KR20090070150A - Hot rolled steel sheet having superior hot press forming property and high tensile strength, formed article using the steel sheet and method for manufacturing the steel sheet and the formed article - Google Patents

Hot rolled steel sheet having superior hot press forming property and high tensile strength, formed article using the steel sheet and method for manufacturing the steel sheet and the formed article Download PDF

Info

Publication number
KR20090070150A
KR20090070150A KR1020070138048A KR20070138048A KR20090070150A KR 20090070150 A KR20090070150 A KR 20090070150A KR 1020070138048 A KR1020070138048 A KR 1020070138048A KR 20070138048 A KR20070138048 A KR 20070138048A KR 20090070150 A KR20090070150 A KR 20090070150A
Authority
KR
South Korea
Prior art keywords
less
steel sheet
hot
rolled steel
cooling rate
Prior art date
Application number
KR1020070138048A
Other languages
Korean (ko)
Other versions
KR101482258B1 (en
Inventor
이창훈
하원
박철재
전재춘
류재화
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR20070138048A priority Critical patent/KR101482258B1/en
Priority to CN2008801227903A priority patent/CN101910438A/en
Priority to PCT/KR2008/006886 priority patent/WO2009082091A1/en
Publication of KR20090070150A publication Critical patent/KR20090070150A/en
Application granted granted Critical
Publication of KR101482258B1 publication Critical patent/KR101482258B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A high strength hot rolled steel plate with a superior hot molding processability, a molded product using the same and a manufacturing method thereof are provided to improve the profitability compares with a cold rolled steel and to secure a hot molded structural member. A manufacturing method for a high strength hot rolled steel plate comprises: a step of hot-rolling steel at higher than Ar3 transformation point; and a step of winding at cooling speed over than 10°C/s under the Bs. W is added in order to improve a thermal process curing ability and heat resistance in the hot forming processing. Al removes the oxygen existing among the steel and prevents the formation of the inclusion in the coagulation in order to micronize the grain size by fixing nitrogen existing among the steel with AlN.

Description

열간성형 가공성이 우수한 고강도 열연강판 및 이를 이용한 성형품 및 그 제조방법{Hot Rolled Steel Sheet Having Superior Hot Press Forming Property and High Tensile Strength, Formed Article Using the Steel Sheet and Method for Manufacturing the Steel Sheet and the Formed Article}Hot Rolled Steel Sheet Having Superior Hot Press Forming Property and High Tensile Strength, Formed Article Using the Steel Sheet and Method for Manufacturing the Steel Sheet and the Formed Article}

본 발명은 자동차 구조재 및 부품 등에 사용되는 열연강판 및 그 제조방법에 관한 것으로서, 보다 상세하게는 열간성형 가공성이 우수한 고강도 열연강판 및 이를 이용한 성형품 및 이들의 제조방법에 관한 것이다.The present invention relates to a hot rolled steel sheet used in automobile structural materials and components and the like, and more particularly, to a high strength hot rolled steel sheet excellent in hot forming processability, a molded article using the same, and a manufacturing method thereof.

최근 자동차업계에서는 환경규제와 승객안전 확보를 위해 자동차 구조재 및 부품들이 경량화, 고강도화 되고 있다. Recently, automobile structural materials and components have been lighter and stronger in order to secure environmental regulations and passenger safety.

자동차용 강판의 고강도화를 위해 성형성이 우수한 고강도 강판의 제조방법 개발에 대한 연구가 진행되고 있다. In order to increase the strength of automotive steel sheets, research on the development of a method of manufacturing a high strength steel sheet having excellent formability has been conducted.

고성형성 및 고강도를 동시에 얻기 위해 열간성형 가공법(Hot Press Forming)이 많이 적용되고 있다. 이러한 열간성형 가공법에 사용되는 고강도 강판은 냉연강판으로서, 고온으로 승온, 유지한 후, 일정모양의 금형으로 프레스하여 자동차 구조부재를 성형함과 동시에 냉각수가 흐르는 금형에 의해 급냉되어 고강도 의 열간성형 가공 부품으로 생산된다. In order to simultaneously obtain high forming properties and high strength, hot pressing forming (Hot Press Forming) has been widely applied. The high strength steel sheet used in the hot forming method is a cold rolled steel sheet, which is heated and maintained at a high temperature, and then pressed into a mold of a certain shape to form an automobile structural member, and is rapidly cooled by a mold in which a coolant flows to form a high strength hot forming process. Produced in parts.

하지만, 이러한 열간성형 가공법은 생산성이 낮고, 열간성형 가공에 사용되는 냉연강판의 가격은 비싸기 때문에 원가에 대한 부담이 클 수밖에 없다. However, such a hot forming process is low in productivity and the cost of the cold rolled steel sheet used in the hot forming process is expensive, which is inevitably high.

또한, 냉연강판의 경화능이 충분하지 못해, 낮은 냉각속도에서는 부품의 부위별로 서로 다른 경도값을 가진다.In addition, since the hardenability of the cold rolled steel sheet is not sufficient, it has a different hardness value for each part of the part at a low cooling rate.

이러한 문제를 해결하기 위한 종래의 대표적인 기술로는 일본 특개 2006-126733, 일본 특개 2006-152427, 일본 특개2006-213959 등에 제안된 방법을 들수 있다.Conventional techniques for solving such a problem include the method proposed in Japanese Patent Laid-Open No. 2006-126733, Japanese Patent Laid-Open 2006-152427, Japanese Patent Laid-Open No. 2006-213959, and the like.

먼저, 일본 특개2006-126733에서는 C: 0.05~0.4%, Mn: 0.01~4.0%, Cr: 0.005~5.0%, Mo+Nb 1종 또는 2종으로 0.1~3.0%와 Ti, V, W, B, Ni 등의 합금원소를 첨가하고, N: 0.01%이하로 첨가한 냉연강판을 고온 프레스 후, 마르텐사이트 조직이 60%이상이 되도록 하는 고강도 열간성형 가공용 냉연강판의 제조방법을 제안하고 있다.First, in Japanese Patent Laid-Open No. 2006-126733, C: 0.05 to 0.4%, Mn: 0.01 to 4.0%, Cr: 0.005 to 5.0%, Mo + Nb, one or two, 0.1 to 3.0% and Ti, V, W, B A method for producing a cold rolled steel sheet for high strength hot forming is proposed, in which a cold rolled steel sheet containing an alloy element such as Ni or Ni and N: 0.01% or less is hot pressed, so that the martensite structure is 60% or more.

또한, 일본 특개2006-152427에서는 C: 0.25 ~ 0.45%, Mn+Cr: 0.5~3.0%와 Mo, Nb, Ti, V, B 등의 합금원소를 첨가하고 N 0.002%이하로 첨가한 강판을 고온으로 유지한 후, 냉각속도 10~500℃/s로 Ms점이하로 냉각하여 냉연강판을 제조하는 방법을 제안하고 있다.In Japanese Laid-Open Patent Publication No. 2006-152427, C: 0.25 to 0.45%, Mn + Cr: 0.5 to 3.0% and alloy elements such as Mo, Nb, Ti, V, and B are added, and the steel sheet added to N 0.002% or less is subjected to high temperature. After maintaining at a cooling rate of 10 to 500 ° C / s, the cooling method below the Ms point is proposed a method for producing a cold rolled steel sheet.

또한, 일본 특개2006-213959에서도 상기한 두 특허에서와 유사하게 열간성형 가공용 냉연강판에 대해 제안하고 있다. Japanese Patent Laid-Open No. 2006-213959 also proposes a cold rolled steel sheet for hot forming processing similarly to the above two patents.

본 발명은 열간성형 가공성이 우수한 고강도 열연강판 및 이를 이용한 성형품 및 이들의 제조방법을 제공하고자 하는데, 그 목적이 있다.An object of the present invention is to provide a high strength hot rolled steel sheet having excellent hot forming processability, a molded article using the same, and a method of manufacturing the same.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 중량 %로 C: 0.1~0.5%, Mn: 1.0~3.0%, Si: 0.5% 이하, W: 0.1% 이하, N: 0.01~0.1%, Al: 0.01~0.1%, S: 0.03% 이하, P: 0.1% 이하 및 B: 0.001~0.01%를 포함하고, 여기에, Ti: 0.001~0.1%, Nb: 0.001~0.1% 및 V: 0.001~0.1% 중 1종 또는 2종 이상 및 Mo: 0.01~1.5%, Cr: 0.01~1.5%, Cu: 0.005~1.0% 및 Ni: 0.005~2.0% 중 1종 또는 2종 이상이 첨가되고, 나머지 Fe 및 기타 불가피한 불순원소로 이루어지고, 그리고 그 조직이 10% 이하의 초석 페라이트, 10%이하의 펄라이트, 나머지 베이나이트로 이루어지거나, 또는 10% 이하의 초석 페라이트, 10%이하의 펄라이트, 나머지 베이나이트 및 마르텐사이트로 이루어지는 것을 특징으로 하는 열간성형 가공성이 우수한 고강도 열연강판에 관한 것이다.In the present invention, by weight% C: 0.1-0.5%, Mn: 1.0-3.0%, Si: 0.5% or less, W: 0.1% or less, N: 0.01-0.1%, Al: 0.01-0.1%, S: 0.03% P: 0.1% or less and B: 0.001% to 0.01%, including Ti: 0.001% to 0.1%, Nb: 0.001% to 0.1%, and V: 0.001% to 0.1%, and Mo and : 0.01 to 1.5%, Cr: 0.01 to 1.5%, Cu: 0.005 to 1.0%, and Ni: 0.005 to 2.0%, one or two or more of them are added, and the remaining Fe and other unavoidable impurity elements Hot-forming, characterized in that the tissue consists of less than 10% of the cornerstone ferrite, less than 10% pearlite, the remaining bainite, or less than 10% of the cornerstone ferrite, less than 10% pearlite, the remaining bainite and martensite It relates to a high strength hot rolled steel sheet excellent in workability.

또한, 본 발명은 중량 %로 C: 0.1~0.5%, Mn: 1.0~3.0%, Si: 0.5% 이하, W: 0.1% 이하, N: 0.01~0.1%, Al: 0.01~0.1%, S: 0.03% 이하, P: 0.1% 이하 및 B: 0.001~0.01%를 포함하고, 여기에, Ti: 0.001~0.1%, Nb: 0.001~0.1% 및 V: 0.001~0.1% 중 1종 또는 2종 이상 및 Mo: 0.01~1.5%, Cr: 0.01~1.5%, Cu: 0.005~1.0% 및 Ni: 0.005~2.0% 중 1종 또는 2종 이상이 첨가되고, 나머지 Fe 및 기 타 불가피한 불순원소로 이루어지고, 그 조직은 면적분율로 80%이상의 마르텐사이트 및 20%이하의 베이나이트, 퍼얼라이트 및 페라이트 중의 1종 또는 2종 이상을 포함하고, 인장강도가 1470MPa 이상인 성형품에 관한 것이다.In the present invention, C: 0.1 to 0.5%, Mn: 1.0 to 3.0%, Si: 0.5% or less, W: 0.1% or less, N: 0.01 to 0.1%, Al: 0.01 to 0.1%, S: 0.03% or less, P: 0.1% or less, and B: 0.001-0.01%, wherein Ti: 0.001-0.1%, Nb: 0.001-0.1%, and V: 0.001-0.1% And Mo: 0.01% to 1.5%, Cr: 0.01% to 1.5%, Cu: 0.005% to 1.0%, and Ni: 0.005% to 2.0%, and one or two or more kinds thereof are added, and the remaining Fe and other unavoidable impurities are formed. The structure relates to a molded article containing at least 80% martensite and at least 20% of bainite, perlite and ferrite in an area fraction and at least 1470 MPa in tensile strength.

또한, 본 발명은 중량 %로 C: 0.1~0.5%, Mn: 1.0~3.0%, Si: 0.5% 이하, W: 0.1% 이하, N: 0.01~0.1%, Al: 0.01~0.1%, S: 0.03% 이하, P: 0.1% 이하 및 B: 0.001~0.01%를 포함하고, 여기에, Ti: 0.001~0.1%, Nb: 0.001~0.1% 및 V: 0.001~0.1% 중 1종 또는 2종 이상 및 Mo: 0.01~1.5%, Cr: 0.01~1.5%, Cu: ℃0.005~1.0% 및 Ni: 0.005~2.0% 중 1종 또는 2종 이상이 첨가되고, 나머지 Fe 및 기타 불가피한 불순원소로 이루어지는 강재를 Ar3 변태점 이상에서 열간압연을 마무리하고 냉각속도 10℃/s 이상으로 냉각하여 Bs(베이나이트 변태 시작온도)이하에서 권취하는 것을 특징으로 하는 열간성형 가공성이 우수한 고강도 열연강판의 제조방법에 관한 것이다.In the present invention, C: 0.1 to 0.5%, Mn: 1.0 to 3.0%, Si: 0.5% or less, W: 0.1% or less, N: 0.01 to 0.1%, Al: 0.01 to 0.1%, S: 0.03% or less, P: 0.1% or less, and B: 0.001-0.01%, wherein Ti: 0.001-0.1%, Nb: 0.001-0.1%, and V: 0.001-0.1% And steel: 0.01 to 1.5% of Mo, 0.01 to 1.5% of Cr, 0.005 to 1.0% of Cu, 0.005 to 1.0% of Ni, and 0.005 to 2.0% of Ni, and the remaining Fe and other unavoidable impurities. The method relates to a method for producing a high-strength hot rolled steel sheet having excellent hot forming processability, characterized in that hot rolling is finished at an Ar3 transformation point and cooled to a cooling rate of 10 ° C / s or more and wound at a Bs (beginite transformation start temperature) or less. .

또한, 본 발명은 상기와 같이 제조된 열연강판을 이용하여 Ac3점 이상의 온도에서 유지한 후, 열간성형가공을 행하고, Ms(마르텐사이트 변태 시작온도)까지 1℃/s 이상의 냉각속도로 급냉하는 것을 특징으로 하는 성형품의 제조방법에 관한 것이다.In addition, the present invention by using the hot-rolled steel sheet prepared as described above to maintain at a temperature of Ac3 point or more, performing hot forming process, and quenching at a cooling rate of 1 ℃ / s or more to Ms (martensite transformation start temperature) or more It relates to a method for producing a molded article characterized by.

본 발명에 의하면, 기존의 열간성형 가공용 냉연강판보다 열간성형 가공시 낮은 냉각속도로 냉각을 하여도 강도가 우수한 열간성형 구조부재를 얻을 수 있고또한 냉연강판보다 경제성이 뛰어난 고강도 열연강판 및 이를 이용한 성형품을 제공할 수 있다.According to the present invention, a hot formed structural member having superior strength can be obtained even when cooling at a lower cooling rate during hot forming than a conventional hot rolled cold rolled steel sheet, and a high strength hot rolled steel sheet having excellent economical efficiency than a cold rolled steel sheet and a molded article using the same. Can be provided.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명의 강판은 중량 %로 C: 0.1~0.5%, Mn: 1.0~3.0%, Si: 0.5% 이하, W: 0.1% 이하, N: 0.01~0.1%, Al: 0.01~0.1%, S: 0.03% 이하, P: 0.1% 이하 및 B: 0.001~0.01%를 포함하고, 여기에, Ti: 0.001~0.1%, Nb: 0.001~0.1% 및 V: 0.001~0.1% 중 1종 또는 2종 이상 및 Mo: 0.01~1.5%, Cr: 0.01~1.5%, Cu: 0.005~1.0% 및 Ni: 0.005~2.0% 중 1종 또는 2종 이상이 첨가되고, 나머지 Fe 및 기타 불가피한 불순원소로 이루어지는데, 각 성분의 수치 한정 이유를 설명하면 다음과 같다.The steel sheet of the present invention is a weight% C: 0.1-0.5%, Mn: 1.0-3.0%, Si: 0.5% or less, W: 0.1% or less, N: 0.01-0.1%, Al: 0.01-0.1%, S: 0.03% or less, P: 0.1% or less, and B: 0.001-0.01%, wherein Ti: 0.001-0.1%, Nb: 0.001-0.1%, and V: 0.001-0.1% And Mo: 0.01-1.5%, Cr: 0.01-1.5%, Cu: 0.005-1.0% and Ni: 0.005-2.0% are added one or two or more of the remaining Fe and other unavoidable impurities, The reason for numerical limitation of each component is as follows.

상기 C는 0.1~0.5%로 제한한다. 탄소는 강판의 강도를 증가시키는데 필수적인 원소로서, 열간성형 가공부품에서 고강도의 마르텐사이트 상(phase)을 얻기 위해서 C 함유량의 하한은 0.1%로 한다. 탄소가 0.5%를 초과하여 첨가하는 경우에는 용접성 저하가 발생하여 자동차 조립시 불량을 일으키는 원인이 될 수 있고, 또한 도금공정에서 강판의 강도가 너무 높아져 강판의 통판이 어려워지므로 그 상한은 0.5%로 제한한다.C is limited to 0.1-0.5%. Carbon is an essential element for increasing the strength of the steel sheet, and the lower limit of the C content is 0.1% in order to obtain a high strength martensite phase in a hot formed part. If carbon is added in excess of 0.5%, weldability may be degraded, which may cause defects in assembling automobiles. Also, the upper limit is 0.5% because the strength of the steel sheet becomes too high in the plating process, which makes it difficult for the plate to be plated. Restrict.

상기 Mn은 강에서 고용강화 효과가 매우 큰 원소이며, 동시에 오스테나이트에서 페라이트로의 변태를 지연시키며, Ar3온도를 낮추는 원소이다. 그 첨가량이 너무 적으면 열간성형시 오스테나이트 단상역에서 열간성형 가공이 힘들어지고, 그 첨가량이 너무 많으면 용접성 및 열간압연시 압연하중의 증가로 열연코일 제조에 있어 문제가 발생되기 때문에 Mn의 함량은 1.0~3.0%로 제한한다.Mn is an element having a very high solid solution strengthening effect in steel, and at the same time, it delays the transformation of austenite to ferrite and lowers the temperature of Ar3. If the amount is too small, hot forming is difficult in the austenitic single-phase zone during hot forming. If the amount is too high, problems in manufacturing hot rolled coil due to the increase in weldability and rolling load during hot rolling are increased. Limited to 1.0-3.0%.

상기 Si은 고용강화에 의한 페라이트 강도 향상의 효과가 있는 원소이나, 다량 첨가되는 경우에 스케일결함의 증가로 인하여 표면 품질의 저하 및 도금성의 저하를 초래하므로, 그 상한을 0.5%로 제한한다. The Si is an element having the effect of improving the ferrite strength by solid solution strengthening, but when added in a large amount, the surface defects are lowered due to the increase in scale defects and the plating property is lowered, so the upper limit thereof is limited to 0.5%.

상기 W은 열간성형 가공시 열처리 경화능을 향상시키고, 내열성을 향상시킬 수 있는 유일한 원소이다. 또한 W은 강판을 재가열하는데 있어 결정립의 입자성장을 억제하고, 입경을 작게 하는 효과도 기대할 수 있어 본 발명에서 중요한 원소이다. 하지만, W 첨가량이 0.1%를 초과하는 경우에는 이러한 효과가 포화될뿐 아니라, 고가로 인해 제조원가가 상승하기 때문에 그 상한을 0.1%로 제한한다. W is the only element capable of improving the heat treatment hardenability and improving heat resistance during hot forming processing. W is also an important element in the present invention because the effect of suppressing grain growth of the grains and reducing the particle size in reheating the steel sheet can be expected. However, when the amount of W added exceeds 0.1%, not only this effect is saturated, but the manufacturing cost is increased due to high price, so the upper limit thereof is limited to 0.1%.

상기 Al은 두 가지 목적으로 첨가되는데, 그 하나는 강 중에 존재하는 산소를 제거하여 응고시 비금속 개재물의 형성을 방지하고자 하는 것이고, 다른 하나는 강 중에 존재하는 질소를 AlN으로 고정함에 의하여 결정립 크기를 미세화시키기 위함이다. 따라서, Al 역시 적정한 범위로 첨가되어야 하는데, 그 성분함량이 너무 낮으면 상기 첨가목적을 이룰 수 없으며 반대로 너무 높으면 강의 강도를 증가시키는 문제와 제강 원단위의 상승의 문제가 있으므로, 그 함량은 0.01~0.1%로 제한한다. The Al is added for two purposes, one of which is intended to prevent the formation of nonmetallic inclusions during solidification by removing oxygen present in the steel, and the other is to fix the grain size by fixing the nitrogen present in the steel with AlN. This is for miniaturization. Therefore, Al should also be added in an appropriate range. If the content is too low, the purpose of the addition cannot be achieved. On the contrary, if Al is too high, there is a problem of increasing the strength of the steel and raising of the steelmaking unit. Limit to%

상기 S는 MnS의 형태로 석출이 이루어져서 석출물의 양을 증가시키는 불순물이므로, S의 양을 낮게 관리하는 것이 필요하며, 그 상한은 0.03%로 제한한다. 하한을 규정하지 않은 것은 상기의 동일한 이유로 S양을 낮출수록 성형성이 좋아지므로 제한하지 않았다.Since S is an impurity that increases the amount of precipitates by precipitation in the form of MnS, it is necessary to manage the amount of S low, the upper limit is limited to 0.03%. The lower limit was not defined because the lower the amount of S, the better the moldability for the same reason as described above.

상기 P는 과다하게 첨가되면 용접성 및 열연제조시에 악영향을 미친다. 또한 가공성이 열화되기 때문에 그 상한을 0.1%로 제한한다..Excessive addition of P adversely affects weldability and hot roll production. In addition, since the workability is deteriorated, the upper limit thereof is limited to 0.1%.

상기 N은 본 발명에 있어서 매우 중요한 원소다. N은 고용강화 원소이면서 동시에 Ti, Nb, V, Al 등과 결합하여 질화물을 형성하는 원소로서, 본 발명에서는 열처리성 및 강도상승을 위해서 충분한 N을 첨가시킨다. N 첨가량이 0.01%미만인 경우에는 이러한 효과를 기대할 수 없고, N 첨가량이 0.1%를 초과하게 되면 제강 및 연주공정에서의 문제를 야기할 수 있다.N is a very important element in the present invention. N is a solid solution strengthening element and at the same time is an element which combines with Ti, Nb, V, Al and the like to form a nitride. In the present invention, sufficient N is added for heat treatment property and strength increase. If the amount of N added is less than 0.01%, such an effect cannot be expected, and if the amount of N added exceeds 0.1%, problems may occur in the steelmaking and casting process.

따라서, N의 함량은 0.01∼0.1%로 제한한다.Therefore, the content of N is limited to 0.01 to 0.1%.

상기 B은 결정입계에 편석하여 입계 에너지를 낮춤에 의해서 오스테나이트가 페라이트나 베이나이트로 변태하는 것을 억제하는 역할을 하는 것으로서, 그 첨가량이 너무 적은 경우에는 첨가효과을 충분히 확보할 수 없고, 너무 많은 경우에는 다량의 B석출물의 입계석출에 의한 인성열화 및 소입성 저하를 가져올 우려가 있으므로, 상기 B의 함량은 0.001~0.01%로 제한한다.B plays a role of suppressing the transformation of austenite into ferrite or bainite by segregating at the grain boundary and lowering the grain boundary energy. When the amount is too small, the addition effect cannot be sufficiently secured. Since there is a fear that the deterioration of toughness and quenchability due to the grain boundary precipitation of a large amount of B precipitates, the content of B is limited to 0.001 to 0.01%.

본 발명의 열연강판에는 Ti, Nb 및 V 중 1 종 또는 2종 이상이 함유된다.The hot rolled steel sheet of the present invention contains one or two or more of Ti, Nb, and V.

상기 Ti, Nb, V은 탄질화물 석출을 조장하여 강판의 강도를 상승시키고, 결정립 미세화를 통해 열간성형구조 부품의 인성을 향상시키는데 유효한 원소이다. 각각의 첨가량이 0.001% 미만에서는 이와 같은 효과를 얻을 수 없고, 각각의 첨가량이 0.1% 초과를 초과할 경우에는 제조비용 상승 및 과다한 탄질화물 석출로 인해 열연제조 공정상에서의 문제를 야기할 수 있다.The Ti, Nb, and V are elements that are effective in promoting the deposition of carbonitrides to increase the strength of the steel sheet and improving the toughness of the hot formed structural parts through grain refinement. If the amount of each addition is less than 0.001%, such an effect cannot be obtained. If the amount of each addition is more than 0.1%, it may cause problems in the hot rolled manufacturing process due to the increase in manufacturing cost and excessive carbonitride precipitation.

또한, 본 발명의 열연강판에는 Mo: 0.01~1.5%, Cr: 0.01~1.5%, Cu: ℃0.005~1.0% 및 Ni: 0.005~2.0% 중 1종 또는 2종 이상이 함유된다.In addition, the hot rolled steel sheet of the present invention contains one or two or more of Mo: 0.01 to 1.5%, Cr: 0.01 to 1.5%, Cu: ℃ 0.005 to 1.0% and Ni: 0.005 to 2.0%.

상기 Mo은 경화능을 크게 향상시켜 열간성형 가공후 마르텐사이트 조직의 원활한 확보로 인해 고강도열간성형 가공 부품을 제조할 수 있도록 한다. 또한, 미세한 탄화물의 석출을 조장하여 강도 상승 및 입경의 미세화로 인성의 향상에 영향을 미친다. 이러한 효과를 얻기 위해 하한을 0.01%로 제한하고, 함유량이 1.5%가 되면 그 효과는 포화되고, 제강 제조원가 상승의 문제가 있어 그 상한은 1.5%로 제한한다. The Mo greatly improves the hardenability to allow the manufacture of high strength hot formed parts due to the smooth securing of martensite structure after hot forming. In addition, the precipitation of fine carbides is promoted, thereby increasing the strength and minimizing the particle diameter, thereby affecting the improvement of toughness. In order to obtain such an effect, the lower limit is limited to 0.01%, and when the content reaches 1.5%, the effect is saturated, and there is a problem of rising steel manufacturing cost, so the upper limit is limited to 1.5%.

상기 Cr은 경화능 향상 및 탄화물 생성을 조장하는 원소로, 고강도 열간성형 구조 부품의 제조를 위하여 중요한 원소이다. 그 효과를 얻기 위해 하한을 0.01%로 제한하고, 함유량이 1.5%가 되면 그 효과는 포화되고, 제강 제조원가 상승의 문제가 있어 그 상한은 1.5%로 제한한다. Cr is an element that promotes hardenability improvement and carbide generation, and is an important element for producing high strength hot formed structural parts. In order to obtain the effect, the lower limit is limited to 0.01%, and when the content reaches 1.5%, the effect is saturated, and there is a problem of rising steel manufacturing cost, and the upper limit is limited to 1.5%.

상기 Cu는 미세한 석출물을 조장시켜 강도를 상승시키는데 유효한 원소이다. 0.005% 미만에서는 그 효과를 얻을 수 없고, 1.0% 초과에서는 가공성을 열화시키기 때문에 상기 Cu의 함량은 0.005∼1.0%로 제한한다.Cu is an element effective for increasing the strength by encouraging fine precipitates. If the effect is not obtained at less than 0.005%, and the workability is deteriorated at more than 1.0%, the Cu content is limited to 0.005 to 1.0%.

상기 Ni은 고용강화와 함께 경화능을 향상시켜 열처리성을 향상시키는데 유효한 원소이다. 그 함령이 0.005% 미만에서는 그 효과를 얻을 수 없고, 2.0% 초과에서는 가공성 열화, 열연시 스케일 형성 문제, 제조 비용 상승의 문제가 발생하기 때문에 상기 Ni함량은 0.005∼2.0%로 제한한다.Ni is an element effective in improving the heat treatment property by improving the hardenability with solid solution strengthening. If the content is less than 0.005%, the effect cannot be obtained. If the content is higher than 2.0%, problems of workability deterioration, scale formation during hot rolling, and increase in manufacturing cost occur, so that the Ni content is limited to 0.005 to 2.0%.

도 1에는 합금원소 첨가에 의한 연속냉각상변태도 변화가 개략적으로 나타나 있다.1 schematically shows the change in the continuous cooling phase transformation due to the addition of alloying elements.

도 1의 (a)는 일반강을 고온(예, 사상압연 마무리 온도)으로부터 각기 다른 냉각속도로 (냉각속도 1 > 2 > 3) 상온까지 냉각함에 따라서 얻어지는 미세조직을 연속냉각상태도로 도식적으로 나타낸 것이고, 도 1의(b)는 일반강에 경화능을 향상시키는 합금원소를 첨가하는 경우 미세조직을 연속냉각상태도로 도식적으로 나타낸 것이다.Figure 1 (a) is a schematic diagram showing the microstructure obtained by cooling the ordinary steel from a high temperature (e.g. finishing finishing temperature) to a different cooling rate (cooling rate 1> 2> 3) at room temperature Figure 1 (b) is a schematic diagram showing the microstructure as a continuous cooling state when adding an alloying element to improve the hardenability to the general steel.

도 1(a)에서 1의 냉각속도로 냉각시는 마르텐사이트 단상이 얻어지며, 2의 냉각속도로 냉각시는 페라이트+베이나이트+마르텐사이트 조직이 얻어지고, 3의 냉각속도로 냉각시는 페라이트+펄라이트+베이나이트의 조직이 얻어진다. In Fig. 1 (a), martensite single phase is obtained when cooling at a cooling rate of 1, and ferrite + bainite + martensite structure is obtained when cooling at a cooling rate of 2, and ferrite is cooled at a cooling rate of 3. The structure of + pearlite + bainite is obtained.

도 1(b)에 나타난 바와 같이, 페라이트, 펄라이트 베이나이트 변태곡선이 도 1(a)의 위치에 비하여 시간축으로 오른쪽으로 이동해 있음을 알 수 있는데, 이는 변태가 지연되는 효과가 발생함을 의미하는 것이다. 이러한 합금원소의 효과는 동일 냉각속도에 대하여, 일반강에서와 다른 미세조직을 얻게 되는데 즉, 도 1의 (b)의 1의 냉각속도에서는 마르텐사이트를 얻고, 2의 냉각속도에서도 또한 마르텐사이트를 얻게 되며, 3의 냉각속도에서는 베이나이트와 마르텐사이트의 미세조직을 얻게 된다. 즉, 냉각속도의 강화 없이도 냉각속도가 강화되는 효과를 얻게 되는 장점이 있다. As shown in Figure 1 (b), it can be seen that the ferrite, pearlite bainite transformation curve is shifted to the right in the time axis relative to the position of Figure 1 (a), which means that the effect of delayed transformation occurs will be. The effect of this alloying element is to obtain a different microstructure from that of ordinary steel for the same cooling rate, i.e., martensite is obtained at the cooling rate of 1 in FIG. At a cooling rate of 3, microstructures of bainite and martensite are obtained. That is, there is an advantage in that the cooling rate is obtained without the enhancement of the cooling rate.

본 발명에서는 일반강에 경화능을 향상시키는 합금원소를 첨가하여 냉각속도의 강화 없이도 냉각속도가 강화되는 효과를 얻도록 한 것이다.In the present invention, by adding an alloying element to improve the hardenability to the general steel to obtain the effect that the cooling rate is enhanced without enhancement of the cooling rate.

본 발명의 열연강판은 그 조직이 10% 이하의 초석 페라이트, 10%이하의 펄라이트, 나머지 베이나이트로 이루어지거나, 또는 10% 이하의 초석 페라이트, 10%이하의 펄라이트, 나머지 베이나이트 및 마르텐사이트로 이루어진다.The hot-rolled steel sheet of the present invention is composed of 10% or less of salt-free ferrite, 10% or less of pearlite, remaining bainite, or 10% or less of salt-free ferrite, 10% or less of pearlite, remaining bainite and martensite. Is done.

상기 조직이 마르텐사이트를 포함하는 경우에는 베이나이트는 50%이상, 마르텐사이트는 30%이하로 하는 것이 바람직하다.In the case where the tissue contains martensite, bainite is preferably at least 50% and martensite at 30% or less.

이하, 본 발명에 따라 강판을 제조하는 방법에 대하여 설명한다.Hereinafter, a method for producing a steel sheet according to the present invention will be described.

본 발명에서는 상기 조성의 강을 통상의 방법으로 슬래브 재가열을 실시하고 열간압연하되 열간 마무리 압연온도를 Ar3 변태점 이상에서 열간압연을 마무리하고 냉각속도 10℃/s 이상의 범위로 냉각하여 Bs(베이나이트 변태 시작온도)이하(통상 600?이하)에서 권취하여 열간성형 가공성이 우수한 고강도 열연강판을 제조한다.In the present invention, the steel of the composition is reheated in a conventional manner and hot rolled, but the hot finish rolling temperature is finished by hot rolling at an Ar3 transformation point or higher, and cooled to a cooling rate of 10 ° C / s or more, thereby reducing Bs (bainite transformation). The high temperature hot rolled steel sheet with excellent hot forming processability is produced by winding up to a starting temperature) or less (typically 600? Or less).

상기 열간 압연 마무리 온도를 Ar3 변태점 이상으로 규정한 이유는 2상역 압연이 이루어짐을 방지하기 위함인데, 본 발명강의 경우에 2상역 압연이 행해질 경우에는 탄화물이 존재하지 않는 초석 페라이트가 다량 발생함에 의하여, 본 발명에서 추구하는 전체 조직에 걸친 베이나이트 조직을 얻을 수가 없다. The reason for defining the hot rolling finish temperature above the Ar3 transformation point is to prevent the two-phase reverse rolling, but in the case of the present invention steel, when the two-phase rolling is performed, a large amount of the cornerstone ferrite without carbide is generated, It is not possible to obtain bainite tissue over the entire tissue sought in the present invention.

또한, 열간압연 후 냉각속도를 10℃/s 이상으로 제한한 것은, 그 이하의 냉각속도에서는 페라이트와 펄라이트의 석출이 다량 이루어짐에 의하여, 본 발명이 의도하는 열연 베이나이트, 혹은 베이나이트와 마르텐사이트의 혼합 조직을 얻는 것이 불가능하므로 제한하였으며, 상한의 제한이 없는 것은 도 1에서도 알 수 있는 바와 같이 냉각속도가 빠를 수록 베이나이트, 마르텐사이트 조직을 얻는 것에 어려움이 없으므로 제한을 두지 않았다. In addition, the cooling rate after hot rolling is limited to 10 ° C./s or more. At a cooling rate below that, a large amount of ferrite and pearlite precipitates, and thus hot rolled bainite or bainite and martensite intended by the present invention. It is limited because it is impossible to obtain a mixed structure of, and as there is no upper limit, as shown in FIG. 1, the faster the cooling rate, the more difficult it is to obtain bainite and martensite structures.

또한, 열연 권취를 Bs(베이나이트 변태 시작온도)이하로 권취온도룰 제한한 것은 그 이상의 온도에서의 권취는 펄라이트 변태를 유발하여 본 발명에서 의도하는 저온조직을 얻을 수 없기 때문이고, 그 하한은 실제 열연 권취기의 성능이 우수하여 권취가 가능하다면, 본 발명이 의도하는 미세한 베이나이트 혹은 마르텐사이트 조직을 얻는데 유리하므로 제한하지 않았다. In addition, the winding temperature is limited to the winding temperature below Bs (Bainite transformation start temperature), because the winding at a higher temperature causes pearlite transformation to obtain a low temperature structure intended by the present invention. As long as the performance of the actual hot rolled winding machine is excellent and the winding is possible, the present invention is not limited because it is advantageous for obtaining the fine bainite or martensite structure intended by the present invention.

상기와 같이 제조된 열연강판을 이용하여 Ac3점 이상의 온도에서 유지한 후, 열간성형가공을 행하고, Ms(마르텐사이트 변태 시작온도)까지 1℃/s 이상의 냉각속 도로 급냉하는 경우에는 마르텐사이트 면적분율이 80%이상이고, 인장강도가 1470MPa 이상인 성형품을 얻을 수 있다.Using the hot rolled steel sheet prepared as described above, after maintaining at a temperature of Ac3 or more, hot forming is performed, and in the case of quenching at a cooling rate of 1 ° C / s or more to Ms (martensite transformation start temperature), the martensite area fraction This molded article having 80% or more and tensile strength of 1470 MPa or more can be obtained.

상기 성형품의 조직은 면적분율로 80%이상의 마르텐사이트 및 20%이하의 베이나이트, 퍼얼라이트 및 페라이트 중의 1종 또는 2종 이상을 포함한다.The structure of the molded article contains at least 80% martensite and at least 20% of bainite, perlite and ferrite in area fraction.

본 발명의 열연강판은 특히 상대적으로 낮은 냉각속도 1~30℃/s에서도 마르텐사이트 면적분율이 80% 이상, 인장강도가 1470MPa 이상인 성형품을 얻을 수 있다. The hot rolled steel sheet of the present invention can obtain a molded article having a martensite area fraction of 80% or more and a tensile strength of 1470 MPa or more even at a relatively low cooling rate of 1 to 30 ° C / s.

열간성형 가공 후 냉각속도가 1℃/s보다 더 늦으면 오스테나이트가 냉각중에 고온 상(phase)인 페라이트, 펄라이트 등으로 변태하여 충분한 마르텐사이트 분율을 확보하지 못하여, 인장강도 1470MPa 이상을 얻기 힘들기 때문에 냉각속도의 하한은 1℃/s로 제한하는 것이 바람직하고, 냉각속도가 빠를수록 마르텐사이트 조직확보에 유리하기 때문에 상한은 제한하지 않았다.If the cooling rate is slower than 1 ℃ / s after hot forming, austenite is transformed into ferrite, pearlite, etc., which is a high-temperature phase during cooling, and thus it is difficult to obtain a sufficient martensite fraction, and thus it is difficult to obtain a tensile strength of 1470 MPa or more. It is preferable to limit the lower limit of the cooling rate to 1 ° C./s, and the upper limit is not limited because the faster the cooling rate, the better the martensite structure.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

진공 유도 용해에 의해 하기 표 1의 조성을 갖는 강괴를 두께 60mm, 폭 175mm로 제조하고 1200℃에서 1시간 동안 재가열한 후 열연 두께가 1.6mm가 되도록 열간압연을 하였다. 열간압연 마무리 온도는 Ar3 변태점이상으로 하였으며, ROT 냉 각속도는 5℃/s와 50℃/s로 냉각하여서 목표한 열연권취온도까지 냉각한 후에 400~650℃로 미리 가열된 로에 1시간 유지 후 로냉시킴에 의하여 열연권취를 모사하였다. 열간성형 모사는 딜라토미터를 이용하여 20℃/s의 냉각속도로 냉각한 후 경도를 측정하여 인장강도로 환산하였다. 그 결과를 하기 표 2에 나타내었다.The steel ingot having the composition shown in Table 1 below was prepared in a thickness of 60 mm and a width of 175 mm by vacuum induction melting, and re-heated for 1 hour at 1200 ° C., followed by hot rolling to obtain a hot roll thickness of 1.6 mm. The hot rolling finish temperature was above Ar3 transformation point, and the ROT cooling rate was cooled to 5 ℃ / s and 50 ℃ / s, cooled to the target hot-rolling temperature, and then maintained in a furnace preheated to 400 ~ 650 ℃ for 1 hour. The hot rolling was simulated by Sikkim. The hot forming simulation was cooled to 20 ° C./s using a dilator, and the hardness was measured and converted into tensile strength. The results are shown in Table 2 below.

하기 표 1의 강종 중 강종 1, 2, 3은 발명의 범위에 속하지만, 강종 4, 5는 발명강의 성분 조건에서 벗어난 강종이다. 표 1의 강종에 대한 제조조건, 즉, 사상압연후 냉각속도(ROT 냉각속도), 권취온도에 따른 초석 페라이트의 존재 유무 및 최종 열간성형 가공 모사후 환산 인장강도를 표 2에 나타내었다. Steel grades 1, 2, and 3 among the steel grades in Table 1 belong to the scope of the invention, but steel grades 4 and 5 are steel grades which deviate from the component conditions of the inventive steel. Table 2 shows the manufacturing conditions for the steel grades in Table 1, that is, the cooling rate after finishing rolling (ROT cooling rate), the presence of cornerstone ferrite according to the coiling temperature, and the converted tensile strength after the final hot forming process simulation.

하기 표 2에 나타낸 초석 페라이트/펄라이트 유(有), 무(無)의 기준은 초석 페라이트/펄라이트의 양이 각각 10% 초과인 경우에 유로 표시하였고, 10% 이하인 경우에 무로 표시하였으며, 초석 페라이트/펄라이트가 무인 경우에만 본 발명강에 해당된다.In the following, the criteria of the cornerstone ferrite / pearlite oil (free), no (free) shown in Table 2 is expressed in euros when the amount of the cornerstone ferrite / pearlite is more than 10%, respectively, expressed as nothing when less than 10%, cornerstone ferrite Only when the pearlite is free of the present invention steel.

강종 Steel grade 화학조성(wt%)Chemical composition (wt%) CC MnMn SiSi AlAl SS PP NN WW BB TiTi 기타Etc 1One 0.220.22 2.22.2 0.250.25 0.0320.032 0.0020.002 0.0120.012 0.0120.012 0.030.03 0.00550.0055 0.0250.025 Ni 0.2,Mo 0.1Ni 0.2, Mo 0.1 22 0.210.21 2.162.16 0.290.29 0.0240.024 0.0030.003 0.010.01 0.0160.016 0.030.03 0.00280.0028 0.0230.023 Cr 0.2, Nb 0.01Cr 0.2, Nb 0.01 33 0.210.21 2.312.31 0.230.23 0.0420.042 0.0020.002 0.010.01 0.0110.011 0.0280.028 0.00370.0037 0.0220.022 Cu 0.03, V 0.01Cu 0.03, V 0.01 44 0.070.07 0.760.76 0.200.20 0.0300.030 0.00260.0026 0.0110.011 0.00140.0014 -- 0.00180.0018 0.0210.021 Cr 0.21, Mo 0.1Cr 0.21, Mo 0.1 55 0.230.23 0.410.41 0.200.20 0.0370.037 0.00310.0031 0.0120.012 0.00500.0050 0.250.25 0.00210.0021 0.0170.017 Nb 0.011, V 0.098Nb 0.011, V 0.098

강종Steel grade 강종-제조조건Steel grade-manufacturing conditions ROT 냉각속도 (℃/s)ROT cooling rate (℃ / s) 권취온도 (℃)Winding temperature (℃) 페라이트/펄라이트 유/무Ferrite / Pearlite With / Without 열간성형 모사 후 인장강도(MPa)Tensile strength after hot forming simulation (MPa) 비고Remarks 1One 1-11-1 55 450450 U 12701270 비교강1Comparative Steel 1 1-21-2 5050 450450 radish 16101610 발명강1Inventive Steel 1 22 2-12-1 5050 550550 radish 15801580 발명강2Inventive Steel 2 2-22-2 5050 450450 radish 16701670 발명강3Invention Steel 3 2-32-3 5050 650650 radish 13201320 비교강2Comparative Steel 2 33 3-13-1 5050 550550 radish 15401540 발명강4Inventive Steel 4 3-23-2 55 450450 U 12801280 비교강3Comparative Steel 3 3-33-3 55 650650 U 11401140 비교강4Comparative Steel 4 44 4-14-1 55 550550 U 12101210 비교강5Comparative Steel 5 4-24-2 5050 550550 U 12701270 비교강6Comparative Steel 6 55 5-15-1 5050 500500 U 12601260 비교강7Comparative Steel 7 5-25-2 5050 650650 U 12201220 비교강8Comparative Steel 8

상기 표 2에서 나타난 바와 같이, 강종 1, 2, 3을 ROT 냉각시 급냉(냉각속도 50℃/s)을 실시하고, Bs 이하의 온도에서 권취를 행한 발명강의 경우 미세한 탄화물을 포함하는 베이나이트 조직을 형성하였고, 열간성형 모사 후 상대적으로 낮은 냉각속도(20℃/s)에서도 마르텐사이트를 잘 형성하여 인장강도 1470MPa 이상을 나타내었다. As shown in Table 2, bainite structure containing fine carbide in the case of the invention steel subjected to quenching (cooling rate 50 ° C./s) during ROT cooling of steel grades 1, 2, and 3 and wound at a temperature of Bs or less After hot forming simulation, martensite was well formed at relatively low cooling rate (20 ℃ / s), and the tensile strength was over 1470MPa.

반면에, 강종 4, 5를 ROT 급냉과 권취온도를 조절하여도 초석 페라이트/펄라이트가 혼재된 베이나이트 조직을 얻었으며, 이를 바탕으로 열간성형 모사 후 20℃/s의 낮은 냉각속도로 냉각을 한 경우, 인장강도 1470MPa을 얻을 수가 없었다. On the other hand, even after adjusting ROT quenching and winding temperature, steel grades 4 and 5 were obtained bainite structure mixed with cornerstone ferrite / pearlite, and based on this, cooling was performed at low cooling rate of 20 ℃ / s after hot forming simulation. In this case, tensile strength of 1470 MPa could not be obtained.

강종 1, 2, 3을 이용하여 ROT 냉각시 급냉을 하였으나, 권취온도가 Bs이상일 경우 최종 열연조직은 페라이트+펄라이트 조직은 나타내었으며, 열간성형 모사 후 인장강도는 1200MPa 정도로 낮은 수준을 보였다. In case of ROT cooling using steel grades 1, 2, and 3, quenching was performed. However, when the coiling temperature was over Bs, the final hot rolled structure showed ferrite + pearlite structure, and the tensile strength after hot forming simulation showed a low level of 1200MPa.

또한, 강종 1, 2, 3을 이용하여 권취온도는 Bs이하로 유지하였으나, 냉각속도가 본 발명 범위보다 낮은 경우는 전체적으로 페라이트/펄라이트+베이나이트의 복합조직을 보였으며, 마찬가지로 열간성형 후 인장강도는 1470MPa에 미치지 못하였다. In addition, although the coiling temperature was maintained below Bs by using steel grades 1, 2, and 3, when the cooling rate was lower than the range of the present invention, the composite structure of ferrite / pearlite + bainite was shown as a whole, and the tensile strength after hot forming. Did not reach 1470 MPa.

초석 페라이트의 존재 유(有), 무(無)는 마지막 열간압연이 Ar3 변태점 이하에서 작업이 되는 경우에도 의존을 하고, 또한 사상압연후 냉각속도(ROT 냉각속도)에도 의존을 하며, 또한 권취 온도에도 의존을 한다. The presence or absence of the cornerstone ferrite depends on the case where the last hot rolling is operated below the Ar3 transformation point, and also on the cooling rate after finishing rolling (ROT cooling rate), and the winding temperature. Depends on

즉, Ar3 변태 온도는 오스테나이트역에서 냉각을 시작한 후의 냉각속도에 주로 의존을 하지만, Ar3 변태점 이하에서의 압연은 초석 페라이트의 생성을 의미하며, 이는 미세조직의 불균질을 유발하게 된다.That is, the Ar3 transformation temperature mainly depends on the cooling rate after starting cooling in the austenite region, but rolling below the Ar3 transformation point means the formation of the cornerstone ferrite, which causes microstructure heterogeneity.

그리고, ROT 냉각속도가 느릴수록 페라이트 및 펄라이트 변태가 촉진되고, 냉각속도가 빠를수록 베이나이트와 마르텐사이트 변태가 일어나게 됨은 도 1에서 알 수 있다. And, the slower the ROT cooling rate is promoted ferrite and pearlite transformation, the faster the cooling rate can be seen that the bainite and martensite transformation occurs in Figure 1.

또한, 열연 변태가 마무리되는 권취온도가 낮을수록 초석 페라이트의 존재 확률은 낮아진다. 이는 상기 표 2에 나타낸 바와 같이, 동일 조성과 냉각조건에서도 권취온도가 높을수록 초석 페라이트가 많이 생기는 것과 일치한다. In addition, the lower the winding temperature at which the hot roll transformation is finished, the lower the probability of the cornerstone ferrite is present. This is consistent with the formation of more cornerstone ferrite as the winding temperature is higher, even in the same composition and cooling conditions, as shown in Table 2 above.

또한, 본 발명에서는 열간성형 후 낮은 냉각속도로 냉각을 하여도 인장강도 1470MPa 이상의 고강도 확보를 의도하고 있는데, 열연강판에서 초석 페라이트, 펄라이트를 억제하고 베이나이트 혹은 마르텐사이트 조직을 얻음으로써 Ac3이상의 온도로 가열, 유지 시 탄화물이 보다 빨리, 균일하게 용해되고, 또한 열연판 내부의 미세편석을 방지하여 상기 목표를 얻는 것이 가능해진다. In addition, the present invention is intended to secure a high strength of 1470MPa or more tensile strength even after cooling at a low cooling rate after hot forming, by suppressing the cornerstone ferrite, pearlite in the hot rolled steel sheet to obtain bainite or martensite structure at a temperature of Ac3 or more When heating and holding, carbides dissolve faster and more uniformly, and it is possible to achieve the above target by preventing fine segregation inside the hot rolled sheet.

도 1은 합금원소 첨가에 의한 연속상변태도 제어를 나타내는 개략도로서,(a)는 일반강의 경우를 나타낸 것이고, (b)는 합금원소를 첨가한 경우를 나타낸다.1 is a schematic diagram showing the control of continuous phase transformation by addition of alloying elements, (a) shows a case of ordinary steel, and (b) shows a case of adding an alloying element.

Claims (4)

중량 %로 C: 0.1~0.5%, Mn: 1.0~3.0%, Si: 0.5% 이하, W: 0.1% 이하, N: 0.01~0.1%, Al: 0.01~0.1%, S: 0.03% 이하, P: 0.1% 이하 및 B: 0.001~0.01%를 포함하고, 여기에, Ti: 0.001~0.1%, Nb: 0.001~0.1% 및 V: 0.001~0.1% 중 1종 또는 2종 이상 및 Mo: 0.01~1.5%, Cr: 0.01~1.5%, Cu: 0.005~1.0% 및 Ni: 0.005~2.0% 중 1종 또는 2종 이상이 첨가되고, 나머지 Fe 및 기타 불가피한 불순원소로 이루어지고, 그리고 그 조직이 10% 이하의 초석 페라이트, 10%이하의 펄라이트, 나머지 베이나이트로 이루어지거나, 또는 10% 이하의 초석 페라이트, 10%이하의 펄라이트, 나머지 베이나이트 및 마르텐사이트로 이루어지는 것을 특징으로 하는 열간성형 가공성이 우수한 고강도 열연강판By weight% C: 0.1-0.5%, Mn: 1.0-3.0%, Si: 0.5% or less, W: 0.1% or less, N: 0.01-0.1%, Al: 0.01-0.1%, S: 0.03% or less, P : 0.1% or less and B: 0.001 to 0.01%, wherein Ti: 0.001 to 0.1%, Nb: 0.001 to 0.1% and V: 0.001 to 0.1% of one or two or more and Mo: 0.01 to 1.5%, Cr: 0.01-1.5%, Cu: 0.005-1.0%, and Ni: 0.005-2.0% are added one or two or more of the remaining Fe and other unavoidable impurities, and the structure is 10 Excellent hot forming processability, consisting of up to 10% or less of salt-free ferrite, less than 10% pearlite, remaining bainite, or less than 10% of salt-free ferrite, less than 10% pearlite, remaining bainite and martensite. High strength hot rolled steel sheet 중량 %로 C: 0.1~0.5%, Mn: 1.0~3.0%, Si: 0.5% 이하, W: 0.1% 이하, N: 0.01~0.1%, Al: 0.01~0.1%, S: 0.03% 이하, P: 0.1% 이하 및 B: 0.001~0.01%를 포함하고, 여기에, Ti: 0.001~0.1%, Nb: 0.001~0.1% 및 V: 0.001~0.1% 중 1종 또는 2종 이상 및 Mo: 0.01~1.5%, Cr: 0.01~1.5%, Cu: 0.005~1.0% 및 Ni: 0.005~2.0% 중 1종 또는 2종 이상이 첨가되고, 나머지 Fe 및 기타 불가피한 불순원소로 이루어지고, 그 조직은 면적분율로 80%이상의 마르텐사이트 및 20%이하의 베이나이트, 퍼얼라이트 및 페라이트 중의 1종 또는 2종 이상을 포함하고, 인장강도가 1470MPa 이상인 것을 특징으로 하는 성형품By weight% C: 0.1-0.5%, Mn: 1.0-3.0%, Si: 0.5% or less, W: 0.1% or less, N: 0.01-0.1%, Al: 0.01-0.1%, S: 0.03% or less, P : 0.1% or less and B: 0.001 to 0.01%, wherein Ti: 0.001 to 0.1%, Nb: 0.001 to 0.1% and V: 0.001 to 0.1% of one or two or more and Mo: 0.01 to 1.5%, Cr: 0.01 ~ 1.5%, Cu: 0.005 ~ 1.0% and Ni: 0.005 ~ 2.0%, one or two or more are added, and the remaining Fe and other unavoidable impurities are made up, and the structure is composed of an area fraction. A molded article comprising at least one of martensite at least 80% and at least 20% of bainite, perlite and ferrite and having a tensile strength of at least 1470 MPa. 중량 %로 C: 0.1~0.5%, Mn: 1.0~3.0%, Si: 0.5% 이하, W: 0.1% 이하, N: 0.01~0.1%, Al: 0.01~0.1%, S: 0.03% 이하, P: 0.1% 이하 및 B: 0.001~0.01%를 포함하고, 여기에, Ti: 0.001~0.1%, Nb: 0.001~0.1% 및 V: 0.001~0.1% 중 1종 또는 2종 이상 및 Mo: 0.01~1.5%, Cr: 0.01~1.5%, Cu: ℃0.005~1.0% 및 Ni: 0.005~2.0% 중 1종 또는 2종 이상이 첨가되고, 나머지 Fe 및 기타 불가피한 불순원소로 이루어지는 강재를 Ar3 변태점 이상에서 열간압연을 마무리하고 냉각속도 10℃/s 이상으로 냉각하여 Bs(베이나이트 변태 시작온도)이하에서 권취하는 것을 특징으로 하는 열간성형 가공성이 우수한 고강도 열연강판의 제조방법By weight% C: 0.1-0.5%, Mn: 1.0-3.0%, Si: 0.5% or less, W: 0.1% or less, N: 0.01-0.1%, Al: 0.01-0.1%, S: 0.03% or less, P : 0.1% or less and B: 0.001 to 0.01%, wherein Ti: 0.001 to 0.1%, Nb: 0.001 to 0.1% and V: 0.001 to 0.1% of one or two or more and Mo: 0.01 to One or two or more of 1.5%, Cr: 0.01 to 1.5%, Cu: 0.005 to 1.0%, and Ni: 0.005 to 2.0% are added, and the steel made of the remaining Fe and other unavoidable impurity elements is added at or above Ar3 transformation point. The method of manufacturing high strength hot rolled steel sheet having excellent hot forming processability, which is finished by hot rolling and cooled at a cooling rate of 10 ° C / s or more and wound at a Bs (beginite transformation start temperature) or less. 제3항의 방법에 의하여 제조된 열연강판을 이용하여 Ac3점 이상의 온도에서 유지한 후, 열간성형가공을 행하고, Ms(마르텐사이트 변태 시작온도)까지 1℃/s 이상의 냉각속도로 급냉하는 것을 특징으로 하는 성형품의 제조방법After the hot rolled steel sheet manufactured by the method of claim 3 is maintained at a temperature of at least Ac3 point, hot forming is performed, and quenching is performed at a cooling rate of 1 ° C / s or more to Ms (martensite transformation start temperature). Manufacturing method of molded article
KR20070138048A 2007-12-26 2007-12-26 Hot Rolled Steel Sheet Having Superior Hot Press Forming Property and High Tensile Strength, Formed Article Using the Steel Sheet and Method for Manufacturing the Steel Sheet and the Formed Article KR101482258B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR20070138048A KR101482258B1 (en) 2007-12-26 2007-12-26 Hot Rolled Steel Sheet Having Superior Hot Press Forming Property and High Tensile Strength, Formed Article Using the Steel Sheet and Method for Manufacturing the Steel Sheet and the Formed Article
CN2008801227903A CN101910438A (en) 2007-12-26 2008-11-21 Hot rolled steel sheet having superior hot press forming property and high tensile strength, formed article using the steel sheet and method for manufacturing the steel sheet and the formed article
PCT/KR2008/006886 WO2009082091A1 (en) 2007-12-26 2008-11-21 Hot rolled steel sheet having superior hot press forming property and high tensile strength, formed article using the steel sheet and method for manufacturing the steel sheet and the formed article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20070138048A KR101482258B1 (en) 2007-12-26 2007-12-26 Hot Rolled Steel Sheet Having Superior Hot Press Forming Property and High Tensile Strength, Formed Article Using the Steel Sheet and Method for Manufacturing the Steel Sheet and the Formed Article

Publications (2)

Publication Number Publication Date
KR20090070150A true KR20090070150A (en) 2009-07-01
KR101482258B1 KR101482258B1 (en) 2015-01-13

Family

ID=40801357

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20070138048A KR101482258B1 (en) 2007-12-26 2007-12-26 Hot Rolled Steel Sheet Having Superior Hot Press Forming Property and High Tensile Strength, Formed Article Using the Steel Sheet and Method for Manufacturing the Steel Sheet and the Formed Article

Country Status (3)

Country Link
KR (1) KR101482258B1 (en)
CN (1) CN101910438A (en)
WO (1) WO2009082091A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009047032A1 (en) 2009-07-30 2011-02-03 Cheil Industries Inc., Yeosu Polyamide-clay composite composition and fuel transport pipe using same
KR101246456B1 (en) * 2011-02-24 2013-03-21 현대제철 주식회사 High strength steel sheet and method of manufacturing the high strength steel sheet
KR101256523B1 (en) * 2010-12-28 2013-04-22 주식회사 포스코 Method for manufacturing low yield ratio type high strength hot rolled steel sheet and the steel sheet manufactured thereby
KR101277874B1 (en) * 2011-03-31 2013-06-21 주식회사 포스코 Hot forming parts having strength distribution and method for manufacturing the same
WO2018117543A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 Hot press forming plated steel sheet having excellent impact property, hot press molding member, and manufacturing method thereof

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704721B2 (en) 2011-08-10 2015-04-22 株式会社神戸製鋼所 High strength steel plate with excellent seam weldability
JP6001883B2 (en) 2012-03-09 2016-10-05 株式会社神戸製鋼所 Manufacturing method of press-molded product and press-molded product
CN102703808B (en) * 2012-06-12 2014-05-14 武汉钢铁(集团)公司 Steel for 300MPa-grade automobile structural part and production method for steel
CA2878685C (en) * 2012-07-20 2017-06-06 Nippon Steel & Sumitomo Metal Corporation Steel material
PL2907886T3 (en) 2013-02-26 2019-04-30 Nippon Steel & Sumitomo Metal Corp High-strength hot-rolled steel sheet having maximum tensile strength of 980 mpa or more, and having excellent and baking hardenability and low-temperature toughness
CN105518171B (en) * 2013-09-10 2017-04-05 株式会社神户制钢所 The manufacture method of hot pressing steel plate and stamping product and stamping product
JP2015190040A (en) * 2014-03-28 2015-11-02 株式会社神戸製鋼所 Low alloy steel for steel forging and crank shaft
CN106661685B (en) * 2014-05-15 2018-04-20 新日铁住金株式会社 Hot forming steel plate member
CN104060169A (en) * 2014-06-18 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Hot-rolled steel sheet and production method thereof
CN104745934A (en) * 2015-03-26 2015-07-01 攀钢集团攀枝花钢铁研究院有限公司 Hot rolled steel plate for automotive frame and production method thereof
KR20180016980A (en) 2015-06-03 2018-02-20 잘쯔기터 플래시슈탈 게엠베하 Deformation-hardened parts made of galvanized steel, method for making the same, and deformation of parts - Method for manufacturing steel strip suitable for hardening
CN105483554A (en) * 2015-12-09 2016-04-13 江苏东方电力锅炉配件有限公司 Chrome molybdenum steel plate
SE539519C2 (en) * 2015-12-21 2017-10-03 High strength galvannealed steel sheet and method of producing such steel sheet
CN108603259B (en) * 2016-02-19 2020-11-06 日本制铁株式会社 Steel having high strength and excellent low-temperature toughness after quenching and tempering
KR101797387B1 (en) * 2016-08-31 2017-11-14 주식회사 포스코 Ultra high strength thin hot-rolled steel sheet having excellent formability and method for manufacturing same
WO2018160462A1 (en) 2017-03-01 2018-09-07 Ak Steel Properties, Inc. Press hardened steel with extremely high strength
CN107201482B (en) * 2017-04-19 2019-01-25 马鞍山市鑫龙特钢有限公司 A kind of wind-powered electricity generation pinion steel and preparation method thereof
CN109536846B (en) * 2017-09-21 2020-12-08 上海梅山钢铁股份有限公司 High-toughness hot-rolled steel plate with yield strength of 700MPa and manufacturing method thereof
CN108286026A (en) * 2018-01-17 2018-07-17 福建三宝钢铁有限公司 A kind of An industrial atmospheric corrosion resistant rebar and preparation method thereof
EP3797176A1 (en) * 2018-05-22 2021-03-31 ThyssenKrupp Steel Europe AG Shaped sheet-metal part with a high tensile strength formed from a steel and method for the production thereof
WO2020115537A1 (en) * 2018-12-07 2020-06-11 Arcelormittal Low-carbon, high toughness, steel plates for pressurized tank car applications
JP7525773B2 (en) 2020-03-26 2024-07-31 日本製鉄株式会社 Steel sheet for hot stamped parts and its manufacturing method
CN111534760B (en) * 2020-06-08 2021-12-21 首钢集团有限公司 Hot-rolled hot-formed steel and preparation method thereof
CN112410670B (en) * 2020-11-18 2022-02-01 北京交通大学 Bainite/martensite type non-quenched and tempered steel
CN114574762B (en) * 2022-03-04 2022-11-08 马鞍山钢铁股份有限公司 Steel for high-strength-toughness corrosion-resistant underwater Christmas tree valve body smelted under high scrap steel ratio, heat treatment method and production method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3425837B2 (en) * 1996-03-28 2003-07-14 株式会社神戸製鋼所 High-strength hot-rolled steel sheet, high-strength galvanized steel sheet excellent in pitting corrosion resistance and crushing properties, and methods for producing them
JP4325277B2 (en) * 2003-05-28 2009-09-02 住友金属工業株式会社 Hot forming method and hot forming parts
JP4513608B2 (en) * 2004-10-29 2010-07-28 住友金属工業株式会社 Hot-pressed steel sheet member and its manufacturing method
KR100878614B1 (en) * 2005-12-01 2009-01-15 주식회사 포스코 Quenched steel sheet having ultra high strength, parts made of it and the method for manufacturing thereof
KR100711445B1 (en) 2005-12-19 2007-04-24 주식회사 포스코 A method for manu- facturing alloyed hot dip galvanized steel sheet for hot press forming having excellent plating adhesion and impact property, the method for manufacturing hot press parts made of it

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009047032A1 (en) 2009-07-30 2011-02-03 Cheil Industries Inc., Yeosu Polyamide-clay composite composition and fuel transport pipe using same
KR101256523B1 (en) * 2010-12-28 2013-04-22 주식회사 포스코 Method for manufacturing low yield ratio type high strength hot rolled steel sheet and the steel sheet manufactured thereby
KR101246456B1 (en) * 2011-02-24 2013-03-21 현대제철 주식회사 High strength steel sheet and method of manufacturing the high strength steel sheet
KR101277874B1 (en) * 2011-03-31 2013-06-21 주식회사 포스코 Hot forming parts having strength distribution and method for manufacturing the same
WO2018117543A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 Hot press forming plated steel sheet having excellent impact property, hot press molding member, and manufacturing method thereof
US10934601B2 (en) 2016-12-23 2021-03-02 Posco Plated steel sheet for hot press forming having excellent impact property, hot press formed part, and manufacturing method thereof
US11274357B2 (en) 2016-12-23 2022-03-15 Posco Plated steel sheet for hot press forming having excellent impact property, hot press formed part, and manufacturing method thereof
US11732323B2 (en) 2016-12-23 2023-08-22 Posco Plated steel sheet for hot press forming having excellent impact property, hot press formed part, and manufacturing method thereof
US12049678B2 (en) 2016-12-23 2024-07-30 Posco Co., Ltd Plated steel sheet for hot press forming having excellent impact property, hot press formed part, and manufacturing method thereof

Also Published As

Publication number Publication date
WO2009082091A1 (en) 2009-07-02
CN101910438A (en) 2010-12-08
KR101482258B1 (en) 2015-01-13

Similar Documents

Publication Publication Date Title
KR101482258B1 (en) Hot Rolled Steel Sheet Having Superior Hot Press Forming Property and High Tensile Strength, Formed Article Using the Steel Sheet and Method for Manufacturing the Steel Sheet and the Formed Article
KR100840288B1 (en) Carbon steel sheet superior in formability and manufacturing method thereof
KR20150086312A (en) High-Formability and Super-Strength Cold-Rolled Steel Sheet and Manufacturing Method Thereof
KR20150108396A (en) Ultra-High Strength Cold-Rolled Corten Steel Plate and Method of Fabricating Same
KR102469278B1 (en) Steel material for hot press forming, hot pressed member and manufacturing method theerof
KR100722394B1 (en) Steel having superior spheroidized annealing and method making of the same
KR20150075306A (en) Ultra-high strength hot-rolled steel sheet with excellent in bending workability, and method for producing the same
KR20140084932A (en) Hot rolled steel sheet having superior strength and ductility and manufacturing method thereof
KR20140010700A (en) High carbon steel sheet having excellent uniformity and manufacturing mehtod for the same
KR100957965B1 (en) High Strength Hot Rolled Steel Sheet for Hot Forming with Reduced Cracking in Cooling and Coiling and Manufacturing Method Thereof
KR101726139B1 (en) Hot press forming parts having superior ductility and impact toughness and method for manufacturing the same
KR100928785B1 (en) High strength hot rolled steel sheet with excellent weather resistance and manufacturing method
KR20220161067A (en) Cold-rolled steel sheet and method of manufacturing the same
KR101153696B1 (en) Steel Sheet having Excellent Yield Strength and Stretch Flange Ability and Manufacturing Method Thereof
KR20040059293A (en) High strength cold rolled steel sheet having superior workability
KR101143086B1 (en) Manufacturing Method of High Strength Steel Sheet Having Excellent Bake-Hardenability
KR20100001330A (en) Ultra high-strength hot- dip galvanized steel sheet having excellent formability and galvanizing property, and method for producing the same
KR100903642B1 (en) A high carbon steel sheet superior in strenth and toughness and a manufacturing method thereof
KR101076082B1 (en) Hot-rolled steel sheet having ultra-high strength, and method for producing the same
KR101024800B1 (en) High strength hot- dip galvanized steel sheet having excellent formability and galvanizing property, and method for producing the same
KR20100047001A (en) Hot-rolled steel sheet having ultra-high strength, and method for producing the same
KR101568495B1 (en) High strength cold rolled steel sheet having excellent shape property and method for manufacturing the same
KR101185221B1 (en) ultra-high strength Hot-rolled steel sheet, and method for producing the same
KR20090103619A (en) High-strength steel sheet, and method for producing the same
KR20160053102A (en) High carbon hot rolled steel sheet having excellent uniformity and impact resistance and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180109

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200107

Year of fee payment: 6