KR20040059293A - High strength cold rolled steel sheet having superior workability - Google Patents

High strength cold rolled steel sheet having superior workability Download PDF

Info

Publication number
KR20040059293A
KR20040059293A KR1020020085888A KR20020085888A KR20040059293A KR 20040059293 A KR20040059293 A KR 20040059293A KR 1020020085888 A KR1020020085888 A KR 1020020085888A KR 20020085888 A KR20020085888 A KR 20020085888A KR 20040059293 A KR20040059293 A KR 20040059293A
Authority
KR
South Korea
Prior art keywords
less
steel sheet
carbon
steel
high strength
Prior art date
Application number
KR1020020085888A
Other languages
Korean (ko)
Other versions
KR100985322B1 (en
Inventor
김성규
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020020085888A priority Critical patent/KR100985322B1/en
Publication of KR20040059293A publication Critical patent/KR20040059293A/en
Application granted granted Critical
Publication of KR100985322B1 publication Critical patent/KR100985322B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Abstract

PURPOSE: A cold rolled steel sheet is provided which prevents deterioration of plating property and weldability due to large quantities of silicon and carbon and having 100 kgf/mm¬2 or more of strength and superior workability, and a manufacturing method of the cold rolled steel sheet is provided. CONSTITUTION: The high strength steel product having high yield ratio and high strain hardening coefficient comprises 0.05 to 0.2 wt.% of carbon, 0.3 to 0.7 wt.% of silicon, 4 to 7 wt.% of manganese, 0.03 wt.% or less of phosphorus, 0.005 wt.% or less of sulfur, 0.0015 to 0.002 wt.% of boron, 0.02 to 0.05 wt.% of molybdenum, 0.05 to 0.15 wt.% of aluminum and a balance of Fe and other inevitable impurities, wherein micro-structure of the steel product is consisted of 5 to 20 vol.% of bainite, 5 to 15 vol.% of residual austenite and a balance of ferrite. The manufacturing method of the high strength steel product having high yield ratio and high strain hardening coefficient comprises a step of reheating a steel slab comprising 0.05 to 0.2 wt.% of carbon, 0.3 to 0.7 wt.% of silicon, 4 to 7 wt.% of manganese, 0.03 wt.% or less of phosphorus, 0.005 wt.% or less of sulfur, 0.0015 to 0.002 wt.% of boron, 0.02 to 0.05 wt.% of molybdenum, 0.05 to 0.15 wt.% of aluminum and a balance of Fe and other inevitable impurities in the temperature range of 1,200 to 1,250 deg.C for 60 to 180 minutes; a step of finishing hot rolling of the reheated steel slab at a temperature of Ar3 point or more, and coiling the hot rolled steel sheet at a temperature of 560 to 680 deg.C; and a step of cold rolling the coiled hot rolled steel sheet to a reduction ratio of 40 to 45%, batch annealing the cold rolled steel sheet at a temperature of 620 to 650 deg.C, and air cooling or furnace cooling the batch annealed steel sheet.

Description

가공성이 우수한 고강도 냉연강판과 그 제조방법{HIGH STRENGTH COLD ROLLED STEEL SHEET HAVING SUPERIOR WORKABILITY}High strength cold rolled steel sheet with excellent workability and manufacturing method {HIGH STRENGTH COLD ROLLED STEEL SHEET HAVING SUPERIOR WORKABILITY}

본 발명은 자동차의 범퍼 보강재 혹은 도어내의 충격 흡수재에 사용되는 100 kgf/mm2의 초고강도 강판에 관한 것으로, 보다 상세하게는 강도와 더불어 가공성이 우수하여 부품 성형이 용이한 강판과 그 제조방법에 관한 것이다.The present invention relates to an ultra-high strength steel sheet of 100 kgf / mm 2 used for a bumper reinforcement of a vehicle or an impact absorber in a door. It is about.

자동차의 범퍼 보강재 혹은 도어내의 충격 흡수재는 차량의 충돌시 승객안전과 직접 관계되는 부품으로 인장강도 80kgf/mm2이상의 초고강도 냉연강판이 주로 사용되고 있다. 이 냉연강판은 높은 인장강도와 더불어 낮은 항복비, 높은 가공경화지수 및 높은 연신율을 가져야 한다. 또한, 점차 심각해지고 있는 환경 오염 규제에 대응하기 위해 연비를 증가시키고자 고강도 강재의 사용 비율이 증가하고 있다. 최근에는 100 kgf/mm2이상의 고강도 강의 상업화에 대한 연구가 증가하고 있다.Bumper reinforcements of automobiles or shock absorbers in doors are parts that are directly related to passenger safety in the event of a vehicle collision. Ultra high strength cold rolled steel sheets with tensile strength of 80kgf / mm 2 or more are mainly used. This cold rolled steel sheet should have high tensile strength, low yield ratio, high work hardening index and high elongation. In addition, the use of high strength steels is increasing in order to increase fuel economy in response to the increasingly severe environmental pollution regulations. Recently, research on commercialization of high strength steel of 100 kgf / mm 2 or more has been increasing.

자동차용 고강도 강은 대표적으로 변태유기소성(Transformation Induced Plasticity, 간단히 TRIP이라함)강과 이상조직(DP; Dual Phase)강이 있으며, 강도가 증가할수록 두 강의 분류가 어려워지므로 이들 조직의 특성을 고려하여 복합조직(CP; Complex Phase)강이라고도 구분한다.High-strength steels for automobiles include transformation induced plasticity (TRIP) steel and dual phase steel (DP), and as the strength increases, the two steels become more difficult to classify. Also called complex phase steel (CP).

제조공정은 크게 열간 압연, 냉간 압연 그리고 소둔으로 구분되는데, 페라이트와 퍼얼라이트를 가지는 열간 압연된 판재를 냉간 압연하여 제품의 최종 두께로 가공한 후 A1변태점 이상의 소둔 온도로 가열하고 냉각한다. 이때 소둔 과정에서 형성된 오오스테나이트를 냉각과정에서 속도를 제어하여 마르텐사이트나 베이나이트로 변태시키는데, 마르텐사이트로 변태시키는 경우 이 강을 이상조직강이라고 한다. 전체 조직 중에서 마르텐사이트의 비율이 증가할수록 강도가 증가하고 페라이트 비율이 증가할수록 연성이 증가하는데, 강도 상승을 위하여 마르텐사이트 비율이 너무 커지면 상대적으로 페라이트 비율이 감소하여 오히려 연성이 저하된다.The manufacturing process is divided into hot rolling, cold rolling and annealing. The hot rolled sheet having ferrite and perlite is cold rolled to be processed to the final thickness of the product, and then heated and cooled to an annealing temperature of A 1 or more transformation point. At this time, the austenite formed during the annealing process is transformed into martensite or bainite by controlling the speed during the cooling process, and when transformed into martensite, this steel is called an ideal tissue steel. As the ratio of martensite increases, the ductility increases as the ratio of martensite increases, and the ductility increases as the ferrite ratio increases. However, when the martensite ratio is too large to increase the strength, the ferrite ratio decreases and the ductility decreases.

한편, 상기 방법과 같이 소둔 과정에서 오오스테나이트를 형성한 후 냉각과정에서 냉각속도와 냉각종료온도 등을 제어하여 상온에서 오오스테나이트를 일부 잔류 시킴으로써, 상기 변태조직강의 강도와 연성을 동시에 높이는 방법이 있다. 즉, 잔류 오오스테나이트를 소성변형 중에 가공에 의해 마르텐사이트로 변태 하도록 하면 강도와 함께 소성유기 변태에 의해 형성되는 변태상이 국부적인 응력집중을 완화(relax)함으로써 연성을 증가시키는데, 이를 변태유기소성강이라고 한다(CAMP-ISIJ vol. 1, p. 877). TRIP강은 강도와 연성이 동시에 우수한 특성을 가지므로 고강도 강으로 널리 이용되고 있다On the other hand, after forming austenite in the annealing process as in the above method, by controlling the cooling rate and the cooling end temperature in the cooling process to maintain a portion of austenite at room temperature, thereby increasing the strength and ductility of the metamorphic tissue steel at the same time There is this. That is, when the residual austenite is transformed into martensite by processing during plastic deformation, the transformation phase formed by the plastic organic transformation along with the strength increases the ductility by relaxing local stress concentration. It is called steel (CAMP-ISIJ vol. 1, p. 877). TRIP steel is widely used as a high strength steel because it has excellent strength and ductility.

변태유기소성강은 준안정한 오오스테나이트를 상온에서 일정 분율 이상 유지하는 것이 중요하다. 이를 위해서는 Si, Al, P 등을 첨가하여 페라이트내의 탄소 활동도를 크게 하고, 탄화물의 형성을 억제함으로써 오오스테나이트내의 탄소량을 증가시켜 오오스테나이트를 잔류 하도록 한다. 이때 첨가되는 성분 범위를 보면, 탄소가 0.1~0.25%, 실리콘이 1.0~2.5% 정도 첨가되는데, 이를 냉간압연하고 연속소둔하여 제조하는 경우 실리콘이 다량 첨가되어 있으므로 오오스테나이트가 베이나이트로 변태하는 것을 억제하고 베이나이트 변태를 지연시켜 오오스테나이트를 잔류 시키므로 변태유기소성강의 제조가 가능하다. 그러나, 상기 방법은 다량의 잔류 오오스테나이트를 얻기 위해서는 0.1% 이상의 탄소와 1.0% 이상의 Si를 첨가해야 하기 때문에 열연강판으로 제조시는 탄소, 규소 등에 의해 프레시버트(flash-butt) 용접성이 매우 열화되고, 소둔을 위해 냉연 판재를 연결하기 위해 용접하는 경우 공정상 어려움이 있을 뿐 만 아니라, 실리콘이 표면에 산화물을 형성하여 도금성을 열화시키는 등의 어려움이 있다.In metamorphic organic plastic steel, it is important to maintain metastable austenite over a certain portion at room temperature. To this end, Si, Al, P, etc. are added to increase the carbon activity in the ferrite, and the formation of carbides is suppressed to increase the amount of carbon in the austenite so that the austenite remains. At this time, when the component range is added, carbon is 0.1 to 0.25% and silicon is added to 1.0 to 2.5%, but when it is cold rolled and continuously annealed, a large amount of silicon is added so that austenite is transformed into bainite. It is possible to manufacture the modified organic plastic steel by suppressing the retardation and delaying the bainite transformation to retain the austenite. However, since the above method requires the addition of 0.1% or more of carbon and 1.0% or more of Si to obtain a large amount of retained austenite, the flash-butt weldability is very deteriorated by carbon, silicon, etc. when manufacturing a hot rolled steel sheet. In addition, when welding to connect the cold rolled sheet material for annealing, there is a difficulty in the process as well as a problem that silicon forms an oxide on the surface to deteriorate the plating property.

본 발명은 다량의 실리콘과 탄소에 의한 도금성과 용접성 열화를 방지하고 100 kgf/mm2이상의 강도와 우수한 가공성을 가지는 냉연강판과 그 제조방법을 제공하는데 그 목적이 있다.It is an object of the present invention to provide a cold rolled steel sheet having a strength and excellent workability of 100 kgf / mm 2 or more and preventing plating and weldability deterioration due to a large amount of silicon and carbon.

도 1은 합금별 냉각방식에 따른 인장강도와 항복강도를 나타내는 그래프1 is a graph showing the tensile strength and yield strength according to the cooling method for each alloy

도 2는 합금별 냉각방식에 따른 전체연신율과 균일연신율을 나타내는 그래프Figure 2 is a graph showing the total elongation and uniform elongation according to the cooling method for each alloy

도 3은 합금별 냉각방식에 따른 항복비와 가공경화지수를 나타내는 그래프3 is a graph showing the yield ratio and work hardening index according to the cooling method for each alloy

도 4는 합금별 인장강도×항복강도를 나타내는 그래프4 is a graph showing tensile strength x yield strength for each alloy.

상기 목적을 달성하기 위한 본 발명의 강재는, 중량%로, 탄소: 0.05~0.2%, 실리콘:0.3~0.7%, 망간:4~7%, 인:0.03%이하, 황: 0.005%이하, 질소:0.003%이하, 보론:0.0015~0.002%, 몰리부덴:0.02~0.05%, 알루미늄:0.05~0.15%, 나머지 기타 불가피한 불순물과 Fe로 조성되고, 미세조직이 5~20vol.%의 베이나이트와 5~15vol.%의 잔류 오오스테나이트와 나머지는 페라이트로 이루어진다.Steel material of the present invention for achieving the above object, in weight%, carbon: 0.05-0.2%, silicon: 0.3-0.7%, manganese: 4-7%, phosphorus: 0.03% or less, sulfur: 0.005% or less, nitrogen : 0.003% or less, boron: 0.0015 ~ 0.002%, molybdenum: 0.02 ~ 0.05%, aluminum: 0.05 ~ 0.15%, remaining other unavoidable impurities and Fe, and the microstructure is 5-20vol.% Of bainite and 5 Residual austenite of ˜15 vol.% And the remainder are ferrite.

또한, 본 발명의 강재 제조방법은, 중량%로, 탄소: 0.05~0.2%, 실리콘:0.3~0.7%, 망간:4~7%, 인:0.03%이하, 황: 0.005%이하, 질소:0.003%이하, 보론:0.0015~0.002%, 몰리부덴:0.02~0.05%, 알루미늄:0.05~0.15%, 나머지 기타 불가피한 불순물과 Fe로 조성되는 강 슬라브를 1200~1250℃ 구간에서 60분에서 180분 동안 재가열하는 단계, 재가열한 슬라브를 Ar3점 이상에서 열간압연을 마무리하고, 560~680℃에서 권취 하는 단계, 및 권취한 열연판을 40~45%의 압하율로 냉간압연하고, 620~650℃에서 열처리하고 공냉 또는 노냉하는 단계를 포함하여 구성된다.In addition, the steel manufacturing method of the present invention, in weight%, carbon: 0.05 to 0.2%, silicon: 0.3 to 0.7%, manganese: 4 to 7%, phosphorus: 0.03% or less, sulfur: 0.005% or less, nitrogen: 0.003 % Or less, boron: 0.0015 to 0.002%, molybdenum: 0.02 to 0.05%, aluminum: 0.05 to 0.15%, steel slab composed of the other unavoidable impurities and Fe, and reheat the steel slab at 1200 to 1250 ° C for 60 to 180 minutes Hot-rolling the reheated slab at an Ar 3 or more point, winding at 560-680 ° C, and cold-rolling the wound hot-rolled plate at a reduction ratio of 40-45%, at 620-650 ° C. Heat treatment and air or furnace cooling.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서는 연속소둔재에 첨가되는 다량의 실리콘과 탄소를 줄이는 대신 강도저하를 막기 위해 망간의 함량을 조절하여 100kgf/mm2이상의 인장강도와 함께 0.7 이하의 항복비와 0.4 이상의 가공경화지수를 갖도록 하는데 특징이 있다. 본 발명의 강은 상소둔(batch annealing) 공정으로 고강도 변태유기소성강으로 제조된다.In the present invention, instead of reducing a large amount of silicon and carbon added to the continuous annealing material to adjust the content of manganese in order to prevent the decrease in strength to have a yield ratio of less than 0.7 and a work hardening index of 0.4 or more with a tensile strength of 100kgf / mm 2 or more It is characterized by. The steel of the present invention is made of high strength metamorphic organic plastic steel by a batch annealing process.

탄소[C]: 0.05-0.2%Carbon [C]: 0.05-0.2%

강중 탄소는 철강재료에서 가장 중요한 성분으로 강도는 물론 인성, 내식성 등의 모든 물리적, 화학적 특성과 밀접한 관계를 가지며, 강의 특성에 가장 큰 영향을 미치는 성분이다. TRIP강의 경우 특히 탄소의 양이 0.05%미만이면 잔류 오오스테나이트의 안정도가 낮고 분율이 감소하므로 강도와 연성이 크게 감소하며, 0.2% 초과이면 용접성 저하, 제 2상 분율의 급격한 증가로 인한 가공성의 격감하는 등의 단점이 있다. 따라서, 탄소의 함량은 0.05~0.2%가 바람직하다.Carbon in steel is the most important component in steel materials and is closely related to all physical and chemical properties such as strength, toughness and corrosion resistance, and is the most important component in steel properties. In the case of TRIP steel, especially when the amount of carbon is less than 0.05%, the stability and ductility of the retained austenite is low and the fraction is decreased, so that the strength and ductility are greatly reduced, and when it exceeds 0.2%, the workability due to the decrease in weldability and the rapid increase of the second phase fraction There are disadvantages such as declining. Therefore, the content of carbon is preferably 0.05 to 0.2%.

실리콘[Si]: 0.3-0.7%Silicon [Si]: 0.3-0.7%

실리콘은 페라이트에 고용되는 페라이트 안정화 원소로 강도에 기여하며, 탈산제로 첨가되는 경우가 일반적이다. TRIP강의 경우 실리콘은 페라이트내의 탄소의 활동도를 증가시킴으로써 오오스테나이트 내의 탄소양을 증가시켜 오오스테나이트의 안정도를 크게 하는 역할을 하는 중요한 원소이다. 실리콘이 0.3% 미만의 경우 탈산 효과가 감소하며, 용강의 유동성을 증대시키는 원소로 망간이 다량 첨가된 강에서 MnS 개재물의 부상 분리에 효과적이고, 망간/실리콘 비가 5-30인 범위에서 프래시버트 용접성을 개선시킨다. 실리콘의 함량이 0.5% 초과이면 열연스케일을 유발시킬 뿐 아니라, 가장 중요하게는 용접성이 열화된다. 또한, 냉각속도가 적당하게 제어되는 경우 베이나이트 변태를 억제하여 잔류 오오스테나이트의 형성에 기여한다.Silicon is a ferrite stabilizing element that is dissolved in ferrite and contributes to strength, and is usually added as a deoxidizer. In the case of TRIP steel, silicon is an important element that increases the amount of carbon in the austenite and increases the carbon content in the austenite, thereby increasing the austenite stability. If the silicon content is less than 0.3%, the deoxidation effect is reduced, and it is effective in the flotation separation of MnS inclusions in steels containing a large amount of manganese as an element to increase the fluidity of molten steel, and the weldable weldability in the range of 5-30 manganese / silicone ratio Improves. If the content of silicon is more than 0.5%, not only causes a hot roll scale, but most importantly, weldability is deteriorated. In addition, when the cooling rate is properly controlled, it inhibits bainite transformation and contributes to the formation of residual austenite.

망간[Mn]: 4-7%Manganese [Mn]: 4-7%

망간은 엑시큘러(acicular) 페라이트 및 베이나이트와 같은 저온 변태상 형성을 용이하게 하는, 즉 경화능을 크게 하여 강도를 증가시키는 원소로 오오스테나이트 안정화 원소이다. 탄소와 실리콘이 본 발명의 조건으로 함유되는 경우 100kgf.mm2이상의 강도를 가지기 위해서는 망간의 함량은 4% 이상 첨가하는 것이 바람직하다. 망간은 또한 고용강화에 의하여 강도를 향상시키고 강 중에서 황(S)과 결합하여 MnS를 형성한다. 이러한 망간의 함량이 7% 초과의 경우 용접성이 저하되고, 개재물 형성에 의해 수소유기 취성을 야기하며, 열간압연시 판재 중앙에 편석대를 형성한다.Manganese is an austenite stabilizing element that facilitates the formation of low-temperature transformation phases such as acicular ferrite and bainite, that is, increases hardenability and increases strength. When carbon and silicon are contained under the conditions of the present invention, in order to have a strength of 100kgf.mm 2 or more, it is preferable to add 4% or more of manganese. Manganese also enhances strength by solid solution strengthening and combines with sulfur (S) in the steel to form MnS. When the content of such manganese is more than 7%, the weldability is lowered, causing hydrogen organic embrittlement by inclusion inclusions, and forms a segregation zone in the center of the sheet during hot rolling.

인[P]:0.003%이하Phosphorus [P]: Less than 0.003%

냉연 상소둔 강판에 있어서 인은 고용 강화를 통해 강도를 증가시키는 원소이다. 미량 첨가되는 경우 강도 증가효과가 적으며, 과도하게 첨가되는 경우 취성이 증가하고 용접성이 저하되는 특성을 가지므로 최대 0.03 %로 제한하는 것이 바람직하다.In cold rolled annealing steel sheets, phosphorus is an element that increases strength through solid solution strengthening. If a small amount is added, the effect of increasing strength is small. If excessively added, brittleness is increased and weldability is deteriorated.

황[S]:0.005% 이하Sulfur [S]: 0.005% or less

황이 0.005% 초과이면 열연판에 조대한 TiS와 MnS가 생성되어 가공성과 인성을 저하시키므로 가능한 줄이는 것이 효과적이다.If sulfur is more than 0.005%, coarse TiS and MnS are formed in the hot rolled sheet, which degrades the workability and toughness, so it is effective to reduce it as much as possible.

질소[N]: 0.003%이하Nitrogen [N]: 0.003% or less

질소는 강결정립을 미세화시켜 강중 소부경화성에 이용될 수 있는 고용탄소량을 증가시키고 입계강도를 증가시켜 내2차가공취성을 향상시키므로 0.003%이하로 관리하는 것이 바람직하다.Nitrogen is preferably managed at less than 0.003% because finer grains are used to increase the amount of solid solution carbon that can be used for harden hardening in steel and to increase grain boundary strength to improve secondary processing brittleness.

보론[B]: 0.0015-0.002%Boron [B]: 0.0015-0.002%

보론은 강중에 소량 첨가되어도 강의 경화능을 크게 하므로 액시큘러(acicular) 페라이트 및 베이나이트와 같은 저온 변태상 형성을 용이하게 한다. 대개 고온에서는 오오스테나이트 입계에 편석되어 페라이트 형성을 억제함으로써 강의 경화능에 기여하며, 이를 위해 0.0015%이상 첨가한다. 보론의 첨가량이 0.002% 초과이면 용접성을 감소시키고, 재결정온도를 과다하게 상승시켜 드로잉성을 저하시킨다. 따러서, 보론의 함량은 0.0015~0.002%가 바람직하다.Boron increases the hardenability of the steel even when a small amount is added to the steel, thereby facilitating the formation of low temperature transformation phases such as acicular ferrite and bainite. Usually at high temperatures it segregates at the austenite grain boundaries and inhibits ferrite formation, contributing to the hardenability of the steel, for which it is added at least 0.0015%. If the addition amount of boron is more than 0.002%, the weldability is reduced, and the recrystallization temperature is excessively increased to reduce the drawing property. Therefore, the boron content is preferably 0.0015 to 0.002%.

몰리부덴[Mo]: 0.02~0.05%Molybudene [Mo]: 0.02 to 0.05%

몰리부덴은 강의 경화능 향상을 위해 첨가되며, 이를 위해 0.02%첨가하나, 0.05%초과의 경우 용접성을 저하시키고 제조 원가를 상승시며, 드로잉성을 저하시킨다. 따러사, 몰리부덴의 함량은 0.02~0.05%가 바람직하다.Molybudene is added to improve the hardenability of the steel, for this purpose, 0.02% is added, but when it exceeds 0.05%, the weldability is lowered, the manufacturing cost is increased, and the drawing property is lowered. Therefore, the content of molybdenum is preferably 0.02 to 0.05%.

알루미늄(Al) 0.05~0.15%Aluminum (Al) 0.05 ~ 0.15%

Al 역시 탈산작용을 위해 첨가되며, 강 중의 N과 결합하여 AlN을 형성함으로써 고온에서 오오스테나이트의 결정립을 미세하게 하는 역할을 한다. 이러한 효과를 나타내는 최소량은 0.05%이상이며, 최대 0.15 % 미만이 바람직하다.Al is also added for deoxidation, and combines with N in the steel to form AlN, which serves to refine the austenite grains at high temperatures. The minimum amount which shows this effect is 0.05% or more, and at most 0.15% is preferable.

상기와 같이 조성되는 슬라브는 제강공정을 통해 용강을 얻은 다음에 주괴 또는 연속주조공정을 통해 슬라브를 만든다. 이 슬라브를 재가열공정, 열간 압연공정, 권취공정, 냉간 압연공정, 소둔공정을 통해 목표로 하는 기계적성질을 갖는 냉연강판으로 제조하는데, 각 공정별 제조조건을 구체적으로 설명한다.The slabs formed as described above obtain the molten steel through the steelmaking process and then make the slab through the ingot or continuous casting process. The slab is manufactured from cold rolled steel sheet having a target mechanical property through a reheating process, a hot rolling process, a winding process, a cold rolling process, and an annealing process, and manufacturing conditions for each process will be described in detail.

재가열 공정Reheating process

상기와 같이 조성되는 슬라브를 1200~1250℃의 온도에서 60~180분 동안 재가열한다.The slabs are formed as described above and reheated at a temperature of 1200 to 1250 ° C. for 60 to 180 minutes.

열간 압연 공정Hot rolling process

다음으로 가열한 슬라브를 Ar3이상의 온도로 마무리 압연하는 조건으로 열간압연한다. Ar3미만에서 마무리압연하면 열간 압연 중에 형성된 페라이트 내에 많은 전위가 도입되고 이러한 페라이트가 냉각 혹은 권취중에 성장하여 표면 조대립을 형성하고, 저온에서 압연하는 경우 압연롤의 부하가 크게 증가한다.Next, the heated slab is hot rolled under the condition of finishing rolling at a temperature of Ar 3 or higher. Finish rolling below Ar 3 introduces a lot of dislocations into the ferrite formed during hot rolling, and the ferrite grows during cooling or winding to form surface coarse grains, and when rolling at low temperature, the load of the rolling roll increases significantly.

권취공정Winding process

상기 열간 압연한 압연판을 권취하는데, 권취온도는 560~680 ℃에서 행하는 것이 바람직하다. 권취온도가 560 ℃미만이면 강중 탄소의 석출이 지연되어 드로잉성이 저하되고 680℃ 초과이면 탄화물이 너무 조대하게 되어 균일하게 재고용되기가 어려우며, 내부에 불균일조직을 유발하여 가공성을 크게 저하시킨다.Although the hot-rolled rolled sheet is wound, the winding temperature is preferably performed at 560 to 680 ° C. If the coiling temperature is less than 560 ℃, the precipitation of carbon in the steel is delayed, the drawability is lowered, and if the temperature is higher than 680 ℃ carbide is too coarse, it is difficult to be re-used uniformly, causing a non-uniform structure inside, greatly reduce the workability.

냉간 압연공정Cold rolling process

냉간압하율은 열연조건 및 냉연조건과 더불어 미세조직에 크게 영향을 미치는 변수로, 냉간 압하율이 낮으면 조직이 균일하지 못해 가공성이 낮으며, 반대로 너무 높으면, 작업 공정에 부하가 발생하므로, 40~45%로 하는 것이 바람직하다. 미세조직에 대한 냉간 압하율의 영향을 살펴보면, 냉간 압하율이 증가할수록 열간 압연에서 형성된 래스 형태가 분해되어 granular 형태로 바뀌게 되며, 따라서 소둔-냉각 후에 형성되는 2차상의 morphology(크기, 모양과 분포도)도 바뀌게 되므로 이때 형성되는 2차상인 잔류 오오스테나이트의 morphology도 변하여 기계적 특성이 달라진다. 일반적으로 경질상에 둘러쌓인 잔류 오오스테나이트의 경우 충분한 변형이 가해지더라도 마르텐사이트로 변태되지 못하여 연성에 기여하지 못하지만 granular형의 잔류 오오스테나이트는 분율이 증가하면 연성과 가공성에 크게 기여를 하는 것으로 보고되고 있다.Cold rolling reduction is a variable that affects the microstructure in addition to the hot rolling and cold rolling conditions. If the cold rolling reduction is low, the texture is not uniform and the workability is low. It is preferable to set it as -45%. Looking at the effect of cold reduction rate on the microstructure, as the cold reduction rate increases, the lattice form formed in the hot rolling is decomposed and changed into granular form, thus the secondary phase morphology (size, shape and distribution map) formed after annealing-cooling. ) Also changes, so the morphology of the retained austenite, the secondary phase formed at this time, also changes, resulting in a change in mechanical properties. In general, the residual austenite enclosed in the hard phase is not transformed to martensite even if sufficient deformation is applied, but it does not contribute to the ductility. Is being reported.

재결정 소둔 공정Recrystallization annealing process

소둔 온도가 너무 낮으면 충분한 재고용이 어려워 열연시의 조대한 조직이 계속 유지되므로 가공성이 저하되며, 너무 높으면 미세조직이 조대하게 되어 강도가 감소하게 된다. 따라서 본 발명에서의 강의 경우 소둔 조건은 대개 600-700℃ 범위가 적당하다. 소둔시간은 12~15시간이 바람직하다. 냉각은 상소둔(BAF)의 특성을 고려하여 노냉과 공냉이 바람직하다.If the annealing temperature is too low, sufficient reusability is difficult, so that the coarse structure at the time of hot rolling is maintained, and the workability is lowered. If the annealing temperature is too high, the microstructure is coarse and the strength is reduced. Therefore, for the steel in the present invention, the annealing conditions are usually in the range of 600-700 ° C. The annealing time is preferably 12 to 15 hours. Cooling is preferably furnace cooling and air cooling in consideration of the characteristics of BAF.

본 발명의 냉연강판은 실리콘과 탄소의 함량을 줄여서 용접성 및 도금특성이 뛰어난 자동차 구조용 강판에 사용되는 TRIP형 복합조직 냉연강판 제조를 위한 강의 성분을 제시한다.Cold rolled steel sheet of the present invention is to reduce the content of silicon and carbon present steel components for the production of TRIP-type composite structure cold rolled steel sheet used in automotive structural steel sheet having excellent weldability and plating properties.

이하 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.The present invention will be described in more detail with reference to the following Examples.

[실시예]EXAMPLE

표 1 조성의 잉곳을 1200 ℃에서 1시간 가열하여 900 ℃에서 마무리 열간 압연한 다음 620 ℃로 권취하여 1시간 유지후 노냉하였다. 얻은 열연판은 산세하여, 압하율을 45%로 냉간 압연한 다음, 620, 645℃의 온도에서 12 시간 동안 소둔하고 공냉 또는 노냉하였다.The ingot of Table 1 was heated at 1200 ° C. for 1 hour, hot rolled at 900 ° C. for finishing, and then wound at 620 ° C. for 1 hour, and then cooled. The obtained hot rolled sheet was pickled, cold rolled to a reduction ratio of 45%, and then annealed at a temperature of 620 and 645 ° C for 12 hours, followed by air cooling or furnace cooling.

이상과 같이 제조된 시편을 이용하여 강도와 연신율 및 가공성을 나타내는 항복비와 가공경화지수를 구하고 그 결과를 표 2에 나타내었다. 표 2의 강재에서 인장강도 100kgf/mm2이상, 0.7이하의 항복비, 0.4이상의 가공경화지수를 만족하는 것을 발명재로 표기하였다.Yield ratio and work hardening index indicating strength, elongation, and workability were calculated using the specimens prepared as described above, and the results are shown in Table 2. In the steel materials shown in Table 2, those satisfying a tensile strength of 100kgf / mm 2 or more, a yield ratio of 0.7 or less, and a work hardening index of 0.4 or more are marked as invention materials.

강종Steel grade CC MnMn SiSi PP SS Sol. AlSol. Al NN MoMo BB AA 0.150.15 6.56.5 0.50.5 0.02 이하0.02 or less 0.002 이하0.002 or less 0.110.11 0.00170.0017 BB 0.150.15 6.56.5 0.50.5 0.02 이하0.02 or less 0.002 이하0.002 or less 0.110.11 0.00170.0017 0.050.05 0.00150.0015 CC 0.10.1 44 0.50.5 0.02 이하0.02 or less 0.002 이하0.002 or less 0.110.11 0.00170.0017 0.050.05 0.00150.0015 DD 0.150.15 44 0.50.5 0.02 이하0.02 or less 0.002 이하0.002 or less 0.110.11 0.00170.0017 0.050.05 0.00150.0015 EE 0.20.2 44 0.50.5 0.02 이하0.02 or less 0.002 이하0.002 or less 0.110.11 0.00170.0017 0.050.05 0.00150.0015

강종Steel grade 소둔온도Annealing Temperature 냉각방법Cooling method YS(kgf/mm2)YS (kgf / mm 2 ) TS(kgf/mm2)TS (kgf / mm 2 ) 균일연신율(%)Uniform elongation (%) 전체연신율(%)% Total elongation YRYR NN TS*El.TS * El. 비고Remarks AA 620620 공냉Air cooling 43.843.8 61.661.6 15.315.3 30.030.0 0.710.71 0.190.19 1849.91849.9 비교예Comparative example 로냉Ronin 42.242.2 62.362.3 15.615.6 30.430.4 0.680.68 0.140.14 1892.41892.4 비교예Comparative example 645645 공냉Air cooling 43.443.4 62.262.2 16.316.3 31.131.1 0.700.70 0.190.19 1936.51936.5 비교예Comparative example 로냉Ronin 32.832.8 69.269.2 16.016.0 23.423.4 0.470.47 0.130.13 1620.21620.2 비교예Comparative example BB 620620 공냉Air cooling 78.478.4 87.987.9 32.632.6 39.739.7 0.890.89 0.200.20 3486.73486.7 비교예Comparative example 로냉Ronin 77.977.9 93.693.6 30.230.2 37.237.2 0.830.83 0.290.29 3483.63483.6 비교예Comparative example 645645 공냉Air cooling 68.968.9 108.0108.0 28.228.2 32.532.5 0.640.64 0.540.54 3509.73509.7 발명예Inventive Example 로냉Ronin 70.770.7 109.1109.1 28.328.3 30.930.9 0.650.65 0.520.52 3364.93364.9 발명예Inventive Example CC 620620 공냉Air cooling 80.580.5 93.693.6 33.233.2 40.040.0 0.860.86 0.240.24 3739.83739.8 비교예Comparative example 로냉Ronin 80.180.1 94.294.2 31.131.1 39.239.2 0.850.85 0.260.26 3694.93694.9 비교예Comparative example 645645 공냉Air cooling 72.972.9 109.7109.7 27.527.5 34.334.3 0.660.66 0.530.53 3767.13767.1 발명예Inventive Example 로냉Ronin 68.468.4 119.9119.9 21.021.0 24.024.0 0.570.57 0.430.43 2881.52881.5 발명예Inventive Example DD 620620 공냉Air cooling 43.043.0 57.857.8 21.221.2 35.235.2 0.740.74 0.100.10 2035.32035.3 비교예Comparative example 로냉Ronin 41.241.2 57.557.5 21.521.5 34.534.5 0.720.72 0.210.21 1983.71983.7 비교예Comparative example 645645 공냉Air cooling 38.638.6 57.757.7 24.024.0 37.437.4 0.670.67 0.210.21 2156.52156.5 비교예Comparative example 로냉Ronin 34.734.7 67.067.0 21.321.3 32.932.9 0.520.52 0.340.34 2206.82206.8 비교예Comparative example EE 620620 공냉Air cooling 42.342.3 60.460.4 18.418.4 34.534.5 0.700.70 0.190.19 2084.62084.6 비교예Comparative example 로냉Ronin 42.642.6 61.461.4 20.420.4 34.634.6 0.690.69 0.220.22 2126.22126.2 비교예Comparative example 645645 공냉Air cooling 39.539.5 59.959.9 22.522.5 37.237.2 0.660.66 0.200.20 2228.52228.5 비교예Comparative example 로냉Ronin 34.834.8 70.470.4 18.418.4 28.928.9 0.490.49 0.300.30 2035.92035.9 비교예Comparative example

판재의 가공성은 재료의 가공경화지수와 밀접한 관계를 가지며, 우수한 가공성을 가지기 위해서는 항복이 발생하고 나서 변형에 대한 저항이 충분하기 위해, 즉 국부적인 넥킹을 억제하기위해서 변형이 진행됨에 따라 변형 집중부에 가공경화가 지속적으로 발생되어야 한다. 따라서, 가공경화지수가 커지는 경우 우수한 가공성을 가지며, 가공경화지수는 재료의 변형거동이 Hollomon 식을 따른다고 가정하는 경우, 진응력-진변형율 관계의 가공경화지수는 균일 변형량과 같게 되므로 가공경화지수는 균일 연신율과 비례하게 된다. 그리고, 가공경화지수는 항복비와 반비례하는 관계를 가지는데, 가공경화지수가 커질수록 항복비는 감소한다. 따라서 가공성을 증가시키기 위해서는 낮은 항복비, 높은 가공경화지수를 가지는 강의 개발이 필요하다.The workability of the plate is closely related to the work hardening index of the material, and in order to have excellent workability, the deformation concentration part as the deformation proceeds to yield sufficient resistance to deformation after the occurrence of yield, that is, to suppress local necking. Work hardening should occur continuously. Therefore, when the work hardening index increases, the work hardening index has excellent workability, and the work hardening index is assuming that the deformation behavior of the material follows the Hollomon equation. Is proportional to the uniform elongation. In addition, the work hardening index has an inverse relationship with the yield ratio. As the work hardening index increases, the yield ratio decreases. Therefore, in order to increase the workability, it is necessary to develop a steel having a low yield ratio and a high work hardening index.

강도와 함께 가공경화지수, 항복비 역시 재료의 미세조직에 의존한다. 대개 페라이트-퍼얼라이트 강의 경우 항복비가 높고, 이 강의 경우 강도가 증가할수록 가공경화지수가 증가하므로 가공성은 열화 된다. 제2상으로 마르텐사이트를 가지는 이상조직강의 경우 낮은 항복비와 높은 가공경화지수를 가져 가공성 페라이트-퍼얼라이트 강보다 우수한 특성을 보인지만, 프레스 성형과 같은 복잡한 형상의 가공에 필요한 균일 연신율이 높지 않다. 한편, TRIP강이 경우 가공경화 특성이 우수한데, 이는 국부적인 변형 집중이 발생하는 경우 잔류 오오스테나이트가 마르텐사이트로 변태되면서 부피팽창이 일어나고 집중된 국부 응력이 완화되면서 변형 집중이 다른 부위로 전이되기 때문이다. 100kgf/mm2이상의 고강도 강의 경우 가공성을 위해 0.7 이하의 항복비와 0.4 이상의 가공경화지수가 필요하다.Along with strength, work hardening index and yield ratio also depend on the microstructure of the material. In general, ferritic-perlite steels have a high yield ratio, and as the steels increase in strength, the work hardening index increases, resulting in poor workability. The ideal structure steel with martensite in the second phase has better yield property and higher work hardening index than the workable ferrite-perlite steel, but the uniform elongation required for processing complex shapes such as press forming is not high. . On the other hand, TRIP steel has excellent work hardening properties, which means that when local strain concentration occurs, the residual austenite transforms into martensite, causing volume expansion and relaxation of concentrated local stress, thereby transferring strain concentration to other sites. Because. High strength steels of 100kgf / mm 2 or more require a yield ratio of 0.7 or less and a work hardening index of 0.4 or more for workability.

강종 A~E를 1200 ℃에서 1시간 가열하여 900℃에서 마무리 열간 압연하고, 680 ℃로 권취하여 1시간 유지후 노냉한 다음, 산세하고 압하율 45%로 냉간압연한 후 645 ℃에서 12시간 동안 소둔한 후 공냉과 노냉한 강재에 대한 인장강도(TS), 항복강도(YS), 연신율(EI), 항복비(YR), 가공경화지수(N)를 도 1, 2, 3에 나타나 있다.Steel grades A ~ E were heated at 1200 ° C for 1 hour, finished hot rolled at 900 ° C, wound at 680 ° C, maintained for 1 hour, then cold-pressed, pickled and cold-rolled to 45% reduction rate for 12 hours at 645 ° C. Tensile strength (TS), yield strength (YS), elongation (EI), yield ratio (YR), and work hardening index (N) for air-cooled and furnace-cooled steels are shown in FIGS. 1, 2, and 3.

표 2에 나타난 바와 같이, B와 C강의 경우 강도가 높으며, 특히 B와 C 강 중에서 645℃에서 소둔한 경우 공냉 혹은 노냉과 같이 냉각속도에 관계없이 우수한 특성을 보인다.As shown in Table 2, the strength of B and C steels is high, and especially when annealed at 645 ° C. among B and C steels, they show excellent characteristics regardless of the cooling rate such as air cooling or furnace cooling.

도 1. 2. 3에서 보면, 기본조성인 A강의 경우 강도가 낮다. 망간과 몰리부덴, 보론이 첨가된 B강과 C강의 경우 가공경화지수가 높아서 강도가 높고, 연신율과 항복비가 우수하다. 그러나 D강과 E강의 경우 강도가 높지 않은 데 이는 탄소가 많이 첨가된 경우 탄화물이 형성이 용이해서 퍼얼라이트가 형성되고, 따라서 잔류 오오스테나이트의 분율과 안정도가 감소하여 가공경화지수가 낮기 때문이다. D와 E강의 가공경화지수가 낮은데 이를 통해 알 수 있다.As shown in Fig. 1.3, the strength of the basic composition A steel is low. Manganese, molybdenum, and boron-added steels B and C have a high work hardening index and high strength, and excellent elongation and yield ratio. However, in the case of D and E steels, the strength is not high, because when carbon is added, carbides are easily formed to form pearlite, and thus the fraction and stability of residual austenite are reduced, resulting in low work hardening index. The work hardening index of the D and E steels is low.

도 2에서 강도가 높은 B, C강에서 균일연신율이 높은데 이것은 마찬가지로 잔류 오오스테나이트의 안정도와 분율이 높아서 항복점 이후의 가공경화가 효과적으로 진행되어 넥킹이 억제되었기 때문이다. 그러나 D강과 E강의 경우 전체연신율이 높음에도 불구하고 균일연신율은 낮은데, 이는 B강과 C강과 달리 충분히 가공경화되지 못하여 국부넥킹이 빨리 진행되었음을 알 수 있다. 이상의 결과로부터 강도와 연신율이 높은 B강과 C강의 경우 인장강도X연신율 값이 높은 것을 알 수 있으며, 이는 그림 4를 통해 확인할 수 있다.In Fig. 2, the uniform elongation is high in the high strength B and C steels because the stability and the fraction of the retained austenite are high, so that work hardening after the yield point is effectively progressed and necking is suppressed. However, in the case of D and E steels, although the overall elongation is high, the uniform elongation is low. Unlike the B and C steels, the uniform elongation was not sufficiently hardened, so the local necking progressed quickly. From the above results, it can be seen that B and C steels, which have high strength and elongation, have high tensile strength X elongation value, which can be confirmed from Fig. 4.

A, B, C, D, E의 강 종에 대해 열간 압연하고 냉간 압하율, 소둔 시간 및 냉각방법을 다르게 하여 실시한 결과 B와 C강에 있어서 강도와 함께 우수한 가공 특성을 가짐을 알 수 있다.As a result of performing hot rolling on the steel species of A, B, C, D, and E and changing the cold reduction rate, annealing time, and cooling method, it can be seen that B and C steels have excellent processing characteristics together with strength.

상술한 바와 같이, 본 발명에 따르면 100kgf/mm2이상의 높은 인장강도를 가지면서, 항복비 0.7 이하, 가공경화지수 0.4 이상을 가지는 가공성이 뛰어난 고강도 변태유기소성강이 얻어진다. 또한 연속소둔을 통해 제조하는 변태유기소성강 보다 실리콘과 탄소가 적은 양 첨가하므로 용접성과 용융 아연 도금성이 우수한 특성을 가지며, 가공성이 우수하여 프레스를 이용한 자동차 구조용 부품에 사용된다.As described above, according to the present invention, a high-strength metamorphic organic steel having excellent workability having a high tensile strength of 100 kgf / mm 2 or more and having a yield ratio of 0.7 or less and a work hardening index of 0.4 or more is obtained. In addition, since silicon and carbon are added in an amount less than the transformation organic plastic steel produced through continuous annealing, it has excellent properties of weldability and hot dip galvanizing property, and is excellent in workability and is used in automobile structural parts using presses.

Claims (6)

중량%로, 탄소: 0.05~0.2%, 실리콘:0.3~0.7%, 망간:4~7%, 인:0.03%이하, 황: 0.005%이하, 보론:0.0015~0.002%, 몰리부덴:0.02~0.05%, 알루미늄:0.05~0.15% 나머지 기타 불가피한 불순물과 Fe로 조성되고, 미세조직이 5~20vol.%의 베이나이트와 5~15vol.%의 잔류 오오스테나이트와 나머지는 페라이트로 이루어지는 고항복비와 높은 가공경항지수를 갖는 고강도 강재.By weight%, carbon: 0.05-0.2%, silicon: 0.3-0.7%, manganese: 4-7%, phosphorus: 0.03% or less, sulfur: 0.005% or less, boron: 0.0015-0.002%, molybdenum: 0.02-0.05 %, Aluminum: 0.05 ~ 0.15% The remaining other unavoidable impurities and Fe, and the microstructure is 5 ~ 20vol.% Bainite and 5 ~ 15vol.% Residual austenite and the rest is made of ferrite. High strength steel with machining hardness index. 제 1항에 있어서, 상기 탄소는 0.1~0.15%임을 특징으로 하는 고항복비와 높은 가공경화지를 갖는 고강도 강재.The high strength steel having a high yield ratio and a high work hardening paper, characterized in that the carbon is 0.1 ~ 0.15%. 제 1항에 있어서, 상기 망간은 4.0~6.5%임을 특징으로 하는 고항복비와 높은 가공경화지수를 갖는 고강도 강재.The high strength steel having high yield ratio and high work hardening index according to claim 1, wherein the manganese is 4.0 to 6.5%. 중량%로, 탄소: 0.05~0.2%, 실리콘:0.3~0.7%, 망간:4~7%, 인:0.03%이하, 황: 0.005%이하, 보론:0.0015~0.002%, 몰리부덴:0.02~0.05%, 알루미늄:0.05~0.15%, 나머지 기타 불가피한 불순물과 Fe로 조성되는 강 슬라브를 1200~1250℃ 구간에서 60분에서 180분 동안 재가열하는 단계,By weight%, carbon: 0.05-0.2%, silicon: 0.3-0.7%, manganese: 4-7%, phosphorus: 0.03% or less, sulfur: 0.005% or less, boron: 0.0015-0.002%, molybdenum: 0.02-0.05 %, Aluminum: 0.05% to 0.15%, reheating the steel slab composed of the remaining other unavoidable impurities and Fe for 60 to 180 minutes in the 1200 to 1250 ℃ section, 재가열한 슬라브를 Ar3점 이상에서 열간압연을 마무리하고, 560~680℃에서 권취 하는 단계 및Hot-rolling the reheated slab at Ar 3 or higher and winding it at 560 ~ 680 ℃ 권취한 열연판을 40~45%의 압하율로 냉간압연하고, 620~650℃에서 상소둔처리하고 공냉 또는 노냉하는 단계를 포함하여 이루어지는 고항복비와 높은 가공경화지수를 갖는 고강도 강재의 제조방법.A method of producing a high strength steel having a high yield ratio and a high work hardening index, comprising: cold-rolling the wound hot rolled sheet at a reduction ratio of 40 to 45%, and subjecting it to annealing at 620 to 650 ° C. and to air cooling or furnace cooling. 제 4항에 있어서, 상기 탄소는 0.1~0.15%임을 특징으로 하는 고항복비와 높은 가공경화지를 갖는 고강도 강재.The high strength steel having a high yield ratio and a high work hardening paper, characterized in that the carbon is 0.1 ~ 0.15%. 제 4항에 있어서, 상기 망간은 4.0~6.5%임을 특징으로 하는 고항복비와 높은 가공경화지수를 갖는 고강도 강재.The high strength steel having a high yield ratio and a high work hardening index according to claim 4, wherein the manganese is 4.0 to 6.5%.
KR1020020085888A 2002-12-28 2002-12-28 High strength cold rolled steel sheet having superior workability KR100985322B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020085888A KR100985322B1 (en) 2002-12-28 2002-12-28 High strength cold rolled steel sheet having superior workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020085888A KR100985322B1 (en) 2002-12-28 2002-12-28 High strength cold rolled steel sheet having superior workability

Publications (2)

Publication Number Publication Date
KR20040059293A true KR20040059293A (en) 2004-07-05
KR100985322B1 KR100985322B1 (en) 2010-10-04

Family

ID=37351312

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020085888A KR100985322B1 (en) 2002-12-28 2002-12-28 High strength cold rolled steel sheet having superior workability

Country Status (1)

Country Link
KR (1) KR100985322B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143151B1 (en) * 2009-07-30 2012-05-08 주식회사 포스코 High strength thin steel sheet having excellent elongation and method for manufacturing the same
EP2746409A1 (en) * 2012-12-21 2014-06-25 Voestalpine Stahl GmbH Method for the heat treatment a manganese steel product and manganese steel product with a special alloy
CN110117755A (en) * 2019-05-21 2019-08-13 安徽工业大学 A kind of preparation method of 980MPa grades of low yield strength ratio cold rolling medium managese steel
WO2022018501A1 (en) * 2020-07-24 2022-01-27 Arcelormittal Cold rolled and annealed steel sheet and method of manufacturing the same
WO2022018498A1 (en) * 2020-07-24 2022-01-27 Arcelormittal Cold rolled and annealed steel sheet and method of manufacturing the same
WO2022018497A1 (en) * 2020-07-24 2022-01-27 Arcelormittal Cold rolled and annealed steel sheet and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102089170B1 (en) * 2018-08-28 2020-03-13 현대제철 주식회사 Steel sheet and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209039A (en) * 1996-02-08 1997-08-12 Nisshin Steel Co Ltd Production of high strength cold rolled steel sheet excellent in deep drawability
JP3498504B2 (en) 1996-10-23 2004-02-16 住友金属工業株式会社 High ductility type high tensile cold rolled steel sheet and galvanized steel sheet
CA2278841C (en) 1997-01-29 2007-05-01 Nippon Steel Corporation High strength steels having excellent formability and high impact energy absorption properties, and a method for producing the same
JP4608739B2 (en) 2000-06-14 2011-01-12 Jfeスチール株式会社 Manufacturing method of steel pipe for automobile door reinforcement

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143151B1 (en) * 2009-07-30 2012-05-08 주식회사 포스코 High strength thin steel sheet having excellent elongation and method for manufacturing the same
US10450622B2 (en) 2012-12-21 2019-10-22 Voestalpine Stahl Gmbh Method for heat-treating a manganese steel product and manganese steel product
WO2014095082A1 (en) * 2012-12-21 2014-06-26 Voestalpine Stahl Gmbh Method for heat-treating a manganese steel product and manganese steel product
KR20150097722A (en) * 2012-12-21 2015-08-26 뵈스트알파인 스탈 게엠베하 Method for heat-treating a manganese steel product and manganese steel product
CN104995317A (en) * 2012-12-21 2015-10-21 奥钢联钢铁公司 Method for heat-treating a manganese steel product and manganese steel product
EP2746409A1 (en) * 2012-12-21 2014-06-25 Voestalpine Stahl GmbH Method for the heat treatment a manganese steel product and manganese steel product with a special alloy
CN110117755A (en) * 2019-05-21 2019-08-13 安徽工业大学 A kind of preparation method of 980MPa grades of low yield strength ratio cold rolling medium managese steel
CN110117755B (en) * 2019-05-21 2020-11-03 安徽工业大学 Preparation method of 980 MPa-grade cold-rolled medium manganese steel with low yield ratio
WO2022018501A1 (en) * 2020-07-24 2022-01-27 Arcelormittal Cold rolled and annealed steel sheet and method of manufacturing the same
WO2022018498A1 (en) * 2020-07-24 2022-01-27 Arcelormittal Cold rolled and annealed steel sheet and method of manufacturing the same
WO2022018497A1 (en) * 2020-07-24 2022-01-27 Arcelormittal Cold rolled and annealed steel sheet and method of manufacturing the same
WO2022018563A1 (en) * 2020-07-24 2022-01-27 Arcelormittal Cold rolled and annealed steel sheet and method of manufacturing the same
WO2022018562A1 (en) * 2020-07-24 2022-01-27 Arcelormittal Cold rolled and annealed steel sheet and method of manufacturing the same
WO2022018567A1 (en) * 2020-07-24 2022-01-27 Arcelormittal Cold rolled and annealed steel sheet and method of manufacturing the same

Also Published As

Publication number Publication date
KR100985322B1 (en) 2010-10-04

Similar Documents

Publication Publication Date Title
KR100711361B1 (en) High strength hot rolled steel sheet containing high Mn with excellent formability, and method for manufacturing the same
KR101232972B1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
JP5393459B2 (en) High manganese type high strength steel plate with excellent impact characteristics
KR101256523B1 (en) Method for manufacturing low yield ratio type high strength hot rolled steel sheet and the steel sheet manufactured thereby
KR20090070150A (en) Hot rolled steel sheet having superior hot press forming property and high tensile strength, formed article using the steel sheet and method for manufacturing the steel sheet and the formed article
KR20120074798A (en) Method for manufacturing tensile strength 1.5gpa class steel sheet and the steel sheet manufactured thereby
KR20130069699A (en) Method for manufacturing tensile strength 1.5gpa class steel sheet
KR100985322B1 (en) High strength cold rolled steel sheet having superior workability
KR100276308B1 (en) The manufacturing method ofsuper high strength cold rolling steel sheet with workability
KR20100047015A (en) Hot-rolled steel sheet having ultra-high strength, and method for producing the same
JP2023554277A (en) High-strength hot-dip galvanized steel sheet with excellent ductility and formability and its manufacturing method
KR101988760B1 (en) Ultra-high strength steel sheet having excellent formability, and method for manufacturing thereof
KR101008104B1 (en) Ultra high strength steel of 120kgf/? grade having excellent formability
KR101153696B1 (en) Steel Sheet having Excellent Yield Strength and Stretch Flange Ability and Manufacturing Method Thereof
KR20100047001A (en) Hot-rolled steel sheet having ultra-high strength, and method for producing the same
KR20100035835A (en) High strenth hot rolled steel sheet having excellent elongation-stretch flangeability property, and method for manufacturing the same
KR101076082B1 (en) Hot-rolled steel sheet having ultra-high strength, and method for producing the same
KR20110076431A (en) Hot rolled high strength steel sheet having excellent workability and method for manufacturing the same
KR100555582B1 (en) TRIP Steel Sheet Having more than 980MPa High Strength And 25% Elongation Ratio ,And Manufacturing Method Thereof
KR20090103619A (en) High-strength steel sheet, and method for producing the same
KR101009839B1 (en) Method for producing of steel sheet having high-strength and high-formability
KR101149193B1 (en) Steel sheet having excellent formability and galvanizing property, and method for producing the same
KR20100047016A (en) High tensile hot -rolled steel sheet having excellent stretch flanging formability, and method for producing the same
KR100530057B1 (en) Method for Manufacturing Cold Rolled Steel Sheet with Superior Workability and Secondary Working Embrittlement Resistance
KR19980044921A (en) Manufacturing method of low alloy composite structure high strength cold rolled steel sheet with excellent press formability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140929

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150930

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160913

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170928

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180927

Year of fee payment: 9