JP2003089844A - Thick steel plate for welded structure having excellent fatigue strength of welded joint, and production method therefor - Google Patents

Thick steel plate for welded structure having excellent fatigue strength of welded joint, and production method therefor

Info

Publication number
JP2003089844A
JP2003089844A JP2001284913A JP2001284913A JP2003089844A JP 2003089844 A JP2003089844 A JP 2003089844A JP 2001284913 A JP2001284913 A JP 2001284913A JP 2001284913 A JP2001284913 A JP 2001284913A JP 2003089844 A JP2003089844 A JP 2003089844A
Authority
JP
Japan
Prior art keywords
welded
fatigue strength
steel plate
fatigue
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001284913A
Other languages
Japanese (ja)
Other versions
JP4559673B2 (en
Inventor
Tadashi Koseki
正 小関
Tadashi Ishikawa
忠 石川
Shuji Aihara
周二 粟飯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001284913A priority Critical patent/JP4559673B2/en
Publication of JP2003089844A publication Critical patent/JP2003089844A/en
Application granted granted Critical
Publication of JP4559673B2 publication Critical patent/JP4559673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thick steel plate for welded structures which has excel lent fatigue strength of a welded joint, and to provide a production method therefor. SOLUTION: The thick steel plate for welded structures having excellent fatigue strength of a welded joint has a composition containing, by mass, 0.015 to 0.15% C, 0.01 to 2% Si, 0.2 to 1.5% Mn, <=0.03% P, <=0.01% S and >0.1 to 1% Al, and the balance Fe with inevitable impurities, and satisfying Ceq<=0.24+0.03×√Al (Si: <1%) or Ceq<=0.275+0.03×√Al (Si; >=1%), wherein, Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5+Nb/3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶接部の靭性と疲
労強度の両方が必要とされる建築、造船、橋梁、建設機
械、海洋構造物などの溶接構造部材に使用される溶接部
の疲労特性に優れた溶接構造用軟鋼および引張強さが5
90MPa 級の高張力鋼に関わり、さらに詳しくは溶接継
手の疲労強度に優れた溶接構造用厚鋼板およびその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fatigue of welded parts used for welded structural members such as construction, shipbuilding, bridges, construction machinery, and marine structures which require both toughness and fatigue strength of the welded parts. Welded structural mild steel with excellent characteristics and tensile strength of 5
The present invention relates to 90 MPa class high-strength steel, and more particularly to a thick steel plate for welded structures excellent in fatigue strength of welded joints and a manufacturing method thereof.

【0002】[0002]

【従来の技術】溶接構造物の大型化と環境保全に対する
要求の高まりに伴い、構造物部材は従来にも増した信頼
性が要求されるようになってきている。溶接構造物で想
定される破壊形態としては疲労破壊、脆性破壊、延性破
壊などがあるが、これらのうち、最も頻度が高い破壊形
態は、初期欠陥からの疲労破壊あるいは脆性破壊、さら
には疲労破壊の後に続く脆性破壊である。最近の橋梁や
大型タンカーにおける疲労き裂発生、海洋構造物におけ
る疲労き裂を発端とした倒壊など、疲労破壊が問題とな
った事例は少なくない。
2. Description of the Related Art With the increase in size of welded structures and the increasing demand for environmental protection, structural members are required to have higher reliability than ever before. Fatigue fracture, brittle fracture, ductile fracture, etc. are assumed as the fracture modes assumed in the welded structure, but among these, the most frequent fracture mode is the fatigue fracture or brittle fracture from the initial defect, and further the fatigue fracture. Is a brittle fracture that follows. There are many cases in which fatigue failure has become a problem, such as the recent occurrence of fatigue cracks in bridges and large tankers, and collapse due to fatigue cracks in offshore structures.

【0003】これらの破壊形態は、構造物の設計上の配
慮だけでは防止が困難であり、突然の構造物崩壊の原因
となることが多く、構造物の安全確保の観点からはその
防止が最も必要とされる破壊形態である。構造物の大型
化に伴い、使用される鋼材への要求も強くなっており、
特に溶接構造物での靭性、疲労強度の確保は一層難しく
なってくる。
It is difficult to prevent these forms of destruction only by considering the design of the structure, and often cause sudden collapse of the structure. From the viewpoint of ensuring the safety of the structure, the prevention is the most important. This is the required form of destruction. With the increase in size of structures, the demands on the steel materials used have also increased,
In particular, it becomes more difficult to secure toughness and fatigue strength in a welded structure.

【0004】これまでに、疲労強度向上に関する技術が
多数提案されているが、そのほとんどは薄鋼板の母材、
あるいはスポット溶接部の疲労強度向上に関するもので
ある。例えば、特開昭61−96057号公報において
は、ベイナイトの面積比率を5〜60%とすることで疲
労強度向上が図れることが記載されている。厚鋼板溶接
継手の疲労破壊に関する研究によれば、疲労き裂は溶接
部の応力集中部に発生する。この部分には残留応力も作
用しているため、応力集中と残留応力の重畳作用により
疲労き裂の発生が容易となることが明らかにされてい
る。
Up to now, many techniques for improving fatigue strength have been proposed, most of which are thin steel sheet base materials,
Alternatively, it relates to improvement of fatigue strength of spot welds. For example, Japanese Patent Laid-Open No. 61-96057 describes that the fatigue strength can be improved by setting the area ratio of bainite to 5 to 60%. According to a study on fatigue fracture of thick steel plate welded joints, fatigue cracks occur at stress concentration parts of welds. Since residual stress also acts on this part, it has been clarified that fatigue cracks are easily generated by the superposed action of stress concentration and residual stress.

【0005】また、溶接部材の疲労強度支配要因と疲労
強度改善に関する膨大な研究がなされているが、溶接部
疲労強度の改善は、グラインダー研削、溶接ビード最終
層を加熱・再溶融により止端部形状を整形するなどの溶
接止端部形状改善による応力集中の軽減によるものな
ど、力学的要因による改善がほとんどであった(例え
ば、特開昭59−110490号公報、特開平1−30
1823号公報など)。また、溶接後熱処理による残留
応力低減効果も従来からよく知られたものである。
Further, a great deal of research has been conducted on factors that govern the fatigue strength of welded members and improvements in fatigue strength. To improve the fatigue strength of the welded portion, it is necessary to grind it, and to heat and remelt the final layer of the weld bead. Most of the improvements were due to mechanical factors such as stress concentration reduction due to improvement of the weld toe shape such as shaping the shape (for example, JP-A-59-110490 and JP-A-1-30).
1823 publication). Further, the effect of reducing the residual stress by the heat treatment after welding is well known in the past.

【0006】本発明者等は、溶接部の疲労き劣発生・伝
播のミクロ組織依存性に関する系統的な実験を実施した
結果、特開平8−73983号公報では疲労き裂の発生
・伝播を最も効果的に抑制するHAZ組織はフェライト
であることが明らかにしている。すなわち、炭素当量値
(以下Ceq)を限定し、HAZフェライト組織分率を増
加させることによって溶接部の疲労強度が向上すること
が開示されている。
As a result of conducting a systematic experiment on the microstructure dependence of fatigue crack initiation / propagation of welded joints, the inventors of the present invention have found that fatigue crack initiation / propagation is most likely to occur in JP-A-8-73983. It has been revealed that the HAZ structure that is effectively suppressed is ferrite. That is, it is disclosed that the fatigue strength of the weld is improved by limiting the carbon equivalent value (hereinafter, Ceq) and increasing the HAZ ferrite structure fraction.

【0007】しかしながら、特開昭61−96057号
公報記載の発明では、母材のベイナイト面積率を特定範
囲に限定することにより疲労強度を向上させるものであ
るが、これは薄鋼板母材の疲労強度向上に関するもので
あり、本発明が対象とする厚鋼板の突合せ溶接、または
隅肉溶接などにおける溶接継手の疲労強度向上には効果
がない。また、特開昭59−110490号公報および
特開平1−301823号公報記載の発明では、溶接後
に特殊な施工をする必要があり、溶接ままで疲労強度を
改善することができない。さらに、特開平8−7398
3号公報記載の発明では、Ceq値の限定とSi添加によ
りHAZフェライト分率を増加させることによって溶接
部の疲労強度を向上させるものであるが、さらなる疲労
強度向上が必要であり、またその対象とするのは500
MPa 級の高張力鋼板までであり、それ以上の高張力鋼板
については考慮していない。
However, in the invention disclosed in JP-A-61-96057, the fatigue strength is improved by limiting the bainite area ratio of the base metal to a specific range, which is the fatigue of the thin steel plate base metal. The present invention relates to the improvement of strength, and is not effective for improving the fatigue strength of a welded joint in butt welding of thick steel plates or fillet welding, which is the object of the present invention. Further, in the inventions described in JP-A-59-110490 and JP-A-1-301823, it is necessary to perform special work after welding, and it is impossible to improve fatigue strength as it is as welded. Furthermore, JP-A-8-7398
In the invention described in Japanese Patent Publication No. 3, the fatigue strength of the welded portion is improved by limiting the Ceq value and increasing the HAZ ferrite fraction by adding Si, but it is necessary to further improve the fatigue strength. Is 500
Up to MPa-class high-strength steel sheets, and higher-strength steel sheets beyond that are not considered.

【0008】[0008]

【発明が解決しようとする課題】本発明は、応力集中度
の低減や溶接残留応力の低減を実現するための付加的な
溶接施工法による疲労強度向上ではなく、鋼材成分と製
造条件を制御することにより、溶接構造用軟鋼および引
張強さが590MPa 級の高張力鋼において溶接継手の疲
労強度に優れた溶接構造用厚鋼板およびその製造方法を
提供することを目的としている。
SUMMARY OF THE INVENTION The present invention controls not only the fatigue strength by the additional welding method for realizing the reduction of stress concentration and the reduction of welding residual stress, but the control of steel material components and manufacturing conditions. Accordingly, it is an object of the present invention to provide a thick steel plate for a welded structure and a method for producing the same, which is excellent in fatigue strength of a welded joint in a mild steel for welded structure and a high-strength steel having a tensile strength of 590 MPa class.

【0009】[0009]

【課題を解決するための手段】発明者らは溶接構造用軟
鋼板から590MPa 級高張力鋼板までの溶接部疲労強度
を向上するため詳細な検討を行った結果、その達成には
Si量とAl量を限定し、さらにAl量に応じてCeqの
上限を限定することによりHAZフェライト分率を増大
させれば可能とすることを見出した。
[Means for Solving the Problems] As a result of detailed investigations by the present inventors to improve the fatigue strength of welds from mild steel plates for welded structures to high-strength steel sheets of 590 MPa class, the results show that Si content and Al It has been found that it is possible if the HAZ ferrite fraction is increased by limiting the amount and further limiting the upper limit of Ceq according to the amount of Al.

【0010】本発明はかかる知見に基づいて完成された
もので、その要旨とするところは以下の通りである。 (1)質量%で、C:0.015〜0.15%、Si:
0.01%以上1%未満、Mn:0.2〜1.5%、
P:0.03%以下、S:0.01%以下、Al:0.
1%超1%以下を含有し、残部Feおよび不可避的不純
物よりなり、Ceq≦0.24+0.03×√Alを満た
すことを特徴とする溶接継手の疲労強度に優れた溶接構
造用厚鋼板。ただし、Ceq=C+Mn/6+(Cu+N
i)/15+(Cr+Mo+V)/5+Nb/3 (2)質量%で、C:0.015〜0.15%、Si:
1〜2%、Mn:0.2〜1.5%、P:0.03%以
下、S:0.01%以下、Al:0.1%超1%以下を
含有し、残部Feおよび不可避的不純物よりなり、Ceq
≦0.275+0.03×√Alを満たすことを特徴と
する溶接継手の疲労強度に優れた溶接構造用厚鋼板。た
だし、Ceq=C+Mn/6+(Cu+Ni)/15+
(Cr+Mo+V)/5+Nb/3 (3)質量%で、Cu:0.1〜2%を、さらに含有す
ることを特徴とする前記(1)または(2)に記載の溶
接継手の疲労強度に優れた溶接構造用厚鋼板。 (4)質量%で、Ni:0.1〜2%を、さらに含有す
ることを特徴とする前記(1)乃至(3)のいずれかに
記載の溶接継手の疲労強度に優れた溶接構造用厚鋼板。 (5)質量%で、Cr:0.05〜1%、Mo:0.0
2〜1%の1種または2種を、さらに含有することを特
徴とする前記(1)乃至(4)のいずれかに記載の溶接
継手の疲労強度に優れた溶接構造用厚鋼板。 (6)質量%で、Nb:0.005〜0.08%、V:
0.005〜0.1%の1種または2種を、さらに含有
することを特徴とする前記(1)乃至(5)のいずれか
に記載の溶接継手の疲労強度に優れた溶接構造用厚鋼
板。 (7)質量%で、Ti:0.001〜0.05%、N:
0.001〜0.008%を、さらに含有することを特
徴とする前記(1)乃至(6)のいずれかに記載の溶接
継手の疲労強度に優れた溶接構造用厚鋼板。 (8)質量%で、Mg:0.0001〜0.01%、C
a:0.0005〜0.005%、REM:0.000
5〜0.005%の1種または2種以上を、さらに含有
することを特徴とする前記(1)乃至(7)のいずれか
に記載の溶接継手の疲労強度に優れた溶接構造用厚鋼
板。 (9)前記(1)乃至(8)のいずれかに記載の鋼板の
製造において、鋼塊をAc3 点以上、1250℃以下に
加熱後、再結晶温度域で熱間圧延した後、自然冷却する
ことを特徴とする溶接継手の疲労強度に優れた溶接構造
用厚鋼板の製造方法。 (10)再結晶温度域での熱間圧延に引き続き、未再結
晶温度域において累積圧下率で40〜90%の熱間圧延
を行うことを特徴とする前記(9)に記載の溶接継手の
疲労強度に優れた溶接構造用厚鋼板の製造方法。 (11)前記(1)乃至(8)のいずれかに記載の鋼板
の製造において、鋼塊をAc3 点以上、1250℃以下
に加熱後、再結晶温度域で熱間圧延し、引き続き未再結
晶温度域において累積圧下率で40〜90%の熱間圧延
をした後、1〜60℃/secの冷却速度で600℃以下の
温度まで冷却することを特徴とする溶接継手の疲労強度
に優れた溶接構造用厚鋼板の製造方法。 (12)冷却後さらに、300℃〜Ac1 点に加熱して
焼戻し熱処理することを特徴とする前記(11)に記載
の溶接継手の疲労強度に優れた溶接構造用厚鋼板の製造
方法。
The present invention has been completed based on such findings, and the gist thereof is as follows. (1)% by mass, C: 0.015 to 0.15%, Si:
0.01% or more and less than 1%, Mn: 0.2 to 1.5%,
P: 0.03% or less, S: 0.01% or less, Al: 0.
A thick steel plate for welded structure excellent in fatigue strength of a welded joint, containing more than 1% and 1% or less, consisting of balance Fe and inevitable impurities, and satisfying Ceq ≦ 0.24 + 0.03 × √Al. However, Ceq = C + Mn / 6 + (Cu + N
i) / 15 + (Cr + Mo + V) / 5 + Nb / 3 (2)% by mass, C: 0.015 to 0.15%, Si:
1 to 2%, Mn: 0.2 to 1.5%, P: 0.03% or less, S: 0.01% or less, Al: more than 0.1% and 1% or less, the balance Fe and unavoidable. Ceq consists of
A thick steel plate for welded structure having excellent fatigue strength of a welded joint, which satisfies ≦ 0.275 + 0.03 × √Al. However, Ceq = C + Mn / 6 + (Cu + Ni) / 15 +
(Cr + Mo + V) / 5 + Nb / 3 (3)% by mass, further containing Cu: 0.1 to 2%, which is excellent in fatigue strength of the welded joint according to the above (1) or (2). Heavy steel plate for welded structure. (4) For welded structures excellent in fatigue strength of the welded joint according to any one of (1) to (3), characterized in that Ni: 0.1 to 2% by mass is further contained. Thick steel plate. (5) Mass%, Cr: 0.05 to 1%, Mo: 0.0
A thick steel plate for welded structure excellent in fatigue strength of the welded joint according to any one of the above (1) to (4), further containing 1 to 2% of 2-1%. (6) Mass%, Nb: 0.005 to 0.08%, V:
Weld structure thickness excellent in fatigue strength of the welded joint according to any one of the above (1) to (5), further containing 0.005 to 0.1% of 1 type or 2 types. steel sheet. (7) In mass%, Ti: 0.001 to 0.05%, N:
The thick steel plate for welded structure excellent in fatigue strength of the welded joint according to any one of the above (1) to (6), further containing 0.001 to 0.008%. (8) Mass%, Mg: 0.0001 to 0.01%, C
a: 0.0005 to 0.005%, REM: 0.000
5 to 0.005% of 1 type or 2 or more types are further contained, The thick steel plate for welded structures excellent in the fatigue strength of the welded joint in any one of said (1) thru | or (7) characterized by the above-mentioned. . (9) In the production of the steel sheet according to any one of (1) to (8), the steel ingot is heated to Ac 3 point or higher and 1250 ° C. or lower, hot-rolled in a recrystallization temperature range, and then naturally cooled. A method for producing a thick steel plate for a welded structure, which is excellent in fatigue strength of a welded joint. (10) Following the hot rolling in the recrystallization temperature range, hot rolling at a cumulative reduction rate of 40 to 90% is performed in the non-recrystallization temperature range of the welded joint according to (9) above. A method for manufacturing a thick steel plate for welded structures having excellent fatigue strength. (11) In the production of the steel sheet according to any one of (1) to (8), the steel ingot is heated to Ac 3 point or higher and 1250 ° C. or lower, and then hot-rolled in a recrystallization temperature range, and then unreformed. Excellent in fatigue strength of welded joints characterized by performing hot rolling at a cumulative rolling reduction of 40 to 90% in the crystallization temperature range and then cooling to a temperature of 600 ° C or less at a cooling rate of 1 to 60 ° C / sec. For manufacturing thick steel plates for welded structures. (12) The method for producing a thick steel plate for welded structure having excellent fatigue strength of the welded joint according to (11), further comprising heating to 300 ° C. to Ac 1 point and then performing heat treatment after cooling.

【0011】[0011]

【発明の実施の形態】本発明について、詳細に説明す
る。まず、本発明の骨子である溶接継手の疲労強度向上
について記述する。発明者らは、溶接継手の疲労試験片
のき裂発生・伝播の状況をミクロ的に詳細に観察を行っ
た。その結果、ほとんどの疲労き裂は溶接金属とHAZ
(熱影響部)の境界部、すなわち、溶接融合線付近から
発生し、HAZ内を伝播し、さらに母材部に突入して試
験片の全体破壊に至ることを知見した。溶接融合線付近
からき裂が発生するのは、溶接融合線付近は溶接止端部
に一致し、この部分で最も応力集中が高くなるためであ
る。このように、疲労き裂は溶接融合線付近から発生
し、HAZ内を伝播するために、疲労強度はHAZのミ
クロ組織に大きく影響することが明らかとなった。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail. First, improvement of fatigue strength of a welded joint, which is the essence of the present invention, will be described. The inventors performed a detailed microscopic observation of the state of crack initiation / propagation in the fatigue test piece of the welded joint. As a result, most fatigue cracks occur in weld metal and HAZ.
It has been found that it occurs at the boundary of (heat affected zone), that is, near the weld fusion line, propagates in the HAZ, and further rushes into the base metal portion, leading to total destruction of the test piece. The reason why cracks occur near the weld fusion line is that the vicinity of the weld fusion line coincides with the weld toe, and the stress concentration is highest at this portion. As described above, it has been clarified that the fatigue crack is generated near the weld fusion line and propagates in the HAZ, so that the fatigue strength greatly affects the microstructure of the HAZ.

【0012】上記のように、疲労き裂の発生部は溶接融
合線近傍であり、さらにき裂伝播の初期段階ではHAZ
内である。これらの領域は応力集中部に一致している。
HAZミクロ組織と応力集中の両因子を再現することに
よりHAZミクロ組織が疲労強度に及ぼす影響を調査す
ることができる。そこで、再現溶接熱サイクルを与えた
鋼材から応力集中を設けた試験片を加工し、疲労試験に
供してHAZミクロ組織と疲労強度の関係を求めた。試
験片の外形寸法10×10×55mm、切欠き深さは2m
m、切欠き先端半径は0.75mmで、支点間距離を40m
mとして3点曲げ繰返し荷重を与え、疲労破壊させた。
応力集中係数は2.6である。
As described above, the fatigue crack initiation portion is near the weld fusion line, and further, in the initial stage of crack propagation, HAZ.
It is within. These regions correspond to the stress concentration part.
By reproducing both the HAZ microstructure and stress concentration factors, the effect of the HAZ microstructure on fatigue strength can be investigated. Therefore, a test piece provided with stress concentration was processed from a steel material subjected to a simulated welding heat cycle and subjected to a fatigue test to determine the relationship between the HAZ microstructure and the fatigue strength. External dimensions of the test piece 10 x 10 x 55 mm, notch depth 2 m
m, notch tip radius is 0.75 mm, fulcrum distance is 40 m
A 3-point bending cyclic load was applied as m to cause fatigue failure.
The stress concentration factor is 2.6.

【0013】図1は、軟鋼から引張強さが590MPa ま
での強度を有する実験室真空溶解鋼を素材として、最高
加熱温度を1400℃、800〜500℃の冷却時間を
1〜30秒とした溶接再現熱サイクルを与えた再現HA
Z材の疲労限度比(疲労限/再現HAZ材の引張強さ)
の再現HAZ材の引張強さに対する依存性を示したもの
である。この図から明らかなように、疲労限度比はHA
Zミクロ組織に大きく依存し、マルテンサイト、下部ベ
イナイト、下部ベイナイト+上部ベイナイトの混合組
織、上部ベイナイト、フェライトの順に高くなる。すな
わち応力集中を有する疲労試験においてはHAZ組織が
高温変態組織ほど疲労限度比は高くなり、低温変態組織
ほど低くなる。
FIG. 1 shows a welding process using mild steel to laboratory vacuum melting steel having a tensile strength of up to 590 MPa, with a maximum heating temperature of 1400 ° C. and a cooling time of 800 to 500 ° C. for 1 to 30 seconds. Reproduced HA with reproducible heat cycle
Fatigue limit ratio of Z material (fatigue limit / reproduced HAZ tensile strength)
3 shows the dependence of the reproduced HAZ material on the tensile strength. As is clear from this figure, the fatigue limit ratio is HA
Depends largely on the Z microstructure, martensite, lower bainite, mixed structure of lower bainite + upper bainite, upper bainite, and ferrite become higher in this order. That is, in the fatigue test with stress concentration, the HAZ structure has a higher fatigue limit ratio as the high-temperature transformed structure becomes higher, and becomes lower as the low-temperature transformed structure becomes lower.

【0014】このように疲労強度がミクロ組織に依存す
る原因は完全には解明されていないが、低温変態組織
ほど変態時に導入された転位密度が高く、この転位は繰
返し応力を受けると再配列されてしまうために転位強化
は疲労強度にあまり寄与しない。低温変態組織になる
とベイナイトやマルテンサイトのラス界面、あるいは旧
オーステナイト粒界の強度が粒内組織の強度に比べて相
対的に低くなり、ラス界面や旧オーステナイト粒界で疲
労き裂が容易に発生する。フェライト組織では伝播す
るき裂先端における塑性変形が顕著で、塑性吸収エネル
ギーが増大し、その結果としてき裂伝播を遅延させる。
などの理由が考えられる。応力集中の少ない平滑試験片
においては疲労強度のミクロ組織依存性は少なく、むし
ろ静的な引張強さと高い相関関係を有することが知られ
ている。
The reason why the fatigue strength depends on the microstructure has not been completely clarified, but the dislocation density introduced during the transformation is higher in the low temperature transformation structure, and the dislocations are rearranged when subjected to repeated stress. Therefore, dislocation strengthening does not contribute much to fatigue strength. The strength of the lath interface of bainite or martensite or the former austenite grain boundary becomes relatively lower than that of the intragranular structure in the low temperature transformation structure, and fatigue cracks easily occur at the lath interface and the former austenite grain boundary. To do. In the ferrite structure, the plastic deformation at the propagating crack tip is remarkable, the plastic absorbed energy increases, and as a result, the crack propagation is delayed.
The reason is considered. It is known that the fatigue strength of a smooth test piece with little stress concentration has little microstructure dependence, and rather has a high correlation with static tensile strength.

【0015】このように、再現HAZ材疲労強度がミク
ロ組織により影響を受け、特にフェライト主体組織で疲
労限度比が上昇することは応力集中部で特異的に生じる
現象であり、ミクロ組織をフェライト主体組織とするこ
とによる疲労強度向上の効果は溶接継手のように応力集
中が存在する場合に特に顕著に作用するものである。従
って、HAZミクロ組織をフェライト主体組織とするこ
とが疲労強度向上の上で最も望ましいが、HAZが連続
的に受ける連続冷却変態で100%フェライト組織にす
ることは、特に冷却速度が大きい小・中入熱溶接では困
難であり、必然的にフェライトより変態温度が低いベイ
ナイトなどの組織が混入する。しかしながら、上部ベイ
ナイトはフェライトに次いで疲労限度比が高いために、
上部ベイナイトが多少混入してもHAZの疲労強度をあ
まり低下させないことが期待できる。
As described above, the fatigue strength of the reproduced HAZ material is influenced by the microstructure, and the fact that the fatigue limit ratio rises especially in the ferrite-based structure is a phenomenon that occurs specifically in the stress concentration part. The effect of improving the fatigue strength by forming the structure is particularly remarkable when stress concentration is present as in a welded joint. Therefore, it is most desirable to make the HAZ microstructure a ferrite-based structure in order to improve the fatigue strength, but to make the 100% ferrite structure in the continuous cooling transformation that the HAZ continuously receives is especially high in cooling rate. It is difficult to perform heat input welding, and a structure such as bainite whose transformation temperature is lower than that of ferrite is inevitably mixed. However, since upper bainite has the highest fatigue limit ratio next to ferrite,
It can be expected that the HAZ fatigue strength will not be significantly reduced even if some upper bainite is mixed.

【0016】図2は再現HAZ材の疲労限度比をフェラ
イト面積率に対してプロットしたものである。図から明
らかなことは、フェライト面積率が増加するに従って
疲労限度比は上昇する。さらに、フェライト面積率が6
0%以上であれば疲労限度比が著しく上昇する。疲労限
度比の向上はフェライト面積率が60%以上の範囲にお
いて特に顕著である。同一フェライトの面積率で比較
すると、Si≧1%でAl<0.1%添加した鋼はSi
<1%でAl<0.1%添加した鋼に比べて疲労限度比
が上昇する。また、同一フェライトの面積率で比較す
ると、Si≧1%で0.1%<Al≦1%添加した鋼は
Si≧1%でAl<0.1%添加した鋼に比べて疲労限
度比が上昇する。この結果から、HAZのフェライト面
積率を60%以上とする事により疲労限度比を向上で
き、さらにSiを1%以上添加して0.1%<Al≦1
%添加すると疲労限度比向上の効果は顕著となることが
明らかとなった。
FIG. 2 is a plot of the fatigue limit ratio of the reproduced HAZ material against the ferrite area ratio. It is clear from the figure that the fatigue limit ratio increases as the ferrite area ratio increases. Furthermore, the ferrite area ratio is 6
If it is 0% or more, the fatigue limit ratio increases significantly. The improvement of the fatigue limit ratio is particularly remarkable in the range where the ferrite area ratio is 60% or more. Comparing the area ratios of the same ferrite, the steel with Si ≧ 1% and Al <0.1% is Si
The fatigue limit ratio is higher than that of steel containing Al <0.1% at <1%. Further, comparing the area ratios of the same ferrite, the steel with Si ≧ 1% and 0.1% <Al ≦ 1% has a fatigue limit ratio higher than that of the steel with Si ≧ 1% and Al <0.1%. To rise. From this result, it is possible to improve the fatigue limit ratio by setting the ferrite area ratio of HAZ to 60% or more, and to add 0.1% or more of Si to 0.1% <Al ≦ 1.
%, It was revealed that the effect of improving the fatigue limit ratio becomes remarkable.

【0017】上述した通り、ごく一般に用いられている
溶接構造用軟鋼や引張強さが590MPa 級の圧延まま高
張力鋼は炭素当量値が高く、HAZ焼入れ性が高いた
め、これらの鋼では小・中入熱溶接HAZミクロ組織が
ベイナイト・マルテンサイト組織となる。このためHA
Zの疲労強度向上は望めない。HAZの疲労破壊に対す
る感受性を低くし、応力集中下においても疲労き裂の発
生を抑制し、或いは発生したき裂の伝播を遅延させるた
めには、HAZミクロ組織をフェライト主体組織とする
ことが効果的である。HAZミクロ組織をフェライト主
体とするためにはHAZ焼入れ性を低下させる事が必要
である。このために、HAZ焼入れ性を表す指標である
炭素当量の値を限界値以下に限定する必要がある。ここ
で、HAZのフェライト面積率を最も正確に表す炭素当
量式を検討した結果、一般に使用されているIIWの炭
素当量式にNbの焼入れ性上昇効果を考慮した次式、 Ceq(%)=C+Mn/6+(Cu+Ni)/15+
(Cr+Mo+V)/5+Nb/3 を用いれば良いことが明らかとなった。
As described above, mild steel for welding structures and high-strength as-rolled steel having a tensile strength of 590 MPa, which are generally used, have a high carbon equivalent value and a high HAZ hardenability. The medium heat input welding HAZ microstructure becomes the bainite-martensite structure. Therefore HA
No improvement in fatigue strength of Z can be expected. In order to reduce the susceptibility of HAZ to fatigue fracture, suppress the initiation of fatigue cracks even under stress concentration, or delay the propagation of cracks that have occurred, it is effective to make the HAZ microstructure a ferrite-based microstructure. Target. In order to make the HAZ microstructure mainly ferrite, it is necessary to reduce the HAZ hardenability. For this reason, it is necessary to limit the value of carbon equivalent, which is an indicator of the HAZ hardenability, to a limit value or less. Here, as a result of examining a carbon equivalent formula that most accurately represents the ferrite area ratio of HAZ, the following formula that considers the hardenability increasing effect of Nb in the commonly used carbon equivalent formula of IIW, Ceq (%) = C + Mn / 6 + (Cu + Ni) / 15 +
It was clarified that (Cr + Mo + V) / 5 + Nb / 3 should be used.

【0018】図3は実験室真空溶解鋼再現HAZのフェ
ライト面積率を上記の炭素当量に対してプロットしたも
のである。同図から明らかなことは、まずHAZフェラ
イト面積率は炭素当量と良い相関を示し、炭素当量値が
低いほどHAZフェライト面積率が上昇する。しかし、
同一の炭素当量値で比較すると、Siを1.0%以上添
加した鋼はフェライト面積率が上昇し、さらにAlを
0.5%添加した鋼はさらにフェライト面積率が上昇す
ることが明らかとなった。図2の結果から、HAZ疲労
強度向上にはHAZフェライト面積率を60%以上とす
ることが必要であるが、これを実現するためには、Si
添加量が1.0%未満の鋼には上限の炭素当量を0.2
4%以下、Si添加量が1.0%以上の鋼では上限の炭
素当量値を0.275%以下とすれば良いことがわか
る。またAlを0.5%添加した鋼は上限の炭素当量値
を0.295%以下とすれば良いことが分かる。
FIG. 3 is a plot of the ferrite area ratio of the laboratory HAZ reproduced vacuum melting steel against the above carbon equivalent. It is clear from the figure that the HAZ ferrite area ratio shows a good correlation with the carbon equivalent, and the lower the carbon equivalent value, the higher the HAZ ferrite area ratio. But,
Comparing with the same carbon equivalent value, it became clear that the steel having 1.0% or more Si increases the ferrite area ratio, and the steel having 0.5% Al added further increases the ferrite area ratio. It was From the results of FIG. 2, it is necessary to set the HAZ ferrite area ratio to 60% or more in order to improve the HAZ fatigue strength.
The upper limit of carbon equivalent is 0.2 for steel with an addition amount of less than 1.0%.
It is understood that the upper limit of carbon equivalent value should be 0.275% or less for the steel having 4% or less and the Si addition amount of 1.0% or more. It is also understood that the upper limit of the carbon equivalent value of steel containing 0.5% Al should be 0.295% or less.

【0019】図3の結果に基づきAl添加による上限の
炭素当量値について検討した結果、0.1%≦Al≦1
%の範囲において、Al添加量に応じて0.025×√
Al(%)で引き上げることを見出した。それにより、
Si添加量が1.0%未満の鋼では上限の炭素当量値を
0.24%+0.03×√Al(%)以下、Si添加量
が1.0%以上の鋼では上限の炭素当量値を0.275
%+0.03×√Al(%)以下とすれば良いことが明
らかとなった。
As a result of examining the upper limit of carbon equivalent value by adding Al based on the result of FIG. 3, 0.1% ≦ Al ≦ 1
%, Depending on the amount of Al added, 0.025 × √
It was found that the pulling rate was Al (%). Thereby,
The upper limit carbon equivalent value is 0.24% + 0.03 × √Al (%) or less for steel with Si addition amount less than 1.0%, and the upper limit carbon equivalent value for steel with Si addition amount of 1.0% or more. 0.275
It has been clarified that it may be set to be not more than% + 0.03 × √Al (%).

【0020】Al、Siを添加することによる疲労限度
比向上の理由は、両元素はフェライト形成元素である
ためHAZ組織のフェライト面積率を増加させることに
加え、固溶強化により疲労繰り返し中の転位運動に対
する抵抗力が上昇すること、さらに、積層欠陥エネル
ギーの低下により交差すべりが生じ難くなり、繰り返し
塑性変形の可逆性が高まることにより、非可逆塑性変形
によって蓄積される歪みが増加し難くなるためであると
考えられる。このような、Al、Siの効果は溶接部疲
労強度向上だけでなく、フェライト主体組織である母材
の疲労強度向上にも効果を発揮する。
The reason for improving the fatigue limit ratio by adding Al and Si is that, since both elements are ferrite-forming elements, in addition to increasing the ferrite area ratio of the HAZ structure, dislocation during fatigue repetition due to solid solution strengthening. Since the resistance to movement increases, further, the cross-slip is less likely to occur due to the decrease in stacking fault energy, and the reversibility of repeated plastic deformation is increased, so that the strain accumulated by irreversible plastic deformation is less likely to increase. Is considered to be. Such effects of Al and Si are effective not only for improving the fatigue strength of the welded portion, but also for improving the fatigue strength of the base material having a ferrite-based structure.

【0021】実溶接継手のHAZで応力集中が高い領域
は溶接溶融合線から1.0mm以内の範囲であり、疲労き
裂が発生するのはこの領域内である。従って、溶接融合
線から1.0mm以内のHAZにおいてフェライト面積率
を60%以上とすることが重要である。上記の検討結果
から明らかなように、本発明の骨子はHAZミクロ組織
をフェライト主体とすることによりHAZの疲労破壊感
受性を低め、溶接継手の疲労強度を向上させるものであ
り、これを実現するために上記で定義した炭素当量値を
Al、Si添加量の範囲に応じて限定するものである。
The area where the stress concentration is high in the HAZ of the actual welded joint is within 1.0 mm from the weld fusion line, and it is within this area that fatigue cracks occur. Therefore, it is important to set the ferrite area ratio to 60% or more in the HAZ within 1.0 mm from the weld fusion line. As is clear from the above-mentioned examination results, the skeleton of the present invention is to reduce the fatigue fracture susceptibility of HAZ and improve the fatigue strength of the welded joint by making the HAZ microstructure mainly ferrite, and to realize this. The carbon equivalent value defined above is limited according to the range of the added amounts of Al and Si.

【0022】以上の基本思想に基づいて、各合金元素の
範囲を限定した理由を以下に述べる。なお、以下の%は
質量%を意味するものとする。Cは、HAZの焼入れ性
を上昇する元素であり、多量に添加するとベイナイトや
マルテンサイト組織が生成しやすくなる。HAZのフェ
ライト面積率を増加し、疲労強度を高めるにC量は低い
方が望ましい。しかし、Cは母材の強度を上昇させる元
素であり、母材強度上昇のためには多量に添加すること
が望ましい。C量が0.015%未満では母材強度を確
保するのが困難であるため、下限を0.015%とし
た。逆に0.15%超ではHAZ焼入れ性が高くなりす
ぎてフェライト面積率が低下し、疲労強度を向上できな
い。さらに母材およびHAZの靭性や耐溶接割れ性を低
下させるので、C量の上限を0.15%とした。母材強
度と疲労強度のバランスを考慮すると、0.02〜0.
09%のC量が最も望ましい。
The reason why the range of each alloying element is limited based on the above basic idea will be described below. In addition, the following% shall mean the mass%. C is an element that increases the hardenability of HAZ, and if added in a large amount, bainite and martensite structure are likely to be formed. It is desirable that the C content is low in order to increase the ferrite area ratio of HAZ and enhance the fatigue strength. However, C is an element that increases the strength of the base material, and it is desirable to add a large amount of C to increase the strength of the base material. If the C content is less than 0.015%, it is difficult to secure the strength of the base material, so the lower limit was made 0.015%. On the other hand, if it exceeds 0.15%, the HAZ hardenability becomes too high, the ferrite area ratio decreases, and the fatigue strength cannot be improved. Further, since the toughness and weld crack resistance of the base material and HAZ are reduced, the upper limit of the C content is set to 0.15%. Considering the balance between base material strength and fatigue strength, 0.02 to 0.
A C content of 09% is most desirable.

【0023】Siは、強度確保のほか脱酸元素として必
須の元素である上に、上述の通り疲労強度向上に効果を
発揮する添加元素である。Si量が0.01%未満では
脱酸が不十分になり、介在物が増加し、母材の靱性や延
性を低下させる。従って、Si量の下限量を0.01%
とした。Si添加量が高いほどフェライトの強化とHA
Zフェライト面積率増加が顕著となり、疲労強度向上の
目的のためには、Si添加量は1%以上添加することが
望ましい。しかし、Si添加量が高いほどHAZの靱性
は低下する。靱性低下はSi量が2%を超えると顕著と
なるため、Si量の上限値を2%とした。
Si is an element that is essential as a deoxidizing element in addition to ensuring strength, and is an additive element that exerts an effect of improving fatigue strength as described above. If the Si content is less than 0.01%, deoxidation becomes insufficient, inclusions increase, and the toughness and ductility of the base material decrease. Therefore, the lower limit of the amount of Si is 0.01%
And The higher the Si content, the stronger the ferrite and HA.
The Z ferrite area ratio increases remarkably, and for the purpose of improving fatigue strength, it is desirable to add Si by 1% or more. However, the higher the amount of Si added, the lower the toughness of the HAZ. The decrease in toughness becomes remarkable when the Si amount exceeds 2%, so the upper limit of the Si amount was set to 2%.

【0024】Mnは、強度を高めるために必須の元素で
あるが0.2%未満では母材強度を確保できないため、
下限値を0.2%とした。一方、1.5%を超えて添加
すると、HAZ焼入れ性が上昇し、HAZミクロ組織を
フェライト主体とすることができない。従って、Mn量
の上限値を1.5%とした。Pは、鋼の靭性に影響を与
える元素であり、0.03%を超えると母材だけでなく
HAZの靭性を著しく阻害するので、極力少ないほうが
良く、その量の上限値を0.03%とした。Sは、Pと
同様に低いほど好ましく、0.01%を超えるとMnS
析出が顕著となり、母材のHAZ靭性を阻害し、板厚方
向の延性も低下させる。さらに、MnS介在物が多量に
存在すると、これが疲労き裂の起点となり疲労強度のば
らつきの原因となる。そのためS量の上限値を0.01
%とした。
Mn is an essential element for increasing the strength, but if it is less than 0.2%, the strength of the base material cannot be secured.
The lower limit value was 0.2%. On the other hand, if added in excess of 1.5%, the HAZ hardenability is increased and the HAZ microstructure cannot be made mainly of ferrite. Therefore, the upper limit of the amount of Mn is set to 1.5%. P is an element that affects the toughness of steel, and if it exceeds 0.03%, it significantly impairs the toughness of not only the base metal but also the HAZ, so it is better to minimize it as much as possible, and the upper limit of its amount is 0.03%. And S is preferably as low as P, and if it exceeds 0.01%, MnS
Precipitation becomes remarkable, the HAZ toughness of the base material is hindered, and the ductility in the plate thickness direction is also reduced. Furthermore, when a large amount of MnS inclusions are present, this becomes the starting point of fatigue cracks and causes variations in fatigue strength. Therefore, the upper limit of the S content is 0.01
%.

【0025】Alは脱酸、オーステナイト粒径の細粒化
等に有効な元素である上に、上述の通り疲労強度向上に
効果を発揮する添加元素である。疲労強度向上の目的の
ためにAl添加量は、0.1%を超えて添加する必要が
あり高いほど望ましい。しかし、1%を超えると疲労強
度向上効果は飽和する上、HAZの靱性が低下するた
め、Al量の上限値を1%とした。
Al is an element which is effective for deoxidation and grain refinement of the austenite grain size, and is an additive element which exerts an effect of improving fatigue strength as described above. For the purpose of improving fatigue strength, the amount of Al added needs to be more than 0.1%, and the higher the amount, the more preferable. However, if it exceeds 1%, the fatigue strength improving effect is saturated and the toughness of the HAZ decreases, so the upper limit of the Al amount was made 1%.

【0026】Cuは、靭性を低下させずに強度の上昇に
有効な元素であるが、0.1%未満では効果がない。2
%を超えるとHAZ焼入れ性が高くなり、フェライト主
体組織とすることができないし、鋼片加熱時や溶接時に
割れを生じやすくするので、Cu量の上限値を2%とし
た。
Cu is an element effective for increasing the strength without lowering the toughness, but if it is less than 0.1%, it has no effect. Two
%, The HAZ hardenability becomes high, a ferrite-based structure cannot be obtained, and cracks are likely to occur during heating of the slab and welding, so the upper limit of the Cu content was set to 2%.

【0027】Niは、靭性および強度の改善に有効な元
素であり、その効果を得るためには0.1%以上の添加
が必要である。2.0%を超えるとHAZ焼入れ性が高
くなり、フェライト主体組織とすることができなくなっ
て疲労強度を低下させるので、Ni量の上限値を2.0
%とした。
Ni is an element effective in improving toughness and strength, and it is necessary to add 0.1% or more to obtain the effect. If it exceeds 2.0%, the HAZ hardenability will be high, and it will not be possible to form a ferrite-based structure, which will reduce the fatigue strength, so the upper limit of the Ni content is 2.0.
%.

【0028】Crは、焼入れ性を高めて強度を確保する
上で0.05%以上必要である。一方、1%を超えると
Niと同様の理由で好ましくないため、Cr量の上限値
を1%とした。Moは、焼入れ性向上、強度向上、耐焼
戻し脆化、再結晶抑制に有効な元素であり、その効果を
得るためには0.02%以上の添加が必要である。1%
を超えるフェライト主体組織とすることができなくなっ
て疲労強度を低下させ、さらに母材靭性および溶接性が
劣化するので、Mo量の上限値を1%とした。
Cr is required to be 0.05% or more in order to enhance hardenability and ensure strength. On the other hand, if it exceeds 1%, it is not preferable for the same reason as Ni. Therefore, the upper limit of the amount of Cr is set to 1%. Mo is an element effective for improving hardenability, strength, temper embrittlement resistance, and suppressing recrystallization, and it is necessary to add 0.02% or more to obtain the effect. 1%
Since it is not possible to obtain a ferrite-based structure exceeding 1.0 and fatigue strength is lowered, and further, the base material toughness and weldability are deteriorated, the upper limit of the amount of Mo is set to 1%.

【0029】Nbは炭窒化物を形成して母材の強度向上
と細粒化に効果がある。圧延・冷却後に焼戻し熱処理を
実施する場合には、微細Nb炭窒化物を析出させて、さ
らに、強度の向上が図れる。Nb量が0.005%未満
ではこの効果が顕著でないので下限値を0.005%と
した。逆に、0.08%超をえて添加すると、HAZ焼
入れ性が高くなりすぎてフェライト面積率を60%以上
とすることができなくなるので、Nb量の上限値を0.
08%とした。Vは炭窒化物を形成して母材の強度向上
と細粒化に効果がある。圧延・冷却後に焼戻し熱処理を
実施する場合には、微細V炭窒化物を析出させて、さら
に、強度の向上が図れる。V量が0.005%未満では
この効果が顕著でないので下限値を0.005%とし
た。逆に、0.1%超添加すると、HAZ焼入れ性が高
くなりすぎてフェライト面積率を60%以上とすること
ができなくなるので、V量の上限値を0.1%とした。
Nb forms a carbonitride and is effective in improving the strength and grain refining of the base material. When tempering heat treatment is performed after rolling and cooling, fine Nb carbonitrides can be precipitated to further improve strength. If the amount of Nb is less than 0.005%, this effect is not remarkable, so the lower limit was made 0.005%. On the contrary, if the content exceeds 0.08%, the HAZ hardenability becomes too high and the ferrite area ratio cannot be set to 60% or more. Therefore, the upper limit of the Nb amount is set to 0.
It was set to 08%. V forms a carbonitride and is effective in improving the strength of the base material and making it finer. When tempering heat treatment is carried out after rolling and cooling, fine V carbonitrides can be precipitated to further improve the strength. If the amount of V is less than 0.005%, this effect is not significant, so the lower limit was made 0.005%. On the contrary, if the content exceeds 0.1%, the HAZ hardenability becomes too high and the ferrite area ratio cannot be set to 60% or more. Therefore, the upper limit of the V content was set to 0.1%.

【0030】Tiは、析出強化により母材強度向上に寄
与するとともに、高温でも安定なTiNの形成により加
熱オーステナイト粒径微細化にも有効な元素である。ま
た、後述するように、HAZ靭性向上に必要なMgO、
Mg含有酸化物の微細分散に寄与する。効果を発揮する
ためには0.001%以上含有する必要がある。一方、
0.05%を超えると、粗大な酸化物を形成して延性を
極端に劣化させるとともに疲労き裂の起点の原因となる
ため、Ti量の上限値を0.05%とした。Nは、Al
やTiと化合してオーステナイト粒微細化に有効に働く
ため、微量であれば機械的性質向上に寄与する。また、
工業的に鋼中のNを完全に除去することは不可能であ
り、必要以上に低減することは製造工程に過大な負荷を
かけるため好ましくない。そのため工業的に制御が可能
で、製造工程への負荷が許容できる範囲として下限を
0.001%とする。過剰に含有すると、固溶Nが増加
し、延性や靭性に悪影響を及ぼす可能性があるため、許
容できる範囲としてN量の上限値を0.008%とし
た。
Ti is an element that contributes to the improvement of the strength of the base material by precipitation strengthening, and is effective for refining the heated austenite grain size by forming TiN that is stable even at high temperatures. Further, as will be described later, MgO necessary for improving the HAZ toughness,
Contributes to fine dispersion of the Mg-containing oxide. In order to exert the effect, it is necessary to contain 0.001% or more. on the other hand,
If it exceeds 0.05%, coarse oxides are formed, the ductility is extremely deteriorated, and the origin of fatigue cracks is caused. Therefore, the upper limit of the Ti content is set to 0.05%. N is Al
When combined with or Ti, it works effectively for refining austenite grains, so a small amount contributes to the improvement of mechanical properties. Also,
Industrially, it is impossible to completely remove N in steel, and it is not preferable to reduce N more than necessary because it puts an excessive load on the manufacturing process. Therefore, the lower limit is set to 0.001% as a range in which industrial control is possible and the load on the manufacturing process is allowable. If it is contained in excess, the amount of solid solution N increases, which may adversely affect the ductility and toughness. Therefore, the upper limit of the amount of N is set to 0.008% as an allowable range.

【0031】次に、延性の向上、HAZ靭性の向上のた
めに、必要に応じて、Mg、Ca、REMの1種または
2種以上を含有することができる。Mgは、0.000
1%未満の添加では、粒内変態およびオーステナイト粒
微細化のためのピニング粒子として必要な酸化物の生成
が十分に期待できなくなるため下限値を0.0001%
とした。0.01%を超えると、粗大な酸化物が生成し
やすくなり、母材およびHAZ靭性の低下をもたらすた
め、Mg量の上限値を0.01%とした。Ca、REM
はいずれも硫化物の熱間圧延中の展伸を抑制して延性特
性向上に有効である。酸化物を微細化させてHAZ靭性
の向上にも有効に働く。Ca、REMともに0.000
5%未満では、この効果が得られないので下限値を0.
0005%とした。逆に、0.005%を超えると、C
a、REMの酸化物個数が増加し、超微細なMg含有酸
化物の個数が低下する、あるいは硫化物や酸化物の粗大
化を生じ、延性、靭性の劣化を招くため、その上限値を
0.005%とした。
Next, in order to improve ductility and HAZ toughness, one or more of Mg, Ca and REM may be contained, if necessary. Mg is 0.000
If less than 1% is added, it is not possible to fully expect the generation of oxides necessary for pinning particles for intragranular transformation and austenite grain refinement, so the lower limit is 0.0001%.
And If it exceeds 0.01%, a coarse oxide is likely to be formed, resulting in deterioration of the base material and HAZ toughness. Therefore, the upper limit of the amount of Mg is set to 0.01%. Ca, REM
All of these are effective in improving the ductility characteristics by suppressing the expansion of the sulfide during hot rolling. It also works effectively to improve the HAZ toughness by refining the oxide. 0.000 for both Ca and REM
If it is less than 5%, this effect cannot be obtained, so the lower limit is set to 0.
It was 0005%. On the contrary, if it exceeds 0.005%, C
a, the number of oxides in REM increases, the number of ultrafine Mg-containing oxides decreases, or coarsening of sulfides and oxides occurs, leading to deterioration of ductility and toughness, so its upper limit value is 0. It was set to 0.005%.

【0032】次に、製造条件を限定した理由について述
べる。本発明は溶接部の靱性を確保しつつ溶接部疲労強
度に優れた軟鋼から引張強さが590MPa 級の溶接構造
用厚鋼板を提供するものである。上記引張強さを有する
軟鋼及び590MPa 級の溶接構造用厚鋼板を製造しよう
とする場合、常法の熱間圧延法を採用することは可能で
あるが、上記で定義した炭素当量値が低い場合や、板厚
が大きい場合には、常法の熱間圧延法では必要とする強
度が得られない場合がある。このような場合には、制御
圧延法、制御圧延・加速冷却法により母材強度を上昇さ
せることができる。
Next, the reason for limiting the manufacturing conditions will be described. The present invention provides a thick steel plate for welded structure having a tensile strength of 590 MPa grade from mild steel which is excellent in fatigue strength of the welded portion while ensuring the toughness of the welded portion. When manufacturing mild steel having the above-mentioned tensile strength and thick steel plate for welded structure of 590 MPa class, it is possible to adopt the conventional hot rolling method, but when the carbon equivalent value defined above is low. Alternatively, when the plate thickness is large, the required strength may not be obtained by the conventional hot rolling method. In such a case, the base material strength can be increased by the controlled rolling method or the controlled rolling / accelerated cooling method.

【0033】常法の熱間圧延・制御圧延ともに、圧延に
先立ち、鋼塊を100%オーステナイト化する必要があ
り、このため鋼塊をAc3 点以上に加熱する必要があ
る。しかし、1250℃を超えて加熱するとオーステナ
イト粒が粗大化するため圧延後微細粒が得られなくなる
ので、加熱温度は1250℃以下とすることが必要であ
る。
In both conventional hot rolling and controlled rolling, the steel ingot needs to be austenitized to 100% before rolling, and therefore the steel ingot needs to be heated to Ac 3 point or higher. However, if heating is performed above 1250 ° C., austenite grains become coarse and fine grains cannot be obtained after rolling. Therefore, it is necessary to set the heating temperature to 1250 ° C. or lower.

【0034】鋼塊の加熱によりオーステナイト粒は粗大
化するので、常法の熱間圧延・制御圧延法ともに、再結
晶温度域で圧延することによりオーステナイト粒径を小
さくすることが必要である。制御圧延法を用いて強度上
昇と靱性向上を図る場合には、さらに未再結晶温度域で
圧延することによりオーステナイト粒内に変形帯を導入
し、フェライト生成核を増加させることが有効である。
未再結晶温度域での累積圧下率が40%未満では変形帯
が十分形成されないので、未再結晶温度域での累積圧下
率の下限を40%とした。しかし、累積圧下率が90%
を超えると、母材シャルピー試験における上部棚衝撃値
の低下が著しくなり、低サイクル疲労特性が低下するの
で、未再結晶温度域での累積圧下率の上限を90%とし
た。
Since the austenite grains are coarsened by heating the steel ingot, it is necessary to reduce the austenite grain size by rolling in the recrystallization temperature range in both the conventional hot rolling and controlled rolling methods. When the strength is increased and the toughness is improved by using the controlled rolling method, it is effective to introduce a deformation zone into the austenite grains by further rolling in the non-recrystallization temperature range to increase ferrite formation nuclei.
If the cumulative rolling reduction in the non-recrystallization temperature range is less than 40%, the deformation zone is not sufficiently formed, so the lower limit of the cumulative rolling reduction in the non-recrystallization temperature range was set to 40%. However, the cumulative reduction rate is 90%
When it exceeds, the upper shelf impact value in the base material Charpy test remarkably decreases and the low cycle fatigue property deteriorates. Therefore, the upper limit of the cumulative rolling reduction in the non-recrystallization temperature range was set to 90%.

【0035】仕上げ圧延温度に関する限定は特に必要で
はなく、Ar3 点以上で圧延を終了しても良いし、Ar
3 点以下においてフェライトとオーステナイトの共存
域、或いはフェライト域で圧延しても差し支えない。圧
延後、自然空冷する場合にはオーステナイト粒界と粒内
変形帯よりフェライトが生成し、未再結晶温度域での圧
延がない常法圧延に比べて細粒フェライトを得ることが
でき、母材強度の上昇と靱性向上が達成できる。
There is no particular limitation on the finish rolling temperature, and the rolling may be completed at the Ar 3 point or higher.
Rolling in the ferrite and austenite coexistence region or in the ferrite region at 3 points or less is acceptable. After rolling, in the case of natural air cooling, ferrite is generated from austenite grain boundaries and intragranular deformation zones, and fine-grained ferrite can be obtained compared to conventional rolling without rolling in the non-recrystallization temperature range. Increased strength and toughness can be achieved.

【0036】自然空冷よりさらに強度を上昇させるため
には加速冷却が必要である。冷却速度1℃/sec未満で
は、過冷度が小さいために変態後のフェライトの微細化
が不十分であると同時に変態中のCの拡散が容易なため
フェライト中のC濃度が低下し、十分な強度を得ること
ができない。逆に冷却速度が60℃/sec超ではベイナイ
ト組織が生成するために母材の靱性が低下する。従っ
て、冷却速度を1〜60℃/secに限定した。母材の強度
と靱性のバランスを考慮すると、5〜30℃/secの範囲
とすることが望ましい。
Accelerated cooling is necessary to further increase the strength compared to natural air cooling. If the cooling rate is less than 1 ° C / sec, the degree of supercooling is small and the ferrite after transformation is not sufficiently refined. At the same time, the diffusion of C during transformation is easy and the C concentration in ferrite decreases, It is not possible to obtain sufficient strength. On the other hand, if the cooling rate exceeds 60 ° C./sec, the toughness of the base material decreases because a bainite structure is generated. Therefore, the cooling rate is limited to 1 to 60 ° C./sec. Considering the balance between strength and toughness of the base material, the range of 5 to 30 ° C./sec is desirable.

【0037】本発明においては母材の強度を得るために
変態が終了するまで加速冷却を継続する必要がある。こ
のため、冷却停止温度の上限を600℃とした。600
℃超の停止温度では変態が終了しないために、十分な強
度が得られない。通常、加速冷却は水を冷媒として用い
る。この場合、実際上の冷却停止温度の下限は0℃とな
るので、下限を0℃とした。
In the present invention, accelerated cooling must be continued until the transformation is completed in order to obtain the strength of the base material. Therefore, the upper limit of the cooling stop temperature is set to 600 ° C. 600
At a stopping temperature above 0 ° C, the transformation does not end, so sufficient strength cannot be obtained. Normally, accelerated cooling uses water as a coolant. In this case, the lower limit of the actual cooling stop temperature is 0 ° C, so the lower limit was set to 0 ° C.

【0038】圧延・冷却に引き続き実施する焼戻し熱処
理は、回復による母材組織の靱性向上を目的としたもの
であるから、加熱温度は逆変態が生じない温度域である
Ac 1 点以下でなければならない。回復は転位の消滅・
合体により格子欠陥密度を減少させるものであり、これ
を実現するためには300℃以上に加熱する事が必要で
ある。このため、加熱温度の下限を300℃とした。ま
た、上述したように、Cu,Mo,Nb,Vの析出元素
を含有する場合には、熱処理により微細析出物を生成さ
せることにより母材強度を向上させることができる。こ
の効果は炭素当量値が低い本発明鋼の母材強度向上に極
めて効果を発揮するもである。析出効果を最も有効に発
揮するための加熱温度は析出効果元素に依存するが、概
ね500〜650℃の範囲である。圧延後冷却の停止温
度が600℃以下の範囲で比較的高温の場合には自己焼
戻しを期待できるため、この焼戻し熱処理を省略するこ
とも可能である。
Tempering heat treatment performed after rolling and cooling
The purpose is to improve the toughness of the base metal structure by recovery.
Therefore, the heating temperature is a temperature range where reverse transformation does not occur.
Ac 1Must be below the point. Recovery is the disappearance of dislocations
Coalescence reduces the lattice defect density.
In order to realize
is there. Therefore, the lower limit of the heating temperature is set to 300 ° C. Well
Also, as described above, the precipitation elements of Cu, Mo, Nb, and V
When it contains, fine precipitates are generated by heat treatment.
By doing so, the strength of the base material can be improved. This
Is extremely effective in improving the base metal strength of the steel of the present invention having a low carbon equivalent value.
It is also very effective. Most effective precipitation effect
The heating temperature for volatilization depends on the precipitation effect element, but
It is in the range of 500 to 650 ° C. Cooling stop temperature after rolling
If the temperature is 600 ° C or less and the temperature is relatively high, self-baking
Since tempering can be expected, this tempering heat treatment can be omitted.
Both are possible.

【0039】[0039]

【実施例】以下に、本発明の実施例を述べる。連続鋳造
により製造したスラブから板厚が20〜40mmの鋼板を
製造した。表1に、化学成分を示す。鋼1〜22が本発
明鋼、鋼23〜32が比較鋼である。表2に、鋼板の製
造条件と引張特性を示す。本発明鋼1〜3、比較鋼2
3、24は本発明請求項10に示した制御圧延法で製造
し、本発明鋼8〜11、15〜22、及び比較鋼29、
32は請求項11または12に示した制御圧延・制御冷
却法で製造した。他の鋼板は常法の熱間圧延法により製
造した。加熱温度は全ての鋼でAc3 変態点以上であ
る。また、制御圧延・制御冷却後に焼戻し熱処理を実施
した鋼の焼戻し温度は全て600℃以下で、Ac1 変態
点以下である。これより本発明鋼において軟鋼〜590
MPa の強度が確認された。
EXAMPLES Examples of the present invention will be described below. A steel plate having a plate thickness of 20 to 40 mm was manufactured from the slab manufactured by continuous casting. Table 1 shows the chemical components. Steels 1 to 22 are steels of the present invention, and steels 23 to 32 are comparative steels. Table 2 shows the manufacturing conditions and tensile properties of the steel sheet. Invention Steels 1-3, Comparative Steel 2
Nos. 3 and 24 were produced by the controlled rolling method shown in claim 10 of the present invention, and the present invention steels 8 to 11, 15 to 22, and comparative steel 29,
No. 32 was manufactured by the controlled rolling / controlled cooling method according to claim 11 or 12. The other steel plates were manufactured by a conventional hot rolling method. The heating temperature is above the Ac 3 transformation point in all steels. Further, the tempering temperatures of the steels subjected to tempering heat treatment after controlled rolling / controlled cooling are all 600 ° C. or lower and not higher than the Ac 1 transformation point. From this, in the steel of the present invention, mild steel to 590
A strength of MPa was confirmed.

【0040】これら供試鋼を用いてT字隅肉溶接継手を
作成した。表4に溶接条件を示す。溶接継手の疲労強度
は板厚依存性を示す。板厚依存性を取り除くために、板
厚が20mm超の鋼板は裏面を切削して20mm厚としてか
ら溶接を実施した。図4にT字隅肉溶接継手から作成し
た3点曲げ疲労試験片形状を示す。繰返し最大荷重と最
小荷重の比が0.1の条件で疲労試験を実施した。
T-shaped fillet welded joints were prepared using these test steels. Table 4 shows the welding conditions. Fatigue strength of welded joints shows thickness dependence. In order to remove the plate thickness dependence, the back surface of a steel plate having a plate thickness of more than 20 mm was cut to a thickness of 20 mm and then welded. FIG. 4 shows the shape of a 3-point bending fatigue test piece prepared from a T-shaped fillet welded joint. A fatigue test was carried out under the condition that the ratio of the maximum load and the minimum load was 0.1.

【0041】表3に疲労試験結果を示す。溶接継手疲労
強度は106 回疲労強度、および疲労限を指標として比
較した。これにより、HAZ組織がフェライト60%超
からなる引張強さ390〜590MPa 級高張力溶接構造
用鋼板において、本発明鋼は比較鋼の溶接継手疲労強度
より向上することが確認された。なお、比較鋼23〜2
6の疲労強度が比較的高いのはCeqが本発明の範囲内に
あるためであり、同程度のCeqを示す本発明鋼1〜4
は、比較鋼23〜26より格段に向上していることが確
認された。
Table 3 shows the fatigue test results. The fatigue strength of welded joints was compared using the fatigue strength of 10 6 times and the fatigue limit as indexes. From this, it was confirmed that in the steel sheet for high-strength welded structural steel having a tensile strength of 390 to 590 MPa class in which the HAZ structure is more than 60% of ferrite, the steel of the present invention has a higher fatigue strength than that of the comparative steel. Comparative steels 23-2
The fatigue strength of No. 6 is relatively high because Ceq is within the range of the present invention.
Was confirmed to be significantly improved over Comparative Steels 23 to 26.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【発明の効果】以上説明したように、本発明はHAZミ
クロ組織をフェライト主体組織となるように制御するこ
とにより、付加的溶接による応力集中低減などによらず
に溶接継手の疲労強度向上を図ることが可能であり、本
発明により溶接構造物の疲労破壊に対する信頼性を向上
することが可能である。したがって、本発明の産業上の
価値は極めて高いといえる。
As described above, according to the present invention, the HAZ microstructure is controlled so as to have a ferrite-based structure, so that the fatigue strength of the welded joint is improved without reducing stress concentration due to additional welding. The present invention makes it possible to improve the reliability of the welded structure against fatigue fracture. Therefore, it can be said that the industrial value of the present invention is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】切欠き付き再現HAZ材の疲労試験における疲
労限度比の引張強度及びミクロ組織依存性を示す図であ
る。
FIG. 1 is a diagram showing tensile strength and microstructure dependence of a fatigue limit ratio in a fatigue test of a notched reproduced HAZ material.

【図2】切欠き付き再現HAZ材の疲労試験における疲
労限度比のフェライト面積率依存性を示す図である。
FIG. 2 is a diagram showing a ferrite area ratio dependency of a fatigue limit ratio in a fatigue test of a notched reproduced HAZ material.

【図3】再現HAZ材のフェライト面積率の炭素当量依
存性を示す図である。
FIG. 3 is a diagram showing a carbon equivalent dependency of a ferrite area ratio of a reproduced HAZ material.

【図4】T字隅肉溶接継手疲労試験片の形状を示す図で
ある。
FIG. 4 is a view showing the shape of a T-shaped fillet welded joint fatigue test piece.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 粟飯原 周二 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4K032 AA01 AA04 AA05 AA08 AA11 AA14 AA15 AA16 AA19 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA32 AA35 AA36 AA40 BA01 CA01 CA02 CA03 CB02 CD01 CD02 CD03 CF01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shuji Aiwahara             20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares             Company Technology Development Division F-term (reference) 4K032 AA01 AA04 AA05 AA08 AA11                       AA14 AA15 AA16 AA19 AA21                       AA22 AA23 AA24 AA27 AA29                       AA31 AA32 AA35 AA36 AA40                       BA01 CA01 CA02 CA03 CB02                       CD01 CD02 CD03 CF01

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.015〜0.15%、 Si:0.01%以上1%未満、 Mn:0.2〜1.5%、 P :0.03%以下、 S :0.01%以下、 Al:0.1%超1%以下を含有し、残部Feおよび不
可避的不純物よりなり、 Ceq≦0.24+0.03×√Alを満たすことを特徴
とする溶接継手の疲労強度に優れた溶接構造用厚鋼板。
ただし、Ceq=C+Mn/6+(Cu+Ni)/15+
(Cr+Mo+V)/5+Nb/3
1. In mass%, C: 0.015 to 0.15%, Si: 0.01% to less than 1%, Mn: 0.2 to 1.5%, P: 0.03% or less, S: 0.01% or less, Al: more than 0.1% and 1% or less, the balance Fe and unavoidable impurities, and Ceq ≦ 0.24 + 0.03 × √Al. Steel plate for welded structure with excellent fatigue strength.
However, Ceq = C + Mn / 6 + (Cu + Ni) / 15 +
(Cr + Mo + V) / 5 + Nb / 3
【請求項2】 質量%で、 C :0.015〜0.15%、 Si:1〜2%、 Mn:0.2〜1.5%、 P :0.03%以下、 S :0.01%以下、 Al:0.1%超1%以下を含有し、残部Feおよび不
可避的不純物よりなり、 Ceq≦0.275+0.03×√Alを満たすことを特
徴とする溶接継手の疲労強度に優れた溶接構造用厚鋼
板。ただし、Ceq=C+Mn/6+(Cu+Ni)/1
5+(Cr+Mo+V)/5+Nb/3
2. In mass%, C: 0.015 to 0.15%, Si: 1 to 2%, Mn: 0.2 to 1.5%, P: 0.03% or less, S: 0.0. 01% or less, Al: more than 0.1% and 1% or less, consisting of the balance Fe and unavoidable impurities, and satisfying Ceq ≦ 0.275 + 0.03 × √Al. Excellent thick steel plate for welded structures. However, Ceq = C + Mn / 6 + (Cu + Ni) / 1
5+ (Cr + Mo + V) / 5 + Nb / 3
【請求項3】 質量%で、 Cu:0.1〜2%を、さらに含有することを特徴とす
る請求項1または2に記載の溶接継手の疲労強度に優れ
た溶接構造用厚鋼板。
3. The thick steel plate for welded structure having excellent fatigue strength of the welded joint according to claim 1 or 2, further containing Cu: 0.1 to 2% by mass%.
【請求項4】 質量%で、 Ni:0.1〜2%を、さらに含有することを特徴とす
る請求項1乃至3のいずれか1項に記載の溶接継手の疲
労強度に優れた溶接構造用厚鋼板。
4. The welded structure with excellent fatigue strength of the welded joint according to claim 1, further comprising Ni: 0.1 to 2% by mass. Thick steel plate.
【請求項5】 質量%で、 Cr:0.05〜1%、 Mo:0.02〜1%の1種または2種を、さらに含有
することを特徴とする請求項1乃至4のいずれか1項に
記載の溶接継手の疲労強度に優れた溶接構造用厚鋼板。
5. The composition according to claim 1, further comprising one or two of Cr: 0.05 to 1% and Mo: 0.02 to 1% by mass. A thick steel plate for welded structure having excellent fatigue strength of the welded joint according to item 1.
【請求項6】 質量%で、 Nb:0.005〜0.08%、 V :0.005〜0.1%の1種または2種を、さら
に含有することを特徴とする請求項1乃至5のいずれか
1項に記載の溶接継手の疲労強度に優れた溶接構造用厚
鋼板。
6. The composition according to claim 1, further comprising, in mass%, one or two of Nb: 0.005 to 0.08% and V: 0.005 to 0.1%. 5. A thick steel plate for welded structure having excellent fatigue strength of the welded joint according to any one of 5 above.
【請求項7】 質量%で、 Ti:0.001〜0.05%、 N :0.001〜0.008%を、さらに含有するこ
とを特徴とする請求項1乃至6のいずれか1項に記載の
溶接継手の疲労強度に優れた溶接構造用厚鋼板。
7. The composition according to claim 1, further comprising: Ti: 0.001 to 0.05% and N: 0.001 to 0.008% in mass%. A thick steel plate for welded structures, which has excellent fatigue strength of the welded joint described in.
【請求項8】 質量%で、 Mg:0.0001〜0.01%、 Ca:0.0005〜0.005%、 REM:0.0005〜0.005%の1種または2種
以上を、さらに含有することを特徴とする請求項1乃至
7のいずれか1項に記載の溶接継手の疲労強度に優れた
溶接構造用厚鋼板。
8. In mass%, Mg: 0.0001 to 0.01%, Ca: 0.0005 to 0.005%, and REM: 0.0005 to 0.005% of one or more kinds, A thick steel plate for a welded structure having excellent fatigue strength of the welded joint according to any one of claims 1 to 7, further comprising:
【請求項9】 請求項1乃至8のいずれか1項に記載の
鋼板の製造において、鋼塊をAc3 点以上、1250℃
以下に加熱後、再結晶温度域で熱間圧延した後、自然冷
却することを特徴とする溶接継手の疲労強度に優れた溶
接構造用厚鋼板の製造方法。
9. In the production of the steel sheet according to any one of claims 1 to 8, a steel ingot has an Ac 3 point or more at 1250 ° C.
A method for producing a thick steel plate for welded structure excellent in fatigue strength of a welded joint, characterized by comprising heating to the following, hot rolling in a recrystallization temperature range, and natural cooling.
【請求項10】 再結晶温度域での熱間圧延に引き続
き、未再結晶温度域において累積圧下率で40〜90%
の熱間圧延を行うことを特徴とする請求項9に記載の溶
接継手の疲労強度に優れた溶接構造用厚鋼板の製造方
法。
10. The hot rolling in the recrystallization temperature range is followed by a cumulative reduction of 40 to 90% in the non-recrystallization temperature range.
10. The method for producing a thick steel plate for welded structure having excellent fatigue strength of the welded joint according to claim 9, wherein the hot rolling is performed.
【請求項11】 請求項1乃至8のいずれか1項に記載
の鋼板の製造において、鋼塊をAc3 点以上、1250
℃以下に加熱後、再結晶温度域で熱間圧延し、引き続き
未再結晶温度域において累積圧下率で40〜90%の熱
間圧延をした後、1〜60℃/secの冷却速度で600℃
以下の温度まで冷却することを特徴とする溶接継手の疲
労強度に優れた溶接構造用厚鋼板の製造方法。
11. In the production of the steel sheet according to claim 1, the steel ingot has Ac 3 points or more and 1250 or more.
After heating to ℃ or less, hot rolling in a recrystallization temperature range, followed by hot rolling at a cumulative reduction of 40 to 90% in a non-recrystallization temperature range, and then 600 at a cooling rate of 1 to 60 ° C / sec. ℃
A method for producing a thick steel plate for welded structure, which is excellent in fatigue strength of a welded joint, characterized by cooling to the following temperature.
【請求項12】 冷却後さらに、300℃〜Ac1 点に
加熱して焼戻し熱処理することを特徴とする請求項11
に記載の溶接継手の疲労強度に優れた溶接構造用厚鋼板
の製造方法。
12. The method according to claim 11, further comprising, after cooling, heating at 300 ° C. to an Ac 1 point for tempering heat treatment.
The method for producing a thick steel plate for welded structures, which has excellent fatigue strength of the welded joint according to.
JP2001284913A 2001-09-19 2001-09-19 Thick steel plate for welded structure excellent in fatigue strength of welded joint and method for producing the same Expired - Fee Related JP4559673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001284913A JP4559673B2 (en) 2001-09-19 2001-09-19 Thick steel plate for welded structure excellent in fatigue strength of welded joint and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001284913A JP4559673B2 (en) 2001-09-19 2001-09-19 Thick steel plate for welded structure excellent in fatigue strength of welded joint and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003089844A true JP2003089844A (en) 2003-03-28
JP4559673B2 JP4559673B2 (en) 2010-10-13

Family

ID=19108154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001284913A Expired - Fee Related JP4559673B2 (en) 2001-09-19 2001-09-19 Thick steel plate for welded structure excellent in fatigue strength of welded joint and method for producing the same

Country Status (1)

Country Link
JP (1) JP4559673B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220431A (en) * 2012-04-13 2013-10-28 Kobe Steel Ltd Welded joint excellent in fatigue strength, mag welding method for hot rolled steel sheet, mig welding method for hot rolled steel sheet, and flux-cored wire
CN108796365A (en) * 2018-05-29 2018-11-13 唐山中厚板材有限公司 360MPa grade high ductilities ship structure steel plate and low-cost manufacture method
KR20210079691A (en) * 2019-12-20 2021-06-30 주식회사 포스코 Steel welding joint having excellent low-temperature toughness and crack resistance
CN113302315A (en) * 2019-01-09 2021-08-24 日本制铁株式会社 Hot-rolled steel sheet and welded joint, and method for producing same
CN115044825A (en) * 2022-04-22 2022-09-13 安阳钢铁股份有限公司 High-yield 550 MPa-grade steel and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110490A (en) * 1982-12-16 1984-06-26 Kawasaki Heavy Ind Ltd Improvement of fatigue strength in welded joint part
JPS6196057A (en) * 1985-06-01 1986-05-14 Kobe Steel Ltd Hot-rolled steel plate having maximum strength
JPH01301823A (en) * 1988-03-18 1989-12-06 Thyssen Ind Ag Method for improving fatique strength of welded high tensile steel
JPH07207405A (en) * 1994-01-12 1995-08-08 Nippon Steel Corp Hot rolled steel sheet of high-strength composite structure having excellent workability and fatigue resistant characteristic and tensile strength of 45 to 65kgf/mm2 and its production
JPH0860305A (en) * 1994-08-19 1996-03-05 Nippon Steel Corp Hot rolled high strength steel plate for working, excellent in fatigue characteristic and having thermal softening resistance, and its production
JPH0873983A (en) * 1994-08-31 1996-03-19 Nippon Steel Corp Thick steel plate for welded structure, excellent in fatigue strength in weld joint, and its production
JPH0873980A (en) * 1994-08-31 1996-03-19 Nippon Steel Corp Thick steel plate excellent in fatigue crack propagation characteristic in plate thickness direction and its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110490A (en) * 1982-12-16 1984-06-26 Kawasaki Heavy Ind Ltd Improvement of fatigue strength in welded joint part
JPS6196057A (en) * 1985-06-01 1986-05-14 Kobe Steel Ltd Hot-rolled steel plate having maximum strength
JPH01301823A (en) * 1988-03-18 1989-12-06 Thyssen Ind Ag Method for improving fatique strength of welded high tensile steel
JPH07207405A (en) * 1994-01-12 1995-08-08 Nippon Steel Corp Hot rolled steel sheet of high-strength composite structure having excellent workability and fatigue resistant characteristic and tensile strength of 45 to 65kgf/mm2 and its production
JPH0860305A (en) * 1994-08-19 1996-03-05 Nippon Steel Corp Hot rolled high strength steel plate for working, excellent in fatigue characteristic and having thermal softening resistance, and its production
JPH0873983A (en) * 1994-08-31 1996-03-19 Nippon Steel Corp Thick steel plate for welded structure, excellent in fatigue strength in weld joint, and its production
JPH0873980A (en) * 1994-08-31 1996-03-19 Nippon Steel Corp Thick steel plate excellent in fatigue crack propagation characteristic in plate thickness direction and its production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220431A (en) * 2012-04-13 2013-10-28 Kobe Steel Ltd Welded joint excellent in fatigue strength, mag welding method for hot rolled steel sheet, mig welding method for hot rolled steel sheet, and flux-cored wire
CN108796365A (en) * 2018-05-29 2018-11-13 唐山中厚板材有限公司 360MPa grade high ductilities ship structure steel plate and low-cost manufacture method
CN113302315A (en) * 2019-01-09 2021-08-24 日本制铁株式会社 Hot-rolled steel sheet and welded joint, and method for producing same
KR20210079691A (en) * 2019-12-20 2021-06-30 주식회사 포스코 Steel welding joint having excellent low-temperature toughness and crack resistance
KR102293623B1 (en) 2019-12-20 2021-08-25 주식회사 포스코 Steel welding joint having excellent low-temperature toughness and crack resistance
CN115044825A (en) * 2022-04-22 2022-09-13 安阳钢铁股份有限公司 High-yield 550 MPa-grade steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP4559673B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
EP2264205B1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
KR101846759B1 (en) Steel plate and method for manufacturing same
KR101603461B1 (en) High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet
JP4997805B2 (en) High-strength thick steel plate, method for producing the same, and high-strength steel pipe
EP1978121B1 (en) HIGH-STRENGTH STEEL SHEET OF 450 MPa OR HIGHER YIELD STRESS AND 570 MPa OR HIGHER TENSILE STRENGTH HAVING LOW ACOUSTIC ANISOTROPY AND HIGH WELDABILITY AND PROCESS FOR PRODUCING THE SAME
JP5217385B2 (en) Steel sheet for high toughness line pipe and method for producing the same
EP3012341A1 (en) Zinc-induced-crack resistant steel plate and manufacturing method therefor
JP2009185368A (en) Base material for clad steel plate having high strength and weld heat affected zone toughness, and method for producing the same
JP2008045174A (en) High-strength thick steel plate for structural purpose having excellent brittle crack propagation property and its production method
WO2014175122A1 (en) H-shaped steel and method for producing same
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
JP4802450B2 (en) Thick hot-rolled steel sheet with excellent HIC resistance and manufacturing method thereof
JP2008111165A (en) High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method
JP2002129281A (en) High tensile strength steel for welding structure excellent in fatigue resistance in weld zone and its production method
JP5432565B2 (en) Thick steel plate with excellent brittle crack propagation stopping properties and fatigue crack growth inhibition properties
JP2002047531A (en) High tensile strength steel for welded structure having excellent fatigue characteristic and its production method
JP5157387B2 (en) Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability
JP2008069380A (en) High-strength thick steel plate excellent in brittle crack propagation preventing property and its manufacturing method
JP2008111166A (en) High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method
JP3569314B2 (en) Steel plate for welded structure excellent in fatigue strength of welded joint and method of manufacturing the same
JP2004124113A (en) Non-water-cooled thin low yield ratio high tensile steel, and production method therefor
JP2003089844A (en) Thick steel plate for welded structure having excellent fatigue strength of welded joint, and production method therefor
CN111183238A (en) High-strength steel sheet for acid-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for acid-resistant line pipe
JP2003328080A (en) High-strength steel pipe superior in low-temperature toughness and deformability, and method for manufacturing steel plate for steel pipe
JPH09137253A (en) High tensile strength steel excellent in stress corrosion cracking resistance and low temperature toughness and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100723

R151 Written notification of patent or utility model registration

Ref document number: 4559673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees