JP2004076156A - Steel member having excellent fatigue crack propagation property and method for producing the same - Google Patents

Steel member having excellent fatigue crack propagation property and method for producing the same Download PDF

Info

Publication number
JP2004076156A
JP2004076156A JP2003173356A JP2003173356A JP2004076156A JP 2004076156 A JP2004076156 A JP 2004076156A JP 2003173356 A JP2003173356 A JP 2003173356A JP 2003173356 A JP2003173356 A JP 2003173356A JP 2004076156 A JP2004076156 A JP 2004076156A
Authority
JP
Japan
Prior art keywords
less
crack propagation
fatigue crack
temperature
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003173356A
Other languages
Japanese (ja)
Other versions
JP4806887B2 (en
Inventor
Koji Katayama
片山 考嗣
Yasushi Morikage
森影 康
Kimihiro Nishimura
西村 公宏
Takahiro Kubo
久保 高宏
Kenichi Amano
天野 虔一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003173356A priority Critical patent/JP4806887B2/en
Publication of JP2004076156A publication Critical patent/JP2004076156A/en
Application granted granted Critical
Publication of JP4806887B2 publication Critical patent/JP4806887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel member in which a fatigue crack propagation velocity can effectively be reduced in a high ΔK region without depending on a crack propagating direction, and which has an excellent strength/toughness balance and excellent fatigue crack propagation properties, and to provide an advantageous method for producing the same. <P>SOLUTION: In the method for producing a steel member having excellent fatigue crack propagation properties, a steel slab comprising 0.01 to 0.40% C, 0.10 to 3.0% Si, 0.4 to 3.0% Mn, ≤0.05% P, ≤0.05% S, 0.3 to 2.0% Al and ≤0.015% N, or further comprising respectively prescribed amounts of one or more kinds of metals selected from Cu, Ni, Cr, Mo, Nb, V and Ti is treated by the following method (A) or method (B). In the method (A), the steel slab is heated at 1,000 to 1,300°C, and after rolling is ended at 700 to 950°C, it is cooled to a room temperature at 5 to 70°C/s (or is subjected to accelerated cooling to 200 to 500°C, and is thereafter allowed to cool or is slowly cooled). In the method (B), the steel slab is hot-rolled under unspecified conditions, is thereafter reheated at 700 to 900°C, and after it is held for ≤3,600 s, it is cooled, and after it is held at 350 to 500°C for ≥60 s, it is subsequently cooled. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、船体、海洋構造物、土木構造物等の素材として好適な、疲労き裂伝播特性に優れた鋼板およびその製造方法に関する。
【0002】
【従来の技術】
鋼構造物の大型化および軽量化への要求に伴い、またコストダウンの観点からも、高張力鋼の適用が拡大しつつある。鋼構造物のうち、船体、海洋構造物、土木構造物等では、繰返し荷重を受けるために、疲労破壊が重要な問題となる。特に、高張力鋼の適用による薄肉化により、設計応力が上昇するため疲労破壊には十分な配慮が必要である。
【0003】
鋼構造物は一般に溶接施工により組み立てられ、多数の溶接部を含むため、疲労き裂は溶接部から発生する場合が多い。したがって、疲労強度を向上させるためには、溶接部からの疲労き裂の発生を抑制する方法と、発生した疲労き裂の伝播速度を低減させる方法との二通りが有力である。
【0004】
溶接部からの疲労き裂の発生を抑制する方法には、グラインダ処理や溶接ビード最終パスの加熱再溶融処理により溶接止端部の形状を改善する方法や、ショットピーニング処理などにより溶接止端部に圧縮残留応力を付与する方法がある(特許文献1、特許文献2等)。しかし、これらの溶接後処理では、き裂発生後の伝播の発生を抑制することは困難である。
【0005】
これに対し、疲労き裂伝播速度を低減させる方法は、素材の疲労き裂伝播抵抗を高めることによって、疲労き裂伝播速度を低減し鋼構造物の疲労寿命を向上させうるものであるから、その開発が要望されている。
【0006】
この要望に応えようとした技術として、(a)応力拡大係数の変動範囲ΔKが 500 N/mm −3/2程度以下の低ΔK領域で、疲労き裂先端にマイクロクラックを発生させる方法(特許文献3)、(b) 圧延方向に延伸した縞状の第二相が母相内に5〜50%の面積率で散在し、該第二相の硬さHv が母相の硬さHv の130 %以上、アスペクト比が4以上、長さが20μm 以上である鋼板(特許文献4)、(c) 軟質相と硬質相とからなりこれら両相の硬度差をHv150以上とした鋼が知られている。
【0007】
【特許文献1】
特開昭59−110490号公報
【特許文献2】
特開平1−301823号公報
【特許文献3】
特開平5−148541号公報
【特許文献4】
特開平7−90478 号公報
【0008】
【発明が解決しようとする課題】
しかし、前記(a)の技術では、低ΔK領域を対象としているので、き裂長さが比較的長いまたは応力が比較的高い場合には疲労き裂伝播速度低減効果が小さいという問題がある。また、前記(b) の技術では、疲労き裂進展方向が第二相の延伸方向に対して直交していない場合は疲労き裂伝播速度低減効果が小さい可能性があるという問題がある。また、前記(c) の技術では、鋼を高強度化した場合、軟質相の硬さ増加に応じて硬質相の硬さも増加させる必要があるために、靭性の劣化を招く問題がある。
【0009】
本発明は、上記従来技術の問題点に鑑み、高ΔK領域で疲労き裂伝播速度をき裂進展方向によらず有効に低減でき、かつ、強度・靭性バランスに優れた疲労き裂伝播特性に優れた鋼材をその有利な製造方法と共に提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは鋭意検討した結果、鋼の組成(化学組成)と組織とを特定の範囲に制限すること、とくに残留オーステナイトを特定量含む組織とすることにより前記目的が達成されることを見出し、以下の要旨構成になる本発明をなした。
【0011】
(1)質量%で、C:0.01〜0.40%、Si:0.10〜3.0 %、Mn:0.4 〜3.0 %、P:0.05%以下、S:0.05%以下、Al:0.3 〜2.0 %、N:0.015 %以下を含有し残部Feおよび不可避的不純物からなる組成を有し、かつ残留オーステナイトを面積率で2〜30%含む組織を有することを特徴とする疲労き裂伝播特性に優れた鋼材。
【0012】
(2)前記組成がさらに、質量%で、Cu:0.1 〜1.5 %、Ni:0.1 〜5.0 %、Cr:0.1 〜1.5 %、Mo:0.05〜0.50%、Nb:0.005 〜0.10%、V:0.005 〜0.10%、Ti:0.005 〜0.25%のうちから選ばれた1種または2種以上を含有することを特徴とする(1)記載の疲労き裂伝播特性に優れた鋼材。
【0013】
(3)(1)に記載の組織がベイナイトを面積率で50%以上含むことを特徴とする(1)または(2)に記載の疲労き裂伝播特性に優れた鋼材。
【0014】
(4)質量%で、C:0.01〜0.40%、Si:0.10〜3.0 %、Mn:0.4 〜3.0 %、P:0.05%以下、S:0.05%以下、Al:0.3 〜2.0 %、N:0.015 %以下を含有する組成を有する鋼材を、1000〜1300℃の温度に加熱後圧延し、該圧延を700 〜950 ℃の温度で終了後、5〜70℃/sの冷却速度で500 ℃以下の温度まで冷却することを特徴とする疲労き裂伝播特性に優れた鋼材の製造方法。
【0015】
(5)質量%で、C:0.01〜0.40%、Si:0.10〜3.0 %、Mn:0.4 〜3.0 %、P:0.05%以下、S:0.05%以下、Al:0.3 〜2.0 %、N:0.015 %以下を含有する組成を有する鋼材を、700 〜900 ℃の温度に再加熱して該温度に3600秒以下保持後、350 〜500 ℃の温度まで冷却して該温度に60秒以上保持し、以後冷却することを特徴とする疲労き裂伝播特性に優れた鋼材の製造方法。
【0016】
(6)前記鋼材がさらに、質量%で、Cu:0.1 〜1.5 %、Ni:0.1 〜5.0 %、Cr:0.1 〜1.5 %、Mo:0.05〜0.50%、Nb:0.005 〜0.10%、V:0.005 〜0.10%、Ti:0.005 〜0.25%のうちから選ばれた1種または2種以上を含有する組成を有することを特徴とする(4)または(5)に記載の疲労き裂伝播特性に優れた鋼材の製造方法。
【0017】
【発明の実施の形態】
まず、本発明における組成の限定理由を述べる。なお、組成の化学成分含有量は質量%で表し、%と略記する。
【0018】
C:0.01〜0.40%
Cは鋼の強度を高める成分であるだけでなく、残留オーステナイトを得る上で有用な元素である。しかしながら、含有量が0.01%未満ではその効果に乏しく、一方、0.04%を超えると延性が低下したり、溶接割れの可能性が高くなったりするので、C量は0.01〜0.40%の範囲に限定した。なお、好ましくは0.05〜0.15%である。
【0019】
Si:0.10〜3.0 %
Siは鋼の脱酸に必要な元素である。Siが0.10%未満では、溶製時の脱酸効果が期待できないので、Siは0.10%以上必要である。また、Siは残留オーステナイトを得る上で重要な元素であるが、含有量が3.0 %を超えると鋼の靭性が損なわれるので、Si量は0.10〜3.0 %の範囲に限定した。なお、好ましくは0.10〜0.40%である。
【0020】
Mn:0.4 〜3.0 %
Mnは、鋼の強化元素として有用なだけでなく、残留オーステナイトを得る上でも有用である。しかしながら、含有量が0.4 %未満ではその効果に乏しく、一方、3.0 %を超えると延性の低下を招くので、Mn量は0.4 〜3.0 %の範囲に限定した。なお、好ましくは0.5 〜2.0 %である。
【0021】
P:0.05%以下
Pは低いほど好ましく、含有量が0.05%を超えると溶接時の割れ発生の原因となるので、P量は0.05%以下の範囲に限定した。
【0022】
S:0.05%以下
Sは少ないほど好ましく、含有量が0.05%を超えると靭性や延性の低下が起こるので、S量は0.05%以下の範囲に限定した。
【0023】
Al:0.3 〜2.0 %
Alは、残留オーステナイトを得る上で有用な元素である。しかしながら、含有量が0.3 %未満ではその効果に乏しく、一方で、含有量が2.0 %を超えると延性の低下を招くので、Al量は0.3 〜2.0 %の範囲に限定した。なお、好ましくは 0.5 〜1.5 %である。
【0024】
N:0.015 %以下
Nは、靭性を劣化する元素であるので少ないほど好ましい。一方、Alが存在する場合はAl窒化物となり、靭性を劣化させないので、N量は0.015 %以下の範囲に限定した。
【0025】
本発明の鋼材の組成は、上記成分元素を必須に含むものとするが、これら以外に必要に応じて以下の元素のうちから選ばれた1種または2種以上を含有させたものであってもよい。
【0026】
Cu:0.1 〜1.5 %
Cuは、鋼の強度を向上するのに有用な元素であり、また、固溶強化により疲労強度を向上する。しかしながら、含有量が0.1 %未満ではその効果に乏しく、一方、1.5 %を超えると靭性が劣化するので、Cu量は0.1 〜1.5 %の範囲とするのが好ましい。
【0027】
Ni:0.1 〜5.0 %
Niは、鋼の強度向上に有用なだけでなく、靭性も大幅に向上させる。含有量が0.1 %未満ではその効果に乏しく、一方、5.0 %を超えると効果が飽和するので、Ni量は0.1 〜5.0 %の範囲とするのが好ましい。
【0028】
Cr:0.1 〜1.5 %
Crは、鋼の強度向上に有用なだけでなく、靭性も大幅に向上させる。含有量が0.1 %未満ではその効果に乏しく、一方、1.5 %を超えると効果が飽和するので、Cr量は0.1 〜1.5 %の範囲とするのが好ましい。
【0029】
Mo:0.05〜0.50%
Moは、鋼の強度向上に有用なだけでなく、靭性も大幅に向上させる。含有量が0.05%未満ではその効果に乏しく、一方、0.50%を超えると効果が飽和するので、Mo量は0.1 〜0.50%の範囲とするのが好ましい。
【0030】
Nb:0.005 〜0.10%
Nbは、鋼の強度を向上するのに有用な元素である。しかしながら、含有量が0.005 %未満ではその効果に乏しく、一方、0.10%を超えると靭性が劣化するので、Nb量は0.005 〜0.10%の範囲とするのが好ましい。
【0031】
V:0.005 〜0.10%
Vは、鋼の強度を向上するのに有用な元素である。しかしながら、含有量が0.005 %未満ではその効果に乏しく、一方、0.10%を超えると靭性が劣化するので、V量は0.005 〜0.10%の範囲とするのが好ましい。
【0032】
Ti:0.005 〜0.25%
Tiは、鋼の強度を向上するのに有用な元素である。しかしながら、含有量が0.005 %未満ではその効果に乏しく、一方、0.25%を超えると溶接割れが発生しやすくなるので、Ti量は0.005 〜0.25%の範囲とするのが好ましい。
【0033】
本発明の鋼材は、上記化学組成を有するとともに、残留オーステナイトを面積率で2〜30%含む組織を有するものである。
【0034】
残留オーステナイトは、応力がかかると加工誘起変態する。これが起こるのは、疲労き裂先端のみであり、き裂先端では加工誘起変態に伴い局所的な応力集中の緩和作用がはたらき、疲労き裂伝播速度が低減する。さらに、加工誘起変態によりき裂先端に発生する圧縮残留応力が負荷応力を緩和する作用によっても疲労き裂伝播速度は低減する。
【0035】
これらの疲労き裂伝播速度低減の効果を得るためには、最低でも2%以上の残留オーステナイトが存在する必要がある。しかし、残留オーステナイトの強度はベイナイトやマルテンサイトに比較して低いため、残留オーステナイト量が30%を超えると、十分な鋼の強度が得られない。よって、残留オーステナイト量は、2〜30%の範囲に限定した。なお、好ましくは5〜15%である。ここで、残留オーステナイト量は、X線回折法により測定した。具体的な残留オーステナイト量(面積率)は次のようにして決定する。まず、オーステナイト面積率100 %の標準試料についてX線回折法により標準試料の回折強度を求めておく。次に、被測定試料について、標準試料と同一の条件でX線回折法による回折強度を求める。最後に標準試料の回折強度に対する被測定試料の回折強度の比率を残留オーステナイトの面積率とするのである。
【0036】
一方、疲労き裂伝播速度低減の効果をさらに高めるためには、鋼材の組織は残留オーステナイトを面積率で2〜30%含む組織としながら、且つベイナイトの面積率が50%以上である組織が好ましい。その理由は、ベイナイトの面積率が50%以上であると、き裂伝播速度が高いバンド状の組織であるフェライト・パーライト組織が抑制されるからと考えられる。ベイナイト(組織)は残留オーステナイト(組織)の面積率を低減しない範囲で面積率が高いほど、き裂伝播速度が低くなる効果がある。なお、鋼材のフェライトとベイナイトの混合された組織はフェライト・ベイナイト組織と呼ばれるが、フェライト・ベイナイト組織は分散型の組織である。また、ベイナイトの面積率が50%以上であると、パーライト(組織)は観察されなくなる。
【0037】
ベイナイトの面積率は、3%ナイタールによるエッチング後、100 倍の倍率で5平方mm以上の視野を撮影し、写真の目視による組織の分別を行い組織全体に対するベイナイトの面積率を画像処理等により算出する。
【0038】
次に、本発明の鋼材の製造方法について述べる。
【0039】
本発明の鋼板は、通常の溶製法(転炉法、電気炉法等)により上記組成に成分調整した溶鋼を、通常の鋳造法(連続鋳造法、造塊法)により鋳造し、得られた鋳片素材を熱間圧延して所定寸法の鋼材となす製造工程において、(A)圧延条件と圧延後の冷却条件を特定の範囲に制御すること、あるいは、(B)該制御の有無に拘らず圧延後の鋼材に特定条件の熱処理を施すことにより、その組織中に残留オーステナイトを2〜30%含ませることができる。なお、熱間圧延する代わりに熱間鍛造してもよいが、生産性の点で、熱間圧延する方が好ましい。
【0040】
(A)の方法としては、上記組成を有する鋼スラブを、1000〜1300℃の温度に加熱後圧延し、該圧延を700 〜950 ℃の温度で終了後、5〜70℃/sの冷却速度で500 ℃以下の温度まで冷却する。
【0041】
スラブ加熱温度は、1000℃未満では、オーステナイト化が不十分であり、一方、1300℃超では、結晶粒が粗大になり、靭性が劣化する可能性があるので、1000〜1300℃とするのが好ましい。
【0042】
圧延終了温度は、700 ℃未満では、歪導入が過多となり、靭性を劣化させる虞があり、一方、950 ℃超では、結晶粒が粗大になり、靭性が劣化する可能性があるので、700 〜950 ℃とするが好ましい。
【0043】
圧延後の冷却条件については、5〜70℃/sの冷却速度で500 ℃以下の温度まで冷却することにより、残留オーステナイトを面積率で2〜30%含む組織として疲労き裂伝播速度の低減効果を確実に得られる。
【0044】
なお、冷却速度が70℃/sを超える場合、冷却の停止温度が200 ℃未満では強度が過剰となるので、冷却の停止温度を200 ℃以上とするとよい。この場合には、停止温度から室温までの冷却は放冷又は徐冷(放冷よりも遅い冷却速度で冷却すること)としてよい。
【0045】
(B)の方法としては、前記組成を有する鋼材を、700 〜900 ℃の温度に再加熱して該温度に3600秒以下保持後、350 〜500 ℃の温度まで冷却して該温度に60秒以上保持し、以後冷却する方法が好適である。
【0046】
再加熱温度は、700 ℃未満では、2相域に達せず、オーステンパーの効果が得られにくく、一方、900 ℃超では、結晶粒が粗大となるので、700 〜900 ℃とする。再加熱温度での保持時間については、3600秒超では、粒径が大きくなり靭性が劣化するので、3600秒以下とする。なお、下限については、均質化の点から、600 秒とするのがよい。
【0047】
冷却途中での保持温度(オーステンパー温度という。)は、350 ℃未満および500 ℃超では、残留オーステナイトの量が十分ではないので、350 〜500 ℃とする。オーステンパー温度での保持時間については、60秒未満では、炭素が十分に拡散することができず濃化が不十分となり、残留オーステナイトを十分に生成することができないので、60秒以上とする。なお、上限については、脱炭防止の点から、1800秒とするのがよい。
【0048】
再加熱温度での保持完了からオーステンパー温度での保持開始までの間の冷却については、冷却速度が遅すぎるとパーライトが析出し残留オーステナイトが少なくなり、かつベイナイト組織の面積率が50%を下回るので、冷却速度を5℃/s以上とするのが好ましい。また、オーステンパー温度での保持完了以後の冷却は放冷でよい。
【0049】
なお、本発明では、上記(A)、(B)のいずれかの方法で製造した鋼材に対し、さらに、靭性を向上させるために、300 〜550 ℃の温度域で焼戻し処理を施してもよい。
【0050】
【実施例】
表1に示す組成になる鋼スラブを、表2に示す条件で加熱− 圧延− 冷却し、あるいはさらに熱処理し、得られた鋼材について、ASTM E647に準拠した疲労き裂伝播試験を行い、ΔK(応力拡大係数の変動範囲)=500 〜1500N/mm −3/2の高ΔK領域で疲労き裂伝播速度を測定した。この試験では、各鋼材から採取したCT試験片を油圧サーボ試験機にセットし、応力比R=0.05、周波数f=15Hz、試験温度T=室温、の条件で試験機を運転した。
【0051】
疲労き裂伝播速度の測定結果を表2に示す。本発明例では、面積率で2〜30%の残留オーステナイトを含む組織とし、さらに、ベイナイト組織の面積率を50%以上としたことにより、疲労き裂伝播速度が5.0 ×10−5mm/cycle以下になる優れた疲労き裂伝播特性を呈した。
【0052】
【表1】

Figure 2004076156
【0053】
【表2】
Figure 2004076156
【0054】
【発明の効果】
本発明によれば、高ΔK領域で疲労き裂伝播速度をき裂進展方向によらず有効に低減でき、かつ、靭性劣化を伴わずに高強度化できる疲労き裂伝播特性に優れた鋼材が得られるから、船体、海洋構造物、土木構造物等の繰返し荷重を受ける鋼構造物の疲労寿命を有利に改善できるようになるという効果を奏する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel sheet excellent in fatigue crack propagation characteristics and suitable for use as a material for a hull, an offshore structure, a civil engineering structure, and the like, and a method for manufacturing the same.
[0002]
[Prior art]
With the demand for larger and lighter steel structures and also from the viewpoint of cost reduction, the application of high tensile steel is expanding. Of steel structures, hulls, marine structures, civil structures, and the like are subject to repeated loads, so fatigue failure is an important problem. In particular, due to the reduction in wall thickness due to the use of high-tensile steel, the design stress increases, so that sufficient consideration must be given to fatigue fracture.
[0003]
Since a steel structure is generally assembled by welding and includes a large number of welds, fatigue cracks often occur from the welds. Therefore, in order to improve the fatigue strength, two methods are effective: a method of suppressing the occurrence of fatigue cracks from the welded portion and a method of reducing the propagation speed of the generated fatigue cracks.
[0004]
Methods to suppress the occurrence of fatigue cracks from the weld include improving the shape of the weld toe by grinding or heating and re-melting the final pass of the weld bead, or welding toe by shot peening. (Patent Literature 1, Patent Literature 2, etc.). However, it is difficult for these post-welding treatments to suppress the occurrence of propagation after crack initiation.
[0005]
On the other hand, the method of reducing the fatigue crack propagation speed is to increase the fatigue crack propagation resistance of the material, thereby reducing the fatigue crack propagation speed and improving the fatigue life of the steel structure. Its development is desired.
[0006]
As a technique to meet this demand, (a) a method of generating a microcrack at the tip of a fatigue crack in a low ΔK region in which a variation range of a stress intensity factor ΔK is about 500 N / mm −3/2 or less (Patent Literature 3), (b) The striped second phase stretched in the rolling direction is scattered in the matrix at an area ratio of 5 to 50%, and the hardness Hv of the second phase is equal to the hardness Hv of the matrix. A steel sheet having 130% or more, an aspect ratio of 4 or more, and a length of 20 μm or more (Patent Document 4), and (c) a steel composed of a soft phase and a hard phase and having a hardness difference between these two phases of Hv 150 or more is known. ing.
[0007]
[Patent Document 1]
JP-A-59-110490 [Patent Document 2]
JP-A-1-301823 [Patent Document 3]
JP-A-5-148541 [Patent Document 4]
JP-A-7-90478
[Problems to be solved by the invention]
However, since the technique (a) targets the low ΔK region, when the crack length is relatively long or the stress is relatively high, there is a problem that the effect of reducing the fatigue crack propagation speed is small. Further, the technique (b) has a problem that when the fatigue crack growth direction is not orthogonal to the elongation direction of the second phase, the effect of reducing the fatigue crack propagation speed may be small. Further, in the technique (c), when the strength of the steel is increased, the hardness of the hard phase needs to be increased in accordance with the increase in the hardness of the soft phase.
[0009]
In view of the above-mentioned problems of the prior art, the present invention can effectively reduce the fatigue crack propagation speed in the high ΔK region regardless of the crack propagation direction, and improve the fatigue crack propagation characteristics with an excellent balance between strength and toughness. It is an object to provide an excellent steel material together with its advantageous production method.
[0010]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that the above object can be achieved by limiting the composition (chemical composition) and structure of the steel to a specific range, and particularly by setting the structure to include a specific amount of retained austenite. The present invention has the following gist configuration.
[0011]
(1) In mass%, C: 0.01 to 0.40%, Si: 0.10 to 3.0%, Mn: 0.4 to 3.0%, P: 0.05% or less, S: It contains 0.05% or less, Al: 0.3 to 2.0%, N: 0.015% or less, has a composition consisting of the balance of Fe and unavoidable impurities, and has an area ratio of retained austenite of 2 to 30%. A steel material having an excellent fatigue crack propagation characteristic characterized by having a structure containing 0.1% by weight.
[0012]
(2) The composition further includes, by mass%, Cu: 0.1 to 1.5%, Ni: 0.1 to 5.0%, Cr: 0.1 to 1.5%, Mo: 0.05. 0.55%, Nb: 0.005 to 0.10%, V: 0.005 to 0.10%, Ti: 0.005 to 0.25% (1) The steel material having excellent fatigue crack propagation characteristics according to (1).
[0013]
(3) The steel material excellent in fatigue crack propagation characteristics according to (1) or (2), wherein the structure according to (1) contains bainite in an area ratio of 50% or more.
[0014]
(4) In mass%, C: 0.01 to 0.40%, Si: 0.10 to 3.0%, Mn: 0.4 to 3.0%, P: 0.05% or less, S: A steel material having a composition containing 0.05% or less, Al: 0.3 to 2.0%, and N: 0.015% or less is heated to a temperature of 1000 to 1300 ° C and then rolled. A method for producing a steel material having excellent fatigue crack propagation characteristics, comprising cooling to a temperature of 500 ° C. or less after cooling at a temperature of 950 ° C. at a cooling rate of 5 to 70 ° C./s.
[0015]
(5) In mass%, C: 0.01 to 0.40%, Si: 0.10 to 3.0%, Mn: 0.4 to 3.0%, P: 0.05% or less, S: A steel material having a composition containing 0.05% or less, Al: 0.3 to 2.0%, and N: 0.015% or less is reheated to a temperature of 700 to 900 ° C, and the temperature is raised to 3600 seconds or less. A method for producing a steel material having excellent fatigue crack propagation characteristics, wherein the steel is cooled to a temperature of 350 to 500 ° C., held at that temperature for 60 seconds or more, and then cooled.
[0016]
(6) The steel material further contains, by mass%, Cu: 0.1 to 1.5%, Ni: 0.1 to 5.0%, Cr: 0.1 to 1.5%, Mo: 0.05. 0.55%, Nb: 0.005 to 0.10%, V: 0.005 to 0.10%, Ti: 0.005 to 0.25% (4) or (5), wherein the steel material has excellent fatigue crack propagation characteristics.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the reasons for limiting the composition in the present invention will be described. In addition, the chemical component content of the composition is represented by mass% and is abbreviated as%.
[0018]
C: 0.01 to 0.40%
C is not only a component that enhances the strength of steel, but also a useful element for obtaining retained austenite. However, if the content is less than 0.01%, the effect is poor. On the other hand, if it exceeds 0.04%, the ductility is reduced and the possibility of weld cracking is increased. The range was limited to 0.40%. In addition, it is preferably 0.05 to 0.15%.
[0019]
Si: 0.10 to 3.0%
Si is an element necessary for steel deoxidation. If the content of Si is less than 0.10%, the deoxidizing effect at the time of melting cannot be expected, so that 0.10% or more of Si is required. Further, Si is an important element for obtaining retained austenite, but if the content exceeds 3.0%, the toughness of the steel is impaired, so the Si content is limited to the range of 0.10 to 3.0%. did. In addition, it is preferably 0.10 to 0.40%.
[0020]
Mn: 0.4 to 3.0%
Mn is useful not only as a strengthening element of steel but also in obtaining retained austenite. However, if the content is less than 0.4%, the effect is poor, while if it exceeds 3.0%, the ductility is reduced. Therefore, the Mn content is limited to the range of 0.4 to 3.0%. Incidentally, the content is preferably 0.5 to 2.0%.
[0021]
P: 0.05% or less P is preferably as low as possible, and if the content exceeds 0.05%, it may cause cracking during welding. Therefore, the P content is limited to the range of 0.05% or less.
[0022]
S: 0.05% or less S is preferably as small as possible. If the content exceeds 0.05%, toughness and ductility decrease, so the S content is limited to the range of 0.05% or less.
[0023]
Al: 0.3 to 2.0%
Al is an element useful for obtaining retained austenite. However, if the content is less than 0.3%, the effect is poor. On the other hand, if the content exceeds 2.0%, the ductility is reduced, so that the Al content is in the range of 0.3 to 2.0%. Limited. Incidentally, the content is preferably 0.5 to 1.5%.
[0024]
N: 0.015% or less N is an element that degrades toughness, so the smaller, the more preferable. On the other hand, when Al is present, it becomes an Al nitride and does not deteriorate toughness, so the N content is limited to the range of 0.015% or less.
[0025]
The composition of the steel material of the present invention essentially includes the above-mentioned component elements, but may further contain one or more selected from the following elements as required in addition to the above-mentioned components. .
[0026]
Cu: 0.1 to 1.5%
Cu is an element useful for improving the strength of steel, and improves fatigue strength by solid solution strengthening. However, if the content is less than 0.1%, the effect is poor, while if it exceeds 1.5%, the toughness is deteriorated. Therefore, the Cu content is preferably in the range of 0.1 to 1.5%.
[0027]
Ni: 0.1 to 5.0%
Ni is not only useful for improving the strength of steel, but also significantly improves toughness. If the content is less than 0.1%, the effect is poor, while if it exceeds 5.0%, the effect is saturated. Therefore, the Ni content is preferably in the range of 0.1 to 5.0%.
[0028]
Cr: 0.1 to 1.5%
Cr is not only useful for improving the strength of steel, but also significantly improves toughness. If the content is less than 0.1%, the effect is poor, while if it exceeds 1.5%, the effect is saturated. Therefore, the Cr content is preferably in the range of 0.1 to 1.5%.
[0029]
Mo: 0.05 to 0.50%
Mo is not only useful for improving the strength of steel, but also significantly improves toughness. If the content is less than 0.05%, the effect is poor. On the other hand, if the content exceeds 0.50%, the effect is saturated. Therefore, the Mo content is preferably in the range of 0.1 to 0.50%.
[0030]
Nb: 0.005 to 0.10%
Nb is an element useful for improving the strength of steel. However, if the content is less than 0.005%, the effect is poor, while if it exceeds 0.10%, the toughness deteriorates. Therefore, the Nb content is preferably in the range of 0.005 to 0.10%.
[0031]
V: 0.005 to 0.10%
V is an element useful for improving the strength of steel. However, if the content is less than 0.005%, the effect is poor. On the other hand, if it exceeds 0.10%, the toughness is deteriorated. Therefore, the V content is preferably in the range of 0.005 to 0.10%.
[0032]
Ti: 0.005 to 0.25%
Ti is an element useful for improving the strength of steel. However, if the content is less than 0.005%, the effect is poor. On the other hand, if the content exceeds 0.25%, welding cracks are likely to occur. Therefore, the Ti content should be in the range of 0.005 to 0.25%. Is preferred.
[0033]
The steel material of the present invention has the above chemical composition and a structure containing retained austenite in an area ratio of 2 to 30%.
[0034]
The residual austenite undergoes work-induced transformation when stress is applied. This occurs only at the fatigue crack tip. At the crack tip, local stress concentration is alleviated due to the work-induced transformation, and the fatigue crack propagation speed is reduced. Furthermore, the fatigue crack propagation speed is also reduced by the action of the compressive residual stress generated at the crack tip by the work-induced transformation to relax the applied stress.
[0035]
In order to obtain the effect of reducing the fatigue crack propagation speed, it is necessary that at least 2% or more of retained austenite is present. However, since the strength of retained austenite is lower than that of bainite or martensite, if the amount of retained austenite exceeds 30%, sufficient steel strength cannot be obtained. Therefore, the amount of retained austenite was limited to the range of 2 to 30%. In addition, it is preferably 5 to 15%. Here, the amount of retained austenite was measured by an X-ray diffraction method. The specific amount of retained austenite (area ratio) is determined as follows. First, the diffraction intensity of a standard sample having an austenite area ratio of 100% is determined by an X-ray diffraction method. Next, the diffraction intensity of the sample to be measured is determined by the X-ray diffraction method under the same conditions as the standard sample. Finally, the ratio of the diffraction intensity of the measured sample to the diffraction intensity of the standard sample is defined as the area ratio of retained austenite.
[0036]
On the other hand, in order to further enhance the effect of reducing the fatigue crack propagation speed, the structure of the steel material is preferably a structure containing 2 to 30% of the retained austenite in area ratio and a structure in which the area ratio of bainite is 50% or more. . The reason is considered that when the area ratio of bainite is 50% or more, a ferrite-pearlite structure, which is a band-like structure having a high crack propagation speed, is suppressed. The bainite (structure) has an effect that the crack propagation speed decreases as the area ratio increases as long as the area ratio of the retained austenite (structure) is not reduced. Note that a mixed structure of ferrite and bainite of a steel material is called a ferrite bainite structure, and the ferrite bainite structure is a dispersed structure. When the area ratio of bainite is 50% or more, pearlite (structure) is not observed.
[0037]
The area ratio of bainite was determined by etching with 3% nital, photographing a visual field of 5 mm 2 mm or more at a magnification of 100 times, visually separating the structure of the photograph, and calculating the area ratio of bainite with respect to the entire structure by image processing or the like. I do.
[0038]
Next, a method for producing the steel material of the present invention will be described.
[0039]
The steel sheet of the present invention was obtained by casting molten steel whose composition was adjusted to the above composition by a normal melting method (a converter method, an electric furnace method, etc.) by a normal casting method (continuous casting method, ingot-making method). In the manufacturing process of hot rolling a slab material into a steel material having a predetermined size, (A) controlling rolling conditions and cooling conditions after rolling to specific ranges, or (B) controlling whether or not the control is performed. By subjecting the steel material after rolling to heat treatment under specific conditions, the structure can contain 2 to 30% of retained austenite. Although hot forging may be performed instead of hot rolling, hot rolling is more preferable in terms of productivity.
[0040]
As the method (A), a steel slab having the above composition is rolled after being heated to a temperature of 1000 to 1300 ° C, and the rolling is completed at a temperature of 700 to 950 ° C, and then a cooling rate of 5 to 70 ° C / s. And cool to a temperature of 500 ° C. or less.
[0041]
If the slab heating temperature is less than 1000 ° C., austenitization is insufficient, while if it exceeds 1300 ° C., the crystal grains become coarse and the toughness may be degraded. preferable.
[0042]
If the rolling end temperature is less than 700 ° C., excessive strain is introduced and the toughness may be deteriorated. On the other hand, if the rolling end temperature is more than 950 ° C., the crystal grains become coarse and the toughness may be deteriorated. It is preferably 950 ° C.
[0043]
Regarding the cooling conditions after rolling, by cooling to a temperature of 500 ° C. or less at a cooling rate of 5 to 70 ° C./s, the effect of reducing the fatigue crack propagation rate as a structure containing retained austenite in an area ratio of 2 to 30%. Can be obtained with certainty.
[0044]
When the cooling rate is higher than 70 ° C./s, if the cooling stop temperature is lower than 200 ° C., the strength becomes excessive. Therefore, the cooling stop temperature is preferably set to 200 ° C. or higher. In this case, the cooling from the stop temperature to the room temperature may be allowed to cool down or slow cooling (cooling at a slower cooling rate than cooling).
[0045]
As a method of (B), the steel material having the above composition is reheated to a temperature of 700 to 900 ° C., kept at that temperature for 3600 seconds or less, cooled to a temperature of 350 to 500 ° C., and brought to the temperature for 60 seconds. It is preferable to hold the above and cool it thereafter.
[0046]
When the reheating temperature is lower than 700 ° C., the two-phase region is not reached, and the effect of austempering is hardly obtained. On the other hand, when the reheating temperature is higher than 900 ° C., the crystal grains become coarse. If the holding time at the reheating temperature is more than 3600 seconds, the grain size becomes large and the toughness is deteriorated. Note that the lower limit is preferably set to 600 seconds from the viewpoint of homogenization.
[0047]
If the holding temperature during cooling (referred to as the austempering temperature) is lower than 350 ° C. and higher than 500 ° C., the amount of retained austenite is not sufficient, so the temperature is set to 350 to 500 ° C. If the holding time at the austempering temperature is less than 60 seconds, the carbon cannot be sufficiently diffused, the concentration becomes insufficient, and the residual austenite cannot be sufficiently generated. The upper limit is preferably set to 1800 seconds from the viewpoint of preventing decarburization.
[0048]
Regarding the cooling from the completion of the holding at the reheating temperature to the start of the holding at the austempering temperature, if the cooling rate is too slow, pearlite precipitates, the amount of retained austenite decreases, and the area ratio of the bainite structure falls below 50%. Therefore, the cooling rate is preferably set to 5 ° C./s or more. Cooling after completion of the holding at the austempering temperature may be allowed to cool.
[0049]
In the present invention, the steel material manufactured by any one of the methods (A) and (B) may be tempered in a temperature range of 300 to 550 ° C. in order to further improve the toughness. .
[0050]
【Example】
The steel slab having the composition shown in Table 1 was heated, rolled, cooled or further heat-treated under the conditions shown in Table 2, and the obtained steel material was subjected to a fatigue crack propagation test in accordance with ASTM E647, and ΔK ( the fatigue crack propagation rate in the high ΔK region of the stress variation range of magnification factor) = 500 ~1500N / mm -3/2 were measured. In this test, a CT test piece taken from each steel material was set in a hydraulic servo tester, and the tester was operated under the following conditions: stress ratio R = 0.05, frequency f = 15 Hz, test temperature T = room temperature.
[0051]
Table 2 shows the measurement results of the fatigue crack propagation speed. In the present invention, the fatigue crack propagation rate is 5.0 × 10 −5 mm by forming a structure containing retained austenite in an area ratio of 2 to 30% and setting the area ratio of the bainite structure to 50% or more. / Cycle excellent fatigue crack propagation characteristics.
[0052]
[Table 1]
Figure 2004076156
[0053]
[Table 2]
Figure 2004076156
[0054]
【The invention's effect】
According to the present invention, a steel material having excellent fatigue crack propagation characteristics capable of effectively reducing the fatigue crack propagation speed in the high ΔK region irrespective of the crack propagation direction and capable of increasing the strength without deteriorating the toughness is provided. Therefore, it is possible to advantageously improve the fatigue life of a steel structure, such as a hull, an offshore structure, or a civil engineering structure, which receives a repeated load.

Claims (6)

質量%で、C:0.01〜0.40%、Si:0.10〜3.0 %、Mn:0.4 〜3.0 %、P:0.05%以下、S:0.05%以下、Al:0.3 〜2.0 %、N:0.015 %以下を含有し残部Feおよび不可避的不純物からなる組成を有し、かつ残留オーステナイトを面積率で2〜30%含む組織を有することを特徴とする疲労き裂伝播特性に優れた鋼材。In mass%, C: 0.01 to 0.40%, Si: 0.10 to 3.0%, Mn: 0.4 to 3.0%, P: 0.05% or less, S: 0.05 % Or less, Al: 0.3% to 2.0%, N: 0.015% or less, a structure having a balance of Fe and unavoidable impurities, and containing 2% to 30% of retained austenite in area ratio. A steel material having excellent fatigue crack propagation characteristics, characterized by having: 前記組成がさらに、質量%で、Cu:0.1 〜1.5 %、Ni:0.1 〜5.0 %、Cr:0.1 〜1.5 %、Mo:0.05〜0.50%、Nb:0.005 〜0.10%、V:0.005 〜0.10%、Ti:0.005 〜0.25%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1記載の疲労き裂伝播特性に優れた鋼材。The composition further includes, by mass%, Cu: 0.1% to 1.5%, Ni: 0.1% to 5.0%, Cr: 0.1% to 1.5%, Mo: 0.05% to 0.5%. 50%, Nb: 0.005% to 0.10%, V: 0.005% to 0.10%, Ti: 0.005% to 0.25% The steel material according to claim 1, which is excellent in fatigue crack propagation characteristics. 請求項1に記載の組織がベイナイトを面積率で50%以上含むことを特徴とする請求項1または2に記載の疲労き裂伝播特性に優れた鋼材。The steel material excellent in fatigue crack propagation characteristics according to claim 1 or 2, wherein the structure according to claim 1 contains bainite in an area ratio of 50% or more. 質量%で、C:0.01〜0.40%、Si:0.10〜3.0 %、Mn:0.4 〜3.0 %、P:0.05%以下、S:0.05%以下、Al:0.3 〜2.0 %、N:0.015 %以下を含有する組成を有する鋼材を、
1000〜1300℃の温度に加熱後圧延し、該圧延を700 〜950 ℃の温度で終了後、5〜70℃/sの冷却速度で500 ℃以下の温度まで冷却することを特徴とする疲労き裂伝播特性に優れた鋼材の製造方法。
In mass%, C: 0.01 to 0.40%, Si: 0.10 to 3.0%, Mn: 0.4 to 3.0%, P: 0.05% or less, S: 0.05 % Or less, Al: 0.3 to 2.0%, N: 0.015% or less.
Rolling after heating to a temperature of 1000 to 1300 ° C., after finishing the rolling at a temperature of 700 to 950 ° C., and cooling at a cooling rate of 5 to 70 ° C./s to a temperature of 500 ° C. or less. A method for producing steel with excellent crack propagation characteristics.
質量%で、C:0.01〜0.40%、Si:0.10〜3.0 %、Mn:0.4 〜3.0 %、P:0.05%以下、S:0.05%以下、Al:0.3 〜2.0 %、N:0.015 %以下を含有する組成を有する鋼材を、
700 〜900 ℃の温度に再加熱して該温度に3600秒以下保持後、350 〜500 ℃の温度まで冷却して該温度に60秒以上保持し、以後冷却することを特徴とする疲労き裂伝播特性に優れた鋼材の製造方法。
In mass%, C: 0.01 to 0.40%, Si: 0.10 to 3.0%, Mn: 0.4 to 3.0%, P: 0.05% or less, S: 0.05 % Or less, Al: 0.3 to 2.0%, N: 0.015% or less.
A fatigue crack characterized by reheating to a temperature of 700 to 900 ° C. and holding at that temperature for 3600 seconds or less, cooling to a temperature of 350 to 500 ° C., holding at that temperature for 60 seconds or more, and thereafter cooling. A method for producing steel with excellent propagation characteristics.
前記鋼材がさらに、
質量%で、Cu:0.1 〜1.5 %、Ni:0.1 〜5.0 %、Cr:0.1 〜1.5 %、Mo:0.05〜0.50%、Nb:0.005 〜0.10%、V:0.005 〜0.10%、Ti:0.005 〜0.25%のうちから選ばれた1種または2種以上を含有する組成を有することを特徴とする請求項4または5に記載の疲労き裂伝播特性に優れた鋼材の製造方法。
The steel material further comprises:
In mass%, Cu: 0.1 to 1.5%, Ni: 0.1 to 5.0%, Cr: 0.1 to 1.5%, Mo: 0.05 to 0.50%, Nb: 0.005 to 0.10%, V: 0.005 to 0.10%, and Ti: 0.005 to 0.25%. The method for producing a steel material having excellent fatigue crack propagation characteristics according to claim 4 or 5, wherein:
JP2003173356A 2002-06-18 2003-06-18 Steel material excellent in fatigue crack propagation characteristics and method for producing the same Expired - Lifetime JP4806887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003173356A JP4806887B2 (en) 2002-06-18 2003-06-18 Steel material excellent in fatigue crack propagation characteristics and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002177448 2002-06-18
JP2002177448 2002-06-18
JP2003173356A JP4806887B2 (en) 2002-06-18 2003-06-18 Steel material excellent in fatigue crack propagation characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004076156A true JP2004076156A (en) 2004-03-11
JP4806887B2 JP4806887B2 (en) 2011-11-02

Family

ID=32032487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003173356A Expired - Lifetime JP4806887B2 (en) 2002-06-18 2003-06-18 Steel material excellent in fatigue crack propagation characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP4806887B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274403A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk Thick steel plate having superior fatigue-crack-propagation characteristics and toughness, and manufacturing method therefor
JP2008223393A (en) * 2007-03-14 2008-09-25 Jfe Engineering Kk High fatigue enduring steel structure
CN110489848A (en) * 2019-08-12 2019-11-22 武汉钢铁有限公司 A kind of difference seawater velocity Corrosion Fatigue Crack Propagation rate prediction method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207405A (en) * 1994-01-12 1995-08-08 Nippon Steel Corp Hot rolled steel sheet of high-strength composite structure having excellent workability and fatigue resistant characteristic and tensile strength of 45 to 65kgf/mm2 and its production
JPH07252592A (en) * 1994-03-15 1995-10-03 Nippon Steel Corp Hot rolled high strength steel sheet excellent in formability, low temperature toughness and fatigue property
JPH10219387A (en) * 1997-02-04 1998-08-18 Sumitomo Metal Ind Ltd Hot rolled high tensile strength steel plate excellent in workability and its production
JPH1121653A (en) * 1997-07-02 1999-01-26 Kobe Steel Ltd Steel plate excellent in toughness at low temperature and having high ductility and high strength
JP2000239783A (en) * 1999-02-17 2000-09-05 Kobe Steel Ltd High strength steel sheet excellent in workability and fatigue characteristic
JP2001262271A (en) * 2000-03-17 2001-09-26 Sumitomo Metal Ind Ltd High tensile strength steel sheet excellent in adhesion of electroplating and ductility and its producing method
JP2002309334A (en) * 2001-02-09 2002-10-23 Kobe Steel Ltd High strength steel sheet having excellent formability and production method therefor
JP2003105486A (en) * 2001-09-28 2003-04-09 Nippon Steel Corp High strength steel sheet and galvanized steel sheet having excellent formability, and production method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207405A (en) * 1994-01-12 1995-08-08 Nippon Steel Corp Hot rolled steel sheet of high-strength composite structure having excellent workability and fatigue resistant characteristic and tensile strength of 45 to 65kgf/mm2 and its production
JPH07252592A (en) * 1994-03-15 1995-10-03 Nippon Steel Corp Hot rolled high strength steel sheet excellent in formability, low temperature toughness and fatigue property
JPH10219387A (en) * 1997-02-04 1998-08-18 Sumitomo Metal Ind Ltd Hot rolled high tensile strength steel plate excellent in workability and its production
JPH1121653A (en) * 1997-07-02 1999-01-26 Kobe Steel Ltd Steel plate excellent in toughness at low temperature and having high ductility and high strength
JP2000239783A (en) * 1999-02-17 2000-09-05 Kobe Steel Ltd High strength steel sheet excellent in workability and fatigue characteristic
JP2001262271A (en) * 2000-03-17 2001-09-26 Sumitomo Metal Ind Ltd High tensile strength steel sheet excellent in adhesion of electroplating and ductility and its producing method
JP2002309334A (en) * 2001-02-09 2002-10-23 Kobe Steel Ltd High strength steel sheet having excellent formability and production method therefor
JP2003105486A (en) * 2001-09-28 2003-04-09 Nippon Steel Corp High strength steel sheet and galvanized steel sheet having excellent formability, and production method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274403A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk Thick steel plate having superior fatigue-crack-propagation characteristics and toughness, and manufacturing method therefor
JP4497009B2 (en) * 2005-03-30 2010-07-07 Jfeスチール株式会社 Thick steel plate with excellent fatigue crack propagation characteristics and toughness and method for producing the same
JP2008223393A (en) * 2007-03-14 2008-09-25 Jfe Engineering Kk High fatigue enduring steel structure
CN110489848A (en) * 2019-08-12 2019-11-22 武汉钢铁有限公司 A kind of difference seawater velocity Corrosion Fatigue Crack Propagation rate prediction method

Also Published As

Publication number Publication date
JP4806887B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
RU2502820C1 (en) Plate steel characterised by low ratio between yield point and ultimate strength, high strength and high uniform relative elongation, and method for its manufacture
RU2496904C1 (en) Plate steel characterised by low ratio between yield point and limit strength, high strength and high impact strength, and method for its manufacture
JP4324225B1 (en) High strength cold-rolled steel sheet with excellent stretch flangeability
JP6883107B2 (en) High-strength steel with excellent fracture initiation and propagation resistance at low temperatures and its manufacturing method
JP5487682B2 (en) High-toughness high-tensile steel plate with excellent strength-elongation balance and method for producing the same
JP6989606B2 (en) High-strength steel with excellent fracture initiation and propagation resistance at low temperatures, and its manufacturing method
JP5487683B2 (en) High-toughness high-tensile steel plate with excellent strength-elongation balance and method for producing the same
JP2001240940A (en) Bar wire rod for cold forging and its production method
JP2002146479A (en) Wire rod for wire drawing having excellent twisting characteristic and its production method
JP2014218707A (en) Heat treated steel sheet excellent in hydrogen-induced cracking resistance and method of producing the same
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JPWO2020129337A1 (en) Electric resistance steel pipe
JP4770235B2 (en) Manufacturing method of steel with excellent ductility and fatigue crack propagation characteristics
JP6288265B2 (en) Steel wire
JP4857583B2 (en) Steel manufacturing method with excellent fatigue crack propagation characteristics with small strength difference in the thickness direction
JP2004143504A (en) Thick steel member having excellent fatigue crack propagating resistance, and production method therefor
JP2005298877A (en) Steel plate with excellent fatigue crack propagation characteristic, and its manufacturing method
WO2017077967A1 (en) Steel member and steel plate, and production processes therefor
KR101791324B1 (en) High-strength steel material having excellent fatigue properties, and method for producing same
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same
JP2005120397A (en) High strength forged parts with excellent drawability
JP4806887B2 (en) Steel material excellent in fatigue crack propagation characteristics and method for producing the same
JP2003129178A (en) High-strength pc steel bar superior in delayed fracture characteristic
JP2004292876A (en) High-strength forged parts superior in drawing characteristic, and manufacturing method therefor
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4806887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term