JPS58100625A - Production of high toughness high tensile steel plate having excellent weldability - Google Patents

Production of high toughness high tensile steel plate having excellent weldability

Info

Publication number
JPS58100625A
JPS58100625A JP19834581A JP19834581A JPS58100625A JP S58100625 A JPS58100625 A JP S58100625A JP 19834581 A JP19834581 A JP 19834581A JP 19834581 A JP19834581 A JP 19834581A JP S58100625 A JPS58100625 A JP S58100625A
Authority
JP
Japan
Prior art keywords
steel
point
rolling
less
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19834581A
Other languages
Japanese (ja)
Inventor
Chiaki Shiga
千晃 志賀
Taneo Hatomura
波戸村 太根生
Kenichi Amano
天野 「けん」一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19834581A priority Critical patent/JPS58100625A/en
Publication of JPS58100625A publication Critical patent/JPS58100625A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Abstract

PURPOSE:To obtain a high tensile steel plate having excellent toughness and weldability by heating a steel slab of specific compsns. to form a solid solution of Nb in the compsn. and rolling the same under control of temp. and draft at specific values. CONSTITUTION:The steel slab consisting basically of 0.04-0.10% C, 0.05-0.30% Si, 1.25-2.50% Mn, 0.010-0.100% Nb, 0.0005-0.0030% B, <=0.0080% N, 0.005- 0.040% Ti, 0.005-0.050% Al, >=0.10 Cu, >=0.10% Ni (0.20-1.00% Cu+Ni) is rolled at >=(Ar3 point+150 deg.C) and >=50% cumulative draft. In succession, the slab is rolled at <=(Ar3 point+150 deg.C), and in an unrecrystallization austenite region higher than the Ar3 point at >=50%. Further the slab is rolled in a temp. region of two phases according to need and is then air-cooled. Thus the structure consisting essentially of ferrite and fine bainite as well as island-like martensite is formed in the hot-rolled steel plate.

Description

【発明の詳細な説明】 本発明は、高靭性高張力鋼板の製造方法に関するもので
あり、特に本発明は脆性破壊伝播停止特性などの低温靭
性及び溶接性の優れた主として30〜80kgf/mm
2級非調質低温用鋼板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high-toughness, high-tensile steel plate, and in particular, the present invention relates to a method for manufacturing a high-toughness, high-strength steel plate, and in particular, the present invention relates to a method for manufacturing a high-toughness, high-strength steel plate.
The present invention relates to a method for manufacturing a second class non-temperature steel plate for low temperature use.

本発明により製造される鋼板は、主として寒冷地での天
然ガス輸送に用いる高級大径ラインパイプ用鋼板として
、あるいは従来のQT熱処理鋼板に代り得る鋼板として
使用することができる。
The steel sheet produced according to the present invention can be used as a steel sheet for high-grade, large-diameter line pipes mainly used for natural gas transportation in cold regions, or as a steel sheet that can replace conventional QT heat-treated steel sheets.

近年エネルギー需要が高まるにつれ天然ガスの大量輸送
が望まれ、ラインパイプの操業圧も従来の75気圧から
100気圧、120気圧へと上昇の傾向にある。これに
ともない使用される素材は高張力化、厚肉化が求められ
るようになって来ている。
As demand for energy has increased in recent years, there has been a desire to transport large quantities of natural gas, and the operating pressure of line pipes has been increasing from the conventional 75 atm to 100 and 120 atm. Along with this, the materials used are required to have higher tensile strength and thicker walls.

また同時に、これらのラインパイプには現地での円周溶
接の能率の点から溶接性の向上が望まれ、低炭素当量化
が要求され始めている。例えば強度的60kgf/mm
2級で0.35%以下、また強度約70kgf/mm2
級で0.42%以下の非常に低い炭素当量を要求し、な
おかつ優れた低温靭性を有するラインパイプ用鋼板が求
められている。
At the same time, it is desired that these line pipes have improved weldability in terms of the efficiency of circumferential welding on site, and lower carbon equivalents are beginning to be required. For example, the strength is 60kgf/mm
Grade 2: 0.35% or less, and strength approximately 70kgf/mm2
There is a need for a steel plate for line pipes that requires a very low carbon equivalent of 0.42% or less in grade and has excellent low-temperature toughness.

制御圧延鋼板では低温靭性の破面遷移温度はセパレーシ
ョンの作用で良好な値を得やすいが、一方衝撃吸収エネ
ルギーは低くなる欠点がある。それも強度60、70、
80kgf/mm2と高張力化する程不利となる。本発
明の対象としているガスラインパイプ用鋼板は石油ライ
ンパイプ用鋼板と違って不安定延性破壊の防止の観点か
ら一般に高い衡撃吸収エネルギーが要求されている。ま
たもう1つの本発明の対象鋼材である従来のQT熱処理
用鋼材も衝撃吸収エネルギーは高いのが特徴であるので
、QT鋼材の代替を目的とする場合には、圧延のまゝで
衝撃吸収エネルギーを高める工夫をしなければならない
In control-rolled steel sheets, it is easy to obtain good values for the fracture surface transition temperature of low-temperature toughness due to the effect of separation, but on the other hand, it has the disadvantage that impact absorption energy is low. It also has a strength of 60, 70,
The higher the tension is, 80 kgf/mm2, the more disadvantageous it becomes. Unlike steel plates for petroleum line pipes, which are the object of the present invention, steel plates for gas line pipes are generally required to have high impact absorption energy from the viewpoint of preventing unstable ductile fracture. In addition, the conventional QT heat-treated steel, which is another steel subject to the present invention, is also characterized by high impact absorption energy, so if the purpose is to replace QT steel, it is recommended to use the conventional QT heat treatment steel as it is rolled. We must devise ways to increase this.

このような背景のもとで本発明者等は低い炭素当量で高
張力化、高靭性化を非調質鋼で具備させるために、一般
によく知られているフェライト−パーライト鋼に代わっ
て、フェライト−ペイナイト−島状マルテンサイト鋼に
着眼し研究を重ねてきた。その結果、約6μ以下の微細
粒のベイナイトおよび島状マルチンサイトを第2相組織
として有するフェライト組織が高張力化と高靭性化に優
れていることがわかった。その製造方法として炭素当量
を上げず焼入れ性を上げるB元素を添加した含Nb鋼を
使って、特殊な制御圧延処理を実施することが有効であ
ること、そしてB元素の添加は、ベイナイト粒および島
状マルテンサイトを生成することを目的とするものであ
るが、Bの作用を顕著にするにはBを固溶状態にするこ
とが重要で、そのためにはNがBN析出物にならないよ
うにT1、AlのN析出物に固定することが重要である
ことがわかった。しかしこのような状態下でもB成分は
その添加量を増すと強度が比例して増すのでなく、B5
〜30ppmの範囲で7〜10kgf/mm2の強度上
昇に効果があるに過ぎない。一方、制御圧延処理は高い
衝撃吸収エネルギーを得るには不利であることを前述し
たが、鋼中のCとS含有量を低下することによって高い
衝撃吸収エネルギーが得られることがわかった。しかし
60kgf/mm2鋼の厚物および70kgf/mm2
の高強度鋼を対象とするとき、lowC−Nb−Bの成
分系だけでは、靭性は優れても強度が不足することが明
らかとなった。
Against this background, the present inventors developed a ferrite steel instead of the generally well-known ferrite-pearlite steel, in order to make a non-tempered steel with high tensile strength and high toughness with a low carbon equivalent. - Paynite - We have been conducting research focusing on island-like martensitic steel. As a result, it was found that a ferrite structure having fine grains of about 6 μm or less of bainite and island-shaped martinsite as a second phase structure is excellent in increasing tensile strength and toughness. As a manufacturing method, it is effective to carry out a special controlled rolling process using Nb-containing steel to which B element is added that increases hardenability without increasing the carbon equivalent. The purpose is to generate island-like martensite, but in order to make the effect of B noticeable, it is important to bring B into a solid solution state, and to do so, it is necessary to prevent N from becoming BN precipitates. It was found that it is important to fix T1 to the N precipitate of Al. However, even under such conditions, the strength of component B does not increase proportionally when the amount added is increased;
In the range of ~30 ppm, it is only effective in increasing the strength by 7~10 kgf/mm2. On the other hand, although it was mentioned above that controlled rolling treatment is disadvantageous in obtaining high impact absorption energy, it has been found that high impact absorption energy can be obtained by lowering the C and S contents in the steel. However, 60kgf/mm2 thick steel and 70kgf/mm2
It has become clear that when targeting high-strength steel, the low C-Nb-B component system alone has excellent toughness but insufficient strength.

そこでlowC−Nb−B鋼で強度を上昇させる合金成
分を検討した結果、図のグラフに示すように、Mm、C
r、Moの添加はTSを増すが、vTrsを劣化させ、
一方CuとNiのその和で0.20%以上の添加は、T
Sの上昇とvTrsの向上を同時にもたらすことを新し
く知見した。この主原因は、Cu、Niの添加がベイナ
イト粒の微細化とその粒内のラスパケットの微細化を同
時にもたらすことにあると考えられる。
Therefore, as a result of examining alloy components that increase the strength of low C-Nb-B steel, as shown in the graph of the figure, Mm, C
Addition of r, Mo increases TS but degrades vTrs,
On the other hand, if the sum of Cu and Ni is added at 0.20% or more, T
We have newly discovered that it brings about an increase in S and an improvement in vTrs at the same time. The main reason for this is thought to be that the addition of Cu and Ni simultaneously makes the bainite grains finer and the lath packets within the grains finer.

本発明では、上述の知見から衝撃吸収エネルギー向上の
ために素材鋼のC、S含有量を下げ、またフェライト組
織に微細ベイナイト粒及び島状マルテンサイトを増すた
めに所定の含有量のNbとともに、B、Cu、Niを所
定の量で同時に添加する。この点が本発明における素材
鋼の成分系についての特徴である。すなわち、本発明に
おけるスラブの組成は次のとおりである。
In the present invention, based on the above findings, in order to improve the impact absorption energy, the C and S contents of the steel material are lowered, and in order to increase the fine bainite grains and island martensite in the ferrite structure, along with a predetermined content of Nb, B, Cu, and Ni are added simultaneously in predetermined amounts. This point is a feature of the composition system of the steel material in the present invention. That is, the composition of the slab in the present invention is as follows.

C:0.04〜0.10%、Si:0.05〜0.03
%、Mn:1.20〜2.50%、Nb:0.010〜
0.100%、B:0.0005〜0.0030%、N
:≦0.0080%、Ti:0.005〜0.040%
、Al:0.005〜0.050%とCu:≧0.10
%及びNi:≧0.10%(ただしCu+Ni:0.2
0〜1.00%)を含み、必要により更にMo:≦0.
50%、V:≦0.10%、Cr:≦0.50%、Ca
:0.002〜0.010%、REM:0.002〜0
.010%のうちから選ばれるいづれか1種又は2種以
上を含有し、残部不可避的不純物(そのうちSは0.0
08%以下とする。)及びFeよりなる。
C: 0.04-0.10%, Si: 0.05-0.03
%, Mn: 1.20-2.50%, Nb: 0.010-
0.100%, B: 0.0005-0.0030%, N
:≦0.0080%, Ti:0.005-0.040%
, Al: 0.005-0.050% and Cu: ≧0.10
% and Ni: ≧0.10% (however, Cu+Ni: 0.2
0 to 1.00%), and if necessary further Mo:≦0.
50%, V:≦0.10%, Cr:≦0.50%, Ca
:0.002~0.010%, REM:0.002~0
.. 0.010%, and the remainder contains unavoidable impurities (of which S is 0.0%).
08% or less. ) and Fe.

そして圧延法では、フェライト粒およびベイナイト粒を
微細化するために鋼スラブをNbが少くとも0.01%
固溶する温度に加熱した後、Ar3点+150℃を越え
る温度で累積圧下率が少くとも5O%となるように圧延
を施し、引続いてAr3点+150℃以下でかつAr3
点以上の未再結晶オーステナイトの温度範囲内で累積圧
下率が少くとも50%となるように圧延を施し、必要に
より次いでAr3点未満でかつAr3−80℃以上のオ
ーステナイトとフェライトとの2相域の温度範囲内で累
積圧下率が少くとも10%となるように圧延を施し、そ
の後空冷するのが、本発明の圧延法についての特徴であ
る。
In the rolling method, the steel slab is made with at least 0.01% Nb in order to refine the ferrite grains and bainite grains.
After heating to a temperature at which solid solution occurs, rolling is performed at a temperature exceeding Ar3 point +150°C so that the cumulative reduction ratio is at least 50%, and then rolling is performed at a temperature exceeding Ar3 point +150°C and at Ar3 point +150°C or less.
Rolling is carried out so that the cumulative reduction rate is at least 50% within the temperature range of unrecrystallized austenite at or above the Ar point, and if necessary, then the two-phase region of austenite and ferrite at an Ar point of less than 3 points and Ar3-80°C or higher. A feature of the rolling method of the present invention is that rolling is carried out so that the cumulative reduction ratio is at least 10% within the temperature range of , and then air cooling is performed.

そして本発明は、0.35%以下の炭素当量で60kg
f/mm2以上の強度、また0.42%以下の炭素当量
で70kgf/mm2以上の強度を有し、かつ−90℃
以下のvTrsと15kgf・m以上のvE−25を有
する高張力鋼板を製造する方法を提供することをその目
的とする。
And the present invention provides a carbon equivalent of 60 kg with a carbon equivalent of 0.35% or less.
f/mm2 or more, and has a strength of 70kgf/mm2 or more with a carbon equivalent of 0.42% or less, and -90°C
The object is to provide a method for producing a high tensile strength steel plate having the following vTrs and vE-25 of 15 kgf·m or more.

以下、本発明を詳しく説明する。The present invention will be explained in detail below.

本発明の構成要件として、まづスラブの圧延及び加熱処
理の各条件を上記のとおり限定する理由を説明する。
As constituent elements of the present invention, the reasons for limiting the conditions for rolling and heat treatment of the slab as described above will be explained.

本発明は、細粒フェライトを主組織として第2相組織と
して微細ベイナイト粒および島状マルテンサイトを含む
鋼、即ち第2相組織の体積率が約40%未満のフェライ
ト組織を製造することを目的としており、これらの微細
粒を生成させるためにNbを含有させる必要があり、N
bが0.01%以上固溶するように先ず鋼スラブを加熱
しなければならない。その理由は、Nbが未固溶のとき
は未再結晶オーステナイト域はAr3点+50℃である
が、0.01%以上固溶すると前記未再結晶オーステナ
イト域はAr3点+150℃までに上昇する。この未再
結晶オーステナイト域において30%以上の圧延が可能
となるように、この未再結晶オーステナイト域を拡大さ
せるためである。
The purpose of the present invention is to produce a steel having fine ferrite as the main structure and containing fine bainite grains and island martensite as the second phase structure, that is, a ferrite structure in which the volume fraction of the second phase structure is less than about 40%. Therefore, it is necessary to contain Nb to generate these fine grains, and Nb
The steel slab must first be heated so that 0.01% or more of b is dissolved in solid solution. The reason is that when Nb is not in solid solution, the unrecrystallized austenite region is at the Ar3 point +50°C, but when 0.01% or more is dissolved in solid solution, the unrecrystallized austenite region increases to the Ar3 point +150°C. This is to expand this unrecrystallized austenite region so that rolling of 30% or more is possible in this unrecrystallized austenite region.

Ar3+150℃を越える高温再結晶オーステナイト域
における50%累積圧下率は、約20μ以下の細粒のオ
ーステナイト粒をつくるのに必要な圧下率の下限である
The 50% cumulative reduction rate in the high temperature recrystallized austenite region exceeding Ar3+150°C is the lower limit of the reduction rate necessary to produce fine austenite grains of about 20 μm or less.

続いてAr3点+150℃以下でかつAr3点以上の未
再結晶オーステナイトの温度域での圧延は、未再結晶オ
ーステナイト粒内に変形帯を生成させフェライト核を多
く発生させるためのものであり、圧下量が50%より少
ないと、フェライト核の生成が不十分である。そこで下
限圧下量を50%に限定した。Nbを固溶させる理由の
1つを上述したが、他の理由として鋼の焼入れ性を増し
、ベイナイトおよび島状マルテンサイトを生成させ易く
することも挙げられる。
Subsequently, rolling in the temperature range of Ar3 point + 150 ° C or lower and Ar3 point or higher for unrecrystallized austenite is to generate a deformation zone in the unrecrystallized austenite grains and generate many ferrite nuclei. When the amount is less than 50%, the generation of ferrite nuclei is insufficient. Therefore, the lower limit pressure reduction amount was limited to 50%. One of the reasons for incorporating Nb as a solid solution has been mentioned above, but another reason is to increase the hardenability of the steel and facilitate the formation of bainite and island martensite.

必要に応じて行なう、Ar3点未満でAr3−80℃以
上の(γ+α)2相域での圧延は、未再結晶オーステナ
イトから変態して生じた未成長の細粒フェライトからは
“微細加工フェライト粒”を生成し、また一方残りの未
再結晶オーステナイトに有効に歪を蓄積させるので、フ
ェライト粒とベイナイト粒の微細化に有効である。
Rolling in the (γ+α) two-phase region at an Ar point of less than 3 and an Ar of 3-80°C or more, which is performed as necessary, is effective in converting ungrown fine-grained ferrite produced by transformation from unrecrystallized austenite into "micro-processed ferrite grains". ” and on the other hand, it also effectively accumulates strain in the remaining unrecrystallized austenite, so it is effective in refining ferrite grains and bainite grains.

しかしAr3−80℃より低い温度域で圧延すると大き
なフェライト粒を加工することになり、vTrsが劣化
する。Ar3未満からAr3−80℃の2相域での圧延
は、強度を上昇させ靭性を劣化させない“微細加工フェ
ライト粒”を生成させると同時に他のフェライト粒の細
粒効果にも有効であるのでより一層の低炭当量化には適
する。しかし、この温度域の圧延の実施は圧延能率を低
下させ、また一方圧延材の衝撃破面にセパレーションを
増加させる原因となるので仕様要求によって使い分けら
れるべきものである。したがって本発明によればAr3
−80℃を2相域における圧延の下限温度となし、また
2相域での圧延の圧下率が10%より小さいとTSの上
昇効果がないので、前記圧下率は10%以上にする必要
がある。
However, if rolling is performed in a temperature range lower than Ar3-80°C, large ferrite grains will be processed and vTrs will deteriorate. Rolling in the two-phase range from less than Ar3 to Ar3-80°C is more effective because it produces "micromachined ferrite grains" that increase strength and do not deteriorate toughness, and at the same time is effective for refining other ferrite grains. Suitable for further lowering the carbon equivalent. However, rolling in this temperature range lowers the rolling efficiency and also causes an increase in separation on the impact fracture surface of the rolled material, so it should be used appropriately depending on specification requirements. Therefore, according to the present invention, Ar3
-80°C is set as the lower limit temperature for rolling in the two-phase region, and if the rolling reduction in the two-phase region is less than 10%, there is no effect of increasing TS, so the rolling reduction needs to be 10% or more. be.

次に本発明においてスラブの成分組成を限定する理由を
説明する。
Next, the reason for limiting the component composition of the slab in the present invention will be explained.

Cは、0.04%より少ないと鋼板の強度が低下するこ
と及び溶接熱影響部(以下HAZと略記する)の軟化が
大きいこと、製造コストが著しく高くなることのため、
C含有量の下限はO.O4%とした。
If C is less than 0.04%, the strength of the steel plate will decrease, the weld heat affected zone (hereinafter abbreviated as HAZ) will be greatly softened, and the manufacturing cost will increase significantly.
The lower limit of C content is O. It was set to O4%.

またCが0.10%を越えると母材の靭性が劣化すると
ともに溶接部の硬化、耐割れ性の劣化が著しいので上限
を0.10%とした。
Further, if C exceeds 0.10%, the toughness of the base metal deteriorates, hardening of the welded part, and deterioration of crack resistance are significant, so the upper limit was set at 0.10%.

Siは、鋼精錬時に脱酸上必然的に含有される元素であ
るが、0.05%より少ないと母材靭性が劣化するため
下限を0.05%とした。一方Si含有量が0.30%
を越えるとベイナイドの促進が低下するので上限を0.
30%とした。
Si is an element that is inevitably included for deoxidation during steel refining, but if it is less than 0.05%, the toughness of the base material deteriorates, so the lower limit was set to 0.05%. On the other hand, the Si content is 0.30%
If the value is exceeded, the promotion of bainide decreases, so the upper limit is set to 0.
It was set at 30%.

Mnは、1.20%より少ないと鋼板の強度および靭性
が低下するためと、そしてHAZの軟化が大きくなるた
め下限を1.20%とした。一方Mnが多過ぎるとHA
Zの靭性が劣化するため上限を2.50%とした。
The lower limit of Mn was set at 1.20% because if it is less than 1.20%, the strength and toughness of the steel plate will decrease and the HAZ will become more softened. On the other hand, if there is too much Mn, HA
Since the toughness of Z deteriorates, the upper limit was set at 2.50%.

Alは、鋼の脱酸上最低0.005%のAlが固溶する
よう添加することが必要であることからAlの下限を0
.005%とした。一方固溶Alが0.050%以上に
なるとHAZの靭性のみならず溶接金属の靭性も劣化す
る。このためAlの上限を0.050%とした。
For deoxidizing steel, it is necessary to add Al so that at least 0.005% of Al becomes a solid solution, so the lower limit of Al is set to 0.
.. 005%. On the other hand, when solid solution Al is 0.050% or more, not only the toughness of the HAZ but also the toughness of the weld metal deteriorates. Therefore, the upper limit of Al was set at 0.050%.

Sは、0.008%以下でないとC方向のvTrmが−
70℃以下にならないし、吸収エネルギーも著しく低く
なる。そこでSの上限を0.008%とした。
If S is not 0.008% or less, vTrm in the C direction will be -
The temperature does not drop below 70°C, and the absorbed energy is significantly lower. Therefore, the upper limit of S was set to 0.008%.

Nbは、溶接部の溶接金属靭性の劣化を避けるために0
.100%以下でなければならないので、Nbの上限を
0.100%とした。一方Nb含有量が0.010%よ
り少ないと遷移温度を向上させる細粒効果が得られず、
このことからNb量の下限を0.010%とした。
Nb is 0 to avoid deterioration of the weld metal toughness of the welded part.
.. Since it must be 100% or less, the upper limit of Nb was set at 0.100%. On the other hand, if the Nb content is less than 0.010%, the fine grain effect that improves the transition temperature cannot be obtained,
From this, the lower limit of the amount of Nb was set to 0.010%.

Bは、0.0005%より少ないとベイナイト化の促進
には有効でないし、一方0.0030%を越えるとHA
Zの硬化が大きいのでBの上限を0.0030%とした
When B is less than 0.0005%, it is not effective in promoting bainite formation, while when it exceeds 0.0030%, it is difficult to promote bainite formation.
Since the hardening of Z is large, the upper limit of B was set to 0.0030%.

Tiは、γ粒の微細効果によって靭性を向上させること
と、Ti炭窒化物の生成によって未再結晶オーステナイ
ト粒中の固溶N量を低下させ、その結果B窒化物の生成
を防止することを目的として添加する。しかし、Ti量
が0.005%より少ないとその効果はなく、また0.
040%を越えると靭性が劣化するのでTiの下限を0
.003%、上限を0.040%とした。
Ti improves toughness through the fine effect of γ grains, and reduces the amount of solid solution N in unrecrystallized austenite grains by forming Ti carbonitrides, thereby preventing the formation of B nitrides. Add as a purpose. However, if the amount of Ti is less than 0.005%, there is no effect, and if the amount of Ti is less than 0.005%, there is no effect.
If it exceeds 0.040%, the toughness will deteriorate, so the lower limit of Ti should be set to 0.040%.
.. 003%, with an upper limit of 0.040%.

Nは、0.008%を越えて含有すると限定したAl、
Ti量ではTi窒化物、Al窒化物として固定するには
不十分で、その結果BがB窒化物を生成することになり
Bの焼き入れ性を悪くするので、N含有量の上限を0.
008%とした。
Al, which is limited to containing N exceeding 0.008%;
The amount of Ti is insufficient to fix Ti nitride and Al nitride, and as a result, B forms B nitride, which worsens the hardenability of B. Therefore, the upper limit of the N content is set to 0.
008%.

Cu、Niは、同時にそれぞれ0.10%以上添加する
のは、0.10%より少ないと2kgf/mm2以上の
強度上昇を望めず、また合せて1.00%を越えるとフ
ェライト組織の方がベイナイト組織より面積率が小さく
なり衝撃吸収エネルギーが劣化するので、それぞれの下
限を0.10%、合計で0.20〜1.00%とした。
Cu and Ni should not be added in an amount of 0.10% or more each at the same time; if it is less than 0.10%, it is not possible to expect a strength increase of more than 2 kgf/mm2, and if they exceed 1.00% in total, the ferritic structure is better. Since the area ratio is smaller than that of the bainite structure and the impact absorption energy is deteriorated, the lower limit of each is set to 0.10%, and the total is set to 0.20 to 1.00%.

以上が本発明において使用される鋼スラブの基本成分で
あり、さらに必要によりMo、V、Cr、Ca、REM
のうちから選んだいずれか少くとも1種を添加含有させ
ることができ、それぞれの元素の適正な含有によって後
述するように特有な効果が付加される。
The above are the basic components of the steel slab used in the present invention, and if necessary, Mo, V, Cr, Ca, REM
At least one selected from these elements can be added and contained, and proper inclusion of each element adds a unique effect as described below.

Moは、圧延時のγ粒を整粒にし、なおかつ微細なベイ
ナイトを生成するので強度、靭性を向上させるがこの発
明の目的を達成するには0.50%を越えて添加する必
要はなく、それ以上は製造コストの上昇を招くので上限
を0.50%とした。
Mo improves strength and toughness by regulating the γ grains during rolling and producing fine bainite, but it is not necessary to add more than 0.50% to achieve the purpose of this invention. If it exceeds this, the manufacturing cost will increase, so the upper limit was set at 0.50%.

■は、この発明による鋼板の母材強度と靭性向上及び継
手部強度確保のために添加するものである。しかし添加
量が多きに失すると母材及びHAZの靭性を著しく劣化
させるため上限を0.10%とした。
(2) is added to improve the strength and toughness of the base material of the steel plate according to the present invention and to ensure the strength of the joint. However, if the added amount is too large, the toughness of the base material and HAZ will deteriorate significantly, so the upper limit was set at 0.10%.

Caは、0.002%より少ないとMnSの形態制御に
不十分でC方向の靭性向上に効果がないので、Caの下
限を0.002%とした。一方Caが0.010%を越
えると鋼の清浄度が悪くなり内部欠陥の原因となるので
、Caの上限を0.010%とした。
If Ca is less than 0.002%, it is insufficient to control the morphology of MnS and has no effect on improving the toughness in the C direction, so the lower limit of Ca is set to 0.002%. On the other hand, if Ca exceeds 0.010%, the cleanliness of the steel deteriorates and causes internal defects, so the upper limit of Ca was set at 0.010%.

REMは、0.002%より少ないとMnSの形態制御
に不十分であって、鋼板のC方向の靭性向上に有効でな
いのでREMの下限を0.002%とした。一方REM
が0.010%を越えると鋼の清浄度が悪くなり、また
アーク溶接面でも不利であるので、REMの上限を0.
010%とした。
If REM is less than 0.002%, it is insufficient to control the morphology of MnS and is not effective in improving the toughness of the steel sheet in the C direction, so the lower limit of REM is set to 0.002%. On the other hand, R.E.M.
If REM exceeds 0.010%, the cleanliness of the steel deteriorates and is also disadvantageous for arc welding, so the upper limit of REM is set to 0.010%.
010%.

以下、本発明の実施例を述べる。Examples of the present invention will be described below.

実施例1 第1表に本発明の実施例及び比較例において用いたスラ
ブ素材の鋼種を示す。鋼lAは本発明実施例に係るもの
であり、鋼1B、2Bは比較例に係るものであって、N
bを含有せず、鋼2Bは従来から使用されている60k
gf/mm2級のQT処理用鋼である。
Example 1 Table 1 shows the steel types of the slab materials used in the examples and comparative examples of the present invention. Steel 1A is related to an example of the present invention, steels 1B and 2B are related to comparative examples, and N
Steel 2B is the conventionally used 60k without containing b.
This is gf/mm2 grade QT treatment steel.

鋼1A、1B、2Bのスラブを用いてそれぞれ第2表に
示す圧延条件によって鋼板の製造試験を行なった。各側
によって製造された鋼板の機械的性質を第2表に併せて
示す。
Steel plate manufacturing tests were conducted using slabs of steel 1A, 1B, and 2B under the rolling conditions shown in Table 2, respectively. The mechanical properties of the steel plates produced by each side are also shown in Table 2.

試験例No.1、No.2は固溶Nb量が0.01%よ
り低く、またNo.5はオーステナイト再結晶温度域で
の圧下量が50%より少なく、またNo.7とNo.8
はAr3点+150℃からAr3点までの圧下量が50
%より少なく、そしてNo.11は仕上げ温度がAr3
−80℃(660℃)より低く、いずれも本発明の製造
条件を満たしていないことにより、目的とする−90℃
以下のvTrsが得られない。本発明の規定量でNbを
含有していない鋼1BはNo.12No.13からわか
るように、いずれの圧延条件でも−90℃以下のvTr
gが得られない。
Test example no. 1.No. No. 2 has a solid solution Nb amount lower than 0.01%. No. 5 had a reduction amount of less than 50% in the austenite recrystallization temperature range, and No. 7 and no. 8
The reduction amount from Ar3 point +150℃ to Ar3 point is 50
% and no. 11 has a finishing temperature of Ar3
-80℃ (660℃), neither of which satisfy the manufacturing conditions of the present invention, so the target -90℃
The following vTrs cannot be obtained. Steel 1B, which does not contain Nb in the specified amount according to the present invention, is No. 12 No. As can be seen from No. 13, vTr below -90°C under any rolling condition.
g cannot be obtained.

しかし、本発明における成分範囲及び圧延条件を満足し
ている実施例No.3、No.4、No.6、No.9
、No.10は、0.33%の低い炭素当量にもかゝわ
らず、60kgf/mm2以上のTSと−90℃以下の
vTrsを達成している。これらの実施例による鋼板は
No.14の従来のQT熱処理鋼板よりも炭素当量、T
S 、vTrs、vE−25のいずれの特性も優れてい
る。
However, Example No. 1 satisfies the component range and rolling conditions of the present invention. 3.No. 4.No. 6, No. 9
, No. No. 10 achieved a TS of 60 kgf/mm2 or more and a vTrs of -90°C or less despite the low carbon equivalent of 0.33%. The steel plates according to these examples were No. 14 carbon equivalent, T than conventional QT heat-treated steel sheet
All of the characteristics of S, vTrs, and vE-25 are excellent.

実施例2 第3表に本発明の実施例及び比較例において使用したス
ラブ素材の鋼種を示す。鋼1M〜11M、12M、13
Mは比較例に係るものであり、鋼1P〜10Pは本発明
の実施例に係るものである。
Example 2 Table 3 shows the steel types of the slab materials used in the examples and comparative examples of the present invention. Steel 1M~11M, 12M, 13
M is a comparative example, and steels 1P to 10P are examples of the present invention.

第3表に示した鋼種からなるスラブを用いて、それぞれ
第4表に示す圧延条件によって鋼板の製造試験を行なっ
た。各例によって製造された鋼板の機械的性質は第4表
に併せて示す。
Using slabs made of the steel types shown in Table 3, steel plate manufacturing tests were conducted under the rolling conditions shown in Table 4. The mechanical properties of the steel plates manufactured in each example are also shown in Table 4.

試験例No.1〜No.11の比較例は圧延条件をほゞ
同じくしてスラブの化学成分を変えたものである。
Test example no. 1~No. In Comparative Example 11, the rolling conditions were almost the same, but the chemical composition of the slab was changed.

No.1、2、5、7はスラブのTi又はB含有量が本
発明の成分範囲から外れているため、またNo.3はS
i含有量が本発明の上限0.30%を越えるため、60
kgf/mm2以上のTSが得られない。また同様に、
No.8はN含有量が0.0080%を越え、またNo
.10はCu、Niを含まず、No.11はCuを含ま
ないため、60kgf/mm2以上のTSが得られない
No. Nos. 1, 2, 5, and 7 were selected because the Ti or B content of the slabs was outside the component range of the present invention. 3 is S
Since the i content exceeds the upper limit of 0.30% of the present invention, 60
TS of kgf/mm2 or more cannot be obtained. Similarly,
No. 8 has a N content exceeding 0.0080%, and No.
.. No. 10 does not contain Cu or Ni. Since No. 11 does not contain Cu, a TS of 60 kgf/mm2 or more cannot be obtained.

No.4はNb含有量が0.04%より少なく、またN
o.6はTi含有量が0.04%を越え、またNo.9
はC含有量が0.10%を越え、いずれも本発明の成分
範囲を満たさないためvTrsが−90℃以下もしくは
vE−25が15kgf・m以上とならない。No.2
2、23は−90℃以下のvTrsを有しながら60k
gf/mm2以上のTSを示すが、本発明のスラブの必
須成分Bを含有しないため、炭素当量がNo.22で0
.42%を、またNo.23で0.35%を越えるので
、得られた鋼板は溶接性が優れない。
No. 4 has a Nb content of less than 0.04%, and Nb content is less than 0.04%.
o. No. 6 has a Ti content of over 0.04%, and No. 6 has a Ti content of more than 0.04%. 9
Since the C content exceeds 0.10% and none of them satisfy the component range of the present invention, vTrs does not exceed -90°C or vE-25 does not exceed 15 kgf·m. No. 2
2 and 23 have vTrs below -90℃ while 60k
gf/mm2 or more, but because it does not contain the essential component B of the slab of the present invention, the carbon equivalent is No. 22 and 0
.. 42%, and No. Since it exceeds 0.35% in No. 23, the obtained steel plate does not have excellent weldability.

一方、実施例であるNo.12〜21は本発明で規定す
る成分鋼のスラブを用い、本発明で規定する圧延条件で
製造したもので、No.12、13、14、15、16
、17および21では0.35%以下の炭素当量で60
kgf/mm2以上のTSを、またNo.18、19、
20では0.42%以下の炭素当量で70kgf/mm
2以上のTSが得られ、同時にいずれの実施例でも−9
0℃以下のvTrsが得られた。
On the other hand, Example No. Nos. 12 to 21 were manufactured using slabs of component steel specified in the present invention under rolling conditions specified in the present invention. 12, 13, 14, 15, 16
, 17 and 21 with carbon equivalents below 0.35%.
kgf/mm2 or more, and No. 18, 19,
20, 70kgf/mm with carbon equivalent of 0.42% or less
A TS of 2 or more is obtained, and at the same time -9 in any of the examples.
A vTrs of 0° C. or lower was obtained.

以上詳しく述べてきたとおり、本発明は、特定組成のス
ラブを用い、かつ特定の条件で制御圧延を行なう高張力
鋼板の製造方法であり、この方法により従来のQT熱処
理鋼板に代り得る、靭性と溶接性に非常に優れた、主と
してフェライトを微細ペイナイト及び島状マルテンサイ
トからなる組織を有する高張力鋼板を製造することがで
きる。
As described above in detail, the present invention is a method for manufacturing high-strength steel sheets using slabs of a specific composition and controlled rolling under specific conditions, and by this method, it can replace conventional QT heat-treated steel sheets and improve toughness. It is possible to produce a high-strength steel sheet that has excellent weldability and has a structure mainly composed of ferrite, fine payinite, and island-like martensite.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、lowC−Nb−B鋼を基本成分とし添加成分
を変えて、本発明の制御圧延によって製造したときの鋼
板のTSとvTrsの変化値を示したグラフである。
The drawing is a graph showing changes in TS and vTrs of steel sheets produced by controlled rolling of the present invention using low C-Nb-B steel as a basic component and varying additive components.

Claims (1)

【特許請求の範囲】[Claims] 1、C:0.04〜0.10%、Si:0.05〜0.
30%、Mn:1.20〜2.50、Nb:0.010
〜0.100%、B:0.0005−0.003O%、
N:≦0.0080%、Ti:0.005〜0.040
%、Al:0.005〜0.050%とCu:≧0.1
0%及びNi:≧0.10%(ただしCu+Ni:0.
20〜1.00%)を含有し、必要により更にMo:≦
0.50%、V:≦0.10%−Cr:≦0.50%、
Ca:0.002〜0.010%−REM:0.002
〜0.010%のうちから選ばれるいづれか1種又は2
種以上を含有し、残部不可避的不純物(そのうちSは0
.008%以下とする。)及びFeよりなる鋼のスラブ
を、鋼スラブ中Nbが少くとも0.01%固溶する温度
に加熱した後、Ar3点+150℃を越える温度で累積
圧下率が少くとも50%となるように圧延を施し、引続
いてAr3点+150℃以下で、かつAr3点以上の未
再結晶オーステナイト域の温度範囲内で累積圧下率が少
くとも50%となるよう圧延を施し、必要により次いで
Ar3点未満でかつAr3点−80℃以上のオーステナ
イトとフェライトとの2相域の温度範囲内で累積圧下率
が少くとも10%となるように圧延を施し、その後空冷
して、この熱延鋼板に主としてフェライトと微細ベイナ
イト及び島状マルテンサイトから成る組織を形成させる
ようにすることを特徴とする、靭性と溶接性の非常に優
れた高張力鋼板の製造方法。
1, C: 0.04-0.10%, Si: 0.05-0.
30%, Mn: 1.20-2.50, Nb: 0.010
~0.100%, B: 0.0005-0.003O%,
N:≦0.0080%, Ti:0.005-0.040
%, Al: 0.005-0.050% and Cu: ≧0.1
0% and Ni: ≧0.10% (however, Cu+Ni: 0.
20 to 1.00%), and if necessary further Mo:≦
0.50%, V:≦0.10%-Cr:≦0.50%,
Ca: 0.002-0.010%-REM: 0.002
Any one or two selected from ~0.010%
species, and the remainder is unavoidable impurities (of which S is 0).
.. 008% or less. ) and Fe to a temperature at which at least 0.01% Nb is dissolved in the steel slab, and then heated so that the cumulative reduction rate is at least 50% at a temperature exceeding Ar3 point + 150 ° C. Rolling is performed, followed by rolling at Ar3 point + 150 ° C or less and within the temperature range of the unrecrystallized austenite region of Ar3 point or more so that the cumulative reduction rate is at least 50%, and if necessary, then below Ar3 point The hot-rolled steel sheet is rolled with a cumulative reduction of at least 10% within the two-phase temperature range of austenite and ferrite at three Ar points of -80°C or higher, and then air-cooled to form mainly ferrite. A method for producing a high-strength steel plate with extremely excellent toughness and weldability, which is characterized by forming a structure consisting of fine bainite and island martensite.
JP19834581A 1981-12-11 1981-12-11 Production of high toughness high tensile steel plate having excellent weldability Pending JPS58100625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19834581A JPS58100625A (en) 1981-12-11 1981-12-11 Production of high toughness high tensile steel plate having excellent weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19834581A JPS58100625A (en) 1981-12-11 1981-12-11 Production of high toughness high tensile steel plate having excellent weldability

Publications (1)

Publication Number Publication Date
JPS58100625A true JPS58100625A (en) 1983-06-15

Family

ID=16389571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19834581A Pending JPS58100625A (en) 1981-12-11 1981-12-11 Production of high toughness high tensile steel plate having excellent weldability

Country Status (1)

Country Link
JP (1) JPS58100625A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996218A (en) * 1982-11-24 1984-06-02 Sumitomo Metal Ind Ltd Manufacture of low-carbon high-tension tough steel plate having two-phase structure
JPS60152626A (en) * 1984-01-20 1985-08-10 Kawasaki Steel Corp Method for stabilizing toughness of high tension steel for welded structure
JPS6164824A (en) * 1984-09-05 1986-04-03 Kobe Steel Ltd Manufacture of 50kgf/mm2-class steel plate for low temperature use
JPS62148790A (en) * 1985-12-23 1987-07-02 積水ハウス株式会社 Shutter opening and closing apparatus
JPS62170459A (en) * 1986-01-22 1987-07-27 Sumitomo Metal Ind Ltd High tension steel plate for high heat input welding
JP2003096517A (en) * 2001-09-20 2003-04-03 Nippon Steel Corp Nonwater cooling type production method for thin high strength steel sheet having high absorbed energy
KR100431851B1 (en) * 1999-12-28 2004-05-20 주식회사 포스코 structural steel having High strength and method for menufactreing it
KR100544722B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 Method for Manufacturing No-Heat Treated Steel with High Weldability, High Toughness and High Strength
KR100643360B1 (en) 2005-06-23 2006-11-10 주식회사 포스코 Method for producing high-strength thick steel plate having excellent weldability and low temperature toughness
KR100723201B1 (en) 2005-12-16 2007-05-29 주식회사 포스코 High strength and toughness steel having superior toughness in multi-pass welded region and method for manufacturing the same
EP1978121A1 (en) * 2005-11-09 2008-10-08 Nippon Steel Corporation HIGH-STRENGTH STEEL SHEET OF 450 MPa OR HIGHER YIELD STRESS AND 570 MPa OR HIGHER TENSILE STRENGTH HAVING LOW ACOUSTIC ANISOTROPY AND HIGH WELDABILITY AND PROCESS FOR PRODUCING THE SAME
CN113667894A (en) * 2021-08-13 2021-11-19 北京首钢冷轧薄板有限公司 800 MPa-grade dual-phase steel with excellent hole expansion performance and preparation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996218A (en) * 1982-11-24 1984-06-02 Sumitomo Metal Ind Ltd Manufacture of low-carbon high-tension tough steel plate having two-phase structure
JPH0118967B2 (en) * 1982-11-24 1989-04-10 Sumitomo Metal Ind
JPS60152626A (en) * 1984-01-20 1985-08-10 Kawasaki Steel Corp Method for stabilizing toughness of high tension steel for welded structure
JPH0353367B2 (en) * 1984-01-20 1991-08-14 Kawasaki Steel Co
JPS6164824A (en) * 1984-09-05 1986-04-03 Kobe Steel Ltd Manufacture of 50kgf/mm2-class steel plate for low temperature use
JPS62148790A (en) * 1985-12-23 1987-07-02 積水ハウス株式会社 Shutter opening and closing apparatus
JPS62170459A (en) * 1986-01-22 1987-07-27 Sumitomo Metal Ind Ltd High tension steel plate for high heat input welding
KR100431851B1 (en) * 1999-12-28 2004-05-20 주식회사 포스코 structural steel having High strength and method for menufactreing it
JP2003096517A (en) * 2001-09-20 2003-04-03 Nippon Steel Corp Nonwater cooling type production method for thin high strength steel sheet having high absorbed energy
KR100544722B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 Method for Manufacturing No-Heat Treated Steel with High Weldability, High Toughness and High Strength
KR100643360B1 (en) 2005-06-23 2006-11-10 주식회사 포스코 Method for producing high-strength thick steel plate having excellent weldability and low temperature toughness
EP1978121A1 (en) * 2005-11-09 2008-10-08 Nippon Steel Corporation HIGH-STRENGTH STEEL SHEET OF 450 MPa OR HIGHER YIELD STRESS AND 570 MPa OR HIGHER TENSILE STRENGTH HAVING LOW ACOUSTIC ANISOTROPY AND HIGH WELDABILITY AND PROCESS FOR PRODUCING THE SAME
EP1978121A4 (en) * 2005-11-09 2012-06-13 Nippon Steel Corp HIGH-STRENGTH STEEL SHEET OF 450 MPa OR HIGHER YIELD STRESS AND 570 MPa OR HIGHER TENSILE STRENGTH HAVING LOW ACOUSTIC ANISOTROPY AND HIGH WELDABILITY AND PROCESS FOR PRODUCING THE SAME
US8246768B2 (en) 2005-11-09 2012-08-21 Nippon Steel Corporation High-tensile steel plate of low acoustic anisotropy and high weldability having yield stress of 450 MPa or greater and tensile strength of 570 MPa or greater, and process for producing the same
KR100723201B1 (en) 2005-12-16 2007-05-29 주식회사 포스코 High strength and toughness steel having superior toughness in multi-pass welded region and method for manufacturing the same
CN113667894A (en) * 2021-08-13 2021-11-19 北京首钢冷轧薄板有限公司 800 MPa-grade dual-phase steel with excellent hole expansion performance and preparation method thereof

Similar Documents

Publication Publication Date Title
EP2272994A1 (en) High-tensile strength steel and manufacturing method thereof
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JPH0127128B2 (en)
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JPH11140580A (en) Continuously cast slab for high strength steel excellent in toughness at low temperature, its production, and high strength steel excellent in toughness at low temperature
JP2006291349A (en) Line pipe steel sheet having high deformation performance and its manufacturing method
CN100491575C (en) Welding heat influenced ductility-excellent high yield ratio high tension steel plate
KR102119975B1 (en) High strength thick steel plate for linepipe having excellent low temperature toughness and ductility as well as low yield ratio
JPS58100625A (en) Production of high toughness high tensile steel plate having excellent weldability
KR102209581B1 (en) The steel plate having excellent heat affected zone toughness and method for manufacturing thereof
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
CN111542621B (en) High-strength high-toughness hot-rolled steel sheet and method for producing same
JPS5834131A (en) Production of nonrefined high tensile steel plate having excellent toughness and weldability
JP2005281842A (en) Production method of low temperature service low yield ratio steel material having excellent weld zone toughness
JP2007191785A (en) Method for manufacturing high-tensile steel material superior in weld cracking resistance
JP5055899B2 (en) Method for producing high-strength welded steel pipe excellent in weld heat-affected zone toughness and having tensile strength of 760 MPa or more, and high-strength welded steel pipe
JPS609086B2 (en) Manufacturing method of high toughness and high tensile strength steel
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JP4259374B2 (en) High strength steel sheet with excellent low temperature toughness and weld heat affected zone toughness and method for producing the same
JPH0717947B2 (en) Low yield ratio high strength steel sheet manufacturing method
JPS6293312A (en) Manufacture of high tensile steel stock for stress relief annealing
JPS6256518A (en) Production of high strength steel sheet for high heat input welding
JPH07268457A (en) Production of thick steel plate for line pipe, having high strength and high toughness
EP4265794A1 (en) Steel material having low surface hardness and excellent low temperature impact toughness, and method for manufacturing same