JPH1068045A - 600n/mm2 class high tensile strength steel excellent in weld cracking sensitivity and large heat input welded joint toughness and its production - Google Patents

600n/mm2 class high tensile strength steel excellent in weld cracking sensitivity and large heat input welded joint toughness and its production

Info

Publication number
JPH1068045A
JPH1068045A JP9128688A JP12868897A JPH1068045A JP H1068045 A JPH1068045 A JP H1068045A JP 9128688 A JP9128688 A JP 9128688A JP 12868897 A JP12868897 A JP 12868897A JP H1068045 A JPH1068045 A JP H1068045A
Authority
JP
Japan
Prior art keywords
less
heat input
steel
toughness
ceq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9128688A
Other languages
Japanese (ja)
Inventor
Toshimichi Omori
俊道 大森
Hisafumi Maeda
尚史 前田
Yoshiaki Murakami
善明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9128688A priority Critical patent/JPH1068045A/en
Publication of JPH1068045A publication Critical patent/JPH1068045A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a 600N/mm<2> class high tensile strength steel excellent in large heat input weldability and weld cracking sensitivity and used for steel structures such as bridges, warehouses and buildings and to provide a method for producing the same. SOLUTION: This steel is the one having a compsn. contg., by weight, 0.06 to 0.1% C, 0.01 to 0.4% Si, 0.5 to 1.6% Mn, 0.005 to 0.05% Nb, 0.005 to 0.1% Al, 0.0005 to 0.005% N, <0.005% Ti and <0.0003% B, in which Pcm value defined by Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B is regulated to <=0.20, also, Ceq value defied by Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 is regulated to <=0.37, and the balance iron with inevitable impurities. Then, the hardness of the coarse-grained region in the heat-affected zone formed by large heat input welding is regulated to <=188Hv, and it has >=570N/mm<2> tensile strength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は橋梁、倉庫、建築物
などの鉄鋼構造物に用いられる溶接割れ感受性と大入熱
溶接継手靱性に優れた600N/mm2 級高張力鋼およ
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a 600N / mm class 2 high-strength steel excellent in weld cracking susceptibility and large heat input welded joint toughness used for steel structures such as bridges, warehouses and buildings. Things.

【0002】[0002]

【従来の技術】従来より600N/mm2 級高張力鋼の
性能向上に関する要望は多く、これまでに数多くの検討
がなされている。これらのうち、溶接割れ感受性の改良
を目的に低C化とTi−B添加を特徴とした技術として
特開昭49−37814号公報、特公平4−13406
号公報などが公知となっている。これらに代表される技
術により、溶接割れ感受性が改良された600N/mm
2 級高張力鋼が得られるが、600N/mm2 級高張力
鋼に要求される引張強さはBの活用により達成されてい
るため、化学成分や製造条件の変動による母材特性の不
安定さが懸念され、さらに溶接熱影響部の硬さ上昇が著
しい。この溶接熱影響部の硬さ上昇は一般に溶接継手部
で最も懸念されるボンド部の靱性劣化をもたらす。特に
熱影響部のミクロ組織の粗大化が著しくかつ後続パスに
よる再熱を受けない大入熱片面1パス溶接では靱性劣化
は著しく好ましくない。
2. Description of the Related Art There have been many requests for improving the performance of 600 N / mm 2 class high-tensile steel, and many studies have been made so far. Among these, Japanese Patent Application Laid-Open No. 49-37814 and Japanese Patent Publication No. 4-13406 disclose a technique characterized by low C and addition of Ti-B for the purpose of improving the susceptibility to weld cracking.
Publications are known. 600N / mm with improved weld cracking susceptibility by techniques represented by these
Class 2 high strength steel is obtained, but the tensile strength required for 600N / mm class 2 high strength steel is achieved by utilizing B, and base material properties are unstable due to fluctuations in chemical components and manufacturing conditions. And the hardness of the heat affected zone is significantly increased. This increase in the hardness of the weld heat-affected zone generally causes the toughness of the bond portion to be deteriorated most at the weld joint. In particular, in the case of single-pass welding with large heat input, in which the microstructure of the heat-affected zone is remarkably coarsened and is not subjected to reheating by a subsequent pass, deterioration of toughness is extremely undesirable.

【0003】特開平2−205627号公報は、直接焼
入法を用いて靱性の優れた600N/mm2 級高張力鋼
の製造方法を提供している。この技術はNbとBの複合
添加を必須としているため、上記と同様のB添加による
弊害が懸念される。
Japanese Patent Application Laid-Open No. Hei 2-205627 provides a method for producing a 600 N / mm 2 class high-strength steel excellent in toughness using a direct quenching method. Since this technique requires the complex addition of Nb and B, there is a concern that the same harmful effects as described above may be caused by the addition of B.

【0004】Bを添加しない技術として、特開平5−3
31538号公報、特公昭60−9086号公報、特開
平2−254119号公報、特開昭59−113120
号公報、特公昭61−12970号公報、特公平2−8
322号公報、特開昭53−119219号公報が提案
されている。
As a technique without adding B, Japanese Patent Application Laid-Open No.
31538, JP-B-60-9086, JP-A-2-254119, JP-A-59-113120
JP, JP-B-61-12970, JP-B 2-8
No. 322 and Japanese Patent Application Laid-Open No. Sho 53-119219 have been proposed.

【0005】これらのうち特開平5−331538号公
報に示される技術は500N/mm2 級非調質高張力鋼
に関するものである。また、特公昭60−9086号公
報、特開平2−254119号公報、特開昭59−11
3120号公報に示される技術はいずれも600N/m
2 級非調質高張力に関するものであり、実施例などか
らこれらの技術の適用板厚の上限はいずれも20mm程
度であることが知れる。
[0005] Among these techniques disclosed in JP-A-5-331538 relates to 500 N / mm 2 Kyuhi tempered high tensile steel. Further, Japanese Patent Publication No. 60-9086, Japanese Patent Application Laid-Open No. 2-254119, Japanese Patent Application Laid-Open No.
The technology disclosed in Japanese Patent No. 3120 is 600 N / m.
It is related to m 2 class non-finished high tensile strength, and it is known from the examples and the like that the upper limit of the applied plate thickness of each of these techniques is about 20 mm.

【0006】特公昭61−12970号公報は、低C化
とV添加および直接焼入れを組み合わせることで、溶接
割れ感受性に優れた600N/mm2 級高張力鋼を提供
しようとするものであるが、大入熱溶接性に関する技術
は全くない。
Japanese Patent Publication No. 61-12970 discloses an attempt to provide a 600 N / mm 2 class high-strength steel excellent in susceptibility to weld cracking by combining low C with addition of V and direct quenching. There is no technology regarding large heat input weldability.

【0007】特開平2−8322は、低C化とMo,N
b,Tiの複合添加を必須とし、直接焼入れ法を組み合
わせ、耐SSC性と溶接割れ感受性の改良を目的とした
600N/mm2 級高張力鋼に関する技術である。
[0007] Japanese Patent Application Laid-Open No. 2-8322 discloses low C and Mo, N
This is a technique relating to a 600 N / mm 2 class high-strength steel, which requires the combined addition of b and Ti, combines a direct quenching method, and aims to improve SSC resistance and susceptibility to weld cracking.

【0008】この公報に適用板厚に関する記載が全く無
いが、ガスタンクやラインパイプへの適用を目的として
いることから概ね50mm以下の板厚の鋼材への適用を
目的としていると推察され、大入熱溶接性に関する技術
は全くない。
[0008] Although there is no description about the applicable plate thickness in this publication, it is presumed that it is intended to be applied to steel materials having a plate thickness of approximately 50 mm or less because it is intended for use in gas tanks and line pipes. There is no technology relating to heat weldability.

【0009】また特開昭53−119219号公報は再
加熱焼入れ焼戻しプロセスにより板厚の厚い500N/
mm2 級以上の高張力鋼を提供しようとするものであ
る。この技術によれば0.02%を越える比較的多量の
Nb添加により再加熱時に未固溶Nb炭窒化物を残存せ
しめ結晶粒の粗大化を防止し主に母材の靱性を改善しよ
うとするものである。従って焼入れに際して固溶Nbの
焼入れ性向上効果および析出硬化を十分に活用できな
い。そのため実施例に見られるように強度を確保するた
めNb,Vに加えて更にNi,Moの添加が実質的に必
須となり、かつ厚肉材の板厚1/4tの位置で600N
/mm2 級の強度を確保できる発明例(供試鋼J)では
Pcm値が0.22に達し溶接性に劣る。
Japanese Unexamined Patent Publication No. Sho 53-119219 discloses a reheating, quenching and tempering process, in which a thick 500 N /
It is intended to provide high-strength steel of mm 2 class or more. According to this technique, by adding a relatively large amount of Nb exceeding 0.02%, undissolved Nb carbonitride is left at the time of reheating to prevent coarsening of crystal grains and mainly improve the toughness of the base material. Things. Therefore, at the time of quenching, the effect of improving the hardenability of solid solution Nb and precipitation hardening cannot be fully utilized. Therefore, in addition to Nb and V, addition of Ni and Mo is substantially essential in order to secure the strength as shown in the embodiment, and 600N at a position of 1 / 4t of the thick material.
In the invention example (test steel J) which can secure the strength of / mm 2 class, the Pcm value reaches 0.22 and the weldability is poor.

【0010】上述のように溶接割れ感受性に優れた60
0N/mm2 級調質型高張力鋼の従来技術はそのほとん
どがB添加による焼入れ性の確保により達成され、大入
熱溶接性については何等配慮がなされていない。
[0010] As described above, 60 having excellent weld cracking susceptibility.
Most of the prior art of 0N / mm 2 grade tempered high-strength steel is achieved by ensuring the hardenability by adding B, and no consideration is given to the large heat input weldability.

【0011】一方、大入熱溶接性の向上を図った調質型
高張力鋼の従来技術として、特開平3−162522号
公報、特開平4−228537号公報、特開昭63−1
49354号公報、特開昭60−174820号公報が
ある。これらの技術はいずれも500N/mm2 級高張
力鋼についてTi,B,Ca,Zr,REMの活用によ
り大入熱溶接性の改善を図ったものである。例えば、特
開平3−162522号公報は板厚15〜20mmの鋼
板を対象としたものであり、本発明の目的とする600
N/mm2 級調質型高張力鋼の機械的性質を満たす一部
の実施例はいずれも強度に余裕が無く、板厚20mm以
上の鋼板への適用は困難と推定される。また、特開昭6
3−149354号公報にて600N/mm2 級を得た
実施例は300〜400℃の低温で焼戻しを施したこと
によるものである。更に、これらには、いずれも溶接割
れ感受性に関する実施例は示されていない。
On the other hand, as prior arts of tempered high-strength steels having improved high heat input weldability, Japanese Patent Application Laid-Open Nos. Hei 3-162522, Hei 4-22837, and Hei 63-1 are disclosed.
49354 and JP-A-60-174820. All of these technologies are intended to improve the large heat input weldability of 500 N / mm 2 class high strength steel by utilizing Ti, B, Ca, Zr and REM. For example, JP-A-3-162522 is directed to a steel plate having a thickness of 15 to 20 mm.
Some examples satisfying the mechanical properties of the N / mm 2 class tempered type high strength steel has no margin in both strength, application to more steel plate thickness 20mm is estimated difficult. In addition, Japanese Unexamined Patent Publication
The example in which the grade of 600 N / mm 2 was obtained in JP 3-149354 A is based on tempering at a low temperature of 300 to 400 ° C. Furthermore, none of these shows examples relating to weld cracking susceptibility.

【0012】本発明は、上述の事情に鑑みてなされたも
ので、その目的とするところは、大入熱溶接性、溶接割
れ感受性にいずれも優れた600N/mm2 級調質型高
張力鋼及びその製造方法を提供することにある。
[0012] The present invention has been made in view of the above circumstances, it is an object of large heat input welding, excellent both in weld crack susceptibility was 600N / mm 2 class tempered type high strength steel And a method for manufacturing the same.

【0013】[0013]

【課題を解決するための手段】すなわち、溶接割れ感受
性を改善するためには、 Pcm=C+Si/30+Mn/20+Cu/20+N
i/60+Cr/20+Mo/15+V/10+5B で定義されるPcm値を低減することが有効である。溶
接割れ感受性を確保しつつ母材の強度を確保する有効な
手段としてB添加が考えられるが、溶接熱影響部の著し
い硬度上昇に伴う継手靱性の劣化が特に後述する大入熱
溶接継手において懸念される。Bを有効に活用するため
に従来しばしば添加されるTiは安定に母材性能を得る
ために添加しないことが好ましい。そこで、Ti,Bを
添加せずに溶接割れ感受性の改善と溶接継手の健全性の
確保を両立させつつ600N/mm2 級高張力鋼を得る
ためには従来の再加熱焼入れ焼戻しプロセスの適用では
適用可能な板厚範囲に制約を生じる懸念がある。
That is, in order to improve the susceptibility to weld cracking, Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + N
It is effective to reduce the Pcm value defined by i / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B. B addition is considered as an effective means to secure the strength of the base material while securing the weld cracking susceptibility. Is done. In order to effectively utilize B, it is preferable that Ti, which is conventionally frequently added, is not added in order to stably obtain the performance of the base material. Therefore, Ti, while both ensuring the soundness of improving the welded joint weld crack susceptibility without addition of B in order to obtain a 600N / mm 2 class high strength steel in the application of conventional reheating quenching and tempering process There is a concern that the range of applicable thickness may be restricted.

【0014】優れた大入熱溶接性を得るためには大入熱
溶接継手強度と継手靱性の確保を図らなければならな
い。大入熱溶接継手強度は従来600N/mm2 級高張
力鋼においてはCeq=C+Mn/6+Si/24+N
i/40+Cr/5+Mo/4+V/14で定義される
Ceq値を概ね0.40以上に設定することで確保され
てきた。一方、大入熱溶接継手靱性は、最も劣化が懸念
される熱影響部粗粒域について、それを再現する熱サイ
クルを施し検討した結果、Ceq値の減少が継手靱性の
改善に有効なことを明らかにした。従って従来の技術で
は600N/mm2 級高張力鋼における大入熱溶接継手
の強度と靱性の両立は困難てある。
In order to obtain excellent large heat input weldability, it is necessary to ensure high heat input welded joint strength and joint toughness. Large heat input welded joint strength is 600 N / mm 2nd class conventional high strength steel Ceq = C + Mn / 6 + Si / 24 + N
It has been ensured by setting the Ceq value defined by i / 40 + Cr / 5 + Mo / 4 + V / 14 to approximately 0.40 or more. On the other hand, the large heat input welded joint toughness was examined by applying a heat cycle to reproduce the coarse grained area in the heat-affected zone where the deterioration is most concerned. As a result, it was found that the reduction of the Ceq value was effective in improving the joint toughness. Revealed. Therefore, it is difficult to achieve both the strength and the toughness of the large heat input welded joint in the 600 N / mm 2 class high strength steel by the conventional technology.

【0015】本発明者は、大入熱溶接性および溶接割れ
感受性に優れた600N/mm2 級高張力鋼を工業的に
供給することを阻んできたこれらの課題を解決すべく鋭
意研究した結果、直接焼入れ焼戻しプロセスの適用を前
提に以下の知見を見出だした。
The inventor of the present invention has conducted intensive studies to solve these problems that have prevented the industrial supply of a 600 N / mm 2 class high-tensile steel excellent in high heat input weldability and weld cracking susceptibility. The following findings were found on the assumption that the direct quenching and tempering process was applied.

【0016】(1)化学成分をNb添加系とし、かつ直
接焼入れ法の採用により圧延加熱時に固溶させたNbに
よる焼入れ性向上効果を活用できる。これにより他の焼
入れ性確保のための合金元素添加量を削減できる。
(1) By using a Nb-added chemical component and employing a direct quenching method, the effect of improving the hardenability of Nb solid-dissolved during rolling and heating can be utilized. As a result, the amount of alloying elements added for securing other hardenability can be reduced.

【0017】(2)直接焼入れ後の焼戻し処理によりN
b炭窒化物の析出硬化を活用できる。これは焼入れ時の
冷却速度が表層側と比べて必然的に遅くなる板厚の中心
部の強度確保に有効である。即ちこれにより必要以上の
焼入れ性を確保することなく板厚中心部の強度を確保で
きる。また、大入熱溶接により熱影響部から母材部にか
けて生成する軟化域の硬度低下を抑制する効果を発現す
る。この効果は0.015%のNb添加によりCeq値
を0.04低減することに相当し、これによりCeq値
を0.40以下としても600N/mm2 級高張力鋼に
必要な継手強度を確保できる。
(2) The tempering treatment after the direct quenching
b The precipitation hardening of carbonitride can be utilized. This is effective for securing the strength at the center of the sheet thickness where the cooling rate during quenching is necessarily slower than the surface layer side. That is, it is possible to secure the strength at the central portion of the sheet thickness without securing the hardenability more than necessary. Further, an effect of suppressing a decrease in hardness in a softened region generated from the heat-affected zone to the base metal portion by large heat input welding is exhibited. This effect is equivalent to reducing the Ceq value by 0.04 by adding 0.015% of Nb, thereby securing the joint strength required for 600 N / mm 2 class high-strength steel even when the Ceq value is reduced to 0.40 or less. it can.

【0018】更に、Nb添加量が0.01%を越えれば
大入熱溶接によりボンド部の粗粒化抑制や粗粒域の領域
縮小に少なからず寄与し、また、C添加量を0.1%以
下に抑えればNb添加や増量による大入熱溶接継手靱性
の劣化を防止できる。
Further, if the amount of Nb added exceeds 0.01%, large heat input welding contributes not less to the suppression of coarse graining of the bond portion and the reduction of the area of the coarse grain region, and the amount of C added is 0.1%. %, The toughness of the large heat input welded joint due to the addition or increase of Nb can be prevented.

【0019】(3)強度を確保するための鋼板厚に応じ
た合金元素の必要添加量を把握し、かつ、大入熱溶接継
手靱性および溶接割れ感受性を阻害しないための条件を
明確にした。
(3) The required amount of alloying element in accordance with the thickness of the steel sheet to secure the strength was grasped, and conditions for preventing the large heat input welded joint toughness and susceptibility to weld cracking were clarified.

【0020】(4)上記によりB添加は不要となり、む
しろ積極的に特に大入熱溶接継手の靱性を確保するため
その混入を規制する必要がある。また、Bを有効に活用
する観点からのTi添加は必須ではなく、むしろ安定に
良好な母材性能を得る上でTiは添加しないことが好ま
しい。
(4) The above makes the addition of B unnecessary, and it is necessary to actively control the incorporation of B, especially in order to ensure the toughness of the high heat input joint. Further, from the viewpoint of effectively utilizing B, addition of Ti is not essential, but rather, it is preferable not to add Ti in order to stably obtain good base material performance.

【0021】本発明はこれらの知見に基づいてなされた
もので、その要旨は、 (1)重量%で、C:0.06〜0.1%、Si:0.
01〜0.4%、Mn:0.5〜1.6%、Nb:0.
005〜0.05%、Al:0.005〜0.1%、
N:0.0005〜0.005%、Ti<0.005
%、B<0.0003%を含み、 Pcm=C+Si/30+Mn/20+Cu/20+N
i/60+Cr/20+Mo/15+V/10+5Bで
定義されるPcm値が0.20以下、かつ、Ceq=C
+Mn/6+Si/24+Ni/40+Cr/5+Mo
/4+V/14で定義されるCeq値が0.37以下で
残部が鉄および不可避不純物よりなり、大入熱溶接によ
り生成する熱影響部粗粒域の硬さが188Hv以下で引
張強さ570N/mm2 以上を有する溶接割れ感受性と
大入熱溶接継手靱性に優れた高張力鋼。
The present invention has been made based on these findings. The gist of the present invention is as follows: (1) C: 0.06 to 0.1% by weight;
01-0.4%, Mn: 0.5-1.6%, Nb: 0.
005-0.05%, Al: 0.005-0.1%,
N: 0.0005 to 0.005%, Ti <0.005
%, B <0.0003%, Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + N
The Pcm value defined by i / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B is 0.20 or less, and Ceq = C
+ Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo
When the Ceq value defined by / 4 + V / 14 is 0.37 or less, the balance consists of iron and unavoidable impurities, and the hardness of the heat-affected zone coarse-grained region generated by large heat input welding is 188 Hv or less and the tensile strength is 570 N / High-strength steel with excellent weld cracking susceptibility and high heat input weld joint toughness of at least 2 mm2.

【0022】(2)上記の組成に、Cu:0.5%以
下、Ni:0.3%以下、Cr:0.6%以下、Mo:
0.3%以下、V:0.1%以下の1種または2種以上
を更に含む溶接割れ感受性と大入熱溶接継手靱性に優れ
た高張力鋼。
(2) Cu: 0.5% or less, Ni: 0.3% or less, Cr: 0.6% or less, Mo:
A high-strength steel excellent in weld cracking susceptibility and high heat input weld joint toughness further containing one or more of 0.3% or less and V: 0.1% or less.

【0023】(3)重量%で、C:0.06〜0.1
%、Si:0.01〜0.4%、Mn:0.5〜1.6
%、Nb:0.005〜0.05%、Al:0.005
〜0.1%、N:0.0005〜0.005%、Ti<
0.005%、B<0.0003%を含み、 Pcm=C+Si/30+Mn/20+Cu/20+N
i/60+Cr/20+Mo/15+V/10+5Bで
定義されるPcm値が0.20以下、かつ、Ceq=C
+Mn/6+Si/24+Ni/40+Cr/5+Mo
/4+V/14で定義されるCeq値が0.37以下の
鋼を熱間圧延する際、1000℃以上1250℃以下の
温度に加熱後、熱間圧延を行い、引続きAr3変態点以
上の温度から直接焼入れし、さらにAc1変態点以下の
温度で焼戻し処理を施し、大入熱溶接により生成する熱
影響部粗粒域の硬さが188Hv以下であることを特徴
とする引張強さ570N/mm2 以上の溶接割れ感受性
と大入熱溶接継手靱性に優れた高張力鋼の製造方法。
(3) C: 0.06-0.1% by weight
%, Si: 0.01 to 0.4%, Mn: 0.5 to 1.6
%, Nb: 0.005 to 0.05%, Al: 0.005
-0.1%, N: 0.0005-0.005%, Ti <
0.005%, B <0.0003%, Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + N
The Pcm value defined by i / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B is 0.20 or less, and Ceq = C
+ Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo
When hot rolling a steel having a Ceq value of 0.37 or less defined as / 4 + V / 14, the steel is heated to a temperature of 1000 ° C. or more and 1250 ° C. or less, and then hot-rolled. Direct quenching, and further tempering at a temperature not higher than the Ac1 transformation point, and the hardness of the heat-affected zone coarse-grained region generated by large heat input welding is 188 Hv or less, a tensile strength of 570 N / mm 2. A method for producing a high-strength steel having excellent weld cracking susceptibility and high heat input weld joint toughness.

【0024】(4)上記の組成に、Cu:0.5%以
下、Ni:0.3%以下、Cr:0.6%以下、Mo:
0.3%以下、V:0.1%以下の1種または2種以上
を更に含む溶接割れ感受性と大入熱溶接継手靱性に優れ
た高張力鋼の製造方法。
(4) Cu: 0.5% or less, Ni: 0.3% or less, Cr: 0.6% or less, Mo:
A method for producing a high-tensile steel excellent in weld cracking susceptibility and large heat input weld joint toughness further containing one or more of 0.3% or less and V: 0.1% or less.

【0025】(5)Ceq=C+Mn/6+Si/24
+Ni/40+Cr/5+Mo/4+V/14で定義さ
れるCeq値および、1000〜1250℃の温度範囲
に設定された加熱温度T(℃)を用いて、log{(N
b)×(C+12N/14)}=2.26−6770/
(T+273.15)の関係より計算される固溶Nb量
及び鋼中に添加された添加Nb量のうちのいずれか少な
い方を有効Nb量として、有効Nb、V含有量、目的と
する鋼板厚t(mm)を用いて、 625(有効Nb)+250V+210Ceq≧t+4
0 の関係を満たすことを特徴とする上述の引張強さ570
N/mm2 以上の溶接割れ感受性と大入熱溶接継手靱性
に優れた高張力鋼の製造方法。
(5) Ceq = C + Mn / 6 + Si / 24
Using a Ceq value defined by + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 and a heating temperature T (° C.) set in a temperature range of 1000 to 1250 ° C., log {(N
b) × (C + 12N / 14)} = 2.26-6770 /
(T + 273.15) The smaller of the amount of solid solution Nb calculated from the relationship of (T + 273.15) and the amount of added Nb added to the steel is defined as the effective Nb amount. Using t (mm), 625 (effective Nb) +250 V + 210 Ceq ≧ t + 4
0, wherein the tensile strength 570 is satisfied.
A method for producing a high-strength steel having excellent weld cracking susceptibility of N / mm 2 or more and high heat input weld toughness.

【0026】(6)熱間圧延に際して、1050℃以下
で20%以上の累積圧下率で熱間圧延を施すことを特徴
とする上述の引張強さ570N/mm2 以上の溶接割れ
感受性と大入熱溶接継手靱性に優れた高張力鋼の製造方
法である。
[0026] (6) In the hot rolling, the aforementioned tensile strength of 570N / mm 2 or more weld crack susceptibility and rafters, characterized by subjecting a hot-rolled at a cumulative reduction rate of 20% or more at 1050 ° C. or less This is a method for producing high-strength steel excellent in toughness of heat-welded joints.

【0027】[0027]

【発明の実施の形態】以下に本発明での構成要件の限定
理由等について説明する。 <C>C量0.06%未満では他の焼入れ性向上元素の
多量添加が必要となりコスト高、靱性劣化、溶接性の劣
化を招く。また、特に本発明鋼に大入熱溶接を施す場
合、C含有量が0.06%に満たないと溶接金属へのC
の希釈が少なくなり一般の溶接材料では継手強度を確保
することが困難となる。C量の上限は溶接割れ感受性の
確保のため、およびNb添加に伴う大入熱溶接継手靱性
確保のため0.1%とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the constituent elements in the present invention will be described below. <C> If the C content is less than 0.06%, it is necessary to add a large amount of other hardenability improving elements, resulting in high cost, deterioration in toughness, and deterioration in weldability. In particular, when large heat input welding is performed on the steel of the present invention, if the C content is less than 0.06%, the C content in the weld metal is reduced.
And it becomes difficult to secure joint strength with general welding materials. The upper limit of the amount of C was set to 0.1% in order to ensure weld cracking susceptibility and to ensure high heat input weld joint toughness accompanying the addition of Nb.

【0028】<Si>Siは母材強度と溶接継手強度を
確保する上で有効に働くので0.01%以上添加する。
しかし、0.4%を越える添加は溶接割れ感受性と溶接
継手靱性を劣化させる。
<Si> Since Si works effectively in securing the base metal strength and the strength of the welded joint, it is added in an amount of 0.01% or more.
However, the addition exceeding 0.4% deteriorates weld cracking susceptibility and weld joint toughness.

【0029】<Mn>Mnは母材強度と溶接継手強度を
確保する上で有効に働くので0.5%以上添加する。し
かし、1.6%を越える添加は溶接割れ感受性を劣化さ
せ、必要以上の焼入れ性をもたらし母材靱性、継手靱性
を劣化させる。
<Mn> Since Mn works effectively in securing the base metal strength and the strength of the weld joint, Mn is added in an amount of 0.5% or more. However, the addition exceeding 1.6% deteriorates the susceptibility to weld cracking, causes more hardenability than necessary, and deteriorates the base metal toughness and the joint toughness.

【0030】<Nb>Nbは母材強度と溶接継手強度を
確保するために0.005%以上添加する。しかし、
0.05%を越える添加は、溶接継手靱性を劣化させる
傾向も認められることからNb添加量の上限を0.05
%、好ましくは0.03%とする。
<Nb> Nb is added in an amount of 0.005% or more to secure the strength of the base material and the strength of the welded joint. But,
Since the addition exceeding 0.05% tends to deteriorate the weld joint toughness, the upper limit of the Nb addition amount is set to 0.05%.
%, Preferably 0.03%.

【0031】<Al>Alは鋼の脱酸のため添加され、
通常0.005%以上は含有する。また、ミクロ組織の
微細化による母材靱性の確保のために0.01%添加す
る。しかし、0.1%を越えるAl添加は母材靱性を損
なう。
<Al> Al is added for deoxidizing steel,
Usually, 0.005% or more is contained. In addition, 0.01% is added in order to secure the base material toughness due to the refinement of the microstructure. However, the addition of Al exceeding 0.1% impairs the base material toughness.

【0032】<N>Nは、Al,Nbなどと反応し析出
物を形成することでミクロ組織を微細化し、母材靱性を
向上させるため、および焼戻し時にNb,Vなどと反応
し析出硬化による強度確保のために添加する。
<N> N reacts with Al, Nb, etc. to form precipitates, thereby refining the microstructure and improving the base material toughness, and reacts with Nb, V, etc. during tempering to cause precipitation hardening. Add to ensure strength.

【0033】0.0005%未満の添加ではミクロ組織
の微細化および強度確保に必要な析出物が形成されず、
0.005%を越える添加はむしろ母材および大入熱溶
接継手の靱性を損なう。
If the addition is less than 0.0005%, precipitates required for refining the microstructure and ensuring the strength are not formed,
Additions exceeding 0.005% rather impair the toughness of the base metal and the high heat input welded joint.

【0034】<Ti,B>Tiはミクロ組織の細粒化を
通じて母材および溶接継手の靱性を改善する効果を有す
る。また、B添加鋼では、焼入れ性に有効に働くBを確
保するため積極的に添加される。しかし、本発明では溶
接熱影響部の硬化が懸念されるBを添加せずに母材強度
を確保し、特に熱影響部粗粒域の硬度低減により溶接継
手靱性を達成するため、Tiを添加する必然性はない。
むしろTi添加による母材性能の不安定さを懸念し、不
純物元素して0.005%未満に規制するが後述するN
含有量の3.4倍を下回ることが望ましい。
<Ti, B> Ti has the effect of improving the toughness of the base metal and the welded joint through refinement of the microstructure. In addition, in the B-added steel, it is added positively in order to secure B effectively acting on hardenability. However, in the present invention, Ti is added in order to secure the base metal strength without adding B, which is likely to harden the weld heat affected zone, and to achieve weld joint toughness particularly by reducing the hardness of the heat affected zone coarse grain region. You don't have to.
Rather, there is concern about the instability of the base metal performance due to the addition of Ti, and the impurity element is regulated to less than 0.005%.
Desirably, it is less than 3.4 times the content.

【0035】Bは上述の熱影響部の硬さ低減のため不純
物元素として0.0003%未満に規制しなければなら
ない。 <Cu,Ni,Cr>Cu,Ni,Crは母材および溶
接継手強度を向上させる効果を有する。Niはさらに靱
性を改善する働きを示す。しかし必要以上の添加はCe
qを増加させ大入熱溶接継手の靱性低下や製造性の劣化
を招くのでそれぞれに上限を設定した。特に、Cuの過
剰な添加は熱間圧延の低下をもたらすため0.5%以下
とする。
B must be restricted to less than 0.0003% as an impurity element in order to reduce the hardness of the heat-affected zone. <Cu, Ni, Cr> Cu, Ni, Cr have the effect of improving the strength of the base material and the weld joint. Ni further functions to improve toughness. However, more than necessary addition Ce
Since q was increased and the toughness of the large heat input welded joint and the productivity were deteriorated, the upper limit was set for each. In particular, excessive addition of Cu causes a reduction in hot rolling, so that the content is set to 0.5% or less.

【0036】<Mo>Moは母材強度、継手強度を向上
させる効果を有することから選択的に添加できる。ただ
し、溶接割れ感受性と溶接継手靱性を劣化させる傾向が
認められるため、上限を0.3%とする。ただし、必要
以上の焼入れ性を確保しない様にとの配慮から上限を
0.2%とすることが好ましい。また、添加する場合の
下限は、上記の効果を発揮させるため0.02%とする
ことが好ましい。
<Mo> Mo can be selectively added because it has the effect of improving the base metal strength and the joint strength. However, the upper limit is set to 0.3% because there is a tendency to deteriorate the weld cracking sensitivity and the weld joint toughness. However, it is preferable to set the upper limit to 0.2% in consideration of not securing the hardenability more than necessary. In addition, the lower limit in the case of adding is preferably set to 0.02% in order to exert the above effect.

【0037】<V>Vは母材強度と溶接継手強度を確保
する上で有効に働くので、選択的に0.01%以上添加
することが可能である。
<V> Since V works effectively in securing the base metal strength and the strength of the welded joint, it is possible to selectively add 0.01% or more of V.

【0038】しかし、0.1%を越える添加は溶接割れ
感受性を劣化させ、かつ母材靱性を損なう。 <P,S>P,Sは、いずれも不純物元素である。健全
な母材および溶接継手を得るためにはいずれも0.01
5%以下好ましくは0.01%以下に規制されることが
望ましい。
However, the addition exceeding 0.1% deteriorates the susceptibility to weld cracking and impairs the base material toughness. <P, S> P and S are all impurity elements. In order to obtain a sound base metal and a welded joint,
It is desirable that the content be regulated to 5% or less, preferably 0.01% or less.

【0039】<Pcm>Pcmは溶接割れ感受性を表す
指数であり、通常の環境において溶接施工時の予熱を不
要にするために0.20以下に規制する。
<Pcm> Pcm is an index indicating the susceptibility to weld cracking, and is regulated to 0.20 or less in order to eliminate the need for preheating during welding in a normal environment.

【0040】<Ceq>Ceqは従来より良く知られて
いる炭素当量値である。厚肉材を含む従来の600N/
mm2 級高張力鋼のCeq値は概ね0.40を越えた
が、本発明では先述のようにNb添加により母材強度お
よび大入熱継手強度を確保するので0.40を越えるC
eq値は必要ではなく、むしろ大入熱溶接継手靱性を確
保するためCeq値を0.37以下に好ましくは0.3
5以下に制限する。
<Ceq> Ceq is a carbon equivalent value well known conventionally. Conventional 600N / including thick material
Although the Ceq value of the mm 2 class high-strength steel generally exceeded 0.40, in the present invention, since the base material strength and the large heat input joint strength were secured by the addition of Nb as described above, the Ceq value exceeded 0.40.
The eq value is not necessary. Rather, the Ceq value is set to 0.37 or less, preferably 0.3 to secure high heat input weld joint toughness.
Limit to 5 or less.

【0041】計算式:625(有効Nb)+250V+
210Ceq≧t+40 計算式:625(有効Nb)+250V+210Ceq
は母材の板厚1/2tにおける強度を表す指数であり、
当該業者間で一般に知られる炭素当量式(Ceq)に本
発明の要であるNb,Vの寄与を加味しさらに概ね15
〜60mmまでの板厚範囲における板厚効果を考慮して
整理した数式である。尚、板厚効果とは、熱間圧延後の
直接焼入れにより鋼板をAr3変態点以上から強制冷却
する際、板厚に応じてその冷却速度が必然的に変化し、
そのため母材強度が変化することを指す。板厚と冷却速
度の関係は両対数表示において線形な関係にあるため板
厚と強度も同様な関係にて近似できる。ここでは1/2
tにおいても600N/mm2 級耐候性高張力鋼に分類
されるJIS G3114SMA570およびJIS
G3106SM570に適合する鋼板を得ることとし、
計算式の板厚の項は工業的な簡便さを図るべく板厚15
〜60mmの1/2tの強度との相関を線形として取り
扱い、計算式:625(有効Nb)+250V+210
Ceqが板厚t(mm)に40を加えた値を上回ること
とした。
Formula: 625 (effective Nb) +250 V +
210Ceq ≧ t + 40 Formula: 625 (effective Nb) + 250V + 210Ceq
Is an index representing the strength at a plate thickness of 1 / 2t of the base material,
The carbon equivalent equation (Ceq) generally known among the traders is added to the contribution of Nb and V, which is the key of the present invention, and further about 15%.
It is a numerical formula arranged in consideration of the thickness effect in the thickness range of up to 60 mm. The thickness effect means that when the steel sheet is forcibly cooled from the Ar3 transformation point or higher by direct quenching after hot rolling, the cooling rate is inevitably changed according to the sheet thickness,
This means that the base material strength changes. Since the relationship between the plate thickness and the cooling rate is a linear relationship in log-log representation, the plate thickness and the strength can be approximated by the same relationship. Here, 1/2
JIS G3114SMA570 and JIS classified as 600 N / mm 2 class weather resistant high tensile steel at t
To obtain a steel plate conforming to G3106SM570,
The term of the sheet thickness in the calculation formula is set to a sheet thickness of 15 to facilitate industrial simplicity.
The correlation with the intensity of tt of 6060 mm is treated as linear, and the calculation formula is: 625 (effective Nb) +250 V + 210
Ceq was determined to be greater than the value obtained by adding 40 to the plate thickness t (mm).

【0042】この計算式におけるNb,Vの強度上昇効
果はVの場合、V炭窒化物の析出硬化による寄与を表
し、Nbの場合はNb炭窒化物の析出硬化に加えて焼入
れ性上昇による寄与を考慮したものである。直接焼入れ
後焼戻し工程により期待されるこれらの元素の効果は、
熱間圧延前の加熱段階に於いて固溶していることが必要
である。Vは本発明の範囲において添加量全てが固溶し
得るが、Nbの場合は必ずしも全量固溶するとは限らな
い。そこで、Nbの全量固溶を確保できない場合は、l
og{(Nb)×(C+12N/14)}=2.26−
6770/(T(℃)+273.15)の関係より計算
される固溶Nb量及び鋼中に添加された添加Nb量のう
ちのいずれか少ない方を有効Nb量として、上述の計算
式を 625(有効Nb)+250V+210Ceq≧t+4
0 として、適用しなければならない。
In this formula, the effect of increasing the strength of Nb and V indicates the contribution of precipitation hardening of V carbonitride in the case of V, and the contribution of increasing hardenability in addition to precipitation hardening of Nb carbonitride in the case of Nb. Is considered. The effect of these elements expected by the tempering process after direct quenching,
It is necessary that a solid solution be formed in a heating step before hot rolling. Although all of the added amount of V can form a solid solution within the scope of the present invention, in the case of Nb, the entire amount does not always form a solid solution. Therefore, when it is not possible to secure the total solid solution of Nb,
og {(Nb) × (C + 12N / 14)} = 2.26-
The smaller of the amount of solid solution Nb calculated from the relationship of 6770 / (T (° C.) + 273.15) and the amount of added Nb added to the steel, whichever is smaller, is defined as the effective Nb amount. (Effective Nb) + 250V + 210Ceq ≧ t + 4
Must be applied as 0.

【0043】尚、本発明が対象とする板厚範囲は概ね1
5mm〜60mmの範囲である。 <熱間圧延前の加熱温度>合金元素の均質化とNbの固
溶を図るため、加熱温度は1000℃以上に設定する必
要がある。しかし、加熱温度が1250℃を越えるとミ
クロ組織の粗大化により母材の靱性が確保されなくなる
ので上限を1250℃、好ましくは1200℃、更に好
ましくは1150℃とする。
Incidentally, the range of the plate thickness targeted by the present invention is approximately 1
The range is 5 mm to 60 mm. <Heating temperature before hot rolling> The heating temperature needs to be set to 1000 ° C. or higher in order to homogenize the alloying elements and achieve a solid solution of Nb. However, if the heating temperature exceeds 1250 ° C., the toughness of the base material cannot be secured due to coarsening of the microstructure, so the upper limit is set to 1250 ° C., preferably 1200 ° C., and more preferably 1150 ° C.

【0044】<圧延条件>均一に加熱された本発明鋼を
熱間圧延する工程は、通常の条件に依って差し支えな
い。
<Rolling Conditions> The step of hot rolling the uniformly heated steel of the present invention may be performed under ordinary conditions.

【0045】母材の靱性をより安定に確保、向上させる
観点から、1050℃以下の温度域で20%以上の累積
圧下を付与することが望ましい。累積圧下を20%以上
とすることでγ粒の再結晶に伴う細粒化を達成し、母材
の靱性をより安定に確保、向上させることができる。同
じ理由から、圧延1パス毎の圧下率を5%以上、更に好
ましくは10%以上確保することが望ましい。
From the viewpoint of more stably securing and improving the toughness of the base material, it is desirable to apply a cumulative reduction of 20% or more in a temperature range of 1050 ° C. or less. By setting the cumulative reduction to 20% or more, fine graining accompanying the recrystallization of γ grains can be achieved, and the toughness of the base material can be more stably secured and improved. For the same reason, it is desirable to secure a draft of 5% or more, more preferably 10% or more for each pass of rolling.

【0046】<直接焼入れ>熱間圧延終了後、Ar3変
態点を上回る温度の鋼板を強制冷却し焼入れ処理を施す
ことが必要である。強制冷却は水等の冷却媒体を鋼板に
均一に付与し、板厚1/2tにて少なくとも1℃/se
c以上の冷却速度を達成させなければならない。
<Direct Quenching> After the completion of hot rolling, it is necessary to forcibly cool a steel sheet having a temperature higher than the Ar3 transformation point to perform a quenching treatment. In the forced cooling, a cooling medium such as water is uniformly applied to the steel sheet, and at least 1 ° C./sec at a thickness of 1/2 t.
A cooling rate of c or higher must be achieved.

【0047】<焼戻し温度>焼戻しは、溶接やSRによ
る性能変化に対する懸念を取り除くため実施されるが、
本発明ではNb炭窒化物の析出硬化による母材強度確保
という重要な意味を持つ。焼戻しは570℃以上で実施
しなければ上記の目的を達成できず、好ましくは600
℃以上で実施する。しかし、Ac1変態点を越える温度
で焼戻しを行うと強度の低下が著しく、600N/mm
2 級高張力鋼としての強度が確保されない。
<Tempering Temperature> Tempering is performed in order to eliminate concerns about performance changes due to welding and SR.
In the present invention, it has an important meaning of securing base material strength by precipitation hardening of Nb carbonitride. The above object cannot be achieved unless tempering is performed at 570 ° C. or higher.
Perform at or above ° C. However, when tempering is performed at a temperature exceeding the Ac1 transformation point, the strength is significantly reduced, and 600 N / mm.
The strength as a second grade high strength steel is not secured.

【0048】<音響異方性>音響異方性とは、鋼材の圧
延方向に平行な方向(L方向)と垂直な方向(C方向)
との音速比で定義される。熱間圧延後に当該温度にて十
分な時間が経過した場合、鋼板は再結晶し、音響異方性
はほぼ1.000〜1.005の範囲となる。一方、低
温で圧延が終了するか比較的高温でも圧延終了後速やか
に直接焼き入れした場合、鋼板は十分に再結晶せず、音
響異方性は1.005以上の値となる。本発明のような
Nb添加鋼では再結晶温度が高く、例えば1000℃以
下で20%以上の累積圧下を加える場合には、圧延能率
を阻害する低温での圧延を実施することなく、1.01
を越える程度の音響異方性が達成され、しかも低温靱性
が改善される。図4に示すように鋼板の音響異方性が
1.01を越えると低温靱性は改善される。
<Acoustic Anisotropy> Acoustic anisotropy refers to a direction (C direction) perpendicular to a direction parallel to the rolling direction of steel (L direction).
Is defined by the sound speed ratio. If sufficient time has passed at that temperature after hot rolling, the steel sheet will recrystallize and the acoustic anisotropy will be in the approximate range of 1.00 to 1.005. On the other hand, when the rolling is completed at a low temperature or directly quenched immediately after the completion of the rolling even at a relatively high temperature, the steel sheet does not sufficiently recrystallize, and the acoustic anisotropy becomes a value of 1.005 or more. In the case of the Nb-added steel as in the present invention, the recrystallization temperature is high. For example, when a cumulative reduction of 20% or more is applied at 1000 ° C. or lower, rolling at a low temperature that impairs the rolling efficiency is performed by 1.01%.
Is achieved, and the low-temperature toughness is improved. As shown in FIG. 4, when the acoustic anisotropy of the steel sheet exceeds 1.01, the low-temperature toughness is improved.

【0049】[0049]

【実施例】表1に本発明の実施例に用いた鋼の化学成分
を示す。表1に示した化学成分の鋼を溶製し、鋼塊とな
し、表2に示した製造条件にて所定の板厚に熱間圧延
後、直接焼入れし、更に焼戻し処理を施し供試鋼を得
た。尚、圧延仕上温度はいずれも850℃以上であり、
焼戻し温度は580〜680℃の範囲とした。また、一
部の供試鋼を再加熱焼入れ焼戻し処理し比較例に用い
た。
EXAMPLES Table 1 shows chemical components of steel used in Examples of the present invention. A steel having the chemical composition shown in Table 1 was melted and made into an ingot, hot-rolled to a predetermined thickness under the manufacturing conditions shown in Table 2, directly quenched, and further tempered. I got In addition, the rolling finish temperature is 850 ° C. or more in each case,
The tempering temperature was in the range of 580 to 680 ° C. Further, a part of the test steel was subjected to a reheating quenching and tempering treatment and used for a comparative example.

【0050】全ての供試鋼の板厚中央部より、引張試験
およびシャルピー衝撃試験を圧延方向と垂直な方向にて
採取し600N/mm2 級鋼としての母材の機械的性質
を評価した。その結果を表3に示す 更に、JIS Z3158に準拠して斜めY型溶接割れ
試験を、JIS Z3101に準拠して最高硬さ試験を
それぞれ実施し、溶接割れ感受性を評価した。これらの
試験はいずれも60キロ級鋼用超低水素タイプの溶接材
料を用いて、雰囲気20℃−60%、試験片初期温度2
5℃の条件で行った。大入熱溶接継手靱性は、図1に示
した熱サイクルにより劣化が最も懸念される熱影響部粗
粒域を再現し、これについてシャルピー衝撃試験を実施
し評価した。また、いくつかの供試鋼を用いて、エレク
トロガスアーク溶接により大入熱溶接継手を作製し、継
手強度と靱性が最も懸念される切欠位置をボンド部とし
たシャルピー衝撃試験を実施し、本発明の妥当性を検証
した。
A tensile test and a Charpy impact test were taken from the center of the thickness of all test steels in a direction perpendicular to the rolling direction, and the mechanical properties of the base material as a 600 N / mm 2 class steel were evaluated. The results are shown in Table 3. Further, an oblique Y-type welding crack test was carried out in accordance with JIS Z3158, and a maximum hardness test was carried out in accordance with JIS Z3101 to evaluate the welding crack susceptibility. In each of these tests, an ultra-low hydrogen type welding material for 60 kg steel was used.
The test was performed at 5 ° C. The large heat input welded joint toughness was evaluated by reproducing the coarse grain area of the heat-affected zone where deterioration is most concerned by the heat cycle shown in FIG. 1 and conducting a Charpy impact test on this. In addition, a large heat input welded joint was manufactured by electrogas arc welding using several test steels, and a Charpy impact test was performed using the notch position where the joint strength and toughness were most concerned as a bond, and the present invention was performed. Was validated.

【0051】実施例No.1はA鋼による比較例であ
る。本発明の要件であるNbを含まないA鋼の計算値
(625(有効Nb)+250V+210Ceq=7
8)は供試鋼板厚(20)に40を加えた値(60)を
上回り、そのため板厚中心部の母材の引張り強さは57
0N/mm2 を越え、また靱性も良好であった。Pcm
値は0.17と低く、Y割れ試験において溶接割れは発
生しなかった。しかし、Nbを含まないため大入熱溶接
継手の強度が570N/mm2 に満たない。
Embodiment No. 1 is a comparative example using steel A. Calculated value of steel A not containing Nb, which is a requirement of the present invention (625 (effective Nb) +250 V + 210 Ceq = 7
8) exceeds the value (60) obtained by adding 40 to the test steel plate thickness (20), so that the tensile strength of the base metal at the center of the plate thickness is 57.
It exceeded 0 N / mm 2 and the toughness was good. Pcm
The value was as low as 0.17, and no welding crack occurred in the Y crack test. However, since it does not contain Nb, the strength of the large heat input welded joint is less than 570 N / mm 2 .

【0052】実施例No.2〜10はB〜I鋼による本
発明例である。母材および再現された大入熱溶接継手の
熱影響部粗粒域の靱性は良好である。また、実際に作製
した大入熱溶接継手の性能は強度、靱性共に良好である
ことが確認された。尚、F鋼による実施例No.6,7
は適用板厚を変化させた本発明例であり、計算式(62
5(有効Nb)+250V+210Ceq)の妥当性を
示すものである。また、E鋼による実施例No.5とF
鋼によるNo.6,7の比較から、大入熱溶接継手の熱
影響部粗粒域の靱性確保の観点から、Pを0.01以下
に抑えることがより好ましいことがわかる。
Example No. 2 to 10 are examples of the present invention using BI steel. The toughness of the base metal and the reproduced heat-affected zone of the large heat input welded joint is good. In addition, it was confirmed that the performance of the large heat input welded joint actually produced was good in both strength and toughness. In addition, in Example No. No. 6,7
Is an example of the present invention in which the applied plate thickness is changed.
5 (effective Nb) +250 V + 210 Ceq). Also, in Example No. 1 using E steel. 5 and F
No. by steel From the comparison between Nos. 6 and 7, it is understood that it is more preferable to suppress P to 0.01 or less from the viewpoint of securing the toughness of the coarse grain area in the heat-affected zone of the large heat input welded joint.

【0053】実施例No.11〜14は、J,K鋼によ
る比較例である。これらの実施例はCeqが0.37を
越えるため大入熱溶接継手の熱影響部粗粒域の靱性は本
発明例に比べて劣る。尚、1000℃で加熱されたN
o.12の実施例は1100℃で加熱されたNo.11
に対して有効Nb量が減少し、その結果計算値(625
(有効Nb)+250V+210Ceq)が100に減
じたため母材強度に低下が認められる。No.13は直
接焼入れ焼戻し(DQT)プロセスに代わって再加熱焼
入れ焼戻し(QT)プロセスを適用した例であり、目標
とする母材強度が達成されない。これらはいずれも本発
明の要件である直接焼入れ焼戻しプロセスの必要性と母
材強度確保の条件を与える計算式(625(有効Nb)
+250V+210Ceq)の妥当性を示すものであ
る。
Example No. 11 to 14 are comparative examples using J and K steels. In these examples, since Ceq exceeds 0.37, the toughness of the heat-affected zone of the large heat input welded joint is inferior to that of the present invention. In addition, N heated at 1000 ° C.
o. Example No. 12 is No. 12 heated at 1100 ° C. 11
, The effective Nb amount decreases, and as a result, the calculated value (625)
(Effective Nb) + 250V + 210Ceq) was reduced to 100, and a decrease in base metal strength was observed. No. Reference numeral 13 is an example in which a reheating quenching and tempering (QT) process is applied instead of the direct quenching and tempering (DQT) process, and a target base material strength is not achieved. These are all calculated formulas (625 (effective Nb)) which give the necessity of the direct quenching and tempering process which is a requirement of the present invention and the condition for securing the base material strength.
+ 250V + 210Ceq).

【0054】実施例No.15〜17はL,M,N鋼に
よる比較例である。これらの実施例の母材の強度、靱性
は良好であるが、Nb,B,Tiを全く添加せず母材性
能を得るためPcmは0.20を越え、Ceqは0.3
8を越える。そのため最高硬さは300Hvを越え、Y
型溶接割れ試験で割れが発生しなかったものの溶接材料
を低水素系とした場合は割れが懸念され、溶接割れ感受
性は良好とはいえない。また、大入熱溶接継手の熱影響
部粗粒域の靱性は本発明例に比べて劣る。
Example No. 15 to 17 are comparative examples using L, M, and N steels. Although the strength and toughness of the base materials of these examples are good, Pcm exceeds 0.20 and Ceq is 0.3 in order to obtain base material performance without adding Nb, B, and Ti at all.
Over eight. Therefore, the maximum hardness exceeds 300Hv and Y
Although cracking did not occur in the mold welding cracking test, cracking was a concern when the welding material was made of a low hydrogen type, and the welding cracking sensitivity was not good. Further, the toughness of the heat-affected zone coarse-grained area of the large heat input welded joint is inferior to that of the present invention.

【0055】実施例No.18は本発明の特徴であるN
bを用いずにBを活用し低Pcm化と低Ceq化を図っ
たO鋼による比較例である。溶接割れ感受性は良好であ
ったが、Ceqが0.37以下であるにも拘わらず大入
熱溶接継手の熱影響部粗粒域の靱性は本発明例に比べて
劣る。
Example No. 18 is a feature of the present invention, N
This is a comparative example using O steel in which P is reduced and Ceq is reduced by utilizing B without using b. Although the weld cracking susceptibility was good, the toughness of the heat-affected zone coarse-grained region of the large heat input welded joint was inferior to that of the present invention despite the Ceq of 0.37 or less.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【表2】 [Table 2]

【0058】[0058]

【表3】 [Table 3]

【0059】次に、鋼番5E,8Gについて音響異方性
とvTsとの関係を調べた。その結果を表4に示すと共
に図4に示す。この結果から、音響異方性が1.01〜
1.035の範囲のものがvTsが低いことがわかる。
Next, the relationship between acoustic anisotropy and vTs for steel numbers 5E and 8G was examined. The results are shown in Table 4 and FIG. From this result, the acoustic anisotropy was 1.01 to
It can be seen that those having a range of 1.035 have low vTs.

【0060】[0060]

【表4】 [Table 4]

【0061】[0061]

【発明の効果】以上のように、本発明により、溶接割れ
感受性と大入熱溶接継手靱性に優れた600N/mm2
級高張力鋼およびその製造方法を提供できる。
As described above, according to the present invention, 600 N / mm 2 excellent in weld cracking susceptibility and high heat input weld joint toughness.
Grade high strength steel and a method for producing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】大入熱溶接継手熱影響部粗粒域の靱性評価のシ
ミュレーションに用いた熱サイクルを示した図。
FIG. 1 is a diagram showing a heat cycle used for a simulation of toughness evaluation in a coarse grained area of a heat-affected zone of a large heat input welded joint.

【図2】再現された熱影響部粗粒域の硬さと靱性の関係
を示した図。
FIG. 2 is a diagram showing the relationship between the reproduced hardness and toughness of a coarse grain area in the heat-affected zone.

【図3】炭素当量(Ceq)値と再現された熱影響部粗
粒域の硬さの関係を示した図。
FIG. 3 is a diagram showing a relationship between a carbon equivalent (Ceq) value and reproduced hardness of a heat-affected zone coarse grain region.

【図4】vTs(℃)と音響異方性との関係を示した
図。
FIG. 4 is a diagram showing a relationship between vTs (° C.) and acoustic anisotropy.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.06〜0.1%、S
i:0.01〜0.4%、Mn:0.5〜1.6%、N
b:0.005〜0.05%、Al:0.005〜0.
1%、N:0.0005〜0.005%、Ti<0.0
05%、B<0.0003%を含み、 Pcm=C+Si/30+Mn/20+Cu/20+N
i/60+Cr/20+Mo/15+V/10+5Bで
定義されるPcm値が0.20以下、かつ、Ceq=C
+Mn/6+Si/24+Ni/40+Cr/5+Mo
/4+V/14で定義されるCeq値が0.37以下で
残部が鉄および不可避不純物よりなり、大入熱溶接によ
り生成する熱影響部粗粒域の硬さが188Hv以下で引
張強さ570N/mm2 以上を有する溶接割れ感受性と
大入熱溶接継手靱性に優れた高張力鋼。
1. C .: 0.06 to 0.1% by weight, S
i: 0.01 to 0.4%, Mn: 0.5 to 1.6%, N
b: 0.005 to 0.05%, Al: 0.005 to 0.
1%, N: 0.0005 to 0.005%, Ti <0.0
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + N
The Pcm value defined by i / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B is 0.20 or less, and Ceq = C
+ Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo
When the Ceq value defined by / 4 + V / 14 is 0.37 or less, the balance consists of iron and unavoidable impurities, and the hardness of the heat-affected zone coarse-grained region generated by large heat input welding is 188 Hv or less and the tensile strength is 570 N / High-strength steel with excellent weld cracking susceptibility and high heat input weld joint toughness of at least 2 mm2.
【請求項2】 Cu:0.5%以下、Ni:0.3%以
下、Cr:0.6%以下、Mo:0.3%以下、V:
0.1%以下の1種または2種以上を更に含む請求項1
に記載の溶接割れ感受性と大入熱溶接継手靱性に優れた
高張力鋼。
2. Cu: 0.5% or less, Ni: 0.3% or less, Cr: 0.6% or less, Mo: 0.3% or less, V:
2. The composition according to claim 1, further comprising one or more of 0.1% or less.
High tensile strength steel with excellent weld cracking susceptibility and high heat input weld joint toughness described in 1.
【請求項3】 重量%で、C:0.06〜0.1%、S
i:0.01〜0.4%、Mn:0.5〜1.6%、N
b:0.005〜0.05%、Al:0.005〜0.
1%、N:0.0005〜0.005%、Ti<0.0
05%、B<0.0003%を含み、 Pcm=C+Si/30+Mn/20+Cu/20+N
i/60+Cr/20+Mo/15+V/10+5Bで
定義されるPcm値が0.20以下、かつ、Ceq=C
+Mn/6+Si/24+Ni/40+Cr/5+Mo
/4+V/14で定義されるCeq値が0.37以下の
鋼を熱間圧延する際、1000℃以上1250℃以下の
温度に加熱後、熱間圧延を行い、引続きAr3変態点以
上の温度から直接焼入れし、さらにAc1変態点以下の
温度で焼戻し処理を施し、大入熱溶接により生成する熱
影響部粗粒域の硬さが188Hv以下であることを特徴
とする引張強さ570N/mm2 以上の溶接割れ感受性
と大入熱溶接継手靱性に優れた高張力鋼の製造方法。
3. C: 0.06 to 0.1% by weight, S
i: 0.01 to 0.4%, Mn: 0.5 to 1.6%, N
b: 0.005 to 0.05%, Al: 0.005 to 0.
1%, N: 0.0005 to 0.005%, Ti <0.0
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + N
The Pcm value defined by i / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B is 0.20 or less, and Ceq = C
+ Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo
When hot rolling a steel having a Ceq value of 0.37 or less defined as / 4 + V / 14, the steel is heated to a temperature of 1000 ° C. or more and 1250 ° C. or less, and then hot-rolled. Direct quenching, and further tempering at a temperature not higher than the Ac1 transformation point, and the hardness of the heat-affected zone coarse-grained region generated by large heat input welding is 188 Hv or less, a tensile strength of 570 N / mm 2. A method for producing a high-strength steel having excellent weld cracking susceptibility and high heat input weld joint toughness.
【請求項4】 Cu:0.5%以下、Ni:0.3%以
下、Cr:0.6%以下、Mo:0.3%以下、V:
0.1%以下の1種または2種以上を更に含む請求項3
に記載の溶接割れ感受性と大入熱溶接継手靱性に優れた
高張力鋼の製造方法。
4. Cu: 0.5% or less, Ni: 0.3% or less, Cr: 0.6% or less, Mo: 0.3% or less, V:
4. The composition according to claim 3, further comprising one or more of 0.1% or less.
2. A method for producing a high-strength steel having excellent weld cracking susceptibility and high heat input weld joint toughness described in 1).
【請求項5】 Ceq=C+Mn/6+Si/24+N
i/40+Cr/5+Mo/4+V/14で定義される
Ceq値および、1000〜1250℃の温度範囲に設
定された加熱温度T(℃)を用いて、log{(Nb)
×(C+12N/14)}=2.26−6770/(T
+273.15)の関係より計算される固溶Nb量及び
鋼中に添加された添加Nb量のうちのいずれか少ない方
を有効Nb量として、有効Nb、V含有量、目的とする
鋼板厚t(mm)を用いて、 625(有効Nb)+250V+210Ceq≧t+4
0 の関係を満たすことを特徴とする請求項3または4に記
載の引張強さ570N/mm2 以上の溶接割れ感受性と
大入熱溶接継手靱性に優れた高張力鋼の製造方法。
5. Ceq = C + Mn / 6 + Si / 24 + N
Using a Ceq value defined by i / 40 + Cr / 5 + Mo / 4 + V / 14 and a heating temperature T (° C.) set in a temperature range of 1000 to 1250 ° C., log {(Nb)
× (C + 12N / 14)} = 2.26-6770 / (T
+273.15), the smaller of the amount of solid solution Nb and the amount of added Nb added to the steel calculated as the effective Nb amount, the effective Nb and V content, and the target steel sheet thickness t (Mm), 625 (effective Nb) +250 V + 210 Ceq ≧ t + 4
5. The method for producing a high-strength steel according to claim 3, wherein the high-strength steel has excellent weld cracking sensitivity of 570 N / mm 2 or more and high heat input weld toughness.
【請求項6】 熱間圧延に際して、1050℃以下で2
0%以上の累積圧下率で熱間圧延を施すことを特徴とす
る請求項3乃至5のいずれか1に記載の引張強さ570
N/mm2 以上の溶接割れ感受性と大入熱溶接継手靱性
に優れた高張力鋼の製造方法。
6. A hot rolling process at a temperature of 1050 ° C. or less
The tensile strength 570 according to any one of claims 3 to 5, wherein the hot rolling is performed at a cumulative rolling reduction of 0% or more.
A method for producing a high-strength steel having excellent weld cracking susceptibility of N / mm 2 or more and high heat input weld toughness.
JP9128688A 1996-06-21 1997-05-19 600n/mm2 class high tensile strength steel excellent in weld cracking sensitivity and large heat input welded joint toughness and its production Pending JPH1068045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9128688A JPH1068045A (en) 1996-06-21 1997-05-19 600n/mm2 class high tensile strength steel excellent in weld cracking sensitivity and large heat input welded joint toughness and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16197996 1996-06-21
JP8-161979 1996-06-21
JP9128688A JPH1068045A (en) 1996-06-21 1997-05-19 600n/mm2 class high tensile strength steel excellent in weld cracking sensitivity and large heat input welded joint toughness and its production

Publications (1)

Publication Number Publication Date
JPH1068045A true JPH1068045A (en) 1998-03-10

Family

ID=26464283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9128688A Pending JPH1068045A (en) 1996-06-21 1997-05-19 600n/mm2 class high tensile strength steel excellent in weld cracking sensitivity and large heat input welded joint toughness and its production

Country Status (1)

Country Link
JP (1) JPH1068045A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431610B1 (en) * 1999-12-27 2004-05-17 주식회사 포스코 Shipbuilding steel for ultra high heat input welding and manufacturing therefor
KR100489024B1 (en) * 2000-11-27 2005-05-11 주식회사 포스코 Method for manufacturing steel plate having superior toughness in weld heat-affected zone by recrystallization controlled rolling
CN102383057A (en) * 2011-10-26 2012-03-21 中国石油集团渤海石油装备制造有限公司 Low temperature-resistant K60 pipe line steel, bent pipe made by same and manufacturing method of bent pipe
CN103361554A (en) * 2012-03-29 2013-10-23 株式会社神户制钢所 Steel sheet excellent in bending workability, impact property and tensile property, and manufacturing method thereof
CN105063509A (en) * 2015-07-27 2015-11-18 武汉钢铁(集团)公司 Structural steel with yield strength of 500 MPa for bridges and production method of structural steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431610B1 (en) * 1999-12-27 2004-05-17 주식회사 포스코 Shipbuilding steel for ultra high heat input welding and manufacturing therefor
KR100489024B1 (en) * 2000-11-27 2005-05-11 주식회사 포스코 Method for manufacturing steel plate having superior toughness in weld heat-affected zone by recrystallization controlled rolling
CN102383057A (en) * 2011-10-26 2012-03-21 中国石油集团渤海石油装备制造有限公司 Low temperature-resistant K60 pipe line steel, bent pipe made by same and manufacturing method of bent pipe
CN103361554A (en) * 2012-03-29 2013-10-23 株式会社神户制钢所 Steel sheet excellent in bending workability, impact property and tensile property, and manufacturing method thereof
CN105063509A (en) * 2015-07-27 2015-11-18 武汉钢铁(集团)公司 Structural steel with yield strength of 500 MPa for bridges and production method of structural steel

Similar Documents

Publication Publication Date Title
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JPH08176659A (en) Production of high tensile strength steel with low yield ratio
JPH10298706A (en) High tensile strength steel excellent in high heat input weldability and weld crack sensitivity and its production
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP2007191785A (en) Method for manufacturing high-tensile steel material superior in weld cracking resistance
JPH1068045A (en) 600n/mm2 class high tensile strength steel excellent in weld cracking sensitivity and large heat input welded joint toughness and its production
JPS625216B2 (en)
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP3374688B2 (en) Method for producing tempered 600 N / mm2 class high strength steel excellent in weld cracking sensitivity and low-temperature toughness
JP2000192140A (en) Production of low yield ratio high tensile strength steel excellent in weld cracking sensitivity
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JP2930772B2 (en) High manganese ultra-high strength steel with excellent toughness of weld heat affected zone
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JP3503345B2 (en) High-tensile steel excellent in large heat input weldability, susceptibility to weld cracking and weather resistance and method for producing the same
JPH1017929A (en) Production of thick 600n class steel excellent in weldability and toughness in center part of plate thickness
JPH05112823A (en) Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint
JPH0735543B2 (en) Clad steel plate manufacturing method
JP2652538B2 (en) Method for producing high-strength steel with excellent weldability and low-temperature toughness
JPH08176731A (en) High tensile steel and production thereof
JP3474954B2 (en) High tensile steel and method for producing the same
JPH09176783A (en) High tensile strength steel excellent in weldability and atmospheric corrosion resistance and its production
JP3855479B2 (en) Manufacturing method of high-tensile steel with excellent toughness and arrestability
JP3312516B2 (en) Method for producing high strength steel excellent in weld cracking susceptibility, large heat input weldability and acoustic anisotropy
JPH06145787A (en) Production of high tensile strength steel excellent in weldability

Legal Events

Date Code Title Description
FPAY Renewal fee payment

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20081219

EXPY Cancellation because of completion of term
FPAY Renewal fee payment

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20081219