JPH1036917A - Production of high strength hot-rolled steel plate excellent in stretch-flanging property - Google Patents

Production of high strength hot-rolled steel plate excellent in stretch-flanging property

Info

Publication number
JPH1036917A
JPH1036917A JP19651196A JP19651196A JPH1036917A JP H1036917 A JPH1036917 A JP H1036917A JP 19651196 A JP19651196 A JP 19651196A JP 19651196 A JP19651196 A JP 19651196A JP H1036917 A JPH1036917 A JP H1036917A
Authority
JP
Japan
Prior art keywords
less
temperature
cooling
stretch
stretch flangeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19651196A
Other languages
Japanese (ja)
Inventor
Naoki Yoshinaga
直樹 吉永
Masayoshi Suehiro
正芳 末広
Koji Sakuma
康治 佐久間
Atsushi Itami
淳 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19651196A priority Critical patent/JPH1036917A/en
Publication of JPH1036917A publication Critical patent/JPH1036917A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the unevenness of strength and stretch-flanging property by regulating chemical components and hot-rolling condition. SOLUTION: Silicon is the most important element and acts to restrain the precipitation of cementite harmful to the stretch-flanging property. When 0.04-0.07wt.% of C concn. range, and 1.0-1.4wt.% of So concn. range, the above restraining effect is remarkable. Finish-rolling is executed at a temp. above the Ar3 transformation point or higher. The stretch-flanging property is improved by the above operation because the recrystallization and granulation of γ till starting the cooling are progressed and Ar3 point at the time of cooling after rolling is lowered to make fine the structure of a product plate. Therein, the coiling temp. is particularly important, and when it is in the range of 400-600 deg.C, the accuracy to hit a coiling temp., is increased and the unevenness of the strength and the stretch-flanging property are reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コイル内および各
コイル間での材質のばらつきが少なく、かつ優れた伸び
フランジ性(一般に、穴拡げ性ともいう)を有し、44
0MPa以上の引張強度を有する熱延鋼板を低コストで
製造する方法に関わる。その用途は、自動車、家電、建
材等であるが、特に自動車足廻り用途に好適である。
BACKGROUND OF THE INVENTION The present invention relates to a method for producing a coil, which has a small variation in the material inside the coil and between the coils, has an excellent stretch flangeability (generally referred to as a hole expanding property), and
The present invention relates to a method for manufacturing a hot-rolled steel sheet having a tensile strength of 0 MPa or more at low cost. Its use is in automobiles, home appliances, building materials, etc., but it is particularly suitable for use in undercarriage of automobiles.

【0002】[0002]

【従来の技術】地球環境保全への関心が高まる中、自動
車の燃費向上が急務となっている。そのための手段とし
て、自動車車体の軽量化が挙げられる。このため、鋼板
の高強度化による薄肉化が強く求められている。なかで
も、自動車足廻り部品として用いられる熱延鋼板は、伸
びフランジ成形等の過酷な加工を受けるため、高い強度
と同時に優れた加工性が要求される。このような背景か
ら、従来より種々の方法を用いて高強度化した加工性の
良い熱延鋼板が開発されてきた。
2. Description of the Related Art With increasing interest in global environmental protection, there is an urgent need to improve fuel efficiency of automobiles. As a means for that, there is a reduction in the weight of the vehicle body. For this reason, there is a strong demand for a thinner steel sheet by increasing its strength. Above all, hot-rolled steel sheets used as automobile undercarriage parts are subjected to severe processing such as stretch flange forming, and therefore are required to have high strength and excellent workability at the same time. From such a background, a hot-rolled steel sheet having high workability and enhanced strength has been conventionally developed by using various methods.

【0003】フェライトとマルテンサイトからなる複合
組織(Dual Phase)鋼は降伏比が低く、延性
に優れているものの比較的粗大で硬質なマルテンサイト
相がフェライト粒界に存在するため、伸びフランジ性は
十分ではない。フェライトとベイナイトからなる鋼板
は、上記の複合組織(Dual Phase)鋼よりも
延性はやや劣るが、伸びフランジ性には優れており、従
来から、種々の発明が開示されてきた。特開昭57−1
01649号公報、特公平1−46583号公報、特公
昭62−37089号公報、特公平7−62178号公
報などで開示された発明がその代表的な公知例である。
しかしながら、ベイナイトの生成は、熱延後の冷却条
件、巻取条件に極めて敏感であるため、わずかな条件の
変化によってベイナイト量やベイナイトの硬さが変化し
て、コイル内あるいは各コイル間で強度や伸びフランジ
性、延性などの材質がばらつき、歩留りが悪いという欠
点がある。
[0003] A dual phase steel composed of ferrite and martensite has a low yield ratio and excellent ductility, but a relatively coarse and hard martensite phase exists at the ferrite grain boundary, so that the stretch flangeability is low. Not enough. A steel sheet composed of ferrite and bainite is slightly inferior in ductility to the above dual structure (Dual Phase) steel, but is excellent in stretch flangeability, and various inventions have been disclosed. JP-A-57-1
The inventions disclosed in Japanese Patent Publication No. 01649, Japanese Patent Publication No. 1-46583, Japanese Patent Publication No. Sho 62-37089, and Japanese Patent Publication No. 7-62178 are typical known examples thereof.
However, the formation of bainite is extremely sensitive to the cooling and winding conditions after hot rolling, so that the amount of bainite and the hardness of bainite change due to slight changes in the conditions, and the strength within the coil or between each coil is reduced. There is a drawback in that the material such as heat resistance, stretch flangeability, and ductility varies and the yield is poor.

【0004】このような材質のばらつきに対して比較的
有利なのが、フェライトおよびパーライトからなる組織
である。特公昭61−40015号公報、特開昭58−
11734号公報および特公昭64−10563号公報
で開示されている発明がその代表的な公知例である。し
かしながら、フェライトやパーライトを微細にするこれ
らの技術によっても、最近の伸びフランジ性に対する要
求を満足するものではない。
[0004] A relatively advantageous structure against such material variations is a structure composed of ferrite and pearlite. JP-B-61-40015, JP-A-58-0015
The inventions disclosed in Japanese Patent Publication No. 11734 and Japanese Patent Publication No. Sho 64-10563 are typical known examples thereof. However, even these techniques for making ferrite and pearlite fine do not satisfy the recent demand for stretch flangeability.

【0005】パーライトの形成を抑制するための手段と
してSiの添加が挙げられる。特公平7−62178号
公報には、ベイナイトを主体とする組織におけるパーラ
イトの生成をSiを積極的に活用することによって抑制
する技術が開示されている。しかしながら、これはベイ
ナイト組織であるために、上述したように、材質のばら
つき、ひいては歩留りの低下が問題となる。
As a means for suppressing the formation of pearlite, addition of Si can be mentioned. Japanese Patent Publication No. 7-62178 discloses a technique for suppressing the generation of pearlite in a structure mainly composed of bainite by actively utilizing Si. However, since this is a bainite structure, as described above, there is a problem of variations in the material and, consequently, a decrease in yield.

【0006】[0006]

【発明が解決しようとする課題】本発明は、フェライト
およびセメンタイトの金属組織により構成される鋼の伸
びフランジ性を改善することにより、コイル内およびコ
イル間での材質、特に強度および伸びフランジ性のばら
つきの小さい高強度熱延鋼板を製造する方法を提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION The present invention is to improve the stretch flangeability of steel composed of ferrite and cementite metal structures, thereby improving the strength of the material inside and between the coils, particularly strength and stretch flangeability. It is an object of the present invention to provide a method for producing a high-strength hot-rolled steel sheet having small variations.

【0007】[0007]

【課題を解決するための手段】本発明者らは、フェライ
トおよびセメンタイトからなる組織を基本に、化学成分
や熱延条件の検討を進め、伸びフランジ性に有害なセメ
ンタイトの体積分率を著しく低減せしめることによっ
て、上記の課題を解決できることを新たに知見した。
Means for Solving the Problems The present inventors have studied the chemical composition and hot rolling conditions based on the structure composed of ferrite and cementite to significantly reduce the volume fraction of cementite harmful to stretch flangeability. It has been newly found that the above problems can be solved by exercising.

【0008】本発明は、上記知見に基づいて構成された
ものであり、その要旨とするところは下記のとおりであ
る。 (1)重量%で、C:0.04%以上、0.07%未
満、Si:1.0%超、1.4%未満、Mn:1.0%
超、1.5%以下、P:0.02%以下、S:0.00
8%以下、Al:0.005%以上、0.1%以下、
N:0.01%以下を満たす範囲で含有し、残部は鉄お
よび不可避的不純物よりなるスラブを、1000〜13
00℃で加熱し、粗圧延した後、Ar3 変態点以上の温
度にて仕上圧延を行い、仕上圧延終了後、40℃/s以
上の冷却速度で冷却して、400℃以上、600℃未満
の温度にて巻き取ること特徴とする伸びフランジ性に優
れた高強度熱延鋼板の製造方法。
[0008] The present invention has been made based on the above findings, and the gist thereof is as follows. (1) C: 0.04% or more and less than 0.07%, Si: more than 1.0%, less than 1.4%, Mn: 1.0% by weight%
Super, 1.5% or less, P: 0.02% or less, S: 0.00
8% or less, Al: 0.005% or more, 0.1% or less,
N: contained in a range satisfying 0.01% or less, and the remainder is a slab composed of iron and unavoidable impurities of 1000 to 13
After heating at 00 ° C. and rough rolling, finish rolling is performed at a temperature not lower than the Ar 3 transformation point, and after finishing rolling, cooling is performed at a cooling rate of 40 ° C./s or more, and 400 ° C. or more and less than 600 ° C. A method for producing a high-strength hot-rolled steel sheet having excellent stretch flangeability characterized by winding at a temperature of

【0009】(2)鋼成分として、さらに、重量%で、
Ca:0.0005%以上、0.0050%以下を含有
することを特徴とする上記(1)に記載の伸びフランジ
性に優れた高強度熱延鋼板の製造方法。 (3)鋼成分として、さらに、重量%で、Ti:0.0
01%以上、0.015%以下、Nb:0.001%以
上、0.015%以下、B:0.0001%以上、0.
0040%以下のうち1種類以上を 0.001%≦Ti+Nb+5B≦0.020% を満たすように含有することを特徴とする上記(1)ま
たは(2)記載の伸びフランジ性に優れた高強度熱延鋼
板の製造方法。
(2) As a steel component, further,
The method for producing a high-strength hot-rolled steel sheet having excellent stretch flangeability according to the above (1), wherein the content of Ca is 0.0005% or more and 0.0050% or less. (3) Further, as a steel component, Ti: 0.0
01% or more, 0.015% or less, Nb: 0.001% or more, 0.015% or less, B: 0.0001% or more, 0.1% or less.
The high-strength heat excellent in stretch flangeability according to the above (1) or (2), wherein at least one of 0040% or less is contained so as to satisfy 0.001% ≦ Ti + Nb + 5B ≦ 0.020%. Manufacturing method of rolled steel sheet.

【0010】(4)仕上圧延終了後、40℃/s以上の
冷却速度で冷却を開始した後、巻取温度CTに対して
(CT+30)〜(CT+130)℃の温度域で前記4
0℃/s以上の冷却速度での冷却を終了し、さらに該温
度域からCTまでを3〜20℃/sの冷却速度で冷却す
ることを特徴とする上記(1)〜(3)の何れか1項に
記載の伸びフランジ性に優れた高強度熱延鋼板の製造方
法。
(4) After the finish rolling, the cooling is started at a cooling rate of 40 ° C./s or more, and then the cooling is performed in a temperature range of (CT + 30) to (CT + 130) ° C. with respect to the winding temperature CT.
Any of (1) to (3) above, wherein cooling at a cooling rate of 0 ° C./s or more is completed, and cooling from the temperature range to CT is performed at a cooling rate of 3 to 20 ° C./s. 4. The method for producing a high-strength hot-rolled steel sheet excellent in stretch flangeability according to item 1.

【0011】以下、本発明について詳細に説明するま
ず、化学成分の限定理由について述べる。Cは強度の確
保のために必要であり、このため0.04%以上添加す
るが、多過ぎると、セメンタイト量が増加したり、セメ
ンタイト以外の第2相が生成して材質のばらつきが大き
くなったり、伸びフランジ性が劣化するので、0.07
%未満とする。強度と伸びフランジ性のバランスから、
Cは0.05〜0.065%が好ましい範囲である。
Hereinafter, the present invention will be described in detail, and first, the reasons for limiting the chemical components will be described. C is necessary for securing the strength. For this reason, C is added in an amount of 0.04% or more. However, if it is too much, the amount of cementite increases or a second phase other than cementite is generated, resulting in a large variation in the material. And the stretch flangeability deteriorates.
%. From the balance between strength and stretch flangeability,
C is preferably in the range of 0.05 to 0.065%.

【0012】Siは本発明において最も重要な元素であ
る。Siを積極的に添加することでセメンタイトの析出
が抑制されることはよく知られている。これは、Siが
セメンタイト中に固溶し難い元素であるため、セメンタ
イトが生成、成長するためには、Siがその場所から拡
散して排出されなければならないことに起因する。この
考え方に従えば、Si量は多ければ多いほどセメンタイ
トの析出は抑制されることになる。しかしながら、本発
明に至る検討によって、セメンタイト析出の抑制に対し
てSi量の最適値が存在するという極めて重要でかつ新
規の事実が明らかになった。すなわち、本発明における
C量の範囲では、Siが1.0%超、1.4%未満の範
囲で、セメンタイト析出に対する著しい抑制効果が発現
するのである。
[0012] Si is the most important element in the present invention. It is well known that the positive addition of Si suppresses the precipitation of cementite. This is because Si is an element that hardly forms a solid solution in cementite, and therefore, in order to generate and grow cementite, Si must be diffused and discharged from the place. According to this concept, the greater the amount of Si, the more the precipitation of cementite is suppressed. However, the study leading to the present invention has revealed a very important and novel fact that there is an optimum value of the amount of Si for suppressing the precipitation of cementite. That is, in the range of the C content in the present invention, when Si is more than 1.0% and less than 1.4%, a remarkable inhibitory effect on the precipitation of cementite is exhibited.

【0013】以下に、セメンタイトの析出の抑制に対し
てSi量の最適値が存在することを見出すに至った検討
内容を示す。本発明者らは、0.055%C−1.2%
Mn−0.01%P−0.001%S−0.002%C
a−0.02%Al−0.004%Nの化学成分を有す
る鋼において、Si量を0.5〜2.0%まで変化させ
てセメンタイトの析出に及ぼすSi量の影響について検
討を進めた。熱間圧延における各種条件は、次のとおり
である。すなわち、加熱温度を1160℃、仕上温度を
(Ar3 +50)〜(Ar3 +70)℃、仕上圧延後A
3 以上の温度から約60℃/sの速度で冷却し、40
0〜550℃の温度で巻取相当の熱処理を行った。得ら
れた結果を図1に示す。
The details of the study which led to the discovery of the existence of an optimum value of the amount of Si for suppressing the precipitation of cementite will be described below. We have 0.055% C-1.2%
Mn-0.01% P-0.001% S-0.002% C
In steel having a chemical composition of a-0.02% Al-0.004% N, the influence of the Si content on the precipitation of cementite was studied by changing the Si content from 0.5 to 2.0%. . Various conditions in the hot rolling are as follows. That is, the heating temperature is 1160 ° C., the finishing temperature is (Ar 3 +50) to (Ar 3 +70) ° C., and A
then cooled r 3 or more temperature at a rate of about 60 ℃ / s, 40
A heat treatment equivalent to winding was performed at a temperature of 0 to 550 ° C. The results obtained are shown in FIG.

【0014】図1より、セメンタイトの析出を抑制する
ために適切なSi量の範囲が存在することが判明した。
この理由は必ずしも明らかではないが、次のように考え
られる。すなわち、Si量が増加すると熱間圧延後のγ
→α変態が遅滞され、結果としてα+γの2相域が拡大
する。したがって一定温度で巻き取った場合、Si量が
多すぎるとγ→α変態の途中で巻取温度に保持されるこ
ととなり、パーライトの量が増加してしまうと推測され
る。さらに、Siは強度を確保するためにも重要であ
る。
From FIG. 1, it has been found that there is an appropriate range of the amount of Si for suppressing the precipitation of cementite.
The reason for this is not necessarily clear, but is considered as follows. That is, when the amount of Si increases, γ after hot rolling
→ The α transformation is delayed, and as a result, the two-phase region of α + γ is expanded. Therefore, when winding is performed at a constant temperature, if the amount of Si is too large, the winding temperature is maintained during the γ → α transformation, and it is estimated that the amount of pearlite increases. Further, Si is important for ensuring strength.

【0015】以上のことから、Si量は1.0%超、
1.4%未満とする。図1より明らかなとおり、1.1
〜1.3%が最も好ましい範囲である。Mnは強度確保
のために、さらにはフェライト変態を抑制することを通
じてフェライト組織を微細化し、またセメンタイトを微
細分散させる効果を有するので、1.0%超添加する。
しかし、1.5%を超えて添加すると、偏析により組織
が不均一となり、またセメンタイト以外の硬質第2相が
生成することによって材質がばらついたり、さらには溶
接性を劣化させたり、合金コストの増大を招くので、
1.5%を上限とする。
From the above, the Si content exceeds 1.0%,
It shall be less than 1.4%. As is clear from FIG.
~ 1.3% is the most preferred range. Mn has an effect of refining the ferrite structure by suppressing the ferrite transformation and also finely dispersing the cementite in order to secure the strength, and is added in an amount of more than 1.0%.
However, if added in excess of 1.5%, the structure becomes non-uniform due to segregation, and the formation of a hard second phase other than cementite causes the material to vary, further deteriorates the weldability, and reduces the cost of the alloy. Because it will increase
The upper limit is 1.5%.

【0016】Pは偏析の激しい元素であり、脆性破壊が
問題となるので、また溶接性も低下するので、低いほど
望ましい。したがって、Pは0.02%を上限とする
が、さらに高い加工性を必要とする用途には、0.01
%未満とするのが好ましい。SはMnSなどの伸長した
化合物を形成し、伸びフランジ性を著しく劣化させるの
で、低いほどよい。したがって、Sの上限を0.008
%とする。なお、より高い伸びフランジ性を必要とする
用途には0.004%以下とするのが好ましく、さらに
高度の難加工用途には0.002%以下とするのが、さ
らに好ましい。
P is a highly segregated element, which causes a problem of brittle fracture and lowers the weldability. Therefore, the upper limit of P is 0.02%, but for applications requiring higher workability, 0.01% is required.
% Is preferred. Since S forms an elongated compound such as MnS and remarkably deteriorates stretch flangeability, the lower the S, the better. Therefore, the upper limit of S is set to 0.008.
%. In addition, it is preferably 0.004% or less for applications requiring higher stretch flangeability, and more preferably 0.002% or less for more difficult applications.

【0017】Alは脱酸剤として少なくとも0.005
%添加する。一方、0.1%を超えて添加しても脱酸の
効果は飽和し、むしろ介在物が増加して伸びフランジ性
を劣化させるので、0.1%を上限とする。脱酸効果と
加工性を程よくバランスさせるには、0.01〜0.0
5%の範囲とするのがよい。Nは伸びフランジ性を劣化
させるので、上限を0.01%とする。さらに高い伸び
フランジ性を必要とする用途には0.005%以下とす
るのが好ましい。
Al is at least 0.005 as a deoxidizing agent.
%Added. On the other hand, the addition of more than 0.1% saturates the deoxidizing effect, and rather increases the inclusions to deteriorate the stretch flangeability, so the upper limit is 0.1%. To properly balance the deoxidizing effect and processability, 0.01 to 0.0
It is better to be in the range of 5%. Since N deteriorates stretch flangeability, the upper limit is made 0.01%. For applications requiring higher stretch flangeability, the content is preferably 0.005% or less.

【0018】Caは硫化物の形態制御のために積極的に
添加してもよい。0.0005%未満ではこの効果が十
分でないので、Caの下限を0.0005%とする。ま
た、0.0050%を超えて添加しても格段の効果はな
く、むしろ介在物が増加して伸びフランジ性を劣化させ
るので、0.0050%を上限とする。Ti、Nb、B
はNの悪影響を無害化したり、組織を微細にするのに有
効であるので、1種類以上を少量添加してもよい。すな
わち、Ti、Nbは0.001〜0.015%の範囲
で、Bは0.0001〜0.0040%の範囲で、0.
001%≦Ti+Nb+5B≦0.020%を満たすよ
うに添加する。各々の範囲未満では、Nを固定したり、
組織を微細にする効果が十分ではなく、また各々の範囲
を超えて添加すると、N以外の元素と化合物を形成し、
材質ばらつきの原因となる。
Ca may be positively added for controlling the form of sulfide. If less than 0.0005%, this effect is not sufficient, so the lower limit of Ca is set to 0.0005%. Further, even if added in excess of 0.0050%, there is no remarkable effect, but rather, inclusions increase to deteriorate the stretch flangeability, so the upper limit is 0.0050%. Ti, Nb, B
Is effective in rendering the harmful effects of N harmless and in making the structure finer, so one or more kinds may be added in a small amount. That is, Ti and Nb are in the range of 0.001 to 0.015%, and B is in the range of 0.0001 to 0.0040%.
001% ≦ Ti + Nb + 5B ≦ 0.020%. Below each range, N is fixed,
The effect of refining the structure is not sufficient, and when added beyond the respective ranges, compounds with elements other than N are formed,
It may cause material variation.

【0019】上記成分を得るための原料は特に限定しな
いが、鉄鉱石を原料として、高炉、転炉法により成分を
調製する方法以外に、スクラップを原料としてもよい
し、これを電炉で溶製してもよい。スクラップを原料の
全部または一部として使用する際には、Cu、Cr、N
i、Sn、Sb、Zn、Pb、Mo等の元素を合計で1
%以下含有してもよい。
The raw materials for obtaining the above-mentioned components are not particularly limited. However, in addition to the method of preparing the components by using a blast furnace and a converter using iron ore, scrap may be used as a raw material, and the scrap may be melted in an electric furnace. May be. When scrap is used as all or a part of the raw material, Cu, Cr, N
Elements such as i, Sn, Sb, Zn, Pb, Mo, etc.
% Or less.

【0020】次に、製造プロセスに関する限定理由を述
べる。熱間圧延に供するスラブは特に限定するものでは
ない。すなわち、連続鋳造スラブや薄スラブキャスター
で製造したものなどであればよい。また、鋳造後に直ち
に熱間圧延を行う連続鋳造−直接圧延(CC−DR)の
ようなプロセスにも適合する。
Next, the reasons for limitation on the manufacturing process will be described. The slab to be subjected to hot rolling is not particularly limited. That is, it may be any as long as it is manufactured using a continuous cast slab or a thin slab caster. It is also suitable for processes such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting.

【0021】熱間圧延における加熱温度は1000〜1
300℃の範囲とする。1300℃を超えると巻取後の
酸洗性が劣化したり、表面性状が劣悪となる場合があ
る。また、1000℃未満では圧延に負荷がかかり、ま
た仕上温度の確保も困難になる。良好な酸洗性を得るた
めには1200℃以下とすることが好ましい。スラブを
熱間にて粗圧延した後、曲率1.5m以下の曲げ加工を
行ってもよい。すなわち、950〜1150℃の温度で
コイル状に巻き取り、0.5秒以上、30分以下保持し
た後、巻き取り時の巻き終わり端から巻き戻し、仕上熱
延を行う。このように粗圧延バーをコイル状に巻き取る
ことによって、保熱の効果が生ずるため、コイル内での
温度のばらつきが軽減され、均一な材質が得られる。さ
らに、曲げ加工によってスケールが除去されるので、酸
洗性や表面性状が良好となる。本発明においては、Si
を多量に含有しており、赤スケールや雲形模様が発生し
やすいので、このような粗圧延後の曲げ加工は特に重要
な意味を持つ。
The heating temperature in hot rolling is 1000 to 1
The range is 300 ° C. If it exceeds 1300 ° C., the pickling property after winding may be deteriorated, or the surface properties may be deteriorated. On the other hand, if the temperature is lower than 1000 ° C., a load is applied to the rolling, and it is difficult to secure a finishing temperature. In order to obtain good pickling properties, the temperature is preferably 1200 ° C. or lower. After roughly rolling the slab hot, a bending process with a curvature of 1.5 m or less may be performed. That is, after winding in a coil shape at a temperature of 950 to 1150 ° C. and holding for 0.5 seconds or more and 30 minutes or less, rewinding is performed from the end of winding at the time of winding, and finish hot rolling is performed. By winding the rough rolling bar into a coil as described above, a heat retention effect is generated, so that temperature variation in the coil is reduced, and a uniform material is obtained. Furthermore, since scale is removed by bending, pickling properties and surface properties are improved. In the present invention, Si
, And a red scale or a cloud pattern is likely to be generated, and thus the bending after the rough rolling is particularly important.

【0022】さらに、一旦コイル状に巻き取った粗バー
を先行する粗バーに接合し、連続的に仕上圧延を行って
もよい。連続的に仕上圧延を行うことによって、コイル
長手方向の温度分布が均一となり、全長にわたって優れ
た材質が確保されることは言うまでもない。さらに、コ
イル状に巻き取られた粗圧延バーは、保温または加熱能
力を有する設備内に移された後、仕上圧延に供されても
よい。
Further, the rough bar once wound into a coil shape may be joined to the preceding rough bar, and finish rolling may be performed continuously. It goes without saying that by performing finish rolling continuously, the temperature distribution in the longitudinal direction of the coil becomes uniform, and excellent material is secured over the entire length. Furthermore, the rough rolling bar wound in a coil shape may be subjected to finish rolling after being transferred into a facility having a heat retaining or heating ability.

【0023】仕上圧延はAr3 変態点以上で行う。Ar
3 を下回る温度で熱延されると、伸びフランジ性が劣化
し、板厚精度も低下する。Ar3 +50℃以上の温度で
仕上げるのがより好ましい。これは、冷却開始までにγ
の再結晶および粒成長が進行し、圧延後の冷却時のAr
3 が低下し、製品板の組織が微細となるため、伸びフラ
ンジ性が向上するからである。
The finish rolling is performed at the Ar 3 transformation point or higher. Ar
When hot rolling is performed at a temperature lower than 3 , the stretch flangeability deteriorates and the thickness accuracy also decreases. It is more preferable to finish at a temperature of Ar 3 + 50 ° C. or higher. This is γ by the start of cooling.
Recrystallization and grain growth progress, and Ar during cooling after rolling
3 is reduced, and the structure of the product plate becomes finer, so that the stretch flangeability is improved.

【0024】仕上圧延後は40℃/s以上の冷却速度で
急速冷却する。この冷却はAr3 以上の温度から行うの
が好ましい。Ar3 を下回る温度から冷却したのでは、
冷却開始までの放冷によってγ→α変態が進行するが、
まだ過冷度の低い状態であるため、初期のフェライト組
織は大きくなる。さらに、その後の急冷によって、より
低温で変態するフェライト組織は微細となるため、結果
として不均一なフェライト組織となり、伸びフランジ性
が劣化することになる。40℃/s以上の冷却速度は、
組織の微細化および均一化のために必須である。
After the finish rolling, rapid cooling is performed at a cooling rate of 40 ° C./s or more. This cooling is preferably performed from a temperature of Ar 3 or more. By cooling from a temperature below Ar 3 ,
The γ → α transformation proceeds by cooling down to the start of cooling,
Since the degree of supercooling is still low, the initial ferrite structure becomes large. Furthermore, since the ferrite structure transformed at a lower temperature by the subsequent quenching becomes fine, the ferrite structure becomes uneven as a result, and the stretch flangeability deteriorates. The cooling rate of 40 ° C./s or more
It is essential for making the structure finer and more uniform.

【0025】熱延後の急速冷却の終点温度は、狙いとす
る巻取温度(CT)に対して設定すればよいが、特に巻
取温度に対して(CT+30)〜(CT+130)℃の
温度範囲とし、さらに巻き取りまでを3〜20℃/sの
緩冷却とすることにより、巻取温度の的中精度を向上さ
せ、コイル内およびコイル間での材質のばらつきをより
一層低減させることができる。この急速冷却の終点温度
が(CT+30)℃未満となったり、緩冷却の冷却速度
が20℃/sを超えると、CTの的中精度が向上する効
果が小さくなる。また、急速冷却の終点温度が(CT+
130)℃を超えたり、緩冷却の冷却速度が3℃/sを
下回ると、生産性が低下するだけでなく、セメンタイト
析出量の増加や組織の粗大化を誘発する。
The end point temperature of the rapid cooling after hot rolling may be set with respect to a target winding temperature (CT), and in particular, a temperature range of (CT + 30) to (CT + 130) ° C. with respect to the winding temperature. Further, by performing gentle cooling at 3 to 20 ° C./s until winding, accuracy of the target of the winding temperature can be improved, and variation in the material inside and between the coils can be further reduced. . When the end point temperature of the rapid cooling is lower than (CT + 30) ° C. or the cooling rate of the slow cooling exceeds 20 ° C./s, the effect of improving the accuracy of CT accuracy is reduced. In addition, the end point temperature of rapid cooling is (CT +
If the temperature exceeds 130) ° C. or the cooling rate of the slow cooling is lower than 3 ° C./s, not only does the productivity decrease, but also the cementite precipitation increases and the structure becomes coarse.

【0026】巻取温度は本発明において特に重要であ
る。巻取温度が400℃未満では、巻取温度の的中精度
が著しく低下し、巻取温度のばらつきによって第2相が
セメンタイト、マルテンサイト、ベイナイトなどに種々
変化し、強度や伸びフランジ性が大きくばらつき、目的
とする鋼板材質が得られない。一方、巻取温度が600
℃を超えると、粗大なパーライトが析出するため、伸び
フランジ性が劣悪となるので、600℃を上限とする。
巻取温度の的中精度をさらに向上させ、材質のばらつき
を低減し、優れた伸びフランジ性を確保するためには、
480〜550℃が好ましい範囲である。
The winding temperature is of particular importance in the present invention. If the winding temperature is lower than 400 ° C., the accuracy of the winding temperature is significantly reduced, and the second phase is variously changed to cementite, martensite, bainite, etc. due to the variation of the winding temperature, and the strength and stretch flangeability are large. Variations and the desired steel material cannot be obtained. On the other hand, when the winding temperature is 600
If the temperature exceeds ℃, coarse pearlite is precipitated, and the stretch flangeability becomes poor. Therefore, the upper limit is set to 600 ℃.
In order to further improve the accuracy of the target temperature of the winding temperature, reduce the variation in the material, and ensure excellent stretch flangeability,
480-550 ° C is a preferred range.

【0027】本発明で得られる組織は、面積率で95%
超のフェライトと5%未満のセメンタイトにより構成さ
れる。また、フェライトはポリゴナルフェライトおよび
アシキュラーフェライトの両方を含む。さらに、2%未
満のベイナイト相を含有してもよい。優れた伸びフラン
ジ性を得るためには、フェライト分率を98%以上とす
るのが好ましい。
The structure obtained by the present invention has an area ratio of 95%
It is composed of extra ferrite and less than 5% cementite. The ferrite includes both polygonal ferrite and acicular ferrite. Further, it may contain less than 2% of a bainite phase. In order to obtain excellent stretch flangeability, the ferrite fraction is preferably 98% or more.

【0028】調質圧延は目的に応じて行う。すなわち、
形状矯正や表面粗度の調整、さらには非時効性の確保の
観点から、圧下率0.5%以上の調質圧延を施すことが
好ましい。なお、調質圧延は、仕上熱延後にインライン
で行ってもよいし、巻き取り後や酸洗後にオフラインで
行ってもよい。本発明による熱延鋼板は、巻き取り後や
酸洗後あるいは調質圧延後にそのまま製品としてもよい
し、これに種々の表面処理を施してもよい。さらに、こ
の熱延鋼板を冷延素材として用いても構わない。
Temper rolling is performed according to the purpose. That is,
From the viewpoint of shape correction and surface roughness adjustment, and further ensuring non-aging property, it is preferable to perform temper rolling at a rolling reduction of 0.5% or more. Note that the temper rolling may be performed in-line after finish hot rolling, or may be performed off-line after winding or pickling. The hot-rolled steel sheet according to the present invention may be used as it is after winding, after pickling, or after temper rolling, or may be subjected to various surface treatments. Further, the hot-rolled steel sheet may be used as a cold-rolled material.

【0029】本発明によって得られる熱延鋼板は、強度
が440MPa以上で、伸びフランジ性はもちろんのこ
と、溶接性や疲労特性も優れている。
The hot-rolled steel sheet obtained by the present invention has a strength of 440 MPa or more and is excellent not only in stretch flangeability but also in weldability and fatigue properties.

【0030】[0030]

【発明の実施の形態】以下に、本発明の実施の形態を実
施例により具体的に述べる。表1、表2(表1のつづ
き)に示す化学成分を有するスラブを、実機にて加熱温
度約1170℃として粗圧延に供し、最終仕上圧延温度
は(Ar3 +60)℃以上、仕上圧延後はAr3 以上の
温度から50〜70℃/sの冷却速度で(CT+60)
〜(CT+80)℃まで急冷し、その後、約10℃/s
で冷却して約500℃で巻き取った。板厚は2.6mm
とした。1.2%の調質圧延を施した後、引張試験およ
び穴拡げ試験に供した。引張試験は、供試材をJIS
Z 2201記載の5号試験片に加工し、JIS Z
2241記載の試験方法に従って行った。また、穴拡げ
試験は、打ち抜きクリアランス12%の打ち抜き加工に
よって、90×90mmの板の中央に直径10mmの穴
を開け、打ち抜きままの状態でバリをダイス側にして、
頂角60°の円錐ポンチを用いて行った。なお、伸びフ
ランジ性の指標となる穴拡げ比は、元穴径をdo、試験
後の穴径をdとしたときのd/doの値で評価した。結
果を表3に示す。これより明らかなとおり、本発明の範
囲内の化学成分を有する鋼においては優れた伸びフラン
ジ性(高い穴拡げ比)と延性を有することが分かる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be specifically described below by way of examples. A slab having the chemical components shown in Tables 1 and 2 (continued from Table 1) was subjected to rough rolling at a heating temperature of about 1170 ° C. in an actual machine, and the final finish rolling temperature was (Ar 3 +60) ° C. or higher, and after the finish rolling. At a cooling rate of 50 to 70 ° C./s from a temperature of Ar 3 or more (CT + 60)
~ (CT + 80) ° C, then about 10 ° C / s
And cooled at about 500 ° C. The board thickness is 2.6mm
And After subjecting to 1.2% temper rolling, it was subjected to a tensile test and a hole expanding test. In the tensile test, the test material was JIS
No. 5 test piece described in Z 2201
The test was performed according to the test method described in H.241 In the hole expanding test, a hole having a diameter of 10 mm was formed in the center of a 90 × 90 mm plate by punching with a punching clearance of 12%.
The test was performed using a conical punch having a vertical angle of 60 °. The hole expansion ratio as an index of stretch flangeability was evaluated by the value of d / do when the original hole diameter was do and the hole diameter after the test was d. Table 3 shows the results. As is clear from this, it is understood that the steel having the chemical composition within the range of the present invention has excellent stretch flangeability (high hole expansion ratio) and ductility.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】次に、表1、表2の鋼B、D、E、G、
I、Jを用いて、実験室において加熱温度を約1200
℃として粗圧延を行った。仕上圧延温度はAr3 以上と
し、Ar3 以上の温度から約60℃/sで冷却した後、
巻取温度を種々変化させたときの材質の変化について検
討した。板厚は2.9mmとした。表4にその結果を示
す。本発明によれば、穴拡げ比および強度の巻取温度依
存性が極めて小さく、かつ優れた材質の熱延鋼板が得ら
れる。また、巻取温度を温度的中の安定領域である48
0℃以上とすれば、優れた特性が得られるだけでなく、
歩留りも向上する。なお、比較例の試料Iでは、巻取温
度が430℃で穴拡げ比が2.3と良好な値を示すもの
の、巻取温度の高温化とともにセメンタイト量が増加
し、穴拡げ比が低下した。すなわち、良好な伸びフラン
ジ性を得るための巻取温度の範囲が狭く、このことが歩
留り低下の原因となるという問題を有している。
Next, steels B, D, E, G, and
Using I and J, the heating temperature was set to about 1200 in the laboratory.
C. and rough rolling was performed. The finish rolling temperature is Ar 3 or more, and after cooling at about 60 ° C./s from the temperature of Ar 3 or more,
The change of the material when the winding temperature was changed variously was examined. The plate thickness was 2.9 mm. Table 4 shows the results. ADVANTAGE OF THE INVENTION According to this invention, the hot-rolled steel plate of an excellent material is obtained, while the dependence of the hole expansion ratio and the strength on the winding temperature is extremely small. Also, the winding temperature is a stable region in the temperature range of 48.
When the temperature is 0 ° C. or higher, not only excellent characteristics can be obtained, but also
Yield also improves. In addition, in the sample I of the comparative example, the winding temperature was 430 ° C., and the hole expansion ratio showed a good value of 2.3, but as the winding temperature was increased, the amount of cementite increased, and the hole expansion ratio decreased. . That is, there is a problem that the range of the winding temperature for obtaining good stretch flangeability is narrow, which causes a decrease in yield.

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
伸びフランジ性と延性に優れ、しかもコイル内あるいは
各コイル間での材質の均一性にも優れた高強度熱延鋼板
を提供することが可能であり、例えば自動車車体の軽量
化を通じて地球環境保全にも寄与することができるた
め、本発明は工業的に優れた発明といえる。
As described above, according to the present invention,
It is possible to provide a high-strength hot-rolled steel sheet that has excellent stretch flangeability and ductility, and also has excellent material uniformity within the coil or between each coil. Therefore, the present invention can be said to be an industrially excellent invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に到る基礎実験で得られたセメンタイト
分率に及ぼすSi量と巻取温度の影響を示す図である。
FIG. 1 is a diagram showing the influence of the Si content and the winding temperature on the cementite fraction obtained in a basic experiment leading to the present invention.

フロントページの続き (72)発明者 伊丹 淳 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内Continued on the front page (72) Inventor Jun Itami 1 Kimitsu, Kimitsu City Nippon Steel Corporation Kimitsu Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.04%以上、0.07%未満、 Si:1.0%超、1.4%未満、 Mn:1.0%超、1.5%以下、 P:0.02%以下、 S:0.008%以下、 Al:0.005%以上、0.1%以下、 N:0.01%以下 を満たす範囲で含有し、残部は鉄および不可避的不純物
よりなるスラブを、1000〜1300℃で加熱し、粗
圧延した後、Ar3 変態点以上の温度にて仕上圧延を行
い、仕上圧延終了後、40℃/s以上の冷却速度で冷却
して、400℃以上、600℃未満の温度にて巻き取る
こと特徴とする伸びフランジ性に優れた高強度熱延鋼板
の製造方法。
1. In weight%, C: 0.04% or more and less than 0.07%, Si: more than 1.0%, less than 1.4%, Mn: more than 1.0%, 1.5% or less , P: 0.02% or less, S: 0.008% or less, Al: 0.005% or more, 0.1% or less, N: 0.01% or less, the balance being iron and unavoidable The slab composed of the target impurities is heated at 1000 to 1300 ° C., coarsely rolled, finish-rolled at a temperature not lower than the Ar 3 transformation point, and cooled at a cooling rate of 40 ° C./s or more after finish rolling. And a method for producing a high-strength hot-rolled steel sheet having excellent stretch flangeability, wherein the hot-rolled steel sheet is wound at a temperature of 400 ° C. or more and less than 600 ° C.
【請求項2】 鋼成分として、さらに、重量%で、 Ca:0.0005%以上、0.0050%以下 を含有することを特徴とする請求項1記載の伸びフラン
ジ性に優れた高強度熱延鋼板の製造方法。
2. The high-strength heat excellent in stretch flangeability according to claim 1, wherein the steel component further contains, by weight%, Ca: 0.0005% or more and 0.0050% or less. Manufacturing method of rolled steel sheet.
【請求項3】 鋼成分として、さらに、重量%で、 Ti:0.001%以上、0.015%以下、 Nb:0.001%以上、0.015%以下、 B:0.0001%以上、0.0040%以下 のうち1種類以上を 0.001%≦Ti+Nb+5B≦0.020% を満たすように含有することを特徴とする請求項1また
は2記載の伸びフランジ性に優れた高強度熱延鋼板の製
造方法。
3. As a steel component, further, by weight%, Ti: 0.001% or more, 0.015% or less, Nb: 0.001% or more, 0.015% or less, B: 0.0001% or more The high-strength heat excellent in stretch flangeability according to claim 1 or 2, wherein at least one of the following components is contained so as to satisfy 0.001% ≦ Ti + Nb + 5B ≦ 0.020%. Manufacturing method of rolled steel sheet.
【請求項4】 仕上圧延終了後、40℃/s以上の冷却
速度で冷却を開始した後、巻取温度CTに対して(CT
+30)〜(CT+130)℃の温度域で前記40℃/
s以上の冷却速度での冷却を終了し、さらに該温度域か
らCTまでを3〜20℃/sの冷却速度で冷却すること
を特徴とする請求項1〜3の何れか1項に記載の伸びフ
ランジ性に優れた高強度熱延鋼板の製造方法。
4. After the finish rolling, cooling is started at a cooling rate of 40 ° C./s or more, and then (CT
+30) to (CT + 130) ° C.
The cooling at a cooling rate of s or more is terminated, and cooling from the temperature range to CT is performed at a cooling rate of 3 to 20 ° C./s. Manufacturing method of high strength hot rolled steel sheet with excellent stretch flangeability.
JP19651196A 1996-07-25 1996-07-25 Production of high strength hot-rolled steel plate excellent in stretch-flanging property Pending JPH1036917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19651196A JPH1036917A (en) 1996-07-25 1996-07-25 Production of high strength hot-rolled steel plate excellent in stretch-flanging property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19651196A JPH1036917A (en) 1996-07-25 1996-07-25 Production of high strength hot-rolled steel plate excellent in stretch-flanging property

Publications (1)

Publication Number Publication Date
JPH1036917A true JPH1036917A (en) 1998-02-10

Family

ID=16358972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19651196A Pending JPH1036917A (en) 1996-07-25 1996-07-25 Production of high strength hot-rolled steel plate excellent in stretch-flanging property

Country Status (1)

Country Link
JP (1) JPH1036917A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023624A1 (en) * 1999-09-29 2001-04-05 Nkk Corporation Sheet steel and method for producing sheet steel
JP2002161339A (en) * 2000-11-24 2002-06-04 Kawasaki Steel Corp High tensile-strength hot-rolled steel sheet superior in formability and manufacturing method therefor
JP2008266726A (en) * 2007-04-20 2008-11-06 Nippon Steel Corp High strength hot rolled steel sheet with excellent blankability, and its manufacturing method
WO2014002941A1 (en) 2012-06-26 2014-01-03 新日鐵住金株式会社 High-strength hot-rolled steel sheet and process for producing same
KR20140044931A (en) 2011-08-31 2014-04-15 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet for cold-rolled steel sheet, hot-rolled steel sheet for hot-dipped galvanized steel sheet, method for producing hot-rolled steel sheet for cold-rolled steel sheet, and method for producing hot-rolled steel sheet for hot-dipped galvanized steel sheet
CN114875337A (en) * 2022-05-31 2022-08-09 东风商用车有限公司 Method for obtaining high-strength steel roll-formed rim

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023624A1 (en) * 1999-09-29 2001-04-05 Nkk Corporation Sheet steel and method for producing sheet steel
US6652670B2 (en) 1999-09-29 2003-11-25 Tadashi Inoue Steel sheet and method for manufacturing the same
JP2002161339A (en) * 2000-11-24 2002-06-04 Kawasaki Steel Corp High tensile-strength hot-rolled steel sheet superior in formability and manufacturing method therefor
JP4639464B2 (en) * 2000-11-24 2011-02-23 Jfeスチール株式会社 High-tensile hot-rolled steel sheet with excellent workability and method for producing the same
JP2008266726A (en) * 2007-04-20 2008-11-06 Nippon Steel Corp High strength hot rolled steel sheet with excellent blankability, and its manufacturing method
KR20140044931A (en) 2011-08-31 2014-04-15 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet for cold-rolled steel sheet, hot-rolled steel sheet for hot-dipped galvanized steel sheet, method for producing hot-rolled steel sheet for cold-rolled steel sheet, and method for producing hot-rolled steel sheet for hot-dipped galvanized steel sheet
US11098392B2 (en) 2011-08-31 2021-08-24 Jfe Steel Corporation Hot rolled steel sheet for cold rolled steel sheet, hot rolled steel sheet for galvanized steel sheet, and method for producing the same
WO2014002941A1 (en) 2012-06-26 2014-01-03 新日鐵住金株式会社 High-strength hot-rolled steel sheet and process for producing same
KR20150023699A (en) 2012-06-26 2015-03-05 신닛테츠스미킨 카부시키카이샤 High-strength hot-rolled steel sheet and process for producing same
US9803266B2 (en) 2012-06-26 2017-10-31 Nippon Steel & Sumitomo Metal Corporation High-strength hot-rolled steel sheet and method for producing the same
CN114875337A (en) * 2022-05-31 2022-08-09 东风商用车有限公司 Method for obtaining high-strength steel roll-formed rim

Similar Documents

Publication Publication Date Title
CA2941202C (en) Method for producing a high-strength flat steel product
CN110959049B (en) Flat steel product with good aging resistance and method for the production thereof
JP5582274B2 (en) Cold-rolled steel sheet, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP7239685B2 (en) Hot-rolled steel sheet with high hole expansion ratio and method for producing the same
CN111684091B (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing these
JP4300793B2 (en) Manufacturing method of hot-rolled steel sheet and hot-dip steel sheet with excellent material uniformity
JP2003105446A (en) High strength hot rolled steel sheet, and production method therefor
JPH0432512A (en) Production of hot rolled high strength dual-phase steel plate for working
CN113840930A (en) Cold rolled and coated steel sheet and method for manufacturing the same
JPH1036917A (en) Production of high strength hot-rolled steel plate excellent in stretch-flanging property
JP2004052071A (en) High tensile strength cold rolled steel sheet with composite structure having excellent stretch flanging property, strength-ductility balance and strain age hardenability, and method of producing the same
JP5678695B2 (en) High strength steel plate and manufacturing method thereof
JP3168665B2 (en) Hot-rolled high-strength steel sheet with excellent workability and its manufacturing method
JP2007092154A (en) Method for manufacturing ultrahigh-strength cold-rolled steel sheet superior in formability
JPH06264183A (en) Hot rolled high tensile strength steel plate with high workability and its production
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JP2022515107A (en) High-strength steel plate with excellent ductility and workability, and its manufacturing method
JPH0344423A (en) Manufacture of galvanized hot rolled steel sheet having excellent workability
JP2002080935A (en) High strength thin steel sheet having excellent workability and its production method
JP7329550B2 (en) Hot-rolled plated steel sheet with high strength, high formability, and excellent bake hardenability, and method for producing the same
JP3596045B2 (en) Manufacturing method of bake hardening type cold rolled steel sheet with excellent formability
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JP3446001B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability
JPH06264181A (en) Hot rolled high tensile strength steel plate with high workability and its production
JP2003112204A (en) High-strength hot-rolled steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030805