JPH09176783A - High tensile strength steel excellent in weldability and atmospheric corrosion resistance and its production - Google Patents

High tensile strength steel excellent in weldability and atmospheric corrosion resistance and its production

Info

Publication number
JPH09176783A
JPH09176783A JP33705295A JP33705295A JPH09176783A JP H09176783 A JPH09176783 A JP H09176783A JP 33705295 A JP33705295 A JP 33705295A JP 33705295 A JP33705295 A JP 33705295A JP H09176783 A JPH09176783 A JP H09176783A
Authority
JP
Japan
Prior art keywords
steel
strength
weldability
less
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33705295A
Other languages
Japanese (ja)
Inventor
Toshimichi Omori
俊道 大森
Hisafumi Maeda
尚史 前田
Hiroaki Tsukamoto
裕昭 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP33705295A priority Critical patent/JPH09176783A/en
Publication of JPH09176783A publication Critical patent/JPH09176783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a 600N/mm<2> class high tensile strength steel used for iron and steel structures, such as bridge, warehouse, and building, and excellent in weldability and atmospheric corrosion resistance and to provide its production method. SOLUTION: This steel has a composition which consists of, by weight, 0.06-0.1% C, 0.01-0.4% Si, 0.5-1.4% Mn, 0.2-0.5% Cu, 0.05-0.3% Ni, 0.3-0.8% Cr, 0.005-0.05% Nb, 0.005-0.1% Al, 0.0005-0.008% N, <0.005% Ti, <0.0003% B, and the balance iron with inevitable impurities and in which the value of Pcm, represented by Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B, is regulated to <=0.21. This steel has >=570N/mm<2> tensile strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は橋梁、倉庫、建築物など
の鉄鋼構造物に用いられる溶接性と耐候性に優れた60
0N/mm2 級高張力鋼およびその製造方法に関する。
FIELD OF THE INVENTION The present invention is used for steel structures such as bridges, warehouses and buildings, and has excellent weldability and weather resistance.
The present invention relates to a 0 N / mm 2 class high-strength steel and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来より600N/mm2 級高張力鋼の
性能向上に関する要望は多く、これまでに数多くの検討
がなされている。これらのうち、溶接割れ感受性の改良
を目的に低C化とTi−B添加を特徴とした技術として
特開昭49-37814号公報、特公平4-13406 号公報などが公
知となっている。これらに代表される技術により、溶接
割れ感受性が改良された600N/mm2 級高張力鋼が
得られるが、600N/mm2 級高張力鋼に要求される
引張強さはBの活用により達成されているため、化学成
分や製造条件の変動による母材特性の不安定さが懸念さ
れ、さらに溶接熱影響部の硬さ上昇が著しい。この溶接
熱影響部の硬さ上昇は一般に溶接継手部で最も懸念され
るボンド部の靱性劣化をもたらすため好ましくない。
2. Description of the Related Art There have been many requests for improving the performance of 600 N / mm 2 class high-tensile steel, and many studies have been made so far. Among these, Japanese Patent Laid-Open No. 49-37814 and Japanese Patent Publication No. 4-13406 are known as techniques characterized by lowering C and adding Ti-B for the purpose of improving susceptibility to welding cracks. By these typified technologies, a 600 N / mm 2 class high strength steel with improved weld cracking susceptibility can be obtained, but the tensile strength required for 600 N / mm 2 class high strength steel is achieved by utilizing B. Therefore, there is a concern that the properties of the base metal may be unstable due to changes in the chemical composition and manufacturing conditions, and the hardness of the heat affected zone is significantly increased. This increase in the hardness of the heat-affected zone of the weld generally causes the deterioration of the toughness of the bond portion, which is the most concerned in the welded joint portion, and is not preferable.

【0003】特開平2-205627号公報は、直接焼入法を用
いて靱性の優れた600N/mm級高張力鋼の製造方
法を提供している。この技術はNbとBの複合添加を必
須としているため、上記と同様のB添加による弊害が懸
念される。
Japanese Unexamined Patent Publication No. 2-205627 provides a method for producing a 600 N / mm 2 class high strength steel having excellent toughness by using a direct quenching method. Since this technique requires the complex addition of Nb and B, there is a concern that the same harmful effects as described above may be caused by the addition of B.

【0004】Bを添加しない技術として、特開平5−3
31538号公報、特公昭60-9086 号公報、特開平2-25
4119号公報、特開昭59-113120 号公報、特公昭61-12970
号公報、特公平2-8322号公報、特開昭53-119219 号公報
が提案されている。
As a technique without adding B, Japanese Patent Application Laid-Open No.
No. 31538, Japanese Patent Publication No. 60-9086, and Japanese Patent Laid-Open No. 2-25
4119, JP 59-113120, JP 61-12970
Japanese Patent Publication No. 2-8322 and Japanese Patent Publication No. 53-119219 have been proposed.

【0005】これらのうち特開平5-331538号公報に示さ
れる技術は500N/mm2 級非調質高張力鋼に関する
ものである。また、特公昭60-9086 号公報、特開平2-25
4119号公報、特開昭59-113120 号公報に示される技術は
いずれも600N/mm2 級非調質高張力に関するもの
であり、実施例などからこれらの技術の適用板厚の上限
はいずれも20mm程度であることが知れる。
Of these, the technique disclosed in Japanese Patent Laid-Open No. 5-331538 relates to a 500 N / mm 2 grade non-heat treated high strength steel. In addition, Japanese Patent Publication No. 60-9086,
The techniques disclosed in Japanese Patent No. 4119 and Japanese Patent Laid-Open No. 59-113120 are all related to 600 N / mm 2 class non-heat treated high tension, and the upper limits of the plate thickness to which these techniques are applied are all from the examples. It is known to be about 20 mm.

【0006】特公昭61-12970号公報は、低C化とV添加
および直接焼入れを組み合わせることで、溶接割れ感受
性に優れた600N/mm2 級高張力鋼を提供しようと
するものであるが、30mmを越える板厚への提供に関
する記載は全く無い。
Japanese Patent Publication No. 61-12970 discloses an attempt to provide a 600 N / mm 2 class high-strength steel excellent in weld cracking susceptibility by combining reduction of C, addition of V and direct quenching. There is no description regarding provision for plate thicknesses exceeding 30 mm.

【0007】特開平2-8322号公報は、低C化とMo,N
b,Tiの複合添加を必須とし、直接焼入れ法を組み合
わせ、耐SSC性と溶接割れ感受性の改良を目的とした
600N/mm2 級高張力鋼に関する技術である。明細
書に適用板厚に関する記載が全く無いが、ガスタンクや
ラインパイプへの適用を目的としていることから概ね5
0mm以下の板厚の鋼材への適用を目的としていると推
察される。
Japanese Unexamined Patent Publication (Kokai) No. 2-8322 discloses reduction of C and Mo, N
This is a technique relating to a 600 N / mm 2 class high-strength steel, which requires the combined addition of b and Ti, combines a direct quenching method, and aims to improve SSC resistance and susceptibility to weld cracking. Although there is no description about the applicable plate thickness in the specification, it is generally 5 because it is intended for application to gas tanks and line pipes.
It is presumed that the purpose is to apply to steel materials having a plate thickness of 0 mm or less.

【0008】また特開昭53-119219 号公報は再加熱焼入
れ焼戻しプロセスにより板厚の厚い500N/mm2
以上の高張力鋼を提供しようとするものである。この技
術によれば0.02%を越える比較的多量のNb添加に
より再加熱時に未固溶Nb炭窒化物を残存せしめ結晶粒
の粗大化を防止し主に母材の靱性を改善しようとするも
のである。従って焼入れに際して固溶Nbの焼入れ性向
上効果および析出硬化を十分に活用できない。そのため
実施例に見られるように強度を確保するためNb,Vに
加えて更にNi,Moの添加が実質的に必須となり、か
つ板厚1/4tの位置で600N/mm2 級の強度を確
保できる発明例(供試鋼J)ではPcm値が0.21を
上回り溶接性に劣る。以上の他に特開昭60−1748
20号公報の実施例の中に一例のみ600N/mm2
高張力鋼を示唆する発明例が示されているが、これは化
学成分から明らかなようにBの活用により成し得たもの
である。
Further, JP-A-53-119219 is intended to provide a high-strength steel having a thick plate thickness of 500 N / mm 2 grade or more by a reheating quenching and tempering process. According to this technique, by adding a relatively large amount of Nb exceeding 0.02%, undissolved Nb carbonitride is left at the time of reheating to prevent coarsening of crystal grains and mainly improve the toughness of the base material. Things. Therefore, at the time of quenching, the effect of improving the hardenability of solid solution Nb and precipitation hardening cannot be fully utilized. Therefore, as seen in the examples, in order to secure the strength, it is essentially necessary to add Ni and Mo in addition to Nb and V, and to secure the strength of 600 N / mm 2 class at the position where the plate thickness is 1/4 t. In a possible invention example (test steel J), the Pcm value exceeds 0.21 and the weldability is poor. In addition to the above, JP-A-60-1748
In the examples of JP-A-20, only one example is an invention example suggesting a 600 N / mm 2 class high-strength steel, but it is possible to make it by utilizing B as is clear from the chemical composition. is there.

【0009】上述のように溶接割れ感受性に優れた60
0N/mm2 級調質型高張力鋼の従来技術はそのほとん
どがB添加による焼入れ性の確保により達成され、耐候
性については何等配慮がなされていない。
[0009] As described above, 60 having excellent weld cracking susceptibility.
Most of the prior art of 0N / mm 2 grade tempered high-strength steel was achieved by ensuring the hardenability by adding B, and no consideration was given to the weather resistance.

【0010】一方、耐候性に優れた鋼材として、特開平
5-117745号公報、特開平6-316723号公報が挙げられる。
特開平5-117745号公報は490N/mm2 級の建築構造
用高張力鋼の製造方法に関する技術であり、耐火性能に
優れることを特徴とし、特開平6-316723号公報は更に優
れたガス切断性を付与させた技術である。
On the other hand, as a steel material having excellent weather resistance, Japanese Patent
Examples include 5-117745 and JP-A-6-316723.
Japanese Unexamined Patent Publication No. Hei 5-117745 is a technology relating to a method for producing 490 N / mm 2 class high-strength steel for building structures, which is characterized by having excellent fire resistance performance, and Japanese Unexamined Patent Publication No. Hei 6-316723 is more excellent in gas cutting. It is a technology that imparts sex.

【0011】即ち、溶接性と耐候性に優れた600N/
mm2 級調質型高張力鋼は現在までに提供されていな
い。本発明は,溶接性と耐候性の双方に優れた600N
/mm2 級調質型高張力鋼及びその製造方法を提供する
ことを目的とする。
That is, 600 N / which is excellent in weldability and weather resistance.
mm 2 grade tempered high strength steel has not been offered to date. The present invention is 600N which is excellent in both weldability and weather resistance.
/ Mm 2 class tempered high-strength steel and its manufacturing method.

【0012】[0012]

【課題を解決するための手段】まず,溶接割れ感受性を
改善するために、 Pcm=C+Si/30+Mn/20+Cu/20+N
i/60+Cr/20+Mo/15+V/10+5B で定義されるPcm値を低減することが有効である。溶
接割れ感受性を確保しつつ母材の強度を確保する有効な
手段としてB添加が考えられるが、溶接熱影響部の著し
い硬度上昇に伴う継手靱性の劣化が懸念される。Bを有
効に活用するために従来しばし添加されるTiは安定に
母材性能を得るために添加しないことが好ましい。そこ
で、Ti,Bを添加せずに溶接割れ感受性の改善と溶接
継手の健全性の確保を両立させつつ600N/mm2
高張力鋼を得るためには従来の再加熱焼入れ焼戻しプロ
セスの適用では板厚の制約が生じる懸念がある。
First, in order to improve the weld crack susceptibility, Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + N
It is effective to reduce the Pcm value defined by i / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B. Although addition of B can be considered as an effective means for securing the strength of the base material while securing the susceptibility to welding cracks, there is a concern that the joint toughness may deteriorate due to a significant increase in the hardness of the weld heat affected zone. It is preferable not to add Ti, which has been conventionally added for a long time to effectively utilize B, in order to stably obtain the base material performance. Therefore, in order to obtain 600 N / mm 2 class high-strength steel while simultaneously improving the weld crack susceptibility and ensuring the soundness of the welded joint without adding Ti and B, it is necessary to apply the conventional reheating quenching and tempering process. There is a concern that the plate thickness may be restricted.

【0013】また、耐候性を確保するためには、JIS
G3114に示されるように、Cu,Cr,Niの添
加が必要であるが、これらの合金添加はPcm値の増大
を招き、溶接割れ感受性を損なう。他の添加元素を低減
すれば溶接割れ感受性を損なわないことが可能である
が、引張強さ570N/mm2 以上を確保することが困
難になる。
In order to ensure weather resistance, JIS
As shown in G3114, it is necessary to add Cu, Cr, and Ni. However, the addition of these alloys causes an increase in the Pcm value and impairs the weld cracking susceptibility. If other added elements are reduced, it is possible not to impair the weld cracking susceptibility, but it becomes difficult to secure a tensile strength of 570 N / mm 2 or more.

【0014】そこで、本発明は、直接焼入れ焼戻しプロ
セスの適用を前提に下記(1) 〜(4)の知見に基づいて完
成されたものである。 (1) 直接焼入れ法の採用により圧延加熱時に固溶させた
Nbによる焼入れ性向上効果を活用できる。これにより
他の焼入れ性確保のための合金元素添加量を削減でき
る。またNbは炭化物を微細分散化する作用があり厚肉
材の1/2t部の靱性確保に極めて有効である。
Therefore, the present invention has been completed based on the knowledge of the following (1) to (4) on the assumption that the direct quenching and tempering process is applied. (1) By adopting the direct quenching method, it is possible to utilize the effect of improving the hardenability by the Nb dissolved during rolling and heating. As a result, the amount of alloying elements added for securing other hardenability can be reduced. Further, Nb has a function of finely dispersing the carbide, and is extremely effective in securing the toughness of the 1 / 2t part of the thick material.

【0015】(2) 直接焼入れ後の焼戻し処理によりNb
炭窒化物の析出硬化を活用できる。これは特に焼入れ時
の冷却速度が表層側と比べて必然的に遅くなる板厚の中
心部の強度確保に有効である。即ちこれにより必要以上
の焼入れ性を確保することなく板厚中心部の強度を確保
できる。
(2) Nb is obtained by tempering treatment after direct quenching.
The precipitation hardening of carbonitrides can be utilized. This is particularly effective for securing the strength of the central portion of the plate thickness where the cooling rate during quenching is necessarily slower than that on the surface side. That is, it is possible to secure the strength at the central portion of the sheet thickness without securing the hardenability more than necessary.

【0016】(3) Nb,Vといった析出硬化元素の寄与
を含めて、耐候性確保のために必要なCu,Cr,Ni
添加を前提に強度を確保するための鋼板厚に応じた合金
元素の必要添加量を把握し、溶接割れ感受性を阻害しな
いための条件を明確にした。
(3) Including the contribution of precipitation hardening elements such as Nb and V, Cu, Cr and Ni necessary for ensuring weather resistance.
Assuming the addition, the necessary addition amount of alloying elements according to the steel plate thickness to secure the strength was grasped, and the conditions for not inhibiting weld crack susceptibility were clarified.

【0017】(4) 上記によりB添加は不要となり、むし
ろ積極的に溶接継手の健全性を確保するためその混入を
規制する必要がある。また、Bを有効に活用する観点か
らのTi添加は必須ではなく、むしろ安定に良好な母材
性能を得る上でTiは添加しないことが好ましい。
(4) From the above, the addition of B is not necessary, but rather it is necessary to positively regulate the mixture thereof in order to ensure the soundness of the welded joint. Further, from the viewpoint of effectively utilizing B, addition of Ti is not essential, but rather, it is preferable not to add Ti in order to stably obtain good base material performance.

【0018】これら知見に基づく第一の発明は、重量%
で、C:0.06〜0.1%、Si:0.01〜0.4
%、Mn:0.5〜1.4%、Cu:0.2〜0.5
%、Ni:0.05〜0.3%、Cr:0.3〜0.8
%、Nb:0.005〜0.05%、Al:0.005
〜0.1%、N:0.0005〜0.008%、Ti<
0.005%、B<0.0003%,選択的に添加する
Mo:0.15%以下、V:0.1%以下を含み、Pc
m=C+Si/30+Mn/20+Cu/20+Ni/
60+Cr/20+Mo/15+V/10+5Bで定義
されるPcm値が0.21以下で、残部が鉄および不可
避不純物よりなる引張強さ570N/mm2 以上を有す
る溶接性と耐候性に優れた高張力鋼である。
The first invention based on these findings is weight%
C: 0.06 to 0.1%, Si: 0.01 to 0.4
%, Mn: 0.5 to 1.4%, Cu: 0.2 to 0.5
%, Ni: 0.05 to 0.3%, Cr: 0.3 to 0.8
%, Nb: 0.005 to 0.05%, Al: 0.005
~ 0.1%, N: 0.0005 to 0.008%, Ti <
0.005%, B <0.0003%, selectively added Mo: 0.15% or less, V: 0.1% or less, Pc
m = C + Si / 30 + Mn / 20 + Cu / 20 + Ni /
60 + Cr / 20 + Mo / 15 + V / 10 + 5B with a Pcm value of 0.21 or less and the balance being iron and unavoidable impurities with a tensile strength of 570 N / mm 2 or more, which is a high-strength steel excellent in weldability and weather resistance. is there.

【0019】第二の発明は、重量%で、C:0.06〜
0.1%、Si:0.01〜0.4%、Mn:0.5〜
1.4%、Cu:0.2〜0.5%、Ni:0.05〜
0.3%、Cr:0.3〜0.8%、Nb:0.005
〜0.05%、Al:0.005〜0.1%、N:0.
0005〜0.008%、Ti<0.005%、B<
0.0003%,選択的に添加するMo:0.15%以
下、V:0.1%以下をさらに含み、Pcm=C+Si
/30+Mn/20+Cu/20+Ni/60+Cr/
20+Mo/15+V/10+5Bで定義されるPcm
値が0.21以下の鋼を熱間圧延する際、1000℃以
上1250℃以下の温度に加熱後、所定の板厚で熱間圧
延を行い、引続きAr3 変態点以上の温度から直接焼入
れし、さらにAc1 変態点以下の温度で焼戻し処理を施
すことを特徴とする引張強さ570N/mm2以上の溶
接性と耐候性に優れた高張力鋼の製造方法である。
The second invention is, in% by weight, C: 0.06 to.
0.1%, Si: 0.01 to 0.4%, Mn: 0.5 to
1.4%, Cu: 0.2 to 0.5%, Ni: 0.05 to
0.3%, Cr: 0.3 to 0.8%, Nb: 0.005
-0.05%, Al: 0.005-0.1%, N: 0.
0005-0.008%, Ti <0.005%, B <
0.0003%, Mo: 0.15% or less selectively added, V: 0.1% or less further included, Pcm = C + Si
/ 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr /
Pcm defined by 20 + Mo / 15 + V / 10 + 5B
When steel with a value of 0.21 or less is hot-rolled, it is heated to a temperature of 1000 ° C. or higher and 1250 ° C. or lower, then hot-rolled with a predetermined plate thickness, and then directly quenched from a temperature of Ar 3 transformation point or higher. Further, the present invention is a method for producing a high-strength steel excellent in weldability and tensile strength of 570 N / mm 2 or more, which is characterized by performing tempering treatment at a temperature of Ac 1 transformation point or lower.

【0020】第三の発明は、上記高張力鋼の製造方法に
おいて、Ceq=C+Mn/6+Si/24+Ni/4
0+Cr/5+Mo/4+V/14で定義されるCeq
値および、1000〜1250℃の温度範囲に設定され
た加熱温度Tを用いて、log{(Nb)×(C+12
N/14)}=2.26−6770/(T+273.1
5)の関係より計算される固溶Nb量を有効Nb量とし
て、有効Nb,V含有量、目的とする鋼板厚t(mm)
を用いて、 800(有効Nb)+320V+270Ceq≧t+6
4 の関係を満たすことを特徴とする引張強さ570N/m
2 以上の溶接性と耐候性に優れた高張力鋼の製造方法
である。
A third aspect of the present invention is the method for producing high-strength steel described above, wherein Ceq = C + Mn / 6 + Si / 24 + Ni / 4.
Ceq defined by 0 + Cr / 5 + Mo / 4 + V / 14
Value and the heating temperature T set in the temperature range of 1000 to 1250 ° C., log {(Nb) × (C + 12
N / 14)} = 2.26-6770 / (T + 273.1)
The amount of solid solution Nb calculated from the relationship of 5) is taken as the effective Nb amount, the effective Nb and V contents, and the target steel plate thickness t (mm)
800 (effective Nb) + 320V + 270Ceq ≧ t + 6
4 tensile strength 570 N / m characterized by satisfying the relationship
It is a method for producing a high-strength steel excellent in weldability and weather resistance of m 2 or more.

【0021】第四の発明は、上記高張力鋼の製造方法に
おいて、熱間圧延に際して、1050℃以下で20%以
上の累積圧下率で熱間圧延を施すことを特徴とする引張
強さ570N/mm2 以上の溶接性と耐候性に優れた高
張力鋼の製造方法である。なお、Nb全量固溶を確保で
きる場合は、有効Nb量の計算は必要なく、有効Nb量
=Nb量となる。
In a fourth aspect of the present invention, in the method for producing high-strength steel, hot rolling is performed at a cumulative rolling reduction of 20% or more at 1050 ° C. or less and a tensile strength of 570 N / It is a method for producing high-strength steel having excellent weldability of mm 2 or more and excellent weather resistance. In addition, when it is possible to secure the total solid solution of Nb, it is not necessary to calculate the effective Nb amount, and the effective Nb amount = Nb amount.

【0022】[0022]

【発明の実施の形態】以下に本発明鋼の添加元素等の添
加理由,限定理由について説明する。 <C>C量0.06%未満では焼入れ性向上元素の多量
添加が必要となりコスト高、靱性劣化、溶接性の劣化を
招く。また、特に本発明鋼に大入熱溶接を施す場合、C
含有量が0.06%に満たないと溶接金属へのCの希釈
が少なくなり一般の溶接材料では継手強度を確保するこ
とが困難となる。C量の上限は溶接割れ感受性の確保の
ため0.1%である。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for adding and limiting elements such as additive elements of the steel of the present invention will be described below. If the amount of <C> C is less than 0.06%, it is necessary to add a large amount of a hardenability improving element, resulting in high cost, deterioration of toughness, and deterioration of weldability. Further, particularly when the steel of the present invention is subjected to high heat input welding, C
If the content is less than 0.06%, the dilution of C into the weld metal will be small, and it will be difficult to secure the joint strength with general welding materials. The upper limit of the C content is 0.1% in order to secure susceptibility to weld cracking.

【0023】<Si>Siは母材強度と溶接継手強度を
確保する上で有効に働くので0.01%以上添加する。
しかし、0.4%を越える添加は溶接割れ感受性と溶接
継手靱性を劣化させる。
<Si> Si effectively acts to secure the base metal strength and the weld joint strength, so 0.01% or more is added.
However, the addition exceeding 0.4% deteriorates weld cracking susceptibility and weld joint toughness.

【0024】<Mn>Mnは母材強度と溶接継手強度を
確保する上で有効に働くので0.5%以上添加する。し
かし、1.4%を越える添加は溶接割れ感受性を劣化さ
せ、必要以上の焼入れ性をもたらし母材靱性を劣化させ
る。
<Mn> Mn works effectively to secure the strength of the base metal and the strength of the welded joint, so 0.5% or more is added. However, addition of more than 1.4% deteriorates the weld cracking susceptibility, causes excessive hardenability, and deteriorates the base material toughness.

【0025】<Mo>Moは母材強度と溶接継手強度、
更に耐候性を確保する上で有効に働くので選択的に添加
することが可能である。ただし、溶接割れ感受性と溶接
継手靱性を劣化させる傾向が認めら、また母材の焼入性
を不必要に高めることによる靱性の劣化につながるため
上限を0.15%とするが、必要以上の焼入れ性を確保
しないようにとの配慮から上限を0.1%とすることが
好ましい。また、その下限は上記効果を発揮させるため
に0.02%とすることが好ましい。
<Mo> Mo is the base material strength and weld joint strength,
Further, since it works effectively in securing weather resistance, it can be selectively added. However, the upper limit is set to 0.15% because the tendency to deteriorate the weld cracking susceptibility and the toughness of the welded joint is recognized, and the toughness is deteriorated by unnecessarily increasing the hardenability of the base metal. It is preferable to set the upper limit to 0.1% in consideration of not ensuring hardenability. Further, the lower limit thereof is preferably 0.02% in order to exert the above effects.

【0026】<Nb>Nbは上述の効果を得るために
0.005%以上添加する。しかし、0.05%を越え
る添加は、溶接継手靱性を劣化させる傾向も認められる
ことからNb添加量の上限を0.05%、好ましくは
0.03%とする。
<Nb> Nb is added in an amount of 0.005% or more in order to obtain the above effects. However, since the addition of more than 0.05% tends to deteriorate the weld joint toughness, the upper limit of the Nb addition amount is set to 0.05%, preferably 0.03%.

【0027】<V>Vは母材強度と溶接継手強度を確保
する上で有効に働くので、選択的に0.01%以上添加
することが可能である。
<V> V works effectively to secure the strength of the base metal and the strength of the welded joint, so that 0.01% or more can be selectively added.

【0028】しかし、0.1%を越える添加は溶接割れ
感受性を劣化させ、かつ母材靱性を損なう。 <Al>Alは鋼の脱酸のため添加され、通常0.00
5%以上は含有する。また、ミクロ組織の微細化による
母材靱性の確保のために0.01%添加する。しかし、
0.1%を越えるAl添加は母材靱性を損なう。
However, the addition of more than 0.1% deteriorates the weld cracking susceptibility and impairs the base metal toughness. <Al> Al is added for deoxidation of steel, usually 0.00
5% or more is contained. In addition, 0.01% is added in order to secure the base material toughness due to the refinement of the microstructure. But,
Addition of Al in excess of 0.1% impairs base material toughness.

【0029】<Ti,B>一般に、Tiはミクロ組織の
細粒化を通じて母材および溶接継手の靱性を改善する効
果を有する。また、B添加鋼では、焼入れ性に有効に働
くBを確保するためしばし積極的に添加される。
<Ti, B> In general, Ti has the effect of improving the toughness of the base material and the welded joint by refining the microstructure. Further, in the B-added steel, it is often added positively in order to secure B that works effectively for hardenability.

【0030】しかし、本発明では、溶接熱影響部の硬化
が懸念されるBを添加せずに母材強度を確保し、特に熱
影響部粗粒域の硬度低減により溶接継手靱性を達成する
ため、Tiを添加する必然性はない。むしろTi添加に
よる母材性能の不安定さを懸念し、不純物元素として
0.005%未満に規制するが、後述するN含有量の
3.4倍を下回ることが望ましい。
However, in the present invention, the strength of the base metal is ensured without adding B, which may cause the hardening of the weld heat affected zone, and in particular the weld joint toughness is achieved by reducing the hardness in the coarse grained zone of the heat affected zone. , Ti need not be added. Rather, there is a concern about instability of the base material performance due to the addition of Ti, and the content of N is regulated to less than 0.005% as an impurity element, but it is preferably less than 3.4 times the N content described below.

【0031】Bは上述の熱影響部の硬さ低減のため不純
物元素として0.0003%未満に規制しなければなら
ない。 <N>Nは、Al,Nbなどと反応し析出物を形成する
ことでミクロ組織を微細化し、母材靱性を向上させるた
め、および焼戻し時にNb,Vなどと反応し析出硬化に
よる強度確保のために添加する。
B must be regulated to less than 0.0003% as an impurity element to reduce the hardness of the heat-affected zone. <N> N reacts with Al, Nb, etc. to form a precipitate, thereby making the microstructure finer and improving the base material toughness, and reacting with Nb, V, etc. during tempering to secure the strength by precipitation hardening. To add.

【0032】0.0005%未満の添加ではミクロ組織
の微細化および強度確保に必要な析出物が形成されず、
0.008%を越える添加はむしろ母材および溶接継手
の靱性を損なう。
If the addition is less than 0.0005%, precipitates required for refining the microstructure and ensuring the strength are not formed,
Addition in excess of 0.008% rather impairs the toughness of the base metal and the welded joint.

【0033】<P,S>P,Sは、いずれも不純物元素
であるが、Pについては耐候性を向上させる効果を有す
る。しかし、健全な母材および溶接継手を得るためには
いずれも0.015%以下好ましくは0.01%以下に
規制されることが望ましい。
<P, S> P and S are all impurity elements, but P has the effect of improving weather resistance. However, in order to obtain a sound base metal and a welded joint, it is desirable that both are controlled to 0.015% or less, preferably 0.01% or less.

【0034】<Cu、Ni、Cr>Cu、Ni、Crは
母材および溶接継手強度を向上させる効果を有する。N
iはさらに靱性を改善する働きを示す。また、耐候性を
確保するためこれらの合金元素は本発明においてCu
0.2〜0.5%、Ni0.05〜0.3%、Cr0.
3〜0.8%の範囲で添加しなくてはならない。しかし
必要以上の焼入れ性を確保させないとの配慮からそれぞ
れに上限を設定した。
<Cu, Ni, Cr> Cu, Ni, Cr have the effect of improving the strength of the base material and the welded joint. N
i has the function of further improving toughness. Further, in order to secure weather resistance, these alloy elements are Cu in the present invention.
0.2-0.5%, Ni0.05-0.3%, Cr0.
It must be added in the range of 3 to 0.8%. However, the upper limit was set for each in consideration of not securing the hardenability more than necessary.

【0035】<Pcm>Pcmは溶接割れ感受性を表す
指数であり、通常の環境において溶接施工時の予熱を不
要にするために0.21以下に規制する。
<Pcm> Pcm is an index showing the susceptibility to welding cracks, and is regulated to 0.21 or less in order to eliminate the need for preheating during welding in a normal environment.

【0036】<計算式:800(有効Nb)+320V
+270Ceq≧t+64>まず、計算式:800Nb
+320V+270Ceqは、母材の板厚1/2tにお
ける強度を表す指数であり、当該業者間で一般に知られ
る炭素等量式(Ceq)に本発明の添加元素であるN
b,Vの寄与を加味しさらに概ね25〜100mmの板
厚範囲における板厚効果を考慮して整理した数式であ
る。尚、板厚効果とは、熱間圧延後の直接焼入れにより
鋼板をAr3 変態点以上から強制冷却する際、板厚に応
じてその冷却速度が必然的に変化し、そのため母材強度
が変化することを指す。
<Calculation formula: 800 (effective Nb) + 320V
+ 270Ceq ≧ t + 64> First, the calculation formula: 800 Nb
+ 320V + 270Ceq is an index representing the strength of the base material at a plate thickness of 1 / 2t, and N is an additive element of the present invention in the carbon equivalent formula (Ceq) generally known by those skilled in the art.
This is a mathematical formula in which the contributions of b and V are taken into consideration and the thickness effect in a thickness range of approximately 25 to 100 mm is taken into consideration. The thickness effect means that when the steel sheet is forcibly cooled from the Ar 3 transformation point or higher by direct quenching after hot rolling, the cooling rate inevitably changes according to the sheet thickness, and therefore the base metal strength changes. To do.

【0037】600N/mm2 級耐蝕性高張力鋼に分類
されるJIS G3114 SMA570に適合する鋼
板を得るためには計算式:800Nb+320V+27
0Ceqが板厚t(mm)に64を加えた値を上回る必
要がある。
In order to obtain a steel plate which is classified as 600 N / mm 2 class corrosion resistant high strength steel and conforms to JIS G3114 SMA570, a calculation formula: 800 Nb + 320V + 27
0Ceq needs to exceed the value obtained by adding 64 to the plate thickness t (mm).

【0038】この計算式におけるNb,Vの強度上昇効
果はVの場合、V炭窒化物の析出硬化による寄与を表
し、Nbの場合はNb炭窒化物の析出硬化に加えて焼入
れ性上昇による寄与を考慮したものである。直接焼入れ
後焼戻し工程により期待されるこれらの元素の効果は、
熱間圧延前の加熱段階に於いて固溶していることが必要
である。Vは本発明の範囲において添加量全てが固溶し
得るが、Nbの場合は必ずしも全量固溶するとは限らな
い。そこで、Nb全量固溶を確保できない場合は、lo
g{(Nb)×(C+12N/14)}=2.26−6
770/(T+273.15)の関係より計算される固
溶Nb量を有効Nb量として、上述の計算式を 800(有効Nb)+320V+270Ceq≧t+6
4 として、適用しなければならない。
In the case of V, the strength increasing effect of Nb and V in this calculation formula represents the contribution of precipitation hardening of V carbonitride, and in the case of Nb, the contribution of increasing hardenability in addition to precipitation hardening of Nb carbonitride. Is taken into consideration. The effect of these elements expected by the tempering process after direct quenching,
It is necessary that a solid solution be formed in a heating step before hot rolling. Although all of the added amount of V can form a solid solution within the scope of the present invention, in the case of Nb, the entire amount does not always form a solid solution. Therefore, when it is not possible to secure the total solid solution of Nb, lo
g {(Nb) × (C + 12N / 14)} = 2.26-6
Using the solid solution Nb amount calculated from the relationship of 770 / (T + 273.15) as the effective Nb amount, the above calculation formula is 800 (effective Nb) + 320V + 270Ceq ≧ t + 6
4 shall be applied.

【0039】なお、本発明が対象とする板厚範囲は概ね
25mm〜100mmの範囲である。 <熱間圧延前の加熱温度>合金元素の均質化とNbの固
溶を図るため、加熱温度は1000℃以上に設定する必
要がある。しかし、加熱温度が1250℃を越えるとミ
クロ組織の粗大化により母材の靱性が確保されなくなる
ので上限を1250℃、好ましくは1200℃とする。
The plate thickness range targeted by the present invention is approximately 25 mm to 100 mm. <Heating temperature before hot rolling> The heating temperature needs to be set to 1000 ° C. or higher in order to homogenize the alloying elements and achieve a solid solution of Nb. However, if the heating temperature exceeds 1250 ° C, the toughness of the base material cannot be ensured due to the coarsening of the microstructure, so the upper limit is 1250 ° C, preferably 1200 ° C.

【0040】<圧延条件>均一に加熱された本発明鋼を
所定の板厚まで熱間圧延する工程は、通常の条件に依っ
て差し支えない。
<Rolling Conditions> The step of hot rolling the uniformly heated steel of the present invention to a predetermined plate thickness may be performed under ordinary conditions.

【0041】母材の靱性をより安定に確保、向上させる
観点から、1050℃以下の温度域で20%以上の累積
圧下を付与することが望ましい。累積圧下を20%以上
とすることでγ粒の再結晶に伴う細粒化を達成し、母材
の靱性をより安定に確保、向上させることができる。同
じ理由から、圧延1パス毎の圧下率を5%以上、更に好
ましくは10%以上を確保することが望ましい。
From the viewpoint of more stably securing and improving the toughness of the base material, it is desirable to apply a cumulative reduction of 20% or more in a temperature range of 1050 ° C. or less. By setting the cumulative reduction to 20% or more, fine graining accompanying the recrystallization of γ grains can be achieved, and the toughness of the base material can be more stably secured and improved. For the same reason, it is desirable to secure a rolling reduction of 5% or more, more preferably 10% or more, for each rolling pass.

【0042】<直接焼入れ>熱間圧延終了後、Ar3
態点を上回る温度の鋼板を強制冷却し焼入れ処理を施す
ことが必要である。強制冷却は水等の冷却媒体を鋼板に
均一に付与し、板厚1/2tにて少なくとも1℃/se
c以上の冷却速度を達成させなければならない。
<Direct Quenching> After the hot rolling is finished, it is necessary to forcibly cool the steel sheet having a temperature higher than the Ar 3 transformation point to carry out the quenching treatment. In the forced cooling, a cooling medium such as water is uniformly applied to the steel sheet, and at least 1 ° C./sec at a thickness of 1/2 t.
A cooling rate of c or higher must be achieved.

【0043】<焼戻し温度>焼戻しは、溶接やSRによ
る性能変化に対する懸念を取り除くため実施されるが、
本発明ではNb炭窒化物の析出硬化による母材強度確保
という重要な意味を持つ。焼戻しは570℃以上で実施
しなければ上記の目的を達成できず、好ましくは600
℃以上で実施する。しかし、Ac1 変態点を越える温度
で焼戻しを行うと強度の低下が著しく、600N/mm
2 級高張力鋼としての強度が確保されない。このように
して得られた高張力鋼は、溶接性と耐候性との双方に優
れている。
<Tempering Temperature> Tempering is carried out in order to eliminate the concern about the performance change due to welding and SR.
In the present invention, it has an important meaning of securing base material strength by precipitation hardening of Nb carbonitride. The above object cannot be achieved unless tempering is performed at 570 ° C. or higher.
Perform at or above ° C. However, when tempering is performed at a temperature exceeding the Ac 1 transformation point, the strength is remarkably reduced, and 600 N / mm
The strength as a second grade high strength steel is not secured. The high-strength steel thus obtained has excellent weldability and weather resistance.

【0044】[0044]

【実施例】以下本発明の実施例を説明する。表1に本発
明の実施例に用いた鋼の化学成分を示す。表1に示した
化学成分の鋼を溶製し、鋼塊となし、表2に示した製造
条件にて所定の板厚に熱間圧延後、直接焼入れし、更に
焼戻し処理を施し供試鋼を得た。尚、圧延仕上温度はい
ずれも850℃以上であり、焼戻し温度は580〜68
0℃の範囲とした。
Embodiments of the present invention will be described below. Table 1 shows the chemical composition of the steel used in the examples of the present invention. A steel having the chemical composition shown in Table 1 was melted and made into an ingot, hot-rolled to a predetermined thickness under the manufacturing conditions shown in Table 2, directly quenched, and further tempered. I got The rolling finishing temperature is 850 ° C. or higher, and the tempering temperature is 580 to 68.
The range was 0 ° C.

【0045】全ての供試鋼の板厚中央部より、引張試験
およびシャルピー衝撃試験を圧延方向と垂直な方向にて
採取し600N/mm2 級鋼としての母材の機械的性質
を評価した。
Tensile tests and Charpy impact tests were taken in the direction perpendicular to the rolling direction from the center part of the plate thickness of all the test steels to evaluate the mechanical properties of the base metal as 600N / mm 2 class steel.

【0046】また、JIS Z3158に準拠して斜め
Y型溶接割れ試験を、JIS Z3101に準拠して最
高硬さ試験をそれぞれ実施し、溶接割れ感受性を評価し
た。これらの試験はいずれも60キロ級鋼用低水素タイ
プの溶接材料を用いて、雰囲気20℃−60%、試験片
初期温度25℃の条件で行った。
A diagonal Y-type weld cracking test was carried out in accordance with JIS Z3158 and a maximum hardness test was carried out in accordance with JIS Z3101 to evaluate the weld cracking susceptibility. All of these tests were performed using a low hydrogen type welding material for 60 kg class steel in an atmosphere of 20 ° C-60% and an initial temperature of the test piece of 25 ° C.

【0047】実施例No.1,2は,A鋼による本発明
例である。A鋼の計算値(800Nb+320V+27
0Ceq=120)は供試鋼板厚(25,50)に64
を加えた値(89,114)を上回り、そのため板厚中
心部の母材の引張り強さは570N/mm2 を越え靱性
も良好であった。また、Pcm値は0.19と低く、Y
割れ試験において溶接割れは発生しなかった。
Example No. Reference numerals 1 and 2 are examples of the present invention made of A steel. Calculated value of steel A (800Nb + 320V + 27
0Ceq = 120) is 64 for the thickness of the steel sheet under test (25, 50)
(89, 114), the tensile strength of the base material in the central part of the plate thickness exceeds 570 N / mm 2, and the toughness was also good. The Pcm value was as low as 0.19,
No welding crack occurred in the crack test.

【0048】実施例No.3,4はB鋼による本発明例
および比較例である。板厚50mmでは計算値が板厚t
+64を上回り板厚中心部母材の機械的性質は良好であ
るが、板厚75mmでは強度が570N/mm2 に達し
ない。
Example No. Reference numerals 3 and 4 are examples of the present invention and comparative examples made of B steel. When the plate thickness is 50 mm, the calculated value is the plate thickness t
Above +64, the mechanical properties of the base material of the plate thickness center part are good, but at a plate thickness of 75 mm, the strength does not reach 570 N / mm 2 .

【0049】実施例No.5〜7は、鋼Cによる本発明
例および比較例である。No.5では1150℃で加熱
された鋼Cの計算値(800Nb+320V+270C
eq=141)は供試鋼板厚(75)に64を加えた値
(139)を上回り、板厚中心部の強度は570N/m
2 に達したが、加熱温度を1000℃としたNo.6
では、有効Nbは0.012%に減じ、そのため計算値
は132となり板厚中心部の強度は570N/mm2
満たなかった。しかし、同条件で板厚50mmを検討し
たNo.7では、計算値が板厚50mmに64を加えた
値を上回り、良好な強度が得られる。
Example No. Nos. 5 to 7 are the present invention examples and comparative examples using steel C. No. 5, the calculated value of steel C heated at 1150 ° C. (800 Nb + 320 V + 270 C
eq = 141) exceeds the value (139) obtained by adding 64 to the steel plate thickness under test (75), and the strength at the center of the plate thickness is 570 N / m.
m 2 , but the heating temperature was 1000 ° C. 6
Then, the effective Nb was reduced to 0.012%, so the calculated value was 132 and the strength at the center of the plate thickness was less than 570 N / mm 2 . However, under the same conditions, No. In No. 7, the calculated value exceeds the value obtained by adding 64 to the plate thickness of 50 mm, and good strength is obtained.

【0050】実施例No.8〜11は鋼D,Eによる本
発明例および比較例である。鋼Dより化学成分の低い鋼
Eでは、計算値の減少に伴い、板厚50mm材で強度が
不足する。
Example No. Nos. 8 to 11 are inventive examples and comparative examples using steels D and E. In Steel E, which has a lower chemical composition than Steel D, the strength becomes insufficient with a plate thickness of 50 mm as the calculated value decreases.

【0051】実施例No.12は鋼Fによる比較例であ
る。本発明の特徴であるNbを用いずに板厚75mmの
鋼板を得ようとしたため、Pcmが0.21%を上回り
最高硬さは高く、またY型割れ試験で割れが発生した。
Embodiment No. 12 is a comparative example using steel F. Since it was attempted to obtain a steel plate having a plate thickness of 75 mm without using Nb, which is a feature of the present invention, Pcm exceeded 0.21% and the maximum hardness was high, and cracks occurred in the Y-type crack test.

【0052】No.13はC量を本発明の下限とした本
発明例である。板厚50mm材において良好な機械的性
質が溶接性と共に確認された。なお、ここに示した実施
例はすべてJIS G3114に規定されるSMA57
0で要求されるCu,Cr,Niを含有するので、使用
中に安定な酸化皮膜を生成し良好な耐候性を発現する。
No. 13 is an example of the present invention in which the C content is the lower limit of the present invention. Good mechanical properties as well as weldability were confirmed for a 50 mm thick material. Note that the examples shown here are all SMA57 specified in JIS G3114.
Since Cu, Cr, and Ni required for 0 are contained, a stable oxide film is formed during use and good weather resistance is exhibited.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【発明の効果】以上のように、本発明によれば、特に、
直接焼入法によりNbの添加効果を向上し、Ti,Bの
添加を制限することにより溶接性と耐候性とがいずれも
優れた600N/mm2 級高張力鋼およびその製造方法
を提供することができる。
As described above, according to the present invention, in particular,
To provide a 600 N / mm 2 class high-strength steel having improved weldability and weather resistance by improving the Nb addition effect by a direct quenching method and limiting the addition of Ti and B, and a manufacturing method thereof. You can

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.06〜0.1%、S
i:0.01〜0.4%、Mn:0.5〜1.4%、C
u:0.2〜0.5%、Ni:0.05〜0.3%、C
r:0.3〜0.8%、Nb:0.005〜0.05
%、Al:0.005〜0.1%、N:0.0005〜
0.008%、Ti<0.005%、B<0.0003
%を含み、 Pcm=C+Si/30+Mn/20+Cu/20+N
i/60+Cr/20+Mo/15+V/10+5Bで
定義されるPcm値が0.21以下で、残部が鉄および
不可避不純物よりなる引張強さ570N/mm2 以上を
有する溶接性と耐候性に優れた高張力鋼。
1. C: 0.06 to 0.1% by weight, S
i: 0.01 to 0.4%, Mn: 0.5 to 1.4%, C
u: 0.2-0.5%, Ni: 0.05-0.3%, C
r: 0.3 to 0.8%, Nb: 0.005 to 0.05
%, Al: 0.005 to 0.1%, N: 0.0005 to
0.008%, Ti <0.005%, B <0.0003
% Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + N
i / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B, Pcm value is 0.21 or less, the balance is iron and unavoidable impurities, and the tensile strength is 570 N / mm 2 or more. High tensile strength with excellent weldability and weather resistance. steel.
【請求項2】 Mo:0.15%以下、V:0.1%以
下をさらに含む請求項1に記載の溶接性と耐候性に優れ
た高張力鋼。
2. The high-strength steel excellent in weldability and weather resistance according to claim 1, further containing Mo: 0.15% or less and V: 0.1% or less.
【請求項3】 重量%で、C:0.06〜0.1%、S
i:0.01〜0.4%、Mn:0.5〜1.4%、C
u:0.2〜0.5%、Ni:0.05〜0.3%、C
r:0.3〜0.8%、Nb:0.005〜0.05
%、Al:0.005〜0.1%、N:0.0005〜
0.008%、Ti<0.005%、B<0.0003
%を含み、 Pcm=C+Si/30+Mn/20+Cu/20+N
i/60+Cr/20+Mo/15+V/10+5Bで
定義されるPcm値が0.21以下で残部が鉄および不
可避不純物の鋼を熱間圧延する際、1000℃以上12
50℃以下の温度に加熱後、所定の板厚で熱間圧延を行
い、引続きAr3 変態点以上の温度から直接焼入れし、
さらにAc1 変態点以下の温度で焼戻し処理を施すこと
を特徴とする引張強さ570N/mm2 以上の溶接性と
耐候性に優れた高張力鋼の製造方法。
3. C: 0.06 to 0.1% by weight, S
i: 0.01 to 0.4%, Mn: 0.5 to 1.4%, C
u: 0.2-0.5%, Ni: 0.05-0.3%, C
r: 0.3 to 0.8%, Nb: 0.005 to 0.05
%, Al: 0.005 to 0.1%, N: 0.0005 to
0.008%, Ti <0.005%, B <0.0003
% Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + N
When the Pcm value defined by i / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B is 0.21 or less and the balance is iron and steel with unavoidable impurities, 1000 ° C. or more 12
After heating to a temperature of 50 ° C. or lower, hot rolling is performed with a predetermined plate thickness, followed by direct quenching from a temperature of Ar 3 transformation point or higher,
Furthermore, a method for producing a high-strength steel excellent in weldability and weather resistance with a tensile strength of 570 N / mm 2 or more, characterized by performing tempering treatment at a temperature of Ac 1 transformation point or lower.
【請求項4】 Mo:0.15%以下、V:0.1%以
下をさらに含む請求項3に記載の溶接性と耐候性に優れ
た高張力鋼の製造方法。
4. The method for producing a high-strength steel excellent in weldability and weather resistance according to claim 3, further comprising Mo: 0.15% or less and V: 0.1% or less.
【請求項5】 Ceq=C+Mn/6+Si/24+N
i/40+Cr/5+Mo/4+V/14で定義される
Ceq値および、1000〜1250℃の温度範囲に設
定された加熱温度Tを用いて、log{(Nb)×(C
+12N/14)}=2.26−6770/(T+27
3.15)の関係より計算される固溶Nb量を有効Nb
量として、有効Nb,V含有量、目的とする鋼板厚t
(mm)を用いて、 800(有効Nb)+320V+270Ceq≧t+6
4 の関係を満たすことを特徴とする請求項3または4に記
載の引張強さ570N/mm2 以上の溶接性と耐候性に
優れた高張力鋼の製造方法。
5. Ceq = C + Mn / 6 + Si / 24 + N
Using the Ceq value defined by i / 40 + Cr / 5 + Mo / 4 + V / 14 and the heating temperature T set in the temperature range of 1000 to 1250 ° C., log {(Nb) × (C
+ 12N / 14)} = 2.26-6770 / (T + 27)
3.15) The amount of solid solution Nb calculated from the relationship of
As the amount, effective Nb, V content, target steel plate thickness t
(Mm), 800 (effective Nb) +320 V + 270 Ceq ≧ t + 6
4. The method for producing a high-strength steel excellent in weldability and weather resistance having a tensile strength of 570 N / mm 2 or more according to claim 3 or 4, characterized in that the relationship of 4 is satisfied.
【請求項6】 熱間圧延に際して、1050℃以下で2
0%以上の累積圧下率で熱間圧延を施すことを特徴とす
る請求項3〜5のいずれか1に記載の引張強さ570N
/mm2 以上の溶接性と耐候性に優れた高張力鋼の製造
方法。
6. A hot rolling process at a temperature of 1050 ° C. or less
The tensile strength 570N according to any one of claims 3 to 5, wherein hot rolling is performed at a cumulative reduction of 0% or more.
/ Mm 2 or more weldability and high-strength steel with excellent weather resistance.
JP33705295A 1995-12-25 1995-12-25 High tensile strength steel excellent in weldability and atmospheric corrosion resistance and its production Pending JPH09176783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33705295A JPH09176783A (en) 1995-12-25 1995-12-25 High tensile strength steel excellent in weldability and atmospheric corrosion resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33705295A JPH09176783A (en) 1995-12-25 1995-12-25 High tensile strength steel excellent in weldability and atmospheric corrosion resistance and its production

Publications (1)

Publication Number Publication Date
JPH09176783A true JPH09176783A (en) 1997-07-08

Family

ID=18304984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33705295A Pending JPH09176783A (en) 1995-12-25 1995-12-25 High tensile strength steel excellent in weldability and atmospheric corrosion resistance and its production

Country Status (1)

Country Link
JP (1) JPH09176783A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000046416A1 (en) * 1999-02-05 2000-08-10 Bethlehem Steel Corporation Method of making a weathering grade plate and product therefrom
CN103993229A (en) * 2014-06-05 2014-08-20 首钢总公司 Corrosion-resistant 5Cr steel and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000046416A1 (en) * 1999-02-05 2000-08-10 Bethlehem Steel Corporation Method of making a weathering grade plate and product therefrom
CN103993229A (en) * 2014-06-05 2014-08-20 首钢总公司 Corrosion-resistant 5Cr steel and production method thereof

Similar Documents

Publication Publication Date Title
JP2000256795A (en) Continuously cast slab free from surface cracking and production of non-refining high tensile strength steel material using the slab
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JPH10298706A (en) High tensile strength steel excellent in high heat input weldability and weld crack sensitivity and its production
JP2004124113A (en) Non-water-cooled thin low yield ratio high tensile steel, and production method therefor
JP2002047532A (en) High tensile strength steel sheet excellent in weldability and its production method
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JPH06316723A (en) Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability
JP3374688B2 (en) Method for producing tempered 600 N / mm2 class high strength steel excellent in weld cracking sensitivity and low-temperature toughness
JP2002161330A (en) Wear resistant steel
JP3503345B2 (en) High-tensile steel excellent in large heat input weldability, susceptibility to weld cracking and weather resistance and method for producing the same
JPH1017929A (en) Production of thick 600n class steel excellent in weldability and toughness in center part of plate thickness
JP2000192140A (en) Production of low yield ratio high tensile strength steel excellent in weld cracking sensitivity
JP4655372B2 (en) Method for producing high-tensile steel with high yield point
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JPH1068045A (en) 600n/mm2 class high tensile strength steel excellent in weld cracking sensitivity and large heat input welded joint toughness and its production
JPH09176783A (en) High tensile strength steel excellent in weldability and atmospheric corrosion resistance and its production
JP3541746B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JP3244155B2 (en) Manufacturing method of refractory steel for hot-dip galvanized structure
JP2004339549A (en) 490 MPa CLASS HIGH-TENSILE STRENGTH FIRE RESISTANT STEEL FOR STRUCTURAL USE HAVING EXCELLENT WELDABILITY AND GAS CUTTABILITY, AND ITS PRODUCTION METHOD
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JPH08176731A (en) High tensile steel and production thereof
JP7281314B2 (en) Base material for clad steel, clad steel and method for producing clad steel
JP3474954B2 (en) High tensile steel and method for producing the same
JP2002088413A (en) Method for producing high tension steel excellent in weldability and ductility
JP2003221644A (en) High-tension steel showing excellent welding characteristic in high heat input welding and its manufacturing process