JPH07207405A - Hot rolled steel sheet of high-strength composite structure having excellent workability and fatigue resistant characteristic and tensile strength of 45 to 65kgf/mm2 and its production - Google Patents
Hot rolled steel sheet of high-strength composite structure having excellent workability and fatigue resistant characteristic and tensile strength of 45 to 65kgf/mm2 and its productionInfo
- Publication number
- JPH07207405A JPH07207405A JP176294A JP176294A JPH07207405A JP H07207405 A JPH07207405 A JP H07207405A JP 176294 A JP176294 A JP 176294A JP 176294 A JP176294 A JP 176294A JP H07207405 A JPH07207405 A JP H07207405A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- austenite
- workability
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は自動車、建築、電機など
の産業分野で使用される加工性と疲労特性に優れた高強
度複合組織熱延鋼板およびその製造方法に関するもので
ある。さらに詳しくは、45kgf/mm2 以上65k
gf/mm2 以下の引張強さをもつ加工性と疲労特性に
優れた高強度複合組織熱延鋼板およびその製造方法に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength hot-rolled composite microstructure steel sheet having excellent workability and fatigue properties, which is used in the industrial fields of automobiles, constructions, electric machines and the like, and a method for producing the same. More specifically, 45 kgf / mm 2 or more 65 k
The present invention relates to a high-strength composite hot-rolled steel sheet having a tensile strength of gf / mm 2 or less and excellent workability and fatigue characteristics, and a method for producing the same.
【0002】[0002]
【従来の技術】近年、自動車の快適性、安全性に加えて
車体の軽量化に対する要求が大きくなってきている。こ
れは地球規模で考えた省エネルギーおよび環境問題に対
する要求であり、軽量化による車両燃費の向上とCO2
などの有害排気ガスの減少をその目的としている。この
ような目的を達成させるためには車体構造に利用される
材料の強度を向上させ、その材料厚みを減少させるか、
新たな低比重の材料を用いることなどが必要である。2. Description of the Related Art In recent years, there has been an increasing demand for vehicle body weight reduction in addition to vehicle comfort and safety. This is a request for energy conservation and environmental issues considered globally, improvement of vehicle fuel efficiency by weight reduction and CO 2
Its purpose is to reduce harmful exhaust gas. In order to achieve such an object, the strength of the material used for the vehicle body structure is improved and the material thickness is reduced, or
It is necessary to use new low specific gravity materials.
【0003】新たな低比重材料(例えばAl、Mg等)
を利用する場合、価格、安定供給量の観点から、従来車
体構成材料の中心として利用されてきた鋼板と共存状態
での利用が前提となると考えられる。この場合に最も問
題となるのはスクラップのリサイクルであり、他材料と
混合した鋼板スクラップはその後の利用では多くのエネ
ルギー、コストを費やして再利用される必要がある。従
って地球全体としてのエネルギーミニマム、環境保持を
目指す上では特殊な部位を除いては、単一材料(すなわ
ち鋼材)での軽量化対策が非常に重要となり、鋼材のよ
り一層の高強度化が期待されている。New low specific gravity materials (eg Al, Mg, etc.)
From the viewpoints of price and stable supply, it is premised that the steel sheet is used in the coexistence state with the steel sheet that has been conventionally used as the center of the body material. In this case, the most problematic issue is scrap recycling, and the steel plate scrap mixed with other materials needs to be reused with a large amount of energy and cost for subsequent use. Therefore, in order to maintain the minimum energy and environment of the earth as a whole, excluding special parts, it is very important to take measures to reduce the weight with a single material (that is, steel), and it is expected that the strength of steel will be even higher. Has been done.
【0004】上記要求に加えて、車体構成部位の一体成
形は、製造工程の簡略化、連続化のために重要な技術的
要請と考えられる。このような近代化されつつある成形
工程で用いられる鋼材の中で、特に薄鋼板を考えると、
良好な成形性を有することがその鋼板の選択基準とな
る。薄鋼板の成形性の良否は、伸び、ランクフォードの
塑性歪比(r値)、加工硬化指数(n値)や降伏強度で
判断され、複雑な部品の一体成形のためには伸びやn値
が高いことが一つの必要条件となる。In addition to the above-mentioned requirements, the integral molding of vehicle body constituent parts is considered to be an important technical requirement for simplification and continuation of the manufacturing process. Among the steel materials used in such modernizing forming process, especially considering thin steel plate,
Having good formability is the selection criterion for the steel sheet. The formability of thin steel sheet is judged by elongation, Rankford's plastic strain ratio (r value), work hardening index (n value) and yield strength. For integral molding of complex parts, elongation and n value Is a high requirement.
【0005】伸びやn値の大きな鋼板の例としては、従
来フェライトとマルテンサイト2相組織のDual P
hase(DP)鋼が知られている。DP鋼は特公昭5
6−18051号公報や特公昭59−45735号公報
などで示されているように50〜80kgf/mm2 で
最大30〜35%程度の全伸びを得ることができる。し
かしながら従来比較的低強度(35〜45kgf/mm
2 )の薄鋼板が用いられている様な複雑な加工を要求さ
れる部位への適用では十分な強度−延性バランスとは言
い難い。As an example of a steel sheet having a large elongation and a large n value, a conventional dual-phase structure of ferrite and martensite dual P
Hase (DP) steel is known. DP Steel is Japanese Patent Sho5
As shown in Japanese Patent Publication No. 6-18051 and Japanese Patent Publication No. 59-45735, a maximum total elongation of about 30 to 35% can be obtained at 50 to 80 kgf / mm 2 . However, it has a relatively low strength (35-45 kgf / mm)
It cannot be said that the strength-ductility balance is sufficient when applied to the parts requiring complicated processing such as the thin steel plate used in 2 ).
【0006】この材質をさらに向上させるための方法と
して最近、フェライト、ベイナイトおよびオーステナイ
トの混合組織(もしくは一部マルテンサイトを含む)を
ミクロ組織として持つ高強度複合組織鋼板が提案されて
いる。この鋼板は室温で残留しているオーステナイトが
成形時にマルテンサイトに変態することによって高い延
性を示す「変態誘起塑性」を利用するものである。変態
誘起塑性を利用した鋼はTRIP鋼として知られている
ように、例えばZackayら(V.F.Zackay
ら:Trans.ASM vol.60(1967)2
52)が示すように70kgf/mm2 以上で最大90
%程度の高延性が達成されている。しかしながら、この
様なTRIP鋼は高価な合金元素を大量に添加する必要
があるなど必ずしもここでの要求に合致しない。この様
な問題を解決したものとして、特開昭61−15762
5号公報に自動車用鋼板の様な大量生産が前提となる廉
価な用途に合致した薄鋼板の製造方法が示されている。
この先願発明で述べられている技術は、Siの添加によ
って炭化物の析出を抑制し、低温でのフェライト変態
(ベイナイト変態)を進行させることによって、未変態
オーステナイト中に効果的に炭素を濃化させ、オーステ
ナイトを安定化させるものである。これらの従来技術は
引張強さTS>65kgf/mm2 の高強度鋼板に関す
るものが大部分であるが、自動車用の鋼板として利用さ
れる場合には、一般にプレス成形法が利用されることか
ら、ポンチ・ダイスの型の摩耗や形状凍結性、プレス機
本体の荷重能力等から積極的に利用されるには到ってい
ないのが現状である。As a method for further improving this material, a high strength composite structure steel sheet having a microstructure of a mixed structure of ferrite, bainite and austenite (or partly containing martensite) has been proposed. This steel sheet utilizes "transformation-induced plasticity" which shows high ductility by transforming austenite remaining at room temperature into martensite during forming. Steels that utilize transformation-induced plasticity are known as TRIP steels, for example, Zackay et al. (VF Zackay).
Et al: Trans. ASM vol. 60 (1967) 2
52) shows that the maximum is 90 at 70 kgf / mm 2 or more.
%, High ductility has been achieved. However, such TRIP steel does not always meet the requirements here, such as the need to add a large amount of expensive alloying elements. As a solution to such a problem, Japanese Unexamined Patent Publication No. 61-15762.
Japanese Unexamined Patent Publication No. 5 discloses a method for manufacturing a thin steel sheet, such as an automobile steel sheet, which is suitable for a low-priced application that is premised on mass production.
The technology described in the invention of this prior application suppresses the precipitation of carbides by adding Si and advances ferrite transformation (bainite transformation) at a low temperature to effectively enrich carbon in untransformed austenite. , Stabilizes austenite. Most of these conventional techniques relate to high-strength steel plates having a tensile strength TS> 65 kgf / mm 2 , but when they are used as steel plates for automobiles, a press forming method is generally used. At present, it has not been actively used due to wear of the die of the punch and die, freezing of the shape, load capacity of the press body, and the like.
【0007】また、この様な高強度鋼板を自動車の足廻
り部品や構造用鋼として用いる場合には、上記の良好な
加工性ばかりでなく疲労耐久性も重要な特性となる。こ
の様な良好な加工性と高い疲労強度を同時に達成する方
法としては従来上記のDP鋼が最も優れていると言われ
てきた。When such a high-strength steel sheet is used as an undercarriage component of automobiles or a structural steel, not only the good workability described above but also fatigue durability is an important characteristic. It has been said that the above DP steel is the most excellent as a method for simultaneously achieving such good workability and high fatigue strength.
【0008】[0008]
【発明が解決しようとする課題】従来のDP鋼で達成し
た加工性と疲労強度のレベルではこれまでに用いられて
きた35〜45kgf/mm2 程度の鋼板に代替して自
動車車体の軽量化をはかるには十分ではなかった。ま
た、SiとMnの添加を調整し、鋼材中のオーステナイ
トの安定化をはかり、最終的な鋼板のミクロ組織に残留
オーステナイトを含む良好な加工性を得る方法について
は報告されているが、45kgf/mm2 以上65kg
f/mm2 以下の強度で従来の35〜45kgf/mm
2 程度の鋼板に代替できる高い疲労強度と良好な加工性
を具備した鋼板およびその製造方法については未だ不明
である。At the level of workability and fatigue strength achieved by the conventional DP steel, the weight of the automobile body is reduced by replacing the steel plate of about 35 to 45 kgf / mm 2 which has been used so far. It was not enough to measure. In addition, a method of adjusting the addition of Si and Mn to stabilize austenite in the steel material and obtaining good workability including retained austenite in the final microstructure of the steel sheet has been reported, but 45 kgf / mm 2 or more 65 kg
Conventional strength of 35 to 45 kgf / mm with strength of f / mm 2 or less
It is still unclear about the steel sheet with high fatigue strength and good workability that can be substituted for about two steel sheets and the manufacturing method thereof.
【0009】本発明は、合金添加量および組み合わせを
適正に選択し、最適のミクロ組織にコントロールするこ
とによって効率よく45〜65kgf/mm2 の強度範
囲でDP鋼では達成できなかったレベルの疲労強度と加
工性に優れた高強度複合組織熱延鋼板とその製造方法を
提供することを目的としている。According to the present invention, by properly selecting the alloy addition amount and combination and controlling to an optimum microstructure, it is possible to efficiently achieve a fatigue strength at a level that cannot be achieved with DP steel in the strength range of 45 to 65 kgf / mm 2. It is an object of the present invention to provide a high-strength composite hot-rolled steel sheet having excellent workability and a method for manufacturing the same.
【0010】[0010]
【課題を解決するための手段】本発明者らはC、Si、
Al、Mn、Crを添加した種々の鋼に対して、成分お
よび製造条件が疲労強度と加工性に及ぼす影響について
調査した。その結果、下記の要旨の本発明によって上記
の目的が達成できるを見出した。 (1)重量%で、 C :0.04%以上0.23%以下 Si:2.5%以下 Al:2.0%以下 Mn:2.0%以下 Cr:2.0%以下 の範囲で、 Ceq=%C+0.0635%Si+0.0247%M
n+0.0123%Cr で表現される炭素等量Ceqが0.11重量%以上0.
25重量%以下であり、且つAlとSiの和が0.6重
量%以上で、 Mneq=%Mn+0.52%Cr で表現されるMn等量Mneqが0.6重量%以上、
2.5重量%以下であり、さらに不可避的な不純物を含
む鋼において、最終的なミクロ組織をフェライト、ベイ
ナイト、残留オーステナイトの3相もしくは一部マルテ
ンサイトを含む4相とし、主相であるフェライトの占積
率を60%以上、マルテンサイトの占積率を3%以下、
オーステナイトの占積率をC重量%で除した値が35以
上110以下であり、残留オーステナイト中の化学成分
で決まるオーステナイトのマルテンサイト変態開始温度
(Ms)がMs≦150℃であることを特徴とする加工
性と疲労特性に優れた引張強さ45〜65kgf/mm
2 の高強度複合組織熱延鋼板。The present inventors have found that C, Si,
For various steels to which Al, Mn, and Cr were added, the effects of the components and manufacturing conditions on fatigue strength and workability were investigated. As a result, they have found that the above objects can be achieved by the present invention having the following gist. (1) In% by weight, C: 0.04% or more and 0.23% or less Si: 2.5% or less Al: 2.0% or less Mn: 2.0% or less Cr: 2.0% or less , Ceq =% C + 0.0635% Si + 0.0247% M
Carbon equivalent Ceq expressed by n + 0.0123% Cr 2 is 0.11% by weight or more and 0.1.
25 wt% or less, the sum of Al and Si is 0.6 wt% or more, and Mn equivalent Mneq represented by Mneq =% Mn + 0.52% Cr is 0.6 wt% or more,
In steel containing 2.5% by weight or less and inevitable impurities, the final microstructure is ferrite, bainite, retained austenite, or three phases, or some phases containing martensite, and the main phase is ferrite. Occupancy rate of 60% or more, martensite occupancy rate of 3% or less,
The value obtained by dividing the space factor of austenite by C weight% is 35 or more and 110 or less, and the martensitic transformation start temperature (Ms) of austenite determined by the chemical components in the retained austenite is Ms ≦ 150 ° C. Excellent tensile workability and fatigue strength 45-65kgf / mm
2 High strength composite structure hot rolled steel sheet.
【0011】(2)重量%で、 Ca :0.0005〜0.01% REM:0.005〜0.05% の範囲でこれらの1種もしくは2種以上を含むことを特
徴とする前項1記載の加工性と疲労特性に優れた引張強
さ45〜65kgf/mm2 の高強度複合組織熱延鋼
板。(2) 1% or more of Ca in the range of 0.0005 to 0.01% and REM: 0.005 to 0.05% in weight%. A high-strength composite hot-rolled steel sheet having a tensile strength of 45 to 65 kgf / mm 2 , which is excellent in the workability and fatigue properties described.
【0012】(3)重量%で、 C :0.04%以上0.23%以下 Si:2.5%以下 Al:2.0%以下 Mn:2.0%以下 Cr:2.0%以下 の範囲で、 Ceq=%C+0.0635%Si+0.0247%M
n+0.0123%Cr で表現される炭素等量Ceqが0.11重量%以上0.
25重量%以下であり、且つAlとSiの和が0.6重
量%以上で、 Mneq=%Mn+0.52%Cr で表現されるMn等量Mneqが0.6重量%以上、
2.5重量%以下であり、さらに不可避的な不純物を含
む鋼を鋳造後、直接もしくは一旦冷却した後に再度加熱
して、Ar3 −50〜Ar3 +140℃の範囲内で熱延
を完了し、その後冷却して350℃から500℃の範囲
で巻取ることにより、最終的なミクロ組織をフェライ
ト、ベイナイト、残留オーステナイトの3相もしくは一
部マルテンサイトを含む4相とし、主相であるフェライ
トの占積率を60%以上、マルテンサイトの占積率を3
%以下、オーステナイトの占積率をC重量%で除した値
を35以上110以下とし、残留オーステナイト中の化
学成分で決まるオーステナイトのマルテンサイト変態開
始温度(Ms)をMs≦150℃とすることを特徴とす
る加工性と疲労特性に優れた引張強さ45〜65kgf
/mm2 の高強度複合組織熱延鋼板の製造方法。(3) In% by weight, C: 0.04% or more and 0.23% or less Si: 2.5% or less Al: 2.0% or less Mn: 2.0% or less Cr: 2.0% or less In the range of Ceq =% C + 0.0635% Si + 0.0247% M
Carbon equivalent Ceq expressed by n + 0.0123% Cr 2 is 0.11% by weight or more and 0.1.
25 wt% or less, the sum of Al and Si is 0.6 wt% or more, and Mn equivalent Mneq represented by Mneq =% Mn + 0.52% Cr is 0.6 wt% or more,
After casting the steel containing 2.5 wt% or less and inevitable impurities, directly or once cooling and then reheating, the hot rolling is completed within the range of Ar 3 −50 to Ar 3 + 140 ° C. Then, after cooling and winding in the range of 350 ° C. to 500 ° C., the final microstructure is made into three phases of ferrite, bainite, retained austenite or four phases containing some martensite, and the main phase of ferrite is A space factor of 60% or more and a martensite space factor of 3
%, The value obtained by dividing the space factor of austenite by C weight% is 35 or more and 110 or less, and the martensitic transformation start temperature (Ms) of austenite determined by the chemical component in the retained austenite is set to Ms ≦ 150 ° C. Tensile strength of 45 to 65 kgf with excellent workability and fatigue characteristics
/ Mm 2 High strength composite structure hot rolled steel sheet manufacturing method.
【0013】(4)出発鋼はさらに重量%で、 Ca :0.0005〜0.01%、 REM:0.005〜0.05% の範囲でこれらの1種もしくは2種以上を含むことを特
徴とする前項3記載の加工性と疲労特性に優れた引張強
さ45〜65kgf/mm2 の高強度複合組織熱延鋼板
の製造方法。(4) The starting steel further contains, by weight, one or more of Ca within the range of 0.0005 to 0.01% and REM within the range of 0.005 to 0.05%. The method for producing a high-strength composite microstructure hot-rolled steel sheet having a tensile strength of 45 to 65 kgf / mm 2 , which is excellent in workability and fatigue characteristics according to the above-mentioned item 3.
【0014】(5)最終仕上げ熱延工程における全圧下
率を80%以上とすることを特徴とする前項3または4
記載の加工性と疲労特性に優れた引張強さ45〜65k
gf/mm2 の高強度複合組織熱延鋼板の製造方法。 (6)所定の成分に調整されたスラブを熱延し冷却する
際に、熱延後巻取り温度まで10℃/秒以上で冷却する
ことを特徴とする前項3ないし5のいずれか1項に記載
の加工性と疲労特性に優れた引張強さ45〜65kgf
/mm2 の高強度複合組織熱延鋼板の製造方法。 (7)所定の成分に調整されたスラブを熱延し冷却する
際に、Ar3 からAr1の範囲の温度T1までは5〜2
00℃/秒で冷却し、T1からAr1 の範囲の温度T2
までを5〜20℃/秒で冷却し、これ以下を20〜20
0℃/秒で冷却することを特徴とする前求項3ないし5
のいずれか1項に記載の加工性と疲労特性に優れた引張
強さ45〜65kgf/mm2 の高強度複合組織熱延鋼
板の製造方法。(5) The total rolling reduction in the final finishing hot rolling step is set to 80% or more, which is the above item 3 or 4.
Tensile strength 45-65k with excellent workability and fatigue properties
A method for producing a hot rolled steel sheet having a high strength composite structure of gf / mm 2 . (6) When hot rolling and cooling a slab adjusted to a predetermined component, it is cooled to a winding temperature after hot rolling at 10 ° C./sec or more, according to any one of the above items 3 to 5. Tensile strength of 45 to 65 kgf with excellent workability and fatigue properties
/ Mm 2 High strength composite structure hot rolled steel sheet manufacturing method. (7) When hot rolling and cooling a slab adjusted to have a predetermined composition, the temperature is within the range of Ar 3 to Ar 1 up to a temperature T1 of 5 to 2.
Was cooled at 00 ° C. / sec, a temperature ranging from T1 of Ar 1 T2
Is cooled at 5 to 20 ° C./sec.
Preliminary requirements 3 to 5 characterized by cooling at 0 ° C./second
A method for producing a high-strength composite microstructure hot-rolled steel sheet having a tensile strength of 45 to 65 kgf / mm 2 , which is excellent in workability and fatigue characteristics according to any one of 1.
【0015】[0015]
【作用】以下に発明の各要素についての作用の詳細を述
べる。まず成分範囲規定の理由について述べる。 C:Cは他の高価な合金元素を用いることなくオーステ
ナイトを安定化させ、室温で残留させるために利用する
本発明で最も重要な元素の一つである。熱処理によって
オーステナイトからフェライトへの変態を利用し、オー
ステナイト中の炭素濃度を高めることによりオーステナ
イトの安定化がはかれるが、平均C量が0.04重量%
未満では最終的に得られる残留オーステナイト占積率が
高々2〜3%であり十分なTRIP効果が期待できない
ためにこれをC添加の下限とした。平均C量が増加する
に従って得られる最大残留オーステナイト占積率は増加
するが、鋼板の焼き入れ性も上昇するためにC量が0.
23重量%超では他の合金添加元素をどの様に調整して
も65kgf/mm2 以下の強度を得ることが困難とな
る。従って0.23重量%をC添加の上限とした。The operation of each element of the invention will be described in detail below. First, the reason for defining the component range will be described. C: C is one of the most important elements used in the present invention for stabilizing austenite without using other expensive alloying elements and allowing it to remain at room temperature. Utilizing the transformation from austenite to ferrite by heat treatment to stabilize the austenite by increasing the carbon concentration in the austenite, the average C content is 0.04% by weight.
If the amount is less than the above, the residual austenite space factor finally obtained is at most 2 to 3%, and a sufficient TRIP effect cannot be expected, so this was made the lower limit of C addition. The maximum retained austenite space factor obtained increases as the average C content increases, but the C content is 0.
If it exceeds 23% by weight, it becomes difficult to obtain a strength of 65 kgf / mm 2 or less no matter how the other alloying additive elements are adjusted. Therefore, 0.23 wt% was set as the upper limit of C addition.
【0016】また、鋼板の強度を45kgf/mm2 以
上、65kgf/mm2 以下とするためには合金添加元
素量で補正したC等量が適正な範囲にあることが必要で
ある。すなわち、合金元素添加量で補正した(1)式 Ceq=%C+0.0635%Si+0.0247%Mn +0.0123%Cr (1) が0.11重量%以上0.25重量%以下である時のみ
上記の強度範囲の鋼板が得られることからこれをC等量
の上限および下限とした。Further, the strength of the steel sheet 45 kgf / mm 2 or more, in order to 65 kgf / mm 2 or less is necessary that C equal volume corrected by the alloying element content is in the proper range. That is, only when the formula (1) corrected by the addition amount of alloying element Ceq =% C + 0.0635% Si + 0.0247% Mn + 0.0123% Cr (1) is 0.11% by weight or more and 0.25% by weight or less. Since a steel plate in the above strength range was obtained, this was made the upper and lower limits of the C equivalent.
【0017】Al、Si:AlとSiはオーステナイト
を室温でも安定なほど炭素濃化させるために重要な添加
元素である。鋼板をフェライト/オーステナイト2相域
に加熱し、冷却時にフェライト変態を進行させることに
よってオーステナイト中に炭素を濃化させることが本発
明の技術の中心であるが、フェライト変態の進行と共に
(従ってオーステナイト中の炭素濃度の上昇と共に)炭
化物の生成が起こり易くなり、高温ではパーライト、低
温では上部ベイナイトが生成されるようになり、オース
テナイト中の全炭素量を減少させ、結果として残留オー
ステナイト量を減少させることとなる。AlとSiはよ
く知られているように炭化物(ここではセメンタイト)
に固溶しないために炭化物の生成を著しく遅らせる働き
がある。これにより炭化物の形で炭素原子を浪費するこ
となく効率よいオーステナイトへの炭素濃化を可能にす
る。この働きのためにはAlとSiの添加量の合計が
0.6重量%以上であることが不可欠なので、0.6重
量%をAlとSiの添加量の合計の下限とした。Al, Si: Al and Si are important additive elements for carbon concentration so that austenite is stable even at room temperature. Although the core of the technique of the present invention is to concentrate carbon in austenite by heating the steel sheet to the ferrite / austenite two-phase region and advancing the ferrite transformation at the time of cooling, as the ferrite transformation progresses (therefore, in the austenite). Carbide formation (with increasing carbon concentration), pearlite is formed at high temperature and upper bainite is formed at low temperature, which reduces the total carbon content in austenite and consequently the retained austenite content. Becomes As is well known, Al and Si are carbides (here, cementite)
Since it does not form a solid solution, it has the function of significantly delaying the formation of carbides. This enables efficient carbon enrichment to austenite without wasting carbon atoms in the form of carbides. For this purpose, it is indispensable that the total amount of Al and Si added is 0.6% by weight or more. Therefore, 0.6% by weight was set as the lower limit of the total amount of Al and Si added.
【0018】Siはこのときフェライト中に固溶し、フ
ェライトを強化することから、不必要に多量の添加は鋼
板の強度の不必要な上昇や加工性・靱性の劣化をもたら
す。従ってその添加量を2.5%以下と限定した。また
Alの場合にも不必要に多量の添加がなされた場合には
加工性・靱性の劣化をもたらすことから添加量の上限を
2.0重量%に制限した。At this time, Si dissolves in ferrite to form a solid solution and strengthens the ferrite. Therefore, addition of an unnecessarily large amount brings about an unnecessary increase in strength of the steel sheet and deterioration of workability and toughness. Therefore, the amount added is limited to 2.5% or less. Further, in the case of Al as well, if an unnecessarily large amount is added, the workability and toughness are deteriorated, so the upper limit of the addition amount is limited to 2.0% by weight.
【0019】Alは鋼板の強度をほとんど上昇させない
ので(1)式のCeqには含まれないが、Siは鋼板の
強度を上げるので、他の添加元素との関係で(1)式を
満足する量に制限する必要がある。 Mn、Cr:Mn、CrもSiやAl同様炭化物の生成
を遅らす働きがあることからオーステナイトの残留に貢
献する添加元素である。これに加えて、Mn、Crの添
加はオーステナイトのマルテンサイト変態開始温度を低
下させる。オーステナイトを室温で安定にするためには
上述の通り炭化物の析出を抑えてオーステナイト中の炭
素濃度を高めることが必要だが、同時にそのオーステナ
イトのマルテンサイト変態開始温度を低下させることも
重要である。もしもマルテンサイト変態温度が室温より
も高温であれば、オーステナイトの一部は不可避的にマ
ルテンサイトに変態し、鋼板の強度を上げると共に延性
の劣化をもたらす。Mneq=%Mn+0.52%Cr
で表現されるMn等量が0.6重量%未満の場合には十
分な量の残留オーステナイトを確保しつつマルテンサイ
トの生成量を3%以下に抑えることができないので0.
6重量%をMn等量の下限とした。一方Mn等量が2.
5重量%超の場合には鋼板強度を65kgf/mm2 以
下とすることが困難であるために2.5重量%をMn等
量の上限とした。CrはMnにくらべて強化能力が小さ
いために本発明の目的としては利用し易い元素である
が、2.0重量%を超えて添加する場合にはオーステナ
イトを残留させる効果が飽和するばかりでなく経済的に
も不利益が生じ、また主相であるフェライトの生成を抑
制することから、2.0重量%をCr添加の上限とし
た。またMnも2.0重量%を超えて添加した場合には
フェライトの生成を不必要に抑制し、鋼板の強度上昇を
もたらすことから2.0重量%をMn添加の上限とし
た。Since Al hardly increases the strength of the steel sheet, it is not included in Ceq of the equation (1), but Si increases the strength of the steel sheet, and therefore satisfies the equation (1) in relation to other additive elements. You need to limit the amount. Mn, Cr: Mn and Cr are also additive elements that contribute to the retention of austenite because they have a function of delaying the formation of carbides like Si and Al. In addition to this, the addition of Mn and Cr lowers the martensitic transformation start temperature of austenite. In order to stabilize austenite at room temperature, it is necessary to suppress the precipitation of carbides and increase the carbon concentration in austenite as described above, but at the same time, it is important to lower the martensitic transformation start temperature of the austenite. If the martensite transformation temperature is higher than room temperature, a portion of austenite inevitably transforms to martensite, which increases the strength of the steel sheet and deteriorates ductility. Mneq =% Mn + 0.52% Cr
When the Mn equivalent expressed by is less than 0.6% by weight, the amount of martensite produced cannot be suppressed to 3% or less while securing a sufficient amount of retained austenite.
6% by weight was the lower limit of Mn equivalent. On the other hand, the Mn equivalent is 2.
If it exceeds 5% by weight, it is difficult to reduce the strength of the steel sheet to 65 kgf / mm 2 or less, so 2.5% by weight was made the upper limit of the Mn equivalent amount. Cr is an element that can be easily utilized for the purpose of the present invention because it has a smaller strengthening ability than Mn. However, when it is added in an amount of more than 2.0% by weight, the effect of leaving austenite is saturated and 2.0% by weight was set as the upper limit of Cr addition, because it is economically disadvantageous and suppresses the formation of ferrite as the main phase. Further, when Mn is also added in an amount of more than 2.0% by weight, the formation of ferrite is unnecessarily suppressed and the strength of the steel sheet is increased.
【0020】Ca、REM:Ca、REMはSと結合し
て介在物を球状化し、冷間加工性や疲労特性を改善す
る。しかしながら添加量がCaの場合には0.0005
重量%未満、REMの場合には0.005重量%未満で
ある場合にはその効果が十分でない。従ってCa:0.
0005重量%およびREM:0.005重量%を両者
の添加量の下限とする。またこれらを過多に添加して
も、効果が飽和するだけでなく溶接部欠陥を増加させる
ので添加量の上限値をCaの場合0.01重量%、RE
Mの場合0.05重量%とする。Ca, REM: Ca and REM combine with S to make inclusions spherical and improve cold workability and fatigue properties. However, when the addition amount is Ca, 0.0005
If it is less than 0.005% by weight and in the case of REM less than 0.005% by weight, the effect is not sufficient. Therefore, Ca: 0.
0005 weight% and REM: 0.005 weight% are the lower limits of the addition amount of both. Further, even if these are added excessively, not only the effect is saturated, but also the weld defects are increased, so the upper limit of the addition amount is 0.01% by weight in the case of Ca, RE
In the case of M, it is 0.05% by weight.
【0021】次に成分以外の各構成要素の作用の詳細に
ついて述べる。 ミクロ組織:本発明の鋼板は強度が45〜65kgf/
mm2 の比較的低強度のTRIP鋼を対象にしているこ
とから、軟質なフェライトを主相とすることが前提とな
る。最終的なミクロ組織にオーステナイトを残留させる
ためには、フェライト変態だけでは十分なC濃化が達成
できないためにベイナイト変態を利用する。従って最終
的なミクロ組織はフェライト+ベイナイト+オーステナ
イトの3相の混合組織となることが望ましい。しかしな
がらオーステナイトのマルテンサイト変態温度を室温以
下にすることが困難な場合もあり、その場合には本発明
の強度範囲で加工性を劣化させないためにはマルテンサ
イトの占積率を3%以下に制御することが必要であるの
で3%をマルテンサイト占積率の上限とする。また、軟
質なフェライトの占積率が60%以下では鋼板の加工性
が著しく劣化するために60%をフェライト占積率の下
限とした。最終組織に含まれる残留オーステナイト量は
鋼板の加工性を大きく左右するが、同時にオーステナイ
トの加工安定性も鋼板の加工性を支配する因子の一つで
ある。オーステナイトの加工安定性はオーステナイトの
Ms温度で表現でき、Msが低温なほどオーステナイト
は安定で、加工の後期に有効に働き鋼板の延性を向上さ
せる。オーステナイトのMsを低下させるためにはMn
等量を上げることも重要であるが、オーステナイト中の
C濃度を一定量以上に高めることも重要である。実製造
工程では鋼に含まれるCの内一部はフェライト中もしく
は粒界での固溶Cとして、また一部はセメンタイトの様
な炭化物として、さらには冷却中に生成したマルテンサ
イト中の固溶Cとして浪費されることから、添加したC
全てをオーステナイトに濃化させることはできない。し
かしながら、最終的に得られる最大残留オーステナイト
量は鋼板の平均C濃度の増加と共に増加する。この時必
要以上のオーステナイトを残留させると、オーステナイ
ト中の平均的なC濃度が低くなり、オーステナイトの安
定性を下げる。残留オーステナイト量をC量で除した値
が110を超えるとオーステナイトの加工安定性が低下
して鋼板の加工性を著しく劣化させることから110を
(オーステナイト占積率)/(%C)の上限とした。実
験によるとオーステナイト中のC濃度は無制限に高める
ことはできない。濃化可能な範囲ではオーステナイト中
のC濃度は高いほど鋼板の加工性は良好であることが確
認されている。しかしながら上記の指標(オーステナイ
ト占積率)/(%C)が35未満になるほど残留オース
テナイト占積率が低下した場合にはフェライト、ベイナ
イト、オーステナイト以外にマルテンサイトやセメンタ
イト等の硬質な生成物の量が増加し、結果として鋼板の
加工性および疲労特性を著しく劣化させることから、3
5を上記指標の下限とした。Next, details of the action of each component other than the components will be described. Microstructure: The steel sheet of the present invention has a strength of 45 to 65 kgf /
Since the target is a relatively low strength TRIP steel of mm 2 , it is premised that soft ferrite is used as the main phase. In order to retain austenite in the final microstructure, bainite transformation is used because sufficient C concentration cannot be achieved by ferrite transformation alone. Therefore, it is desirable that the final microstructure is a mixed structure of three phases of ferrite + bainite + austenite. However, it may be difficult to set the martensite transformation temperature of austenite to room temperature or lower. In that case, in order to prevent deterioration of workability in the strength range of the present invention, the space factor of martensite is controlled to 3% or less. 3% is set as the upper limit of the martensite space factor. Further, when the space factor of soft ferrite is 60% or less, the workability of the steel sheet is significantly deteriorated, so 60% was made the lower limit of the ferrite space factor. The amount of retained austenite contained in the final structure greatly affects the workability of the steel sheet, but at the same time, the workability of austenite is one of the factors that govern the workability of the steel sheet. The working stability of austenite can be expressed by the Ms temperature of austenite, and the lower the Ms, the more stable the austenite, which works effectively in the latter stage of working and improves the ductility of the steel sheet. To reduce the Ms of austenite, Mn
It is important to increase the equivalent amount, but it is also important to increase the C concentration in austenite to a certain amount or more. In the actual manufacturing process, some of the C contained in steel is dissolved in ferrite or at grain boundaries as solid solution C, and some as carbides such as cementite, and in solid solution in martensite formed during cooling. Added C because it is wasted as C
Not all can be thickened to austenite. However, the maximum residual austenite amount finally obtained increases with an increase in the average C concentration of the steel sheet. At this time, if more austenite than necessary is left, the average C concentration in the austenite becomes low, and the stability of the austenite decreases. When the value obtained by dividing the amount of retained austenite by the amount of C exceeds 110, the workability of austenite is lowered and the workability of the steel sheet is significantly deteriorated. Therefore, 110 is defined as the upper limit of (austenite space factor) / (% C). did. Experiments show that the C concentration in austenite cannot be increased without limit. It has been confirmed that the workability of the steel sheet is better as the C concentration in austenite is higher in the range where the steel can be concentrated. However, when the above-mentioned index (austenite space factor) / (% C) becomes less than 35 and the retained austenite space factor decreases, the amount of hard products such as martensite and cementite in addition to ferrite, bainite and austenite. Increases, and as a result, the workability and fatigue properties of the steel sheet are significantly deteriorated.
5 was set as the lower limit of the above index.
【0022】マルテンサイト変態開始温度(Ms):残
留オーステナイトのMsは残留オーステナイトの加工安
定性を決定し、従って鋼板の加工性や疲労特性を決定す
る重要な因子である。残留オーステナイトのMsは鋼板
の置換型合金元素およびX線解折やメスバウアー分光に
より実験的に求められるC濃度やN濃度によって決ま
る。鋼板中のN濃度はC濃度に比べて微量であるので、
侵入型の元素としては主にC濃度を考慮すると良い。C
濃度決定は例えばMoのKα線を用いたX線解析により
フェライトの(200)面、(211)面およびオース
テナイトの(200)面、(220)面、(311)面
の積分反射強度をもちいて、Journal of T
he Iron and Steel Institu
te,206(1968)p60に示された方法にて算
出する。これらの元素濃度を用いて残留オーステナイト
のMsは例えば合金濃度を重量%で表現するとき、 Ms(℃)=561−325× %C−33×%Mn−
17×%Ni− 17×%Cr−21×%Mo−20×
%Cu を用いて計算することことができる。Martensitic transformation start temperature (Ms): Ms of retained austenite determines the workability of retained austenite, and is therefore an important factor in determining workability and fatigue properties of steel sheet. The Ms of the retained austenite is determined by the substitutional alloying element of the steel sheet and the C concentration and N concentration experimentally obtained by X-ray analysis and Moessbauer spectroscopy. Since the N concentration in the steel sheet is very small compared to the C concentration,
As the interstitial element, it is preferable to mainly consider the C concentration. C
The concentration is determined, for example, by X-ray analysis using Kα rays of Mo, using the integrated reflection intensities of the (200) plane, (211) plane of ferrite and the (200) plane, (220) plane, and (311) plane of austenite. , Journal of T
he Iron and Steel Institute
te, 206 (1968) p60. The Ms of the retained austenite using these element concentrations is, for example, Ms (° C.) = 561−325 ×% C-33 ×% Mn−
17x% Ni-17x% Cr-21x% Mo-20x
It can be calculated using% Cu.
【0023】鋼板が自動車用の構造部品に適用される場
合には、一般にプレス成形もしくはロール成形等による
加工がなされた後に使用される。この時塑性変形中に残
留オーステナイトが有効に利用されることが加工性の観
点から重要であるが、一方実使用段階での疲労強度の点
では加工後に有効な残留オーステナイトが残存している
ことが必要である。加工性に及ぼすMs温度の影響は図
2に示す通りであり、Ms≦150℃とすることで良好
な加工性が得られる。疲労強度と残留オーステナイトの
Msの関係は図1に示す通りであり、延性同様Ms≦1
50℃とすることで高疲労強度が達成される。また塑性
加工量として均一伸びの範囲で10%の予加工を与えた
後の疲労強度は、予加工前のMs≦150℃であれば劣
化しない。従って本発明では残留オーステナイトのMs
を150℃以下に制限する。When the steel sheet is applied to structural parts for automobiles, it is generally used after being processed by press forming or roll forming. At this time, it is important from the viewpoint of workability that the retained austenite is effectively utilized during plastic deformation, but on the other hand, from the viewpoint of fatigue strength in the actual use stage, it is possible that the retained austenite remains effective after working. is necessary. The effect of the Ms temperature on the workability is as shown in FIG. 2. Good workability can be obtained by setting Ms ≦ 150 ° C. The relationship between fatigue strength and Ms of retained austenite is as shown in FIG.
High fatigue strength is achieved by setting the temperature to 50 ° C. Further, the fatigue strength after 10% pre-working in the range of uniform elongation as the amount of plastic working does not deteriorate if Ms ≦ 150 ° C. before pre-working. Therefore, in the present invention, the Ms of retained austenite is
Is limited to 150 ° C or lower.
【0024】熱延条件:熱延ままで本発明の鋼板を製造
する場合には、所定の成分に調整されたスラブを鋳造ま
まもしくは一旦冷却した後に再度加熱し、熱間圧延を行
う。この時熱延完了温度が鋼材の化学成分で決まるAr
3 変態温度−50℃未満である場合には鋼板の表層部お
よびその近傍に加工フェライト層が生成し、加工性と共
に疲労強度を著しく劣化させる。従ってこれを熱延完了
温度の下限とする。また熱延完了温度がAr3 +140
℃超の場合にはフェライト以外の低温生成層の割合が多
くなり、必要以上に鋼板の強度が上昇するのみならず、
フェライト粒の粗大化が起こり鋼板の疲労強度を劣化さ
せる。またこの様な高温で熱延が完了された場合には鋼
板の表面粗度が大きくなり、鋼板の疲労強度を劣化させ
る。従ってこれを熱延完了温度の上限とする。Hot rolling conditions: When the steel sheet of the present invention is produced by hot rolling, a slab adjusted to have a predetermined composition is heated as it is or after being once cooled and then hot-rolled. At this time, the hot rolling completion temperature is determined by the chemical composition of the steel material Ar
3 If the transformation temperature is lower than -50 ° C, a work ferrite layer is formed in the surface layer of the steel sheet and in the vicinity thereof, and workability and fatigue strength are significantly deteriorated. Therefore, this is the lower limit of the hot rolling completion temperature. The hot rolling completion temperature is Ar 3 +140.
If the temperature exceeds ℃, the proportion of low-temperature generation layers other than ferrite will increase, not only will the strength of the steel plate increase more than necessary, but
Coarsening of ferrite grains occurs and deteriorates the fatigue strength of the steel sheet. Further, when hot rolling is completed at such a high temperature, the surface roughness of the steel sheet increases, and the fatigue strength of the steel sheet deteriorates. Therefore, this is the upper limit of the hot rolling completion temperature.
【0025】熱延の最終仕上熱延工程の全圧下率が80
%未満の場合には鋼板の主相であるフェライトの粗大化
が激しくなり、鋼板の疲労強度が劣化するのでこれを下
限とした。熱延完了後冷却して巻取り処理が行われる
が、この時の巻取り温度が500℃超では残留オーステ
ナイトが得られず、また350℃未満ではマルテンサイ
トの生成が過多となって加工性を損なう。従ってこれら
を熱延後の巻き取り温度の上限および下限とする。最終
的な鋼板の加工性と疲労強度のバランスを最適にするた
めには巻取り温度を350℃以上450℃以下とするこ
とが望ましい。Final finishing of hot rolling The total rolling reduction in the hot rolling process is 80
If it is less than%, the coarsening of ferrite, which is the main phase of the steel sheet, becomes severe and the fatigue strength of the steel sheet deteriorates, so this was made the lower limit. After the hot rolling is completed, the material is cooled and wound up, but if the winding temperature exceeds 500 ° C, retained austenite cannot be obtained, and if it is less than 350 ° C, martensite is excessively formed to improve workability. Spoil. Therefore, these are set as the upper and lower limits of the winding temperature after hot rolling. In order to optimize the balance between the workability and the fatigue strength of the final steel sheet, it is desirable that the winding temperature be 350 ° C or higher and 450 ° C or lower.
【0026】熱延後巻取り温度までの冷却は鋼板の最終
組織中のフェライト量を確保し、且つオーステナイトの
安定化のために利用するCの浪費を極力避けるために重
要な要因である。熱延後の冷却に際して、熱延完了温度
から巻取り温度まで1段で冷却する場合には冷却速度が
10℃/秒未満では冷却途中にパーライト変態が進行
し、Cの浪費が行われ、最終的な鋼板の加工性および疲
労特性を劣化させるのでこれを1段冷却の際の冷却速度
の下限とした。一方、冷却中にフェライト変態を効率よ
く進行させるためにフェライト変態温度域を徐冷する方
法は、最終製品の加工性および疲労特性を向上させるた
めに有効である。この時は、熱延終了後Ar3 とAr1
の間の温度T1までの冷却速度が5℃/秒未満ではフェ
ライト粒径が粗大化して鋼板の疲労特性を劣化させるこ
とからこれを下限とした。また200℃/秒超の冷却速
度は実製造工程では達成困難であるのでこれを上限とし
た。次にフェライト変態の進行促進のためにT1からT
1とAr1 の間の温度T2までを徐冷する。この時、冷
却速度が5℃/秒未満ではフェライト粒径が粗大化して
鋼板の疲労特性を劣化させることからこれを下限とし
た。また、20℃/秒超では変態の促進が十分でなく、
最終的に得られる鋼板の加工性を劣化させることからこ
れを上限とした。T2以下の冷却が20℃/秒未満の場
合には冷却中にパーライト変態が進行してCを浪費する
とともに、最終製品の加工性および疲労特性を劣化させ
ることからこれを下限とした。また200℃/秒超の冷
却速度は実製造工程では達成困難であるのでこれを上限
とした。以上の冷却は熱延が完了した後に速やかに開始
されるが、熱延装置の構造上熱延完了後0.1〜4.0
秒間の空冷が行われることもあるが、その後の冷却が本
発明の範囲内で有れば目的とした鋼板の材質が得られ
る。また同様に熱延後の冷却が行われる冷却ゾーンの終
点から実際に巻取られる時点までも空冷されるがここで
の温度降下は小さいので無視することができる。Cooling to the coiling temperature after hot rolling is an important factor to secure the amount of ferrite in the final structure of the steel sheet and to avoid waste of C used for stabilizing austenite as much as possible. When cooling after hot rolling in a single stage from the hot rolling completion temperature to the coiling temperature, if the cooling rate is less than 10 ° C./sec, pearlite transformation proceeds during cooling, and C is wasted. Since it deteriorates the workability and fatigue characteristics of a typical steel sheet, this was made the lower limit of the cooling rate in the first-stage cooling. On the other hand, the method of gradually cooling the ferrite transformation temperature range in order to efficiently progress the ferrite transformation during cooling is effective for improving the workability and fatigue characteristics of the final product. At this time, after hot rolling, Ar 3 and Ar 1
If the cooling rate to the temperature T1 during the period is less than 5 ° C./sec, the ferrite grain size becomes coarse and the fatigue properties of the steel sheet deteriorate, so this was made the lower limit. A cooling rate of more than 200 ° C./sec is difficult to achieve in the actual manufacturing process, so this was made the upper limit. Next, from T1 to T to accelerate the progress of ferrite transformation
Gradually cool to a temperature T2 between 1 and Ar 1 . At this time, if the cooling rate is less than 5 ° C./sec, the ferrite grain size becomes coarse and the fatigue properties of the steel sheet deteriorate, so this was made the lower limit. If the temperature exceeds 20 ° C / sec, the transformation is not sufficiently promoted,
This is set as the upper limit because it deteriorates the workability of the finally obtained steel sheet. When cooling below T2 is less than 20 ° C./sec, pearlite transformation proceeds during cooling, C is wasted, and the workability and fatigue properties of the final product are deteriorated, so this was made the lower limit. A cooling rate of more than 200 ° C./sec is difficult to achieve in the actual manufacturing process, so this was made the upper limit. The above cooling is started immediately after the hot rolling is completed, but 0.1 to 4.0 after the hot rolling is completed due to the structure of the hot rolling apparatus.
Although air cooling may be performed for a second, if the subsequent cooling is within the scope of the present invention, the intended material of the steel sheet can be obtained. Similarly, air-cooling is performed from the end of the cooling zone where cooling is performed after hot rolling to the time of actual winding, but the temperature drop here is small and can be ignored.
【0027】[0027]
【実施例】表1、表2(表1のつづき)に示す各鋼種に
対し、表3、表4(表3のつづき−1)、表5(表3の
つづき−2)、表6(表3のつづき−3)、表7(表3
のつづき−4)、表8(表3のつづき−5)に示した各
種の条件で熱間圧延を行い、2.5mm厚の熱延鋼板と
し、機械的性質調査、残留オーステナイトの定量が行わ
れた。熱延後の冷却条件は図3に示す通りである。熱延
後の冷却速度を変化させる目的で一部最終仕上げ板厚も
変化させた。熱延完了温度(FT℃)、仕上げ圧延合計
圧下率(%)、T1およびT2温度(℃)、熱延終了か
らT1までの冷却速度(CR1℃/秒)、T1からT2
までの冷却速度(CR2℃/秒)、T2から巻取りまで
の冷却速度(CR3℃/秒)および巻取り温度(CT
℃)を表2示した。同表中のVf%,Vg%,Vm%は
鋼板中のフェライト、残留オーステナイト、マルテンサ
イト占積率、Ceq、Mneqは請求項1に示したC等
量とMn等量であり、靱性が特に劣化した場合にはその
欄に×を、従来材と同等の場合には○を示した。Cγ
(%)は残留オーステナイト中の実測炭素濃度であり、
MsはCγと他の合金元素添加量(鋼の平均値)から計
算したマルテンサイト変態開始温度(℃)である。また
鋼板の疲労強度は完全両振りの平面曲げ疲労試験によっ
て得られた2×106 回での疲労強度σW(kgf/m
m2 )を鋼板の強度で除した値(疲労限度比)で評価し
た。予加工後の疲労強度に関しては、10%の引張り予
歪を与えた後のσWが予歪なしの場合と同等もしくはそ
れ以上の場合を○、劣化代がσWの5%を超す場合を×
とした。CγとMsの欄で?としたものは残留オーステ
ナイト量が少ないかもしくは残留オーステナイトを含ま
ないために残留オーステナイト中の炭素濃度の実測がで
きなかったことを示す。EXAMPLES For each steel type shown in Table 1 and Table 2 (continued from Table 1), Table 3, Table 4 (continued from Table 3-1), Table 5 (continued from Table 3-2), Table 6 ( Continuation of Table 3-3), Table 7 (Table 3
-4) and hot rolling under various conditions shown in Table 8 (Continued-5 of Table 3) to obtain a hot rolled steel sheet having a thickness of 2.5 mm, mechanical property investigation and determination of residual austenite were performed. I was broken. The cooling conditions after hot rolling are as shown in FIG. The thickness of the partially finished plate was also changed for the purpose of changing the cooling rate after hot rolling. Hot rolling completion temperature (FT ° C), total rolling reduction (%), T1 and T2 temperatures (° C), cooling rate from the end of hot rolling to T1 (CR1 ° C / sec), T1 to T2
Cooling rate (CR2 ° C / sec), cooling rate from T2 to winding (CR3 ° C / sec) and winding temperature (CT)
(° C) is shown in Table 2. In the table, Vf%, Vg%, and Vm% are ferrite, retained austenite, and martensite space factor in the steel sheet, Ceq and Mneq are C equivalent and Mn equivalent shown in claim 1, and the toughness is particularly high. In the case of deterioration, x is shown in that column, and in the case of being equivalent to the conventional material, o is shown. Cγ
(%) Is the measured carbon concentration in retained austenite,
Ms is a martensitic transformation start temperature (° C) calculated from Cγ and the amount of other alloying elements added (average value of steel). Further, the fatigue strength of the steel sheet is the fatigue strength σW (kgf / m) at 2 × 10 6 times obtained by the plane bending fatigue test of full swing.
The value (fatigue limit ratio) obtained by dividing m 2 ) by the strength of the steel sheet was evaluated. Regarding the fatigue strength after pre-working, the case where σW after 10% tensile pre-strain is equal to or more than the case without pre-strain is ○, and the deterioration margin is over 5% of σW ×
And In the column of Cγ and Ms? Indicates that the carbon concentration in the retained austenite could not be measured because the amount of retained austenite was small or the retained austenite was not contained.
【0028】同表より、本発明の条件を満たす鋼板(表
中に本発明鋼と表示)は、45〜65kgf/mm2 の
範囲の強度を持ち、優れた破断伸びを有し、強度と破断
伸びの積TS×Elが2200kgf/mm2 ×%以上
の良好な加工性と強度のバランスが達成されていると同
時に疲労限度比が0.5以上の高い疲労強度を達成して
いることが分かる。From the table, the steel sheet satisfying the conditions of the present invention (indicated by the present invention steel in the table) has strength in the range of 45 to 65 kgf / mm 2 , has excellent breaking elongation, and has strength and breaking strength. It can be seen that good workability and strength balance of elongation product TS × El of 2200 kgf / mm 2 ×% or more are achieved and at the same time high fatigue strength of fatigue limit ratio of 0.5 or more is achieved. .
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【表2】 [Table 2]
【0031】[0031]
【表3】 [Table 3]
【0032】[0032]
【表4】 [Table 4]
【0033】[0033]
【表5】 [Table 5]
【0034】[0034]
【表6】 [Table 6]
【0035】[0035]
【表7】 [Table 7]
【0036】[0036]
【表8】 [Table 8]
【0037】[0037]
【発明の効果】以上述べたように、本発明によれば45
〜65kgf/mm2 の加工性と疲労特性に優れた高強
度鋼板の製造が可能となり、自動車の部品に適用するこ
とにより自動車車体軽量化に大きく貢献することができ
る。As described above, according to the present invention, 45
It becomes possible to manufacture a high-strength steel sheet having excellent workability of up to 65 kgf / mm 2 and fatigue characteristics, and when applied to automobile parts, it can greatly contribute to weight reduction of automobile bodies.
【図1】45〜65kfg/mm2 の引張強さの熱延鋼
板の疲労限度比と残留オーステナイトのMs温度の関係
を示す図である。FIG. 1 is a diagram showing a relationship between a fatigue limit ratio of a hot-rolled steel sheet having a tensile strength of 45 to 65 kfg / mm 2 and an Ms temperature of retained austenite.
【図2】45〜65kgf/mm2 の引張強さの熱延鋼
板の破断伸びとの残留オーステナイトのMs温度の関係
を示す図である。FIG. 2 is a diagram showing the relationship between the fracture elongation of hot-rolled steel sheets having a tensile strength of 45 to 65 kgf / mm 2 and the Ms temperature of retained austenite.
【図3】熱延後の冷却条件の概念図であり、冷却パター
ンは熱延後1段の冷却で巻取り温度まで冷却する場合
を、また冷却パターンはフェライト変態温度域を徐冷
する場合を示す。FIG. 3 is a conceptual diagram of cooling conditions after hot rolling, where the cooling pattern is for cooling to the coiling temperature by one-stage cooling after hot rolling, and the cooling pattern is for gradually cooling the ferrite transformation temperature range. Show.
Claims (7)
n+0.0123%Cr で表現される炭素等量Ceqが0.11重量%以上0.
25重量%以下であり、且つAlとSiの和が0.6重
量%以上で、 Mneq=%Mn+0.52%Cr で表現されるMn等量Mneqが0.6重量%以上、
2.5重量%以下であり、さらに不可避的な不純物を含
む鋼において、最終的なミクロ組織をフェライト、ベイ
ナイト、残留オーステナイトの3相もしくは一部マルテ
ンサイトを含む4相とし、主相であるフェライトの占積
率を60%以上、マルテンサイトの占積率を3%以下、
オーステナイトの占積率をC重量%で除した値が35以
上110以下であり、残留オーステナイト中の化学成分
で決まるオーステナイトのマルテンサイト変態開始温度
(Ms)がMs≦150℃であることを特徴とする加工
性と疲労特性に優れた引張強さ45〜65kgf/mm
2 の高強度複合組織熱延鋼板。1. C .: 0.04% or more and 0.23% or less Si: 2.5% or less Al: 2.0% or less Mn: 2.0% or less Cr: 2.0% or less In the range, Ceq =% C + 0.0635% Si + 0.0247% M
Carbon equivalent Ceq expressed by n + 0.0123% Cr 2 is 0.11% by weight or more and 0.1.
25 wt% or less, the sum of Al and Si is 0.6 wt% or more, and Mn equivalent Mneq represented by Mneq =% Mn + 0.52% Cr is 0.6 wt% or more,
In steel containing 2.5% by weight or less and inevitable impurities, the final microstructure is ferrite, bainite, retained austenite, or three phases, or some phases containing martensite, and the main phase is ferrite. Occupancy rate of 60% or more, martensite occupancy rate of 3% or less,
The value obtained by dividing the space factor of austenite by C weight% is 35 or more and 110 or less, and the martensitic transformation start temperature (Ms) of austenite determined by the chemical components in the retained austenite is Ms ≦ 150 ° C. Excellent tensile workability and fatigue strength 45-65kgf / mm
2 High strength composite structure hot rolled steel sheet.
徴とする請求項1記載の加工性と疲労特性に優れた引張
強さ45〜65kgf/mm2 の高強度複合組織熱延鋼
板。2. The content of Ca in the range of 0.0005 to 0.01% and REM in the range of 0.005 to 0.05% by weight, and one or more of them are contained. A high-strength composite hot-rolled steel sheet having a tensile strength of 45 to 65 kgf / mm 2 , which is excellent in the workability and fatigue properties described.
n+0.0123%Cr で表現される炭素等量Ceqが0.11重量%以上0.
25重量%以下であり、且つAlとSiの和が0.6重
量%以上で、 Mneq=%Mn+0.52%Cr で表現されるMn等量Mneqが0.6重量%以上、
2.5重量%以下であり、さらに不可避的な不純物を含
む鋼を鋳造後、直接もしくは一旦冷却した後に再度加熱
して、Ar3 −50〜Ar3 +140℃の範囲内で熱延
を完了し、その後冷却して350℃から500℃の範囲
で巻取ることにより、最終的なミクロ組織をフェライ
ト、ベイナイト、残留オーステナイトの3相もしくは一
部マルテンサイトを含む4相とし、主相であるフェライ
トの占積率を60%以上、マルテンサイトの占積率を3
%以下、オーステナイトの占積率をC重量%で除した値
を35以上110以下とし、残留オーステナイト中の化
学成分で決まるオーステナイトのマルテンサイト変態開
始温度(Ms)をMs≦150℃とすることを特徴とす
る加工性と疲労特性に優れた引張強さ45〜65kgf
/mm2 の高強度複合組織熱延鋼板の製造方法。3. By weight%, C: 0.04% or more and 0.23% or less Si: 2.5% or less Al: 2.0% or less Mn: 2.0% or less Cr: 2.0% or less In the range, Ceq =% C + 0.0635% Si + 0.0247% M
Carbon equivalent Ceq expressed by n + 0.0123% Cr 2 is 0.11% by weight or more and 0.1.
25 wt% or less, the sum of Al and Si is 0.6 wt% or more, and Mn equivalent Mneq represented by Mneq =% Mn + 0.52% Cr is 0.6 wt% or more,
After casting the steel containing 2.5 wt% or less and inevitable impurities, directly or once cooling and then reheating, the hot rolling is completed within the range of Ar 3 −50 to Ar 3 + 140 ° C. Then, after cooling and winding in the range of 350 ° C. to 500 ° C., the final microstructure is made into three phases of ferrite, bainite, retained austenite or four phases containing some martensite, and the main phase of ferrite is A space factor of 60% or more and a martensite space factor of 3
%, The value obtained by dividing the space factor of austenite by C weight% is 35 or more and 110 or less, and the martensitic transformation start temperature (Ms) of austenite determined by the chemical component in the retained austenite is set to Ms ≦ 150 ° C. Tensile strength of 45 to 65 kgf with excellent workability and fatigue characteristics
/ Mm 2 High strength composite structure hot rolled steel sheet manufacturing method.
徴とする請求項3記載の加工性と疲労特性に優れた引張
強さ45〜65kgf/mm2 の高強度複合組織熱延鋼
板の製造方法。4. The starting steel further contains one or more of these in the range of Ca: 0.0005 to 0.01% and REM: 0.005 to 0.05% by weight. The method for producing a high-strength composite hot-rolled steel sheet having a tensile strength of 45 to 65 kgf / mm 2 excellent in workability and fatigue properties according to claim 3.
80%以上とすることを特徴とする請求項3または4記
載の加工性と疲労特性に優れた引張強さ45〜65kg
f/mm2 の高強度複合組織熱延鋼板の製造方法。5. The total rolling reduction in the final hot rolling process is 80% or more, and the tensile strength of 45 to 65 kg is excellent in workability and fatigue properties according to claim 3 or 4.
A method for producing a hot rolled steel sheet having a high strength composite structure of f / mm 2 .
冷却する際に、熱延後巻取り温度まで10℃/秒以上で
冷却することを特徴とする請求項3ないし5のいずれか
1項に記載の加工性と疲労特性に優れた引張強さ45〜
65kgf/mm2 の高強度複合組織熱延鋼板の製造方
法。6. The hot rolling of a slab adjusted to a predetermined composition and cooling is performed at a temperature of 10 ° C./sec or more up to the coiling temperature after hot rolling. Tensile strength of 45-excellent in workability and fatigue characteristics described in item 1
A method for producing a high strength composite structure hot rolled steel sheet of 65 kgf / mm 2 .
冷却する際に、Ar 3 からAr1 の範囲の温度T1まで
は5〜200℃/秒で冷却し、T1からAr 1 の範囲の
温度T2までを5〜20℃/秒で冷却し、これ以下を2
0〜200℃/秒で冷却することを特徴とする請求項3
ないし5のいずれか1項に記載の加工性と疲労特性に優
れた引張強さ45〜65kgf/mm2 の高強度複合組
織熱延鋼板の製造方法。7. A hot rolled slab adjusted to a predetermined composition
Ar when cooling 3To Ar1Up to temperature T1
Is cooled at 5 to 200 ° C / sec, and from T1 to Ar 1Range of
Cool down to temperature T2 at 5 to 20 ° C./sec, and lower than 2
4. Cooling at 0 to 200 [deg.] C./sec.
Excellent in workability and fatigue properties according to any one of 1 to 5
Tensile strength 45-65kgf / mm2High strength composite set
Manufacturing method of woven hot rolled steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00176294A JP3248118B2 (en) | 1994-01-12 | 1994-01-12 | High strength composite structure hot rolled steel sheet having a tensile strength of 45 to 65 kgf / mm2 excellent in workability and fatigue properties, and a method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00176294A JP3248118B2 (en) | 1994-01-12 | 1994-01-12 | High strength composite structure hot rolled steel sheet having a tensile strength of 45 to 65 kgf / mm2 excellent in workability and fatigue properties, and a method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07207405A true JPH07207405A (en) | 1995-08-08 |
JP3248118B2 JP3248118B2 (en) | 2002-01-21 |
Family
ID=11510603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00176294A Expired - Fee Related JP3248118B2 (en) | 1994-01-12 | 1994-01-12 | High strength composite structure hot rolled steel sheet having a tensile strength of 45 to 65 kgf / mm2 excellent in workability and fatigue properties, and a method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3248118B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998032889A1 (en) * | 1997-01-29 | 1998-07-30 | Nippon Steel Corporation | High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof |
JP2003089844A (en) * | 2001-09-19 | 2003-03-28 | Nippon Steel Corp | Thick steel plate for welded structure having excellent fatigue strength of welded joint, and production method therefor |
JP2004076156A (en) * | 2002-06-18 | 2004-03-11 | Jfe Steel Kk | Steel member having excellent fatigue crack propagation property and method for producing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5299591B2 (en) * | 2011-07-29 | 2013-09-25 | 新日鐵住金株式会社 | High-strength steel sheet excellent in shape freezing property, high-strength galvanized steel sheet, and production method thereof |
-
1994
- 1994-01-12 JP JP00176294A patent/JP3248118B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998032889A1 (en) * | 1997-01-29 | 1998-07-30 | Nippon Steel Corporation | High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof |
US6544354B1 (en) | 1997-01-29 | 2003-04-08 | Nippon Steel Corporation | High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof |
JP2003089844A (en) * | 2001-09-19 | 2003-03-28 | Nippon Steel Corp | Thick steel plate for welded structure having excellent fatigue strength of welded joint, and production method therefor |
JP4559673B2 (en) * | 2001-09-19 | 2010-10-13 | 新日本製鐵株式会社 | Thick steel plate for welded structure excellent in fatigue strength of welded joint and method for producing the same |
JP2004076156A (en) * | 2002-06-18 | 2004-03-11 | Jfe Steel Kk | Steel member having excellent fatigue crack propagation property and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP3248118B2 (en) | 2002-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2601581B2 (en) | Manufacturing method of high strength composite structure cold rolled steel sheet with excellent workability | |
JP3569307B2 (en) | High strength composite structure cold rolled steel sheet having excellent workability and a tensile strength of 45 to 65 kgf / mm2, and a method for producing the same | |
JP2009506206A (en) | High-manganese-type high-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof | |
CN115244200B (en) | High-strength steel sheet and method for producing same | |
KR102098482B1 (en) | High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof | |
JP4466352B2 (en) | Hot rolled steel sheet suitable for warm forming and manufacturing method thereof | |
CN110088331B (en) | Hot-rolled steel sheet for electric resistance welded steel pipe having excellent weldability and method for producing same | |
JPH0949026A (en) | Production of high strength hot rolled steel plate excellent in balance between strength and elongation and in stretch-flange formability | |
JP4506476B2 (en) | Cold-rolled steel sheet suitable for warm forming and manufacturing method thereof | |
JP2001152254A (en) | Method for producing highly workable hot rolled high tensile steel sheet excellent in material uniformity | |
KR20220073762A (en) | Composite steel with high hole expandability and manufacturing method therefor | |
CN111511949B (en) | Hot-rolled steel sheet having excellent expansibility and method for producing same | |
JP3248118B2 (en) | High strength composite structure hot rolled steel sheet having a tensile strength of 45 to 65 kgf / mm2 excellent in workability and fatigue properties, and a method for producing the same | |
JP3539545B2 (en) | High-tensile steel sheet excellent in burring property and method for producing the same | |
CN117751204A (en) | Cold-rolled steel sheet and method for producing same | |
JP3066689B2 (en) | High-strength composite structure hot-rolled steel sheet excellent in workability and fatigue properties, and method for producing the same | |
JPH04333524A (en) | Production of high strength dual-phase steel sheet having superior ductility | |
JP3806958B2 (en) | Manufacturing method of high-tensile hot-rolled steel sheet | |
JP3348365B2 (en) | Hot-rolled high-strength steel sheet for processing having excellent heat-softening property and excellent fatigue properties, and method for producing the same | |
JPH1036917A (en) | Production of high strength hot-rolled steel plate excellent in stretch-flanging property | |
CN104213015A (en) | Production method and purpose of DP steel, drum washing machine and automobile | |
JP2004250744A (en) | High workability, high strength hot rolled steel sheet having excellent shape-fixability, and production method therefor | |
JP4396007B2 (en) | High tensile high workability hot-rolled steel sheet excellent in strain age hardening characteristics and method for producing the same | |
JP2001089816A (en) | Method of manufacturing high strength hot rolled steel plate | |
JPH0559492A (en) | High strength hot rolled steel sheet of composite structure excellent in ductility and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010918 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071109 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091109 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101109 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101109 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111109 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111109 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121109 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121109 Year of fee payment: 11 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131109 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131109 Year of fee payment: 12 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131109 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |