JPH04333524A - Production of high strength dual-phase steel sheet having superior ductility - Google Patents

Production of high strength dual-phase steel sheet having superior ductility

Info

Publication number
JPH04333524A
JPH04333524A JP13210791A JP13210791A JPH04333524A JP H04333524 A JPH04333524 A JP H04333524A JP 13210791 A JP13210791 A JP 13210791A JP 13210791 A JP13210791 A JP 13210791A JP H04333524 A JPH04333524 A JP H04333524A
Authority
JP
Japan
Prior art keywords
steel sheet
austenite
steel
ductility
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13210791A
Other languages
Japanese (ja)
Inventor
Manabu Takahashi
学 高橋
Osamu Akisue
秋末 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13210791A priority Critical patent/JPH04333524A/en
Publication of JPH04333524A publication Critical patent/JPH04333524A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high strength steel sheet excellent in ductility by regulating the components in a steel and the annealing method after cold rolling, respectively, and controlling the amount of retained austenite in a steel sheet. CONSTITUTION:A steel having a composition containing, by weight, 0.05-0.12% C, 0.5-3.0% Si, and 0.5-2.5% Mn is cold-rolled, heated up to a temp. in the two- phase region, and subjected, as subsequent cooling, to slow cooling down to 550-700 deg.C at a rate of 1-10 deg.C/sec, to rapid cooling down to 200-450 deg.C at a rate of 10-200 deg.C/sec, and then to holding at 300-450 deg.C for a proper time, by which the microstructure of the resulting steel sheet can be controlled. By this method, the steel sheet containing fetrite and bainite as main phases and further containing 3-10% austenite stable at room temp. can be produced, and the steel sheet combining high strength with high ductility can be produced. Moreover, the thickness of an automobile steel sheet for working can be reduced, and this steel sheet can contribute to the lightening in weight of the automobile body.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は優れた成形性を有する高
強度鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing high-strength steel sheets having excellent formability.

【0002】0002

【従来の技術】近年、自動車の快適性、安全性に加えて
車体の軽量化に対する要求が大きくなってきている。こ
れは地球規模で考えた省エネルギー及び環境問題に対す
る要求であり、軽量化による車両燃費の向上とCO2な
どの有害排気ガスの減少をその目的としている。このよ
うな目的を達成させるためには車体構造に利用される材
料の強度を向上させその材料厚みを減少させることか、
新たな低比重の材料を用いることなどが必要である。新
たな低比重材料(例えばAl、Mg等)を利用する場合
、価格、安定供給量の観点から、従来車体構成材料の中
心として利用されてきた鋼板と共存状態での利用が前提
となると考えられる。この場合に最も問題となるのはス
クラップのリサイクルであり、他材料と混合した鋼板ス
クラップはその後の利用では多くのエネルギー、コスト
を費やして再利用される必要がある。従って地球全体と
してのエネルギーミニマム、環境保持を目指す上では特
殊な部位を除いては、単一材料(すなわち鋼材)での軽
量化対策が非常に重要となり、鋼材のより一層の高強度
化が期待されている。上記要求に加えて、車体構成部位
の一体成形は、製造工程の簡略化、連続化の為に重要な
技術的要請と考えられる。このような近代化されつつあ
る成形工程で用いられる鋼材の中で、特に薄鋼板を考え
ると、良好な成形性を有することがその鋼板の選択基準
となる。薄鋼板の成形性の良否は、伸び、ランクフォー
ドの塑性歪比(r値)、加工硬化指数(n値)や降伏強
度で判断され、複雑な部品の一体成形の為には伸びやn
値が高いことが一つの必要条件となる。伸びやn値の大
きな鋼板の例としては、従来フェライトとマルテンサイ
ト2相組織のDual  Phase(DP)鋼が知ら
れている。DP鋼は特公昭56−18051号公報や特
公昭59−45735号公報などで示されているように
50〜80kgf/mm2で最大30〜35%程度の全
伸びを得ることができる。しかしながら従来比較的低強
度(35〜45kgf/mm2)の薄鋼板が用いられて
いる様な複雑な加工を要求される部位への適用では十分
な強度−延性バランスとは言い難い。また過時効帯を有
する既存の連続焼鈍ラインでは50〜60kgf/mm
2程度のDP鋼を製造するに適した工程条件が達成でき
ないといった難点もある。
BACKGROUND OF THE INVENTION In recent years, there has been an increasing demand for greater comfort and safety of automobiles, as well as for lighter vehicle bodies. This is a demand for energy conservation and environmental issues considered on a global scale, and aims to improve vehicle fuel efficiency through weight reduction and reduce harmful exhaust gases such as CO2. In order to achieve this goal, it is necessary to improve the strength of the materials used in the car body structure and reduce the thickness of the materials.
It is necessary to use new materials with low specific gravity. When using new low-density materials (e.g. Al, Mg, etc.), from the viewpoint of price and stable supply, it is considered that they must be used in coexistence with steel sheets, which have traditionally been used as the main material for car bodies. . In this case, the most important problem is the recycling of scrap, and steel plate scrap mixed with other materials needs to be reused after spending a lot of energy and cost. Therefore, in order to minimize energy and preserve the environment for the entire planet, it is extremely important to use a single material (i.e., steel) to reduce weight, except for special parts, and it is expected that steel materials will have even higher strength. has been done. In addition to the above requirements, integral molding of vehicle body components is considered to be an important technical requirement for simplifying and continuous manufacturing processes. Among the steel materials used in such modernized forming processes, especially considering thin steel sheets, the criterion for selecting the steel sheet is that it has good formability. The formability of a thin steel sheet is judged by its elongation, Lankford plastic strain ratio (r value), work hardening index (n value), and yield strength.
One necessary condition is that the value is high. Dual Phase (DP) steel, which has a two-phase structure of ferrite and martensite, is conventionally known as an example of a steel plate with a large elongation or a large n value. As shown in Japanese Patent Publications No. 56-18051 and Japanese Patent Publication No. 59-45735, DP steel can obtain a maximum total elongation of about 30-35% at 50-80 kgf/mm2. However, it cannot be said that there is a sufficient strength-ductility balance when applied to parts that require complicated machining, where thin steel sheets with relatively low strength (35 to 45 kgf/mm2) have conventionally been used. In addition, the existing continuous annealing line with an overaging zone produces 50 to 60 kgf/mm.
There is also the drawback that process conditions suitable for manufacturing DP steel of about 2 cannot be achieved.

【0003】この材質を更に向上させる為の方法として
最近、フェライト、ベイナイト及びオーステナイトの混
合組織(もしくは一部マルテンサイトを含む)をミクロ
組織として持つ高強度複合組織鋼板が提案されている。 この鋼板は室温で残留しているオーステナイトが成形時
にマルテンサイトに変態することによって高い延性を示
す「変態誘起塑性」を利用するものである。変態誘起塑
性を利用した鋼はTRIP鋼として知られているように
、例えばZackayら(V.F.Zackayら:T
rans.ASM  vol.60(1967)252
)が示すように70kgf/mm2以上で最大90%程
度の高延性が達成されている。しかしながらこの様なT
RIP鋼は高価な合金元素を大量に添加する必要がある
など必ずしもここでの要求に合致しない。この様な問題
を解決したものとして、特開昭61−157625号公
報記載の発明のように自動車用鋼板の様な大量生産が前
提となる廉価な用途に合致した薄鋼板の製造方法が示さ
れている。しかしながらオーステナイトを多量に存在さ
せる事を指向している為に、多量の炭素含有が前提とな
っており、従来比較的低強度(35〜45kgf/mm
2)の薄鋼板が使われていた部位に適用するには強度が
過大であり、実用化される可能性は非常に少ない。この
特許公報で述べられている技術は、Siの添加によって
炭化物の析出を抑制し、フェライト変態を進行させる事
によって、未変態オーステナイト中に効果的に炭素を濃
化させ、オーステナイトを安定化させるものである。 この技術をより低強度領域に適用した発明として特開平
1−168819号公報がある。この発明では炭素濃度
の下限を0.05wt%まで拡張しても延性の優れた高
強度鋼板が得られる事を示している。
[0003] As a method for further improving the quality of this material, a high-strength composite steel sheet having a microstructure of a mixed structure of ferrite, bainite, and austenite (or partially containing martensite) has recently been proposed. This steel sheet utilizes "transformation-induced plasticity," which exhibits high ductility due to the austenite remaining at room temperature transforming into martensite during forming. Steels that utilize transformation-induced plasticity are known as TRIP steels, such as those proposed by Zackay et al. (V.F. Zackay et al.: T
rans. ASM vol. 60 (1967) 252
), high ductility of up to about 90% is achieved at 70 kgf/mm2 or more. However, such T
RIP steel does not necessarily meet the requirements here, as it requires the addition of large amounts of expensive alloying elements. As a solution to these problems, a method for producing thin steel sheets suitable for inexpensive uses that require mass production, such as steel sheets for automobiles, has been proposed, as described in Japanese Patent Application Laid-Open No. 61-157625. ing. However, since the aim is to have a large amount of austenite present, it is assumed that a large amount of carbon is contained, and conventionally the strength is relatively low (35 to 45 kgf/mm).
The strength is too high to be applied to the parts where thin steel plates in 2) were used, and there is very little possibility that it will be put to practical use. The technology described in this patent publication suppresses the precipitation of carbides by adding Si and promotes ferrite transformation, thereby effectively enriching carbon in untransformed austenite and stabilizing the austenite. It is. JP-A-1-168819 is an invention that applies this technique to a lower intensity region. This invention shows that even if the lower limit of carbon concentration is expanded to 0.05 wt%, a high-strength steel plate with excellent ductility can be obtained.

【0004】0004

【発明が解決しようとする課題】上記特開平1−168
819号公報の発明においては非常に低い炭素濃度の鋼
板においても10%以上のオーステナイトが室温で残留
している事を必要条件としており、オーステナイトの安
定化を支配する炭素の含有量が低い領域ではこの条件を
満足する事は必ずしも容易ではない。
[Problem to be solved by the invention] The above-mentioned Japanese Patent Application Laid-Open No. 1-168
The invention of Publication No. 819 requires that 10% or more of austenite remain at room temperature even in a steel sheet with a very low carbon concentration. Satisfying this condition is not necessarily easy.

【0005】[0005]

【課題を解決するための手段】本発明者らは比較的低い
炭素量の鋼板においてもSiの添加とフェラィトの生成
量を増加させるような製造条件の設定を行う事によって
、比較的低いオーステナイトの残留で変態誘起塑性を利
用する事のできる50〜70kgf/mm2の優れた延
性を有する高強度複合鋼板を製造する方法を見いだした
。すなわち (1)C:0.05〜0.12%、Si:0.5〜3.
00%、Mn:0.5〜2.50%を含み残部Fe及び
不可避的な不純物からなる鋼材を、冷延後Ac1〜Ae
3変態温度の範囲に加熱し、その後1〜10℃/sec
の冷却速度で550〜700℃の範囲まで冷却し、引き
続いて10〜200℃の冷却速度で200〜450℃ま
で冷却した後300〜450℃の温度範囲で15秒〜2
0分保持し、室温まで冷却することにより、フェライト
とベイナイトを主相とし、更に3〜10%の体積分率の
残留オーステナイトを含むことを特徴とする優れた延性
を有する高強度鋼板の製造方法。 (2)C:0.05〜0.12%、Si:0.5〜3.
00%、Mn:1.5〜2.50%を含み残部Fe及び
不可避的な不純物からなる鋼材を、冷延後Ac1〜Ae
3変態温度の範囲に加熱し、その後1〜10℃/sec
の冷却速度で550〜700℃の範囲まで冷却し、引き
続いて10〜200℃の冷却速度で200〜450℃ま
で冷却した後300〜450℃の温度範囲で15秒〜2
0分保持し、室温まで冷却することにより、フェライト
とベイナイトを主相とし、更に3〜10%の体積分率の
残留オーステナイトを含むことを特徴とする優れた延性
を有する高強度鋼板の製造方法。 (3)Ni,Cr,Cu,Mo,Nb,Tiのうち1種
または2種以上の添加元素を合計2%以下添加すること
を特徴とする請求項1または2記載の優れた延性を有す
る高強度鋼板の製造方法である。
[Means for Solving the Problems] The present inventors have set manufacturing conditions that increase the addition of Si and the amount of ferrite produced even in steel sheets with a relatively low carbon content, thereby achieving a relatively low austenite content. We have discovered a method for producing a high-strength composite steel sheet with excellent ductility of 50 to 70 kgf/mm2, which can utilize residual transformation-induced plasticity. That is, (1) C: 0.05-0.12%, Si: 0.5-3.
00%, Mn: 0.5 to 2.50%, and the remainder Fe and unavoidable impurities, after cold rolling, Ac1 to Ae
3 Heating to the transformation temperature range, then 1 to 10℃/sec
Cooled to a temperature range of 550 to 700°C at a cooling rate of
A method for producing a high-strength steel sheet with excellent ductility, characterized by having ferrite and bainite as main phases and further containing retained austenite in a volume fraction of 3 to 10%, by holding for 0 minutes and cooling to room temperature. . (2) C: 0.05-0.12%, Si: 0.5-3.
00%, Mn: 1.5 to 2.50%, and the balance is Fe and unavoidable impurities after cold rolling.
3 Heating to the transformation temperature range, then 1 to 10℃/sec
Cooled to a temperature range of 550 to 700°C at a cooling rate of
A method for producing a high-strength steel sheet with excellent ductility, characterized by having ferrite and bainite as main phases and further containing retained austenite in a volume fraction of 3 to 10%, by holding for 0 minutes and cooling to room temperature. . (3) The highly ductile steel according to claim 1 or 2, characterized in that one or more of Ni, Cr, Cu, Mo, Nb, and Ti are added in a total amount of 2% or less. This is a method for manufacturing a high-strength steel plate.

【0006】[0006]

【作用】従来報告されている残留オーステナイトを含む
高強度鋼板は、TRIP効果による延性の大幅な改善を
目的として、オーステナイトの残留量をできるだけ多く
するために比較的大量の炭素を含有していた。これはN
i等のオーステナイト安定化元素を大量に含まないこの
種の鋼に於いては、未変態オーステナイト中の炭素濃度
を高める事がオーステナイトを室温でも安定に存在させ
るために必要不可欠であり、従って鋼板に含まれる平均
炭素濃度が最終的に得られる残留オーステナイト量をほ
ぼ決定すると考えられるからである。しかしながら鋼板
中の炭素濃度を上げる事はすなわち鋼板の焼入れ性を上
げる事と等しく、従って鋼板の強度は不可避的に上昇す
る。この発明で対象としている50〜70kgf/mm
2の引張強度を有する比較的低強度の高強度鋼板を製造
するためにはそれ故、鋼板の炭素含有量を制限し、その
結果として最適の残留γ含有量に制御する必要が有る事
が判明した。オーステナイトを残留させる事を前提とし
て、Si,Mnの添加された冷延・焼鈍鋼板の引張強度
は、C含有量毎にその合金添加量と焼鈍条件によって決
定されると言える。本発明の基礎となったこれまでの実
験結果をまとめると図1に示すような関係が得られる。 すなわち、70kgf/mm2未満の強度を工業的に安
定して得るためには炭素量を0.12%以下に限定する
事が必要である事が判明した。またこの条件で得られる
延性(破断伸びEl)と残留オーステナイト量の関係を
示すと図2の様になった。安定して35%以上の破断伸
びを得るためには残留オーステナイト量が3〜10%の
範囲にあることが判明した。
[Function] Conventionally reported high-strength steel sheets containing retained austenite contain a relatively large amount of carbon in order to maximize the amount of residual austenite for the purpose of significantly improving ductility through the TRIP effect. This is N
In this type of steel that does not contain a large amount of austenite-stabilizing elements such as This is because it is thought that the average carbon concentration contained almost determines the amount of residual austenite finally obtained. However, increasing the carbon concentration in the steel plate is equivalent to increasing the hardenability of the steel plate, and therefore the strength of the steel plate inevitably increases. 50 to 70 kgf/mm targeted by this invention
Therefore, in order to produce a relatively low-strength, high-strength steel plate with a tensile strength of did. On the premise that austenite remains, it can be said that the tensile strength of a cold-rolled and annealed steel sheet to which Si and Mn are added is determined by the alloy addition amount and annealing conditions for each C content. A summary of the experimental results that have formed the basis of the present invention yields the relationship shown in FIG. 1. That is, it has been found that in order to industrially stably obtain a strength of less than 70 kgf/mm2, it is necessary to limit the carbon content to 0.12% or less. Further, the relationship between the ductility (elongation at break El) and the amount of retained austenite obtained under these conditions is shown in FIG. It has been found that in order to stably obtain an elongation at break of 35% or more, the amount of retained austenite is in the range of 3 to 10%.

【0007】以下に本発明の重要な要素の作用の詳細に
ついて述べる。 C:上記のごとく本発明の対象は50〜70kgf/m
m2の比較的低強度領域の鋼板の製造で有る事から、C
が0.12%以上ではその目的を達する事が容易でない
のでこれを上限とする。このとき、鋼板を低強度にする
別の方法として他の添加元素であるMn及びSiの添加
量を共に減ずる事が考えられるが、後に示すようにこれ
らの合金元素を同時に低下させる事はオーステナイトを
室温で残留させるためには不利益なことである。また、
本発明に於いては高価な合金元素の添加をできるだけ避
ける事によってコスト的な不利益を避けることも重要な
技術的要素となっている。従ってオーステナイトを安定
化し、室温で残留させるためにはオーステナイトへの炭
素の濃化が不可欠である。炭素の濃化によって安定化し
たオーステナイトがTRIP効果によって延性を向上さ
せ、他の従来鋼に比べて明確な優位性を持つためには最
低0.05%以上の炭素含有が必要であるのでこれを炭
素の下限値とする。
[0007] The details of the operation of the important elements of the present invention will be described below. C: As mentioned above, the target of the present invention is 50 to 70 kgf/m
Since we are manufacturing steel plates in the relatively low strength range of m
If it exceeds 0.12%, it is difficult to achieve the objective, so this is set as the upper limit. At this time, another way to reduce the strength of the steel sheet is to reduce the amounts of Mn and Si, which are other additive elements, but as will be shown later, reducing these alloying elements at the same time will reduce the austenite. This is disadvantageous for remaining at room temperature. Also,
In the present invention, it is also an important technical element to avoid cost disadvantages by avoiding the addition of expensive alloying elements as much as possible. Therefore, in order to stabilize austenite and make it remain at room temperature, it is essential to enrich the austenite with carbon. In order for austenite stabilized by carbon enrichment to improve ductility through the TRIP effect and have a clear advantage over other conventional steels, it is necessary to have a carbon content of at least 0.05%. Set as the lower limit of carbon.

【0008】Si:Siはオーステナイトを室温でも安
定なほど炭素濃化させるために最も重要な添加元素であ
る。鋼板をフェライト/オーステナイト2相域に加熱し
、冷却時にフェライト変態を進行させる事によってオー
ステナイト中に炭素を濃化させる事が本発明の技術の中
心であるが、フェライト変態の進行と共に(従ってオー
ステナイト中の炭素濃度の上昇と共に)炭化物の生成が
起こり易くなり、高温ではパーライト、低温では上部ベ
イナイトが生成されるようになり、オーステナイト中の
全炭素量を減少させ、結果として残留オーステナイト量
を減少させる事となる。Siはよく知られているように
炭化物(ここではセメンタイト)に固溶しないために炭
化物の生成を著しく遅らせる働きがある。これにより炭
化物の形で炭素原子を浪費する事無く効率よいオーステ
ナイトへの炭素濃化を可能にする。この働きの為には0
.5%以上のSi添加が不可欠である。Siはこのとき
フェライト中に固溶し、フェライトを強化する事から、
不必要に多量の添加は鋼板の加工性の低下をもたらす。 従ってその添加量を3%以下と限定した。
Si: Si is the most important additive element for making austenite so carbon-enriched that it is stable even at room temperature. The core of the technology of the present invention is to heat a steel sheet to a ferrite/austenite two-phase region and to advance ferrite transformation during cooling, thereby enriching carbon in austenite. As the carbon concentration increases, carbide formation becomes more likely to occur, pearlite is formed at high temperatures and upper bainite is formed at low temperatures, reducing the total carbon content in austenite and, as a result, the amount of retained austenite. becomes. As is well known, Si does not form a solid solution in carbides (cementite here), and therefore has the function of significantly delaying the formation of carbides. This enables efficient carbon enrichment into austenite without wasting carbon atoms in the form of carbides. 0 for this work
.. It is essential to add 5% or more of Si. At this time, Si dissolves in the ferrite and strengthens the ferrite, so
Addition of an unnecessarily large amount leads to a decrease in workability of the steel sheet. Therefore, the amount added was limited to 3% or less.

【0009】Mn:MnもSi同様炭化物の生成を遅ら
す働きがある事からオーステナイトの残留に貢献する添
加元素である。これに加えて、Mn添加はオーステナイ
トのマルテンサイト変態開始温度を低くする。オーステ
ナイトを室温で安定にする為には上述の通り炭化物の析
出を抑えてオーステナイト中の炭素濃度を高める事が必
要だが、同時にそのオーステナイトのマルテンサイト変
態開始温度を低下させる事も重要である。もしもマルテ
ンサイト変態温度が室温よりも高温であれば、オーステ
ナイトの一部は不可避的にマルテンサイトに変態し、鋼
板の強度を上げると共に延性の劣化をもたらす。このよ
うな目的のためには0.5%以上のMn濃度が必要であ
るが、1.5%以上の添加はマルテンサイト変態温度を
大きく低下させ、オーステナイトを室温で残留させるた
めに特に有効である。しかしながら、多量のMn添加は
鋼板の焼き入れ性を不必要に高め強度上昇と共に延性の
劣化の可能性が高まる。従ってMnの上限値を2.5%
とする。
Mn: Like Si, Mn is also an additive element that contributes to the retention of austenite because it has the function of delaying the formation of carbides. In addition to this, Mn addition lowers the martensitic transformation start temperature of austenite. In order to make austenite stable at room temperature, it is necessary to suppress the precipitation of carbides and increase the carbon concentration in austenite as described above, but at the same time, it is also important to lower the martensite transformation start temperature of the austenite. If the martensitic transformation temperature is higher than room temperature, a portion of austenite will inevitably transform into martensite, increasing the strength of the steel sheet and deteriorating its ductility. For this purpose, a Mn concentration of 0.5% or more is required, but addition of 1.5% or more is particularly effective in significantly lowering the martensitic transformation temperature and allowing austenite to remain at room temperature. be. However, addition of a large amount of Mn unnecessarily increases the hardenability of the steel sheet and increases the possibility of deterioration of ductility as well as increase in strength. Therefore, the upper limit of Mn is set to 2.5%.
shall be.

【0010】その他の添加元素:Ni、Crはその単独
もしくは複合の添加によってオーステナイトを安定化さ
せる事が出来、オーステナイトの残留に有利であると考
えられる。またMo等の鋼の焼き入れ性を増す元素の添
加も有効である。Nb、Tiは炭化物(Nb(C、N)
、Ti(C、N)等)の析出強化による強度調整のため
に添加される。またCuについてはSi同様セメンタイ
トへ固溶しにくい事から炭化物の析出開始を遅らせ、オ
ーステナイトの炭素濃化の進行を助けると同時に強度調
整のためにも用いられる。しかしながら必要以上にこれ
らの合金元素を添加することは鋼板の製造コストを高め
るのみならず、強度上昇にともなう延性の劣化をもたら
す事からトータルとして2%以下の添加に制限する。
[0010] Other additive elements: Ni and Cr can stabilize austenite by adding them alone or in combination, and are considered to be advantageous for retaining austenite. It is also effective to add elements such as Mo that increase the hardenability of steel. Nb and Ti are carbides (Nb(C,N)
, Ti (C, N), etc.) is added to adjust the strength by precipitation strengthening. Further, since Cu, like Si, is difficult to form a solid solution in cementite, it is used to delay the start of carbide precipitation, assist the progression of carbon concentration in austenite, and at the same time adjust the strength. However, adding more of these alloying elements than necessary not only increases the manufacturing cost of the steel sheet, but also causes deterioration of ductility as the strength increases, so the total addition is limited to 2% or less.

【0011】冷延後の熱処理条件:冷延鋼板の焼鈍加熱
温度はフェライト/オーステナイト2相域(Ac1〜A
e3)とし、加工フェライトの再結晶と変態オーステナ
イトの量、成分濃化を制御する必要がある。本発明で対
象としている50〜70kgf/mm2の延性の良好な
鋼板の最終ミクロ組織は主相をフェライトとするフェラ
イト、ベイナイト、残留オーステナイト(及び一部マル
テンサイトを含む場合もある)複合組織である。良好な
延性は残留オーステナイトの存在のみならず軟質なフェ
ライト相の存在にもよることが判明しており、2相域加
熱に引き続き行われる冷却をコントロールしてフェライ
ト変態を十分に進行させることが重要である。この目的
のために、2相域での加熱後フェライト変態量を出来る
だけ増大させるために1〜10℃/秒の冷却速度で55
0℃〜700℃まで冷却する。冷却速度の下限値は実操
業で達成できる最低の冷却速度として1℃/秒とする。 また10℃/秒以上の冷却速度でこの温度領域を冷却す
ることはフェライト変態の十分な進行を阻害するために
これを上限とした。1〜10℃/秒での冷却を550℃
以下まで行った場合にはフェライトのみならずパーライ
トの生成が認められ、鋼中の炭素を炭化物(セメンタイ
ト)の形で消費し、最終的に残留するオーステナイトへ
の炭化濃化を大きく阻害し、また700℃以上でこの冷
却を完了させた場合には得られるフェライト変態量が十
分でない。このようにして十分なフェライト変態量が得
られた後に、鋼板は10〜200℃/秒の冷却速度で2
00〜450℃まで冷却される。このとき10℃/秒以
下の冷却速度ではパーライトの生成が認められるのでこ
れを下限とした。また実操業ラインでの到達可能な冷却
速度から上限冷却速度を決定した。また冷却停止温度を
200℃以下にする事はマルテンサイト変態を起こす可
能性があり避ける必要があり、450℃以上ではベイナ
イト変態と同時に炭化物(セメンタイト)の析出が起こ
り、オーステナイトを室温で残留させるためには不利で
あるのでこれらを上限、下限とした。この段階での未変
態オーステナイト中の炭素濃度は室温で安定なほど高く
ないことは平衡状態図から明らかである。従って引き続
きおこなわれるベイナイト変態処理(オーステンバー処
理)により更にオーステナイト中の炭素濃度を高める必
要がある。このときのベイナイト変態処理温度は炭化物
生成が認められる450℃以上を避け、またフェライト
中に炭化物を含む下部ベイナイトの生成が認められない
300℃以上とする。これらの適当なベイナイト変態処
理温度で未変態オーステナイトの炭素濃化に実質意味の
あるベイナイト変態量を得るためには最低15秒以上必
要な事が確認された。しかし、不必要に長時間保持する
ことは未変態オーステナイトのパーライトへの変態や未
変態オーステナイトからの炭化物析出によるオーステナ
イト中の炭素濃度低下をもたらし、結果としてベイナイ
ト変態が引き続き進行し、オーステナイトの残留が期待
されない。これを避けるためにベイナイト変態処理温度
での最高保持時間を20分以内と限定する。
Heat treatment conditions after cold rolling: The annealing heating temperature of the cold rolled steel sheet is in the ferrite/austenite two-phase region (Ac1 to A
e3), it is necessary to control the recrystallization of processed ferrite, the amount of transformed austenite, and component concentration. The final microstructure of a steel plate with good ductility of 50 to 70 kgf/mm2, which is the object of the present invention, is a composite structure in which the main phase is ferrite, ferrite, bainite, and retained austenite (and may include some martensite). . It has been found that good ductility depends not only on the presence of retained austenite but also on the presence of a soft ferrite phase, so it is important to control the cooling that follows the heating in the two-phase region to allow the ferrite transformation to proceed sufficiently. It is. For this purpose, in order to increase the amount of ferrite transformation as much as possible after heating in the two-phase region, a cooling rate of 1 to 10 °C/s was used to
Cool to 0°C to 700°C. The lower limit of the cooling rate is 1° C./second, which is the lowest cooling rate that can be achieved in actual operation. Further, since cooling in this temperature range at a cooling rate of 10° C./second or more inhibits sufficient progress of ferrite transformation, this is set as the upper limit. Cooling at 1-10℃/sec to 550℃
When the following steps are carried out, not only ferrite but also pearlite is formed, consuming carbon in the steel in the form of carbide (cementite), greatly inhibiting the concentration of carbide into the final remaining austenite, and When this cooling is completed at 700° C. or higher, the amount of ferrite transformation obtained is not sufficient. After obtaining a sufficient amount of ferrite transformation in this way, the steel plate is cooled at a cooling rate of 10 to 200°C/sec.
Cooled to 00-450°C. At this time, since pearlite formation was observed at a cooling rate of 10° C./second or less, this was set as the lower limit. In addition, the upper limit cooling rate was determined from the cooling rate that could be achieved in the actual operating line. Furthermore, setting the cooling stop temperature to 200°C or lower may cause martensitic transformation and must be avoided; if it exceeds 450°C, carbide (cementite) will precipitate at the same time as bainite transformation, leaving austenite to remain at room temperature. These are set as upper and lower limits. It is clear from the equilibrium phase diagram that the carbon concentration in untransformed austenite at this stage is not high enough to be stable at room temperature. Therefore, it is necessary to further increase the carbon concentration in austenite by the subsequent bainite transformation treatment (austenburization treatment). The temperature for the bainite transformation treatment at this time should be avoided at 450° C. or higher, at which the formation of carbides is observed, and should be set at 300° C. or higher, at which the formation of lower bainite containing carbides in ferrite is not observed. It has been confirmed that at least 15 seconds or more is required at these appropriate bainite transformation treatment temperatures to obtain a bainite transformation amount that is of substantial significance for carbon enrichment in untransformed austenite. However, holding it for an unnecessarily long time leads to a decrease in the carbon concentration in austenite due to the transformation of untransformed austenite to pearlite and the precipitation of carbides from untransformed austenite, and as a result, the bainite transformation continues to progress and the remaining austenite is reduced. Not expected. In order to avoid this, the maximum holding time at the bainite transformation treatment temperature is limited to 20 minutes or less.

【0012】最終ミクロ組織中のオーステナイト含有量
:最終的に鋼板中に含まれる残留オーステナイトは鋼板
の引張試験中にマルテンサイトに変態する事によって歪
の緩和と局部くびれの防止により大きな延性(特に一様
伸び)を与える。これはTRIP(変態誘起塑性)と呼
ばれ、一般的には残留オーステナイト量で得られる延性
が整理できると言われている。しかしながら残留オース
テナイトの加工誘起変態はオーステナイトの安定性に大
きく影響され、必ずしも多量の残留オーステナイトを含
有する鋼板が大きな延性を示すとは限らない。このとき
残留オーステナイトの安定性を支配する最も大きな因子
は残留オーステナイトのマルテンサイト変態温度(Ms
)である。残留オーステナイトのMsが室温近傍で有れ
ば、微少な変形でほとんどのオーステナイトのマルテン
サイト変態が完了するために、高歪領域でのTRIP効
果は望めず、結果として小さな延性を示すのみである。 一方残留オーステナイトのMsが非常に低温の場合には
、オーステナイトの加工誘起変態が起こる前に鋼板の局
部変形が進行し、TRIP効果は期待できない。この様
な残留オーステナイトのMs温度はオーステナイト中の
化学成分で決定され、置換型の添加元素に付いては2層
域での焼鈍中もしくは焼鈍温度からの徐冷中のフェライ
ト変態にともなった拡散による濃化(もしくは淡化)に
よりその濃度が変化する。しかしながら焼鈍時間が短時
間である事及びフェライト変態中には極高温域以外では
置換型元素の分配は小さい事から、残留オーステナイト
中にはほぼ鋼板の平均濃度に近い置換型元素が含有され
ると考えられる。従って残留オーステナイト中のMsは
その炭素濃度によって決定されると言える。またオース
テナイトのMsに及ぼす炭素濃度の影響が他の元素に比
べて非常に大きな事実からも残留オーステナイト中の炭
素濃度の重要性が理解される。本発明で対象としている
0.05〜0.12wt%Cの鋼板に於いて10%以上
の残留オーステナイトを含有する事は技術的には可能で
あるが、そのときに得られる残留オーステナイト中の炭
素濃度は1wt%程度以下となり、微少な変形でマルテ
ンサイトに変態して高歪領域でのTRIP効果を示さな
い事が判明した。また残留オーステナイト量が3%以下
の場合には従来知られているDP鋼等の鋼板に対する優
位性は非常に小さい。従って最終的な鋼板の残留オース
テナイト量は3〜10%にコントロールする事が重要で
ある。
Austenite content in the final microstructure: The retained austenite that is finally contained in the steel sheet transforms into martensite during the tensile test of the steel sheet, thereby increasing the ductility (particularly the (elongation). This is called TRIP (transformation-induced plasticity), and it is generally said that the ductility obtained can be determined by the amount of retained austenite. However, the deformation-induced transformation of retained austenite is greatly influenced by the stability of austenite, and a steel plate containing a large amount of retained austenite does not necessarily exhibit high ductility. At this time, the biggest factor governing the stability of retained austenite is the martensitic transformation temperature (Ms
). If the Ms of retained austenite is near room temperature, most of the martensitic transformation of austenite is completed with slight deformation, so a TRIP effect cannot be expected in a high strain region, and as a result, only small ductility is exhibited. On the other hand, when the Ms of retained austenite is very low temperature, local deformation of the steel sheet progresses before deformation-induced transformation of austenite occurs, and no TRIP effect can be expected. The Ms temperature of such retained austenite is determined by the chemical components in the austenite, and for substitutional additive elements, concentration occurs due to diffusion accompanying ferrite transformation during annealing in the two-layer region or during slow cooling from the annealing temperature. (or thinning), its concentration changes. However, because the annealing time is short and the distribution of substitutional elements is small during ferrite transformation except in the extremely high temperature range, it is assumed that the retained austenite contains substitutional elements that are close to the average concentration of the steel sheet. Conceivable. Therefore, it can be said that Ms in retained austenite is determined by its carbon concentration. The importance of carbon concentration in retained austenite is also understood from the fact that the influence of carbon concentration on Ms of austenite is much greater than that of other elements. Although it is technically possible to contain 10% or more retained austenite in the 0.05 to 0.12 wt% C steel sheet targeted by the present invention, it is possible to contain carbon in the retained austenite obtained at that time. It was found that the concentration was about 1 wt % or less, and that it transformed into martensite with slight deformation and did not exhibit the TRIP effect in the high strain region. Further, when the amount of retained austenite is 3% or less, the superiority over conventionally known steel plates such as DP steel is very small. Therefore, it is important to control the amount of retained austenite in the final steel plate to 3 to 10%.

【0013】[0013]

【実施例】表1に示す各鋼種に対し、熱間圧延により3
.0mm厚とした後、冷却、巻取り(400℃〜650
℃の範囲)した熱間圧延鋼板を冷延により1.0mm厚
とした後焼鈍が施され、機械的性質調査、残留オーステ
ナイトの定量が行われた。焼鈍条件は図1に示す熱サイ
クルで行い、焼鈍温度(ST/℃)での保持時間は90
秒である。焼鈍後鋼板は5〜8℃/秒でT1℃まで冷却
され、引き続き80〜140℃/秒の冷却速度でT2℃
まで冷却され、その温度で所定に時間等温保持された後
室温まで冷却された。焼鈍により得られた鋼板の機械的
性質と焼鈍条件を表2に示した。また同表中Vg%は鋼
板中の残留オーステナイト体積百分率を表す。同表によ
り、本発明の条件を満たす鋼板(表中に本発明鋼と表示
)は目標とする50〜70kgf/mm2の強度と同時
に35%以上の優れた破断伸びを有することがわかる。
[Example] For each steel type shown in Table 1, 3
.. After making the thickness 0mm, cooling and winding (400℃~650℃
The hot rolled steel sheets were cold rolled to a thickness of 1.0 mm and then annealed, and mechanical properties were investigated and retained austenite was quantified. The annealing conditions were the thermal cycle shown in Figure 1, and the holding time at the annealing temperature (ST/℃) was 90
Seconds. After annealing, the steel plate is cooled to T1°C at a rate of 5-8°C/sec, and then cooled to T2°C at a cooling rate of 80-140°C/sec.
The mixture was cooled to room temperature, maintained isothermally at that temperature for a predetermined period of time, and then cooled to room temperature. Table 2 shows the mechanical properties and annealing conditions of the steel plate obtained by annealing. In addition, Vg% in the same table represents the volume percentage of retained austenite in the steel sheet. The table shows that the steel plate that satisfies the conditions of the present invention (indicated as the steel of the present invention in the table) has a target strength of 50 to 70 kgf/mm2 and an excellent elongation at break of 35% or more.

【0014】[0014]

【表1】[Table 1]

【0015】[0015]

【表2A】[Table 2A]

【0016】[0016]

【表2B】[Table 2B]

【0017】[0017]

【発明の効果】以上記述のように、本発明を用いる事に
よって現状使われている比較的低強度(35〜45kg
f/mm2)の薄鋼板の代替として使用可能な50〜7
0kgf/mm2)の優れた延性を有する高強度鋼板の
製造が可能となり、自動車の部品に適用する事で自動車
車体軽量化に大きく貢献することができる。
Effects of the Invention As described above, by using the present invention, the relatively low strength (35 to 45 kg) currently used can be improved.
f/mm2) can be used as a replacement for thin steel sheets.
It becomes possible to manufacture high-strength steel sheets with excellent ductility of 0 kgf/mm2), and by applying it to automobile parts, it can greatly contribute to reducing the weight of automobile bodies.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】冷延後の焼鈍の熱サイクルを示す。FIG. 1 shows a thermal cycle of annealing after cold rolling.

【図2】冷延・焼鈍された残留オーステナイトを含有す
る鋼板の強度に及ぼす鋼板炭素(C)濃度の影響を示す
FIG. 2 shows the influence of steel sheet carbon (C) concentration on the strength of a cold rolled and annealed steel sheet containing retained austenite.

【図3】図2の炭素範囲で得られた鋼板の破断伸びと残
留オーステナイト量の関係を示す。
FIG. 3 shows the relationship between the elongation at break and the amount of retained austenite of steel sheets obtained in the carbon range shown in FIG.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  重量%でC:0.05〜0.12%、
Si:0.5〜3.00%、Mn:0.5〜2.50%
を含み残部Fe及び不可避的な不純物からなる鋼材を、
冷延後Ac1〜Ae3変態温度の範囲に加熱し、その後
1〜10℃/secの冷却速度で550〜700℃の範
囲まで冷却し、引き続いて10〜200℃/secの冷
却速度で200〜450℃まで冷却した後300〜45
0℃の温度範囲で15秒〜20分保持し、室温まで冷却
することにより、フェライトとベイナイトを主相とし、
更に3〜10%の体積分率の残留オーステナイトを含む
ことを特徴とする優れた延性を有する高強度鋼板の製造
方法。
Claim 1: C: 0.05 to 0.12% by weight;
Si: 0.5-3.00%, Mn: 0.5-2.50%
A steel material consisting of Fe and unavoidable impurities,
After cold rolling, it is heated to a transformation temperature range of Ac1 to Ae3, then cooled to a range of 550 to 700 °C at a cooling rate of 1 to 10 °C/sec, and then cooled to a range of 200 to 450 °C at a cooling rate of 10 to 200 °C/sec. After cooling to 300-45℃
By keeping it in the temperature range of 0℃ for 15 seconds to 20 minutes and cooling it to room temperature, the main phase is ferrite and bainite,
A method for producing a high-strength steel sheet having excellent ductility, characterized in that the steel sheet further contains retained austenite in a volume fraction of 3 to 10%.
【請求項2】  重量%でC:0.05〜0.12%、
Si:0.5〜3.00%、Mn:1.5〜2.50%
を含み残部Fe及び不可避的な不純物からなる鋼材を、
冷延後Ac1〜Ae3変態温度の範囲に加熱し、その後
1〜10℃/secの冷却速度で550〜700℃の範
囲まで冷却し、引き続いて10〜200℃/secの冷
却速度で200〜450℃まで冷却した後300〜45
0℃の温度範囲で15秒〜20分保持し、室温まで冷却
することにより、フェライトとベイナイトを主相とし、
更に3〜10%の体積分率の残留オーステナイトを含む
ことを特徴とする優れた延性を有する高強度鋼板の製造
方法。
[Claim 2] C: 0.05 to 0.12% by weight;
Si: 0.5-3.00%, Mn: 1.5-2.50%
A steel material consisting of Fe and unavoidable impurities,
After cold rolling, it is heated to a transformation temperature range of Ac1 to Ae3, then cooled to a range of 550 to 700 °C at a cooling rate of 1 to 10 °C/sec, and then cooled to a range of 200 to 450 °C at a cooling rate of 10 to 200 °C/sec. After cooling to 300-45℃
By keeping it in the temperature range of 0℃ for 15 seconds to 20 minutes and cooling it to room temperature, the main phase is ferrite and bainite,
A method for producing a high-strength steel sheet having excellent ductility, characterized in that the steel sheet further contains retained austenite in a volume fraction of 3 to 10%.
【請求項3】  Ni,Cr,Cu,Mo,Nb,Ti
のうち1種または2種以上の添加元素を合計2%以下添
加することを特徴とする請求項1または2記載の優れた
延性を有する高強度鋼板の製造方法。
[Claim 3] Ni, Cr, Cu, Mo, Nb, Ti
3. The method for manufacturing a high-strength steel sheet with excellent ductility according to claim 1 or 2, characterized in that one or more of these additive elements are added in a total amount of 2% or less.
JP13210791A 1991-05-09 1991-05-09 Production of high strength dual-phase steel sheet having superior ductility Pending JPH04333524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13210791A JPH04333524A (en) 1991-05-09 1991-05-09 Production of high strength dual-phase steel sheet having superior ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13210791A JPH04333524A (en) 1991-05-09 1991-05-09 Production of high strength dual-phase steel sheet having superior ductility

Publications (1)

Publication Number Publication Date
JPH04333524A true JPH04333524A (en) 1992-11-20

Family

ID=15073613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13210791A Pending JPH04333524A (en) 1991-05-09 1991-05-09 Production of high strength dual-phase steel sheet having superior ductility

Country Status (1)

Country Link
JP (1) JPH04333524A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470529A (en) * 1994-03-08 1995-11-28 Sumitomo Metal Industries, Ltd. High tensile strength steel sheet having improved formability
EP1207213A1 (en) * 2000-04-27 2002-05-22 Kawasaki Steel Corporation High tensile cold-rolled steel sheet excellent in ductility and in strain aging hardening properties, and method for producing the same
EP0922782A4 (en) * 1997-06-16 2003-08-27 Kawasaki Steel Co High-strength high-workability cold rolled steel sheet having excellent impact resistance
EP1514951A1 (en) * 2002-06-14 2005-03-16 JFE Steel Corporation High strength cold rolled steel plate and method for production thereof
WO2006106668A1 (en) 2005-03-30 2006-10-12 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet excellent in uniform elongation and method for manufacturing same
US7507307B2 (en) 2002-06-10 2009-03-24 Jfe Steel Corporation Method for producing cold rolled steel plate of super high strength
CZ303862B6 (en) * 2011-12-05 2013-05-29 Pilsen Steel S.R.O. Method of primary heat treatment of formed half-finished products

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182225A (en) * 1986-02-05 1987-08-10 Nippon Steel Corp Production of high-strength steel sheet having good ductility
JPH02217425A (en) * 1989-02-18 1990-08-30 Nippon Steel Corp Production of high strength steel sheet having superior formability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182225A (en) * 1986-02-05 1987-08-10 Nippon Steel Corp Production of high-strength steel sheet having good ductility
JPH02217425A (en) * 1989-02-18 1990-08-30 Nippon Steel Corp Production of high strength steel sheet having superior formability

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470529A (en) * 1994-03-08 1995-11-28 Sumitomo Metal Industries, Ltd. High tensile strength steel sheet having improved formability
EP0922782A4 (en) * 1997-06-16 2003-08-27 Kawasaki Steel Co High-strength high-workability cold rolled steel sheet having excellent impact resistance
EP1207213A1 (en) * 2000-04-27 2002-05-22 Kawasaki Steel Corporation High tensile cold-rolled steel sheet excellent in ductility and in strain aging hardening properties, and method for producing the same
EP1207213A4 (en) * 2000-04-27 2003-08-27 Kawasaki Steel Co High tensile cold-rolled steel sheet excellent in ductility and in strain aging hardening properties, and method for producing the same
US6692584B2 (en) 2000-04-27 2004-02-17 Jfe Steel Corporation High tensile cold-rolled steel sheet excellent in ductility and in strain aging hardening properties, and method for producing the same
US7507307B2 (en) 2002-06-10 2009-03-24 Jfe Steel Corporation Method for producing cold rolled steel plate of super high strength
EP1514951A4 (en) * 2002-06-14 2006-05-10 Jfe Steel Corp High strength cold rolled steel plate and method for production thereof
EP1514951A1 (en) * 2002-06-14 2005-03-16 JFE Steel Corporation High strength cold rolled steel plate and method for production thereof
EP2017363A3 (en) * 2002-06-14 2009-08-05 JFE Steel Corporation High strength cold-rolled steel sheet and method for manufacturing the same
WO2006106668A1 (en) 2005-03-30 2006-10-12 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet excellent in uniform elongation and method for manufacturing same
EP1870482A1 (en) * 2005-03-30 2007-12-26 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet excellent in uniform elongation and method for manufacturing same
EP1870482A4 (en) * 2005-03-30 2010-08-18 Kobe Steel Ltd High-strength cold-rolled steel sheet excellent in uniform elongation and method for manufacturing same
US9074272B2 (en) 2005-03-30 2015-07-07 Kobe Steel, Ltd. High-strength cold-rolled steel sheet excellent in uniform elongation and method for manufacturing same
CZ303862B6 (en) * 2011-12-05 2013-05-29 Pilsen Steel S.R.O. Method of primary heat treatment of formed half-finished products

Similar Documents

Publication Publication Date Title
JP2601581B2 (en) Manufacturing method of high strength composite structure cold rolled steel sheet with excellent workability
US8137487B2 (en) Method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability
JP6846522B2 (en) High-strength cold-rolled steel sheets with excellent yield strength, ductility, and hole expansion properties, hot-dip galvanized steel sheets, and methods for manufacturing these.
WO2016095665A1 (en) High-strength high-tenacity steel plate with tensile strength of 800 mpa and production method therefor
JP3569307B2 (en) High strength composite structure cold rolled steel sheet having excellent workability and a tensile strength of 45 to 65 kgf / mm2, and a method for producing the same
JPS63293121A (en) Production of high-strength cold rolled steel sheet having excellent local ductility
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JPH04173945A (en) Manufacture of high strength hot-dip galvanized steel sheet excellent in bendability
JP2004018912A (en) High-tensile strength cold-rolled steel plate excellent in elongation and stretch-flanging property and method for manufacturing the same
JP2004018911A (en) High-tensile strength cold-rolled steel plate having excellent elongation property and elongation-flanging property, and method for manufacturing the same
JPH04333524A (en) Production of high strength dual-phase steel sheet having superior ductility
JPH0567682B2 (en)
JP2002317249A (en) Low yield ratio type high strength steel sheet having excellent ductility and production method therefor
JPH04236741A (en) Low yield ratio and high strength galvanized steel sheet and its manufacture
KR102468051B1 (en) Ultra high strength steel sheet having excellent ductility and method for manufacturing thereof
JP7022825B2 (en) Ultra-high-strength, high-ductility steel sheet with excellent cold formability and its manufacturing method
CA3182944A1 (en) Heat treated cold rolled steel sheet and a method of manufacturing thereof
CN113061806A (en) 1180 MPa-grade light high-strength steel and preparation method thereof
CN113046644A (en) 980 MPa-grade light high-strength steel and preparation method thereof
KR20040059293A (en) High strength cold rolled steel sheet having superior workability
JPH0135051B2 (en)
JP3248118B2 (en) High strength composite structure hot rolled steel sheet having a tensile strength of 45 to 65 kgf / mm2 excellent in workability and fatigue properties, and a method for producing the same
KR100530071B1 (en) Manufacturing method of retained austenite contained cold rolled steel sheets with good ductility
JPH0135052B2 (en)
JPS6119733A (en) Preparation of super 70kg grade high strength hot rolled steel plate excellent in elongation flange property