, etc. were determined by calculation from the surface temperature of the slab or steel (steel plate, shape steel, etc., hereinafter referred to as a steel plate) in consideration of the plate thickness, thermal conductivity, etc. Average temperature of slab or steel plate.

以下にスラブ加熱温度および熱間圧延後の冷却条件の限定理由を述べる。   The reasons for limiting the slab heating temperature and the cooling conditions after hot rolling will be described below.

〈スラブ加熱温度:1000〜1250℃〉
加熱温度が1000℃未満では変形抵抗が大きく、その後の熱間圧延が困難となり、1250℃を超えると結晶粒が粗大化して母材の靭性が低下する。このため、熱間圧延前のスラブ加熱温度は1000〜1250℃とする。
<Slab heating temperature: 1000 to 1250 ° C.>
If the heating temperature is less than 1000 ° C., the deformation resistance is large, and subsequent hot rolling becomes difficult. If the heating temperature exceeds 1250 ° C., the crystal grains become coarse and the toughness of the base material decreases. For this reason, the slab heating temperature before hot rolling shall be 1000-1250 degreeC.

〈熱間圧延後の冷却:空冷〉
鋼板を水冷などの手段で加速冷却すると、鋼板の強度が上昇するが、引張強度の上昇に比べ、降伏強度の上昇が大きく、降伏比が80%を超えてしまう。このため、熱間圧延後の冷却は空冷とする。この場合の好ましい冷却速度は800℃から500℃までの平均冷却速度として2℃/s以下である。
<Cooling after hot rolling: Air cooling>
When the steel sheet is accelerated and cooled by means of water cooling or the like, the strength of the steel sheet increases, but the yield strength increases more than the increase in tensile strength, and the yield ratio exceeds 80%. For this reason, cooling after hot rolling is air cooling. A preferable cooling rate in this case is 2 ° C./s or less as an average cooling rate from 800 ° C. to 500 ° C.

以下、実施例を挙げて本発明をより具体的に説明する。表1に示す成分組成の鋼を溶製しスラブとした後、1200℃に加熱し、仕上げ温度950℃、板厚15mmまで熱間圧延を行った。熱間圧延後の冷却は空冷とした。このようにして得られた鋼板を用いて、下記の通り母材強度、靭性の測定と溶接熱影響部靭性の評価を行った。   Hereinafter, the present invention will be described more specifically with reference to examples. After melting the steel of the component composition shown in Table 1 into a slab, it was heated to 1200 ° C. and hot-rolled to a finishing temperature of 950 ° C. and a plate thickness of 15 mm. Cooling after hot rolling was air cooling. Using the steel plate thus obtained, the base material strength and toughness were measured and the weld heat affected zone toughness was evaluated as follows.

Figure 0005699798
Figure 0005699798

[母材強度、靭性の測定]
各鋼板の1/2厚み位置で圧延方向から丸棒試験片(平行部;直径6.0mm×長さ30mm、標点間距離25mm)を採取して、JISZ 2241の要領で引張試験を行い、降伏強度;YS(MPa)、引張強度;TS(MPa)、伸び;EL(%)を測定した。そして、引張強度が590MPa以上で降伏比;YR(=YS/TS)が80%以下のものを低降伏比で高張力であると評価した。また、母材の靭性の評価としてシャルピーVノッチ試験片を圧延方向に垂直に3本採取して、JISZ 2242の要領でシャルピー衝撃試験を行い試験温度0℃での吸収エネルギー;vE0(J)および脆性破面率(%)を測定した。吸収エネルギーの3本の平均が70J以上で、3本の最低値が50J以上のものを靭性に優れると評価した(脆性破面率は特に基準を設けない参考値である)。これらの結果を表2に示す。
[Measurement of base material strength and toughness]
A round bar test piece (parallel portion: diameter 6.0 mm × length 30 mm, distance between gauge points 25 mm) is sampled from the rolling direction at a half thickness position of each steel plate, and a tensile test is performed in accordance with JISZ 2241. Yield strength; YS (MPa), tensile strength; TS (MPa), elongation; EL (%) were measured. And those having a tensile strength of 590 MPa or more and a yield ratio; YR (= YS / TS) of 80% or less were evaluated as having a low yield ratio and high tension. In addition, as an evaluation of the toughness of the base metal, three Charpy V-notch specimens were taken perpendicularly to the rolling direction and subjected to a Charpy impact test in accordance with JISZ 2242, and the absorbed energy at a test temperature of 0 ° C .; vE0 (J) and The brittle fracture surface ratio (%) was measured. It was evaluated that the average of the three absorbed energy was 70 J or more and the minimum value of 3 was 50 J or more was excellent in toughness (the brittle fracture surface ratio is a reference value with no particular standard). These results are shown in Table 2.

Figure 0005699798
Figure 0005699798

[溶接熱影響部靭性の評価]
スキンプレート材(50mm厚)とダイアフラム材(50mm厚)を組合せ、溶接入熱が550kJ/cmのエレクトロスラグ溶接を行った場合のスキンプレートのボンド近傍の熱影響部に相当する熱履歴を模擬し、圧延方向から採取した12mm厚さ×12mm幅の角棒状試験片を加熱して1420℃で1秒間保持し800〜500℃の冷却時間が510秒のサイクルで、高周波誘導加熱装置により熱処理を施した。
[Evaluation of weld heat-affected zone toughness]
Simulating the heat history corresponding to the heat affected zone near the bond of the skin plate when electroslag welding with a heat input of 550 kJ / cm is performed by combining a skin plate material (50 mm thickness) and a diaphragm material (50 mm thickness). A 12 mm thick × 12 mm wide square bar specimen taken from the rolling direction is heated and held at 1420 ° C. for 1 second and subjected to heat treatment with a high-frequency induction heating device in a cycle of 800 to 500 ° C. and a cooling time of 510 seconds. did.

そして、溶接熱履歴を模擬した熱処理を施した試験片からJIS Z 2202のVノッチ試験片を3本採取して、JISZ 2242の要領でシャルピー衝撃試験を行い、試験温度0℃での吸収エネルギー;vE(J)および脆性破面率(%)を測定した。吸収エネルギーの3本の平均が70J以上で、3本の最低値が50J以上のものを、溶接熱影響部の靭性に優れると評価した(脆性破面率は特に基準を設けない参考値である)。また、吸収エネルギーの3本の平均が100J以上で、3本の最低値が70J以上のものが溶接熱影響部の靭性が特に優れるとした。これらの結果を表3に示す Then, three V-notch test pieces of JIS Z 2202 were sampled from the test pieces subjected to heat treatment simulating the welding heat history, and subjected to the Charpy impact test according to the procedure of JISZ 2242, and the absorbed energy at the test temperature of 0 ° C .; vE 0 (J) and the brittle fracture surface ratio (%) were measured. It was evaluated that the average of three absorbed energies was 70 J or more and the minimum value of three was 50 J or more as being excellent in toughness of the weld heat affected zone (the brittle fracture surface ratio is a reference value with no particular standard) ). Further, the average of the three absorbed energy was 100 J or more, and the toughness of the weld heat-affected zone was particularly excellent when the minimum value of three was 70 J or more. These results are shown in Table 3.

Figure 0005699798
Figure 0005699798

表1において、鋼種A1〜A3、A5、A8、A14、A18〜A21、A26はCrまたは(および)Mn+0.4Cr値が本発明の範囲以外の比較例である。鋼板A4、A6、A7、A10〜A13、A16、A17、A22〜A25、A28からA32は本発明例である。鋼種A27は本発明では0.0003%以下に制限しているBを0.0017%添加した本発明の範囲外の比較例である。   In Table 1, steel types A1 to A3, A5, A8, A14, A18 to A21, and A26 are comparative examples whose Cr or (and) Mn + 0.4Cr value is outside the scope of the present invention. Steel plates A4, A6, A7, A10 to A13, A16, A17, A22 to A25, A28 to A32 are examples of the present invention. Steel type A27 is a comparative example outside the scope of the present invention in which 0.0017% of B, which is limited to 0.0003% or less in the present invention, is added.

表2から本発明例の鋼板は全てTS≧590MPaを満足しており、母材の靭性にもすぐれていることがわかる。鋼板B14、B20は成分組成が本発明の範囲外の比較例であるが、YRが80%を超えている。鋼板B27は本発明では0.0003%以下に制限しているBを0.0017%添加した例であるが、母材の靭性が低下している。   It can be seen from Table 2 that all the steel plates of the present invention satisfy TS ≧ 590 MPa and are excellent in the toughness of the base material. Steel plates B14 and B20 are comparative examples whose component compositions are outside the scope of the present invention, but YR exceeds 80%. Steel plate B27 is an example in which 0.0017% of B, which is limited to 0.0003% or less in the present invention, is added, but the toughness of the base material is reduced.

表3から明らかなように本発明例はいずれも吸収エネルギーの3本の平均が70J以上で、3本の最低値が50J以上で溶接熱影響部の靭性に優れている。しかし、比較例はいずれも溶接熱影響部の靭性が十分でない。   As is clear from Table 3, all of the examples of the present invention have an average of three absorbed energy of 70 J or more, and the minimum value of three is 50 J or more, which is excellent in the toughness of the heat affected zone. However, in all of the comparative examples, the toughness of the weld heat affected zone is not sufficient.

本発明の成分範囲である表1の鋼種A4およびA12と同じ成分組成のスラブを、1200℃に加熱し、仕上げ温度950℃で板厚15mmまで熱間圧延を行った。熱間圧延後の冷却を空冷および水冷(霧状のシャワーによるミスト冷却と、高密度高圧水流による高密度水冷の2条件)とし冷却速度の違いによる特性の違いを調べた。水冷は熱間圧延完了後、鋼板の温度が940℃になったときから100℃以下になるまで行った。このようにして得られた鋼板を用いて、実施例1と同様にして母材強度、靭性の測定と溶接熱影響部靭性の評価を行った。母材強度、靭性の結果を表4に溶接熱影響部靭性の結果を表5に示す。   A slab having the same composition as steel types A4 and A12 in Table 1, which is the component range of the present invention, was heated to 1200 ° C and hot-rolled to a sheet thickness of 15 mm at a finishing temperature of 950 ° C. The cooling after hot rolling was air-cooled and water-cooled (mist cooling by mist shower and high-density water cooling by high-density high-pressure water flow), and the difference in characteristics due to the difference in cooling rate was investigated. Water cooling was performed after the hot rolling was completed until the temperature of the steel sheet reached 940 ° C. until it reached 100 ° C. or less. Using the steel plate thus obtained, the base material strength and toughness were measured and the weld heat affected zone toughness was evaluated in the same manner as in Example 1. Table 4 shows the base metal strength and toughness results, and Table 5 shows the weld heat affected zone toughness results.

Figure 0005699798
Figure 0005699798

Figure 0005699798
Figure 0005699798

鋼板C1、C4は熱間圧延完了後、特に冷却を行わず空冷とした本発明例である。これらの本発明例はYR≦80%かつTS≧590MPaを満足しており。母材の靭性にもすぐれていることが表4からわかる。これに対し、熱間圧延完了後、水冷を行った比較例(鋼板C2、C3、C5、C6)はYRが80%を超えている。   The steel plates C1 and C4 are examples of the present invention in which after the hot rolling is completed, cooling is not performed and air cooling is performed. These inventive examples satisfy YR ≦ 80% and TS ≧ 590 MPa. Table 4 shows that the toughness of the base material is also excellent. In contrast, in the comparative examples (steel plates C2, C3, C5, C6) in which water cooling was performed after completion of hot rolling, the YR exceeded 80%.

しかし、表5から明らかなように熱間圧延完了後の水冷の有無は溶接熱影響部靭性にはほとんど影響を与えず、いずれも優れた溶接熱影響部靭性を示した。   However, as apparent from Table 5, the presence or absence of water cooling after the completion of hot rolling had little effect on the weld heat affected zone toughness, and all showed excellent weld heat affected zone toughness.

Claims (3)

質量%で、
C:0.025〜0.050%、
Si:0.01〜0.40%、
Mn:1.20〜2.50%、
P:0.003〜0.050%、
S:0.0004〜0.0100%、
Cr:1.50〜3.50%、
Mo:0.10〜0.50%、
Al:0.010〜0.050%、
Ti:0.005〜0.050%、
N:0.0015〜0.0060%を各々含有し、
Bを0.0003%以下に制限し、
Mn+0.4Crが2.50〜3.00%であり、
残部が鉄および不可避不純物である大入熱溶接熱影響部の靱性に優れた低降伏比高張力鋼材。ただし、式中Mn、Crはそれぞれの元素の含有量(質量%)を示す。
% By mass
C: 0.025 to 0.050%,
Si: 0.01-0.40%,
Mn: 1.20 to 2.50%,
P: 0.003 to 0.050%
S: 0.0004 to 0.0100%,
Cr: 1.50 to 3.50%
Mo: 0.10 to 0.50%,
Al: 0.010 to 0.050%,
Ti: 0.005 to 0.050%,
N: each containing 0.0015 to 0.0060%,
B is limited to 0.0003% or less,
Mn + 0.4Cr is 2.50 to 3.00%,
A low-yield ratio high-strength steel material with excellent toughness in the heat-affected zone of high heat input welding, with the balance being iron and inevitable impurities. However, Mn and Cr in the formula indicate the content (mass%) of each element.
更に、質量%で、
Ni:0.05〜2.00%、
Cu:0.02〜2.00%、
Nb:0.002〜0.050%、
V:0.010〜0.150% および
Ca:0.0005〜0.0100%
のうち1種以上を含有する請求項1に記載の大入熱溶接熱影響部の靱性に優れた低降伏比高張力鋼材。
Furthermore, in mass%,
Ni: 0.05-2.00%,
Cu: 0.02 to 2.00%,
Nb: 0.002 to 0.050%,
V: 0.010 to 0.150% and Ca: 0.0005 to 0.0100%
The low-yield-ratio high-tensile steel material excellent in toughness of the high heat input welding heat-affected zone according to claim 1, comprising at least one of the above.
鋼スラブを1000℃以上1250℃以下に加熱し熱間圧延し空冷することを特徴とする請求項1または2に記載の大入熱溶接熱影響部の靱性に優れた低降伏比高張力鋼材の製造方法。 The steel slab is heated to 1000 ° C. or higher and 1250 ° C. or lower, hot-rolled and air-cooled. 3. The low yield ratio high-tensile steel material having excellent toughness of the high heat input welding heat-affected zone according to claim 1 or 2. Production method.
JP2011110903A 2011-05-18 2011-05-18 Low yield ratio high strength steel with excellent toughness of heat affected zone of high heat input welding and its manufacturing method Active JP5699798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011110903A JP5699798B2 (en) 2011-05-18 2011-05-18 Low yield ratio high strength steel with excellent toughness of heat affected zone of high heat input welding and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011110903A JP5699798B2 (en) 2011-05-18 2011-05-18 Low yield ratio high strength steel with excellent toughness of heat affected zone of high heat input welding and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2012241214A JP2012241214A (en) 2012-12-10
JP5699798B2 true JP5699798B2 (en) 2015-04-15

Family

ID=47463254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011110903A Active JP5699798B2 (en) 2011-05-18 2011-05-18 Low yield ratio high strength steel with excellent toughness of heat affected zone of high heat input welding and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5699798B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5720447B2 (en) * 2011-07-11 2015-05-20 Jfeスチール株式会社 Steel sheet with excellent toughness of weld heat affected zone
JP6226163B2 (en) * 2014-10-28 2017-11-08 Jfeスチール株式会社 High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method
CN114807557B (en) * 2022-05-31 2024-03-15 江苏省沙钢钢铁研究院有限公司 Low-yield-ratio steel plate suitable for large heat input welding and production method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3739997B2 (en) * 2000-05-24 2006-01-25 株式会社神戸製鋼所 High-tensile steel plate with excellent weldability
JP3854807B2 (en) * 2001-03-08 2006-12-06 株式会社神戸製鋼所 High tensile steel plate with excellent weldability and uniform elongation
JP4252949B2 (en) * 2004-09-22 2009-04-08 株式会社神戸製鋼所 Low yield ratio high-tensile steel sheet with small acoustic anisotropy and excellent weldability, and method for producing the same
JP4437972B2 (en) * 2005-04-22 2010-03-24 株式会社神戸製鋼所 Thick steel plate with low base material toughness with little acoustic anisotropy and method for producing the same
JP5407478B2 (en) * 2009-03-26 2014-02-05 Jfeスチール株式会社 High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same

Also Published As

Publication number Publication date
JP2012241214A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP5076658B2 (en) Steel material for large heat input welding
JP5217385B2 (en) Steel sheet for high toughness line pipe and method for producing the same
JP2009270194A (en) PROCESS FOR PRODUCTION OF 780 MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATE EXCELLENT IN LOW-TEMPERATURE TOUGHNESS
JP2010229453A (en) High strength thick steel plate having excellent toughness to one layer large heat input welding affected zone and method of manufacturing the same
JP5692305B2 (en) Thick steel plate with excellent heat input welding characteristics and material homogeneity, and its manufacturing method
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JP5194572B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP5630321B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP2008075107A (en) Method for manufacturing high-strength/high-toughness steel
TWI526545B (en) Steel material for welding
JP5699798B2 (en) Low yield ratio high strength steel with excellent toughness of heat affected zone of high heat input welding and its manufacturing method
JP5999005B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JPWO2010119989A1 (en) Manufacturing method of high production type 780 MPa class high strength steel sheet with excellent low temperature toughness
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP5509945B2 (en) Steel sheet with excellent toughness of weld heat affected zone
WO2011043287A1 (en) Steel for linepipe having good strength and malleability, and method for producing the same
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JP5720447B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP5509946B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP4736374B2 (en) Steel material with super large heat input welding characteristics
JP5685960B2 (en) High strength steel with excellent toughness of weld heat affected zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150202

R150 Certificate of patent or registration of utility model

Ref document number: 5699798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250