JPS62196325A - Manufacture of high toughness acceleratedly cooled type 50kg class steel plate superior in weldability - Google Patents

Manufacture of high toughness acceleratedly cooled type 50kg class steel plate superior in weldability

Info

Publication number
JPS62196325A
JPS62196325A JP3807386A JP3807386A JPS62196325A JP S62196325 A JPS62196325 A JP S62196325A JP 3807386 A JP3807386 A JP 3807386A JP 3807386 A JP3807386 A JP 3807386A JP S62196325 A JPS62196325 A JP S62196325A
Authority
JP
Japan
Prior art keywords
steel plate
ceq
toughness
steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3807386A
Other languages
Japanese (ja)
Inventor
Motomi Kanano
叶野 元巳
Haruo Kaji
梶 晴男
Kensho Akiyama
秋山 憲昭
Kiyoshi Iwai
清 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3807386A priority Critical patent/JPS62196325A/en
Publication of JPS62196325A publication Critical patent/JPS62196325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the titled high toughness 50kg steel plate superior especially in low temp. characteristic, by heating steel slug having a specified component compsn., then hot rolling it while prescribing draft at a prescribed temp. or below and finishing temp. respectively, then immediately cooling the plate by a prescribed rate. CONSTITUTION:Steel slug having compsn. as basic components of, by weight 0.10-0.25% C, <=0.50% Si, <=1.00% Mn under <=0.30% carbon equivalent Ceq (shown by a formula) is prepd. Next, the slug is heated to 950-1,150 deg.C for obtaining fine ferrite and vainite, further hot rolled by >=60% draft at <=900 deg.C for refining austenite. Hot rolling is carried out while prescribing finishing temp. thereof to Ar3-20 deg.C-Ar3+50 deg.C, then immediately the plate is cooled to <=400 deg.C by >=2 deg.C/s rate to form bainite of 5-30mum fineness. Thereby, the aimed titled steel plate is obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の利用分野) 本発明は溶接性に優れた高靭性加速冷却型50ギロ級鋼
板の製造lj法に関する。 (従来の技術及び解決しようとする問題点)従来、造船
やタンク等の溶接鋼構造物の施工にjノいて、高張力鋼
板を低入熱で溶接する時には、溶接低温割れを防止する
ために予熱の実施、ショートビードの制限等の対策がと
られていた。この低温割れは溶接熱影響部(IIAZ)
に発生し、IIAZの硬化性の高いもの、つまり炭素当
Iよ(Ceq)の高いものほど起こりやすい傾向にある
。 したがって、溶接工数を低減するために耐溶接割れ性に
優れた低Ceqの高張力鋼板が要望されてきた結果、加
速冷却法によりこの特性を満足するものの製造が可能と
なってきた。しかし、Ceqを下げるとAr3変態点が
上昇するため、優れた低温靭性を得ることが国運となる
。例えば、50 kg f / mm”級鋼板における
Ceqは、溶接施工上のバラツキを考慮した耐溶接割れ
性の点からみると、0.30%以下が望ましいが、その
場合、vTrsは一30℃程度と優れた低温靭性を確保
できない。つまり、優れた耐溶接割れ性と低温靭性を兼
備する低Ceqの50kgf/mm”級鋼板の製造は不
可能であった。 本発明の目的は、熱間加工後に加速冷却する50キロ級
鋼板の+i造につき、溶接性が優れ、高靭性の50キロ
級鋼板を製造し11)ろ方法を提イ1(することにある
。 (問題点を解決するための手段) 50キロ級鋼板にJ9いて母材靭性を向上させろ手段と
しては、フェライ1−の細粒化が最も有効である。しか
し、Ceqの低い鋼板ではAr:Iが高くなるため、以
下のような問題が生じることからフェライトの側位化を
十分利用できない。 ■未(4結晶域が狭くなるため、フェライトの核生成サ
イ1〜が少なくなる。 ■フェライト変態が高温で開始するため、著しいフェラ
イトの成長が起こる。 そこで、」二記ロ的を達成するため、本発明バ゛らは低
Ceq材で高靭性を得るための最適な圧延・冷却方法に
ついて鋭意研究を行なった結果、熱間圧延における加熱
源度、圧下率、仕上温度、冷却速度及び冷却停止温度を
制御し、フェライトの粗大化を防止すると共にパーライ
トをなくし、従来。 靭性に悪影gfiを及ぼすと考えられていたベーナイト
を微細分散させることが有効であることが判明した。そ
の適正ベーナイトの寸法は5〜30μlであり、また、
この微細ベーナイトは、高C−低Mn系の方が生成しや
すいことも見い出した。 以上のことから、本発明は、これまで困芝と考えられて
いた低Ceqで高靭性の50キロ級鋼板を容易に製造で
きる方法を見い出したものであり、従来みられなかった
新しい鋼材の製造法である。 その要旨とするところは、C:O,LO〜0.25%、
Si≦0.50%及びMn≦0.00%を含み、かつ、
炭素当量Ccq(但し、Ceq==C+Mn/6+(C
r+Mo+V)15+(Cu+Ni)/15)がCc 
q≦0.30%の組成を基本成分とし、更に必要に応じ
て1゛j≦0.020%、Ca≦0.0050%及びC
c≦0.0050%のうちの1種又は2種以−ヒを含み
、残部が鉄及び不可避的不純物からなる鋼のスラブを9
50〜1150℃に加熱し、900℃以下での圧下率を
60%以上、仕上温度をAr、−20℃〜Ar3+50
℃にて熱間圧延した後、直ちに400℃以下まで2℃/
s 以上の冷却速度で冷却し、5〜30μmの微細なベ
ーナイトを生成させることを特徴とする溶接性の優れた
高靭性加速冷却型50キロ級鋼板の製造方法、にある。 以下に本発明を実施例に」、(づいて詳細に説明する。 まず、本発明の対象とする鋼の成分並、びに含イ「11
1の限定理由を示す。 C: Cは強度を確保するうえで最も有効な元素である。特に
低Ceq材では、高Chkが有利である。 しかし、0.25%を超えると粗大ベーナイトが多はに
生成し靭性を損うばかりでなく、耐溶接割れ性やHAZ
靭性を劣化さぜるにのため、Cの下限を0.25%とす
る。一方、Cの下限は、低Ct: +1材で強度確保が
できる0、10%とする。 SL: S↓は脱酸及び強度確保のために有効であるが、0 、
50%を超えるとフェライトが硬化し、母材靭性を劣化
させるため、0.50%以下とする。 Mn : MnはCと同様、強度確保のために有効な元素である。 しかし、強度へのMn添加の寄与は、Cに比べて小さく
、低Ceq材で強度を確保するには、少ない方が望まし
い。したがって、1.00%以下とする。 Ceq: 炭素用Q Ce qは、IIAZの硬化性を推定するた
めのものであり、耐溶接割れ性の一つの指標であり、C
eq=C+Mn/6+(Cr+Mo+V)15十(Cu
 + Ni) / 15で定義される。耐溶接割れ性の
点で望ましいCeqK;としては、構造物、使用溶接棒
の種類などにより異なるが、JM工時の管理上のバラツ
キを考慮し、0.30%以下とする。 以上のC,Si、Mn及びCeqを基本成分とするが、
以下に示す”l’i、Ca及びCaの1種又は2種以上
を主として靭性改善のために必要に応じて添加すること
ができる。 Ti: Tiはオーステナイト粒の粗大化抑制効果及び変1ぷ時
の粒内核生成によるフェライトの細粒化に有効であり、
母材靭性及びIIAZ靭性を改善することができる。し
かし、0.020%を超えるとIIAZ靭性の劣化をも
たらす。したがって、添加する場合は0.020%以下
に限定する。 Ca、Ca: これらの両元素は、介在物の球状化に有効であり、延性
を改善させることができる。しかし、多)1)に添加す
ると粗大介在物を生成し、内部欠陥の〃:〔囚となる。 したがって、添加する場合は、各々0.0050%以下
とする。 次に、上記成分組成の鋼スラブに対する熱間圧延におけ
る加熱及び圧延条件並びに冷却条件の限定理由を示す。 加熱7!11度: 鋼スラブの加熱温度は微細フェライト及びベーナイトを
得るために1150℃に規制する必要があるが、950
℃未満になると圧延に支障を来すため、加熱温度は95
0〜1150℃とする。 900℃以下での圧]:率: 微細フェライ1−及びベーナイトを得るには、上記成分
組成の鋼は未再結晶域が狭いため、再結晶を十分利用し
、オーステナイトを細粒にすることが重要であり、90
0℃以下の温度で60%以上の圧下率が必要である。し
たがって、900℃以下での圧下率を60%とする。 仕上温度: 仕上温度をAr、−20℃未満にすると2相域圧延とな
るため、フェライトが加工硬化を受け、靭性が大幅に劣
化する。またAr、 + 50 ℃を超えると、粗大ベ
ーナイトが生成し、靭性が劣化することから、仕上温度
はAr、−20℃〜Ar、+50℃の範囲とする。 冷却速度: 本発明は、加速冷却材を対象としており、強度上昇を図
るには、極力冷却速度は大きい方が望ましい。板厚11
00IBを考慮すると、最低2 ”C/ s以上の冷却
速度が必要である。 冷却停止温度: 冷却停止温度は」二記冷却速度のもとで低いほど強度上
昇効果が顕著であり、400℃以下が必要である。 このように、上記成分組成の高C−低Mn系で低Ceq
の鋼スラブに対して上記条件で熱間圧延、冷却を行うこ
とにより、バーライ1−がなく、微細なフェライトに5
〜730μmの微細なベーナイトが分散した組織を容易
に得ることができる。このような組織を有するW4仮は
、50キロ級の強度を十分に備え、かつ、低Ceq材で
あるにも拘らず、−30℃以下での低温靭性も優れ、勿
論、耐溶接割れ性も優れている。 (実施例1) 第1表に示す化学成分を有する鋼スラブについて、同表
に示す圧延条件、冷却条件で板厚25+amの鋼板を製
造した。各鋼板より試験片を切出し。 引張試験、衝撃試験及びyスリット試験を行った。 その結果を同表に示す。 第1表から明らかなように、本発明の範囲内の化学成分
を有する本発明鋼は、いずれも50キロ級の強度が確保
され、特に低温靭性に優れ、また耐溶接割れ性も良好で
ある。これに対し、C1SL、Mn又はCeqのいずれ
かが本発明範囲外である比較鋼は、強度が得られても低
温靭性が劣り(F、H)、或いは低温靭性がよくても強
度が不1−分であったり(G)、また強度が(−分1:
)られても低Lj靭性や耐溶接割れ性が劣っている(I
)。
(Field of Application of the Invention) The present invention relates to a lj method for producing a high toughness accelerated cooling type 50 Giga grade steel plate with excellent weldability. (Conventional technology and problems to be solved) Conventionally, when welding high-strength steel plates with low heat input in shipbuilding and construction of welded steel structures such as tanks, welding techniques were used to prevent welding cold cracking. Measures were taken such as preheating and limiting short beads. This cold cracking occurs in the weld heat affected zone (IIAZ).
This tends to occur more easily in those with higher hardenability of IIAZ, that is, those with higher carbon equivalent (Ceq). Therefore, in order to reduce the number of welding steps, there has been a demand for a low Ceq, high-strength steel plate with excellent weld cracking resistance, and as a result, it has become possible to manufacture a steel plate that satisfies this property by an accelerated cooling method. However, if Ceq is lowered, the Ar3 transformation point increases, so obtaining excellent low-temperature toughness is a national destiny. For example, Ceq for a 50 kg f/mm'' class steel plate is preferably 0.30% or less from the viewpoint of weld cracking resistance considering variations in welding process, but in that case, vTrs is about -30℃. In other words, it has been impossible to produce a low Ceq 50 kgf/mm'' class steel plate that has both excellent weld cracking resistance and low temperature toughness. The purpose of the present invention is to produce a 50 kg class steel plate with excellent weldability and high toughness, and to propose a filtration method (11) for the +i construction of a 50 kg class steel plate that is acceleratedly cooled after hot working. (Means for solving the problem) The most effective means for improving the base metal toughness of J9 in 50kg steel plates is to refine the grains of Ferrite 1. However, in steel plates with low Ceq, Ar: As I becomes higher, the following problems occur, so lateralization of ferrite cannot be fully utilized. ■Un(4) Since the crystal region becomes narrower, the ferrite nucleation size 1~ decreases. ■ Ferrite transformation starts at a high temperature, resulting in significant ferrite growth.Therefore, in order to achieve the second objective, the present inventors have made extensive efforts to find the optimal rolling and cooling method to obtain high toughness with low Ceq material. As a result of our research, we have found that by controlling the heating source degree, rolling reduction rate, finishing temperature, cooling rate, and cooling stop temperature during hot rolling, we can prevent coarsening of ferrite and eliminate pearlite. It has been found that it is effective to finely disperse bainite, which was thought to have a negative effect.The appropriate size of bainite is 5 to 30 μl, and
It has also been found that this fine bainite is easier to produce in a high C-low Mn system. Based on the above, the present invention has discovered a method that can easily produce 50 kg-class steel plates with low Ceq and high toughness, which have been thought to be difficult until now. It is the law. The gist of it is: C:O, LO~0.25%,
Contains Si≦0.50% and Mn≦0.00%, and
Carbon equivalent Ccq (Ceq==C+Mn/6+(C
r+Mo+V)15+(Cu+Ni)/15) is Cc
The basic composition is q≦0.30%, and if necessary, 1゛j≦0.020%, Ca≦0.0050% and C
A slab of steel containing one or more of c≦0.0050%, with the balance consisting of iron and unavoidable impurities.
Heating to 50~1150℃, reduction rate at 900℃ or below 60% or more, finishing temperature Ar, -20℃~Ar3+50
After hot rolling at ℃, it is immediately heated to 400℃ or less by 2℃/
A method for producing a high-toughness accelerated cooling type 50 kg-class steel plate with excellent weldability, characterized by cooling at a cooling rate of 5 to 30 μm or higher to produce fine bainite of 5 to 30 μm. The present invention will be described in detail below with reference to Examples. First, the composition of the steel to which the present invention is applied and
The reason for limitation 1 is shown below. C: C is the most effective element for ensuring strength. Especially for low Ceq materials, high Chk is advantageous. However, if it exceeds 0.25%, a large amount of coarse bainite is generated, which not only impairs toughness but also reduces weld cracking resistance and HAZ
In order to prevent deterioration of toughness, the lower limit of C is set to 0.25%. On the other hand, the lower limit of C is set to 0.10%, which can ensure strength with low Ct: +1 material. SL: S↓ is effective for deoxidizing and ensuring strength, but 0,
If it exceeds 50%, the ferrite will harden and the toughness of the base material will deteriorate, so the content should be 0.50% or less. Mn: Like C, Mn is an effective element for ensuring strength. However, the contribution of Mn addition to strength is smaller than that of C, and in order to ensure strength in a low Ceq material, it is desirable that the contribution is smaller. Therefore, it should be 1.00% or less. Ceq: Q for carbon Ceq is for estimating the hardenability of IIAZ and is one index of weld cracking resistance.
eq=C+Mn/6+(Cr+Mo+V)150(Cu
+Ni)/15. CeqK, which is desirable in terms of weld cracking resistance, varies depending on the structure, the type of welding rod used, etc., but it is set to 0.30% or less, taking into account the control variations during JM work. The above C, Si, Mn and Ceq are the basic components,
One or more of the following "l'i", Ca, and Ca can be added as necessary mainly to improve toughness. Ti: Ti has the effect of suppressing coarsening of austenite grains and It is effective for refining ferrite grains due to intragranular nucleation during
Base material toughness and IIAZ toughness can be improved. However, when it exceeds 0.020%, IIAZ toughness deteriorates. Therefore, when added, it should be limited to 0.020% or less. Ca, Ca: Both of these elements are effective in spheroidizing inclusions and can improve ductility. However, if it is added to 1), coarse inclusions will be formed, which will trap internal defects. Therefore, when added, each should be 0.0050% or less. Next, the reasons for limiting the heating and rolling conditions and cooling conditions in hot rolling of the steel slab having the above-mentioned composition will be described. Heating 7!11 degrees: The heating temperature of the steel slab needs to be regulated to 1150 degrees Celsius in order to obtain fine ferrite and bainite, but 950 degrees
The heating temperature should be set at 95°C because rolling will be hindered if the temperature is lower than 95°C.
The temperature shall be 0 to 1150°C. Pressure at 900°C or below]: Rate: In order to obtain fine ferrite 1- and bainite, since steel with the above composition has a narrow non-recrystallized region, it is necessary to fully utilize recrystallization to make austenite fine grains. important and 90
A rolling reduction of 60% or more is required at a temperature of 0° C. or less. Therefore, the rolling reduction rate at 900° C. or lower is set to 60%. Finishing temperature: When the finishing temperature is set to Ar and lower than -20°C, rolling occurs in a two-phase region, and the ferrite undergoes work hardening, resulting in a significant deterioration of toughness. Moreover, if Ar exceeds +50°C, coarse bainite is generated and toughness deteriorates, so the finishing temperature is set in the range of Ar, -20°C to Ar, +50°C. Cooling rate: The present invention is directed to accelerated cooling materials, and in order to increase the strength, it is desirable that the cooling rate be as high as possible. Plate thickness 11
Considering 00IB, a cooling rate of at least 2"C/s or more is required. Cooling stop temperature: The lower the cooling rate is, the more remarkable the strength increase effect is, and the cooling rate is 400℃ or less. is necessary. In this way, the high C-low Mn system with the above component composition has low Ceq.
By hot rolling and cooling a steel slab under the above conditions, there is no barley 1-, and fine ferrite has 5
A structure in which fine bainite of ~730 μm is dispersed can be easily obtained. W4 temporary, which has such a structure, has sufficient strength of 50 kg class, and although it is a low Ceq material, it has excellent low-temperature toughness at -30℃ or below, and of course has good weld cracking resistance. Are better. (Example 1) A steel plate having a thickness of 25+ am was manufactured using a steel slab having the chemical composition shown in Table 1 under the rolling conditions and cooling conditions shown in the same table. Cut a test piece from each steel plate. A tensile test, an impact test and a y-slit test were conducted. The results are shown in the same table. As is clear from Table 1, all of the steels of the present invention having chemical compositions within the range of the present invention have a strength of 50 kg class, are particularly excellent in low-temperature toughness, and have good weld cracking resistance. . On the other hand, comparative steels in which any of C1SL, Mn, or Ceq is outside the range of the present invention have poor low-temperature toughness even if they have strength (F, H), or have poor low-temperature toughness even if they have good low-temperature toughness. - minutes (G), or intensity (- minutes 1:
), the low Lj toughness and weld cracking resistance are poor (I
).

【以下余白】[Left below]

(実施例2) 次に1本発明範囲内の化学成分を有する鋼スラブについ
て、圧延条件、冷却条件を様々に変化させて熱間圧延、
冷却を行い、圧延及び冷却条件の影響を調へた。なお、
記号りの鋼をベース材とした。1:)られた25non
板厚の鋼板より試験片を切出し、引張試験及び衝撃試験
を行うと共に組織検査により平均ベーナイト径を1tl
ll定した。これらの結果を第2表並びに第1図及び第
2図に示す。なお、各し1は第2表に示した結果を整理
したものである。 第1図から明らかなように、特に本発明範囲内の加熱条
件、900℃以下での圧下率、仕上温度で製造すれば、
低温靭性(v T rs≦−60℃)が優れ、55キロ
級の強度(TS≧50)も十分確保でき、殊に第2図に
示すように、得られた鋼板のベーナイト寸法も小さく微
細で優れた低温靭性が保証される。 また、冷却条件も本発明範囲内であれば、第2表から明
らかなように、同様に優れた低温靭性、強度かえられる
。 (発明の効果) ゛ 以上詳述したように、本発明によれば、低Ceq材
であるにも拘らず、高靭性で、特に低温靭性に優れ、し
かも耐溶接割れ性等の溶接性の優れた50キロ級鋼板を
製造することができる。
(Example 2) Next, a steel slab having a chemical composition within the range of the present invention was hot rolled by varying rolling conditions and cooling conditions.
Cooling was performed to investigate the effects of rolling and cooling conditions. In addition,
The base material is steel with the symbol. 1:) 25non
A test piece was cut from a thick steel plate and subjected to a tensile test and an impact test, and the average bainite diameter was determined to be 1 tl by microstructural examination.
It was determined. These results are shown in Table 2 and FIGS. 1 and 2. Note that each item 1 is a compilation of the results shown in Table 2. As is clear from FIG. 1, if the manufacturing is performed under heating conditions within the range of the present invention, a reduction rate of 900°C or less, and a finishing temperature,
It has excellent low-temperature toughness (v T rs ≦ -60°C) and can sufficiently secure 55 kg class strength (TS ≧ 50), and in particular, as shown in Figure 2, the bainite size of the obtained steel sheet is also small and fine. Excellent low temperature toughness is guaranteed. Furthermore, if the cooling conditions are within the range of the present invention, as is clear from Table 2, similarly excellent low-temperature toughness and strength can be obtained. (Effects of the Invention) As detailed above, according to the present invention, despite being a low Ceq material, it has high toughness, particularly excellent low temperature toughness, and has excellent weldability such as weld cracking resistance. It is possible to produce 50 kg class steel plates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼スラブの熱間圧延条件(加熱温度。 900℃以下での圧下率、仕上温度)と強度、低温靭性
等の関係を示す図、 第2図は鋼板中のベーナイト寸法と低温靭性の関係を示
す図である。 特許出願人   株式会社神戸製鋼所 代理人弁理士  中  村   尚 第2図 へ゛−ナイトQiAC声#I)
Figure 1 shows the relationship between hot rolling conditions (heating temperature, rolling reduction below 900℃, finishing temperature), strength, low-temperature toughness, etc. of steel slabs. Figure 2 shows the bainite dimensions in steel plates and low-temperature toughness. FIG. Patent applicant Takashi Nakamura, Patent attorney representing Kobe Steel, Ltd. (See Figure 2 (Night QiAC voice #I)

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、C:0.10〜0.2
5%、Si≦0.50%及びMn≦1.00%を含み、
かつ、炭素当量Ceq(但し、Ceq=C+Mn/6+
(Cr+Mo+V)/5+(Cu+Ni)/15)がC
eq≦0.30%の組成を基本成分とし、残部が鉄及び
不可避的不純物からなる鋼のスラブを950〜1150
℃に加熱し、900℃以下での圧下率を60%以上、仕
上温度をAr_3−20℃〜Ar_3+50℃にて熱間
圧延した後、直ちに400℃以下まで2℃/s以上の冷
却速度で冷却し、5〜30μmの微細なベーナイトを生
成させることを特徴とする溶接性の優れた高靭性加速冷
却型50キロ級鋼板の製造方法。
(1) In weight% (the same applies hereinafter), C: 0.10 to 0.2
5%, Si≦0.50% and Mn≦1.00%,
And carbon equivalent Ceq (however, Ceq=C+Mn/6+
(Cr+Mo+V)/5+(Cu+Ni)/15) is C
A steel slab with a basic composition of eq≦0.30% and the balance consisting of iron and unavoidable impurities is 950 to 1150.
After heating to ℃ and hot rolling at a rolling reduction rate of 60% or more at 900℃ or less and a finishing temperature of Ar_3-20℃ to Ar_3+50℃, immediately cool to 400℃ or less at a cooling rate of 2℃/s or more. A method for producing a high toughness accelerated cooling type 50 kg class steel plate with excellent weldability, which is characterized by producing fine bainite of 5 to 30 μm.
(2)C:0.10〜0.25%、Si≦0.50%及
びMn≦1.00%を含み、かつ、炭素当量Ceq(但
し、Ceq=C+Mn/6+(Cr+Mo+V)/5+
(Cu+Ni)/15)がCeq≦0.30%の組成を
基本成分とし、更にTi≦0.020%、Ca≦0.0
050%及びCe≦0.0050%のうちの1種又は2
種以上を含み、残部が鉄及び不可避的不純物からなる鋼
のスラブを950〜1150℃に加熱し、900℃以下
での圧下率を60%以上、仕上温度をAr_3−20℃
〜Ar_3+50℃にて熱間圧延した後、直ちに400
℃以下まで2℃/s以上の冷却速度で冷却し、5〜30
μmの微細なベーナイトを生成させることを特徴とする
溶接性の優れた高靭性加速冷却型50キロ級鋼板の製造
方法。
(2) Contains C: 0.10 to 0.25%, Si≦0.50% and Mn≦1.00%, and carbon equivalent Ceq (Ceq=C+Mn/6+(Cr+Mo+V)/5+
(Cu+Ni)/15) has a composition of Ceq≦0.30% as a basic component, and furthermore, Ti≦0.020% and Ca≦0.0.
050% and one or two of Ce≦0.0050%
A slab of steel containing more than 100% of carbon dioxide and the remainder consisting of iron and unavoidable impurities is heated to 950 to 1150°C, the rolling reduction is 60% or more at 900°C or less, and the finishing temperature is Ar_3-20°C.
〜Ar_3+50℃ immediately after hot rolling at 400℃
℃ or less at a cooling rate of 2℃/s or more, 5 to 30℃
A method for producing a high-toughness accelerated cooling type 50 kg-class steel plate with excellent weldability, which is characterized by producing μm-sized fine bainite.
JP3807386A 1986-02-22 1986-02-22 Manufacture of high toughness acceleratedly cooled type 50kg class steel plate superior in weldability Pending JPS62196325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3807386A JPS62196325A (en) 1986-02-22 1986-02-22 Manufacture of high toughness acceleratedly cooled type 50kg class steel plate superior in weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3807386A JPS62196325A (en) 1986-02-22 1986-02-22 Manufacture of high toughness acceleratedly cooled type 50kg class steel plate superior in weldability

Publications (1)

Publication Number Publication Date
JPS62196325A true JPS62196325A (en) 1987-08-29

Family

ID=12515310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3807386A Pending JPS62196325A (en) 1986-02-22 1986-02-22 Manufacture of high toughness acceleratedly cooled type 50kg class steel plate superior in weldability

Country Status (1)

Country Link
JP (1) JPS62196325A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810951A (en) * 1995-06-07 1998-09-22 Ipsco Enterprises Inc. Steckel mill/on-line accelerated cooling combination
US6264767B1 (en) 1995-06-07 2001-07-24 Ipsco Enterprises Inc. Method of producing martensite-or bainite-rich steel using steckel mill and controlled cooling
US6309482B1 (en) 1996-01-31 2001-10-30 Jonathan Dorricott Steckel mill/on-line controlled cooling combination

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810951A (en) * 1995-06-07 1998-09-22 Ipsco Enterprises Inc. Steckel mill/on-line accelerated cooling combination
US6264767B1 (en) 1995-06-07 2001-07-24 Ipsco Enterprises Inc. Method of producing martensite-or bainite-rich steel using steckel mill and controlled cooling
US6309482B1 (en) 1996-01-31 2001-10-30 Jonathan Dorricott Steckel mill/on-line controlled cooling combination

Similar Documents

Publication Publication Date Title
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JPH11140580A (en) Continuously cast slab for high strength steel excellent in toughness at low temperature, its production, and high strength steel excellent in toughness at low temperature
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
JP4205922B2 (en) High strength steel pipe excellent in deformation performance, low temperature toughness and HAZ toughness and method for producing the same
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JPS58100625A (en) Production of high toughness high tensile steel plate having excellent weldability
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP3374688B2 (en) Method for producing tempered 600 N / mm2 class high strength steel excellent in weld cracking sensitivity and low-temperature toughness
JPS62196325A (en) Manufacture of high toughness acceleratedly cooled type 50kg class steel plate superior in weldability
JPH09302445A (en) Nickel-containing steel for low temperature use and its production
JP3836919B2 (en) Manufacturing method of ultra-thick high-strength bend pipe with excellent low temperature toughness
JP3126181B2 (en) Manufacturing method of steel for offshore structures with excellent fire resistance
JPH0717947B2 (en) Low yield ratio high strength steel sheet manufacturing method
JPH0579728B2 (en)
JPH093595A (en) Low yield ratio thick steel plate excellent in toughness and its production
JPS601927B2 (en) Manufacturing method for non-temperature high tensile strength steel with excellent low-temperature toughness
JP2003166033A (en) Thick steel plate with excellent toughness in welded heat affected zone
JPH05163527A (en) Manufacture of high tension steel superior in weldability
JP3568710B2 (en) 590 N / mm2 grade steel sheet for welded structure having excellent HAZ toughness during large heat input welding and yield ratio of 80% or less and method for producing the same
JPH05271757A (en) Manufacture of steel sheet for low temperature use
JP2626421B2 (en) Manufacturing method of high strength steel with excellent weldability
JPH06145787A (en) Production of high tensile strength steel excellent in weldability
JPH0247525B2 (en)