JP2015190040A - Low alloy steel for steel forging and crank shaft - Google Patents

Low alloy steel for steel forging and crank shaft Download PDF

Info

Publication number
JP2015190040A
JP2015190040A JP2014070215A JP2014070215A JP2015190040A JP 2015190040 A JP2015190040 A JP 2015190040A JP 2014070215 A JP2014070215 A JP 2014070215A JP 2014070215 A JP2014070215 A JP 2014070215A JP 2015190040 A JP2015190040 A JP 2015190040A
Authority
JP
Japan
Prior art keywords
mass
steel
low alloy
forged
alloy steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014070215A
Other languages
Japanese (ja)
Inventor
亮太 矢倉
Ryota Yakura
亮太 矢倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014070215A priority Critical patent/JP2015190040A/en
Priority to CN201510048376.4A priority patent/CN104946999B/en
Priority to KR1020150042163A priority patent/KR101647920B1/en
Publication of JP2015190040A publication Critical patent/JP2015190040A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low alloy steel for steel forging, having yield strength and toughness required for large steel forging and excellent in machinability.SOLUTION: The low alloy steel for steel forging of the present invention has a composition containing as a basic component, C:0.30 mass% to 0.40 mass%, Si:over 0 mass% to 0.45%, Mn:0.50 mass% to 1.90 mass%, Ni:0.70 mass% to 2.00 mass%, Cr:1.00 mass% to 2.30 mass%, Mo:over 0 mass to 0.35 mass%, V:over 0 mass% to 0.20 mass% and the balance Fe with inevitable impurities, 17% or more of a bainite structure, a martensite structure or a combination structure thereof and the balance a pearlite structure, a ferrite structure or a combination structure thereof and satisfies following formulation. (1.5×Mn+2×Ni)/Cr<2.35... (1).

Description

本発明は、鍛鋼品用低合金鋼及びクランク軸に関する。   The present invention relates to a low alloy steel for forged steel products and a crankshaft.

船舶や発電機に使用されるディーゼル機関の伝達部材である大型クランク軸に用いられる鋼材には、ディーゼル機関の出力向上及びコンパクト化を実現するために、高強度化が要求される。   Steel materials used for large crankshafts, which are transmission members of diesel engines used in ships and generators, are required to have high strength in order to improve the output of diesel engines and make them more compact.

これに対し、組立型のクランク軸のクランクスローに使用できる鍛造用鋼が開発されている(例えば特許第4150054号公報参照)。   On the other hand, forging steel that can be used for a crank throw of an assembled crankshaft has been developed (see, for example, Japanese Patent No. 4150054).

ところで、組立型のクランク軸は、鍛鋼品用鋼を成形して得られるクランクスローとクランクジャーナルとを焼嵌めで結合することにより製造される。そのため、ディーゼル機関の運転中にこの焼嵌め部が滑らないようにするため、クランクスローに使用される鍛鋼品用鋼には高い降伏強度(YS)が要求される。ディーゼル機関の出力向上に伴い、最近では450MPa以上という高い降伏強度が要求されている。   By the way, an assembly-type crankshaft is manufactured by joining a crank throw obtained by forming steel for forged steel and a crank journal by shrink fitting. Therefore, high yield strength (YS) is required for steel for forgings used for crank throw in order to prevent this shrink-fitted part from slipping during operation of the diesel engine. With increasing output of diesel engines, recently, high yield strength of 450 MPa or more is required.

しかし、炭素鋼を用いた鍛鋼品用鋼では、350MPa以上380MPa以下程度の降伏強度しか得られない。また、従来の組成を有する低合金鋼を用いる鍛鋼品用鋼の場合、大型になると焼割れが発生するするため、軸径が650mmを超える大型の組立型クランク軸に使用できる鍛鋼品用鋼を製造できない。このように、450MPa以上の降伏強度を有し、かつ大型の組立型クランク軸に使用可能な鍛鋼品用鋼を製造することは困難である。   However, in steel for forgings using carbon steel, only yield strength of about 350 MPa or more and 380 MPa or less can be obtained. In addition, in the case of steel for forgings using a low alloy steel having a conventional composition, since cracking occurs when the steel becomes large, a steel for forgings that can be used for a large assembly type crankshaft with a shaft diameter exceeding 650 mm is used. It cannot be manufactured. Thus, it is difficult to manufacture steel for forgings that has a yield strength of 450 MPa or more and can be used for a large assembled crankshaft.

また、組立型クランク軸に使用するクランクスローやクランクジャーナルは、これらの形状に成形した後、切削加工により仕上げられるため、組立型クランク軸に使用する鍛鋼品用鋼には優れた被削性も要求される。   In addition, crank throws and crank journals used for assembled crankshafts are molded into these shapes and then finished by cutting, so the steel for forgings used for assembled crankshafts also has excellent machinability. Required.

特許第4150054号公報Japanese Patent No. 4150054

本発明は、上述のような事情に基づいてなされたものであり、大型鍛鋼品に要求される降伏強度及び靭性を有し、かつ被削性に優れる鍛鋼品用低合金鋼の提供を目的とする。   The present invention has been made on the basis of the circumstances as described above, and has an object of providing a low alloy steel for forged steel products having yield strength and toughness required for large forged steel products and having excellent machinability. To do.

上記課題を解決するためになされた発明は、C(炭素):0.30質量%以上0.40質量%以下、Si(ケイ素):0質量%超0.45質量%以下、Mn(マンガン):0.50質量%以上1.90質量%以下、Ni(ニッケル):0.70質量%以上2.00質量%以下、Cr(クロム):1.00質量%以上2.30質量%以下、Mo(モリブデン):0質量%超0.35質量%以下、V(バナジウム):0質量%超0.20質量%以下の基本成分を含み、残部がFe(鉄)及び不可避的不純物である組成を有し、ベイナイト組織、マルテンサイト組織又はそれらの組合せ組織を17%以上含有し、残部がパーライト組織、フェライト組織又はそれらの組合せ組織であり、下記式(1)を満たす鍛鋼品用低合金鋼である。
(1.5×Mn+2×Ni)/Cr<2.35 ・・・(1)
The invention made in order to solve the above problems is as follows: C (carbon): 0.30 mass% to 0.40 mass%, Si (silicon): more than 0 mass% to 0.45 mass%, Mn (manganese) : 0.50 mass% or more and 1.90 mass% or less, Ni (nickel): 0.70 mass% or more and 2.00 mass% or less, Cr (chromium): 1.00 mass% or more and 2.30 mass% or less, Composition containing Mo (molybdenum): more than 0% by mass and not more than 0.35% by mass, V (vanadium): more than 0% by mass and not more than 0.20% by mass, the balance being Fe (iron) and inevitable impurities A low alloy steel for forged steels having a bainite structure, a martensite structure or a combination structure thereof in an amount of 17% or more, the balance being a pearlite structure, a ferrite structure or a combination structure thereof and satisfying the following formula (1) It is.
(1.5 × Mn + 2 × Ni) / Cr <2.35 (1)

当該鍛鋼品用低合金鋼は、鋼材の各組成の含有量を上記範囲でかつ上記式(1)を満たすものとし、ベイナイト組織、マルテンサイト組織又はそれらの組合せ組織を17%以上含有するものとすることで、優れた靱性が得られると共に、大型のクランク軸等の大型鍛鋼品に要求される高い降伏強度が確保できる。また、当該鍛鋼品用低合金鋼は、鋼材の組成を上記式(1)を満たすものとすることにより、金属組織のセメンタイト中のCr濃度が大きくなり、これにより切削時の抵抗力が減少するため被削性に優れる。   The low alloy steel for forged steel products is such that the content of each composition of the steel material is within the above range and satisfies the above formula (1), and contains at least 17% of a bainite structure, a martensite structure, or a combination structure thereof. By doing so, excellent toughness can be obtained, and high yield strength required for large forged steel products such as large crankshafts can be secured. In addition, the low alloy steel for forged steel products has a steel composition that satisfies the above formula (1), whereby the Cr concentration in the cementite of the metal structure is increased, thereby reducing the resistance during cutting. Therefore, it is excellent in machinability.

また、上記課題を解決するためになされた別の発明は、当該鍛鋼品用低合金鋼から製造されるクランク軸である。当該クランク軸は、当該鍛鋼品用低合金鋼からなることから、上述のように高い降伏強度及び靭性を有しかつ被削性に優れる。   Moreover, another invention made | formed in order to solve the said subject is a crankshaft manufactured from the said low alloy steel for forged products. Since the crankshaft is made of the low alloy steel for forged steel products, it has high yield strength and toughness as described above and is excellent in machinability.

以上説明したように、本発明の鍛鋼品用低合金鋼は、大型鍛鋼品に要求される降伏強度及び靭性を有し、かつ被削性に優れるので、舶用の組立型大型クランク軸等にも好適に用いられる。   As described above, the low alloy steel for forged steel of the present invention has the yield strength and toughness required for large forged steel products and is excellent in machinability. Preferably used.

実施例におけるベイナイト組織、マルテンサイト組織又はそれらの組合せ組織の組織分率と降伏強度との関係を示すグラフThe graph which shows the relationship between the structure fraction and yield strength of the bainite structure in a Example, a martensitic structure, or those combination structures. 実施例におけるMn、Ni及びCr含有量とドリル穴加工時のトルク抵抗との関係を示すグラフThe graph which shows the relationship between Mn, Ni, and Cr content in Example, and the torque resistance at the time of drilling

以下、本発明に係る鍛鋼品用低合金鋼の実施形態について説明する。   Hereinafter, embodiments of the low alloy steel for forged steel products according to the present invention will be described.

<金属組織>
当該鍛鋼品用低合金鋼の金属組織は、ベイナイト組織、マルテンサイト組織又はそれらの組合せ組織の割合(組織分率)が17%以上であり、残部がパーライト組織、フェライト組織又はそれらの組合せ組織である。このように金属組織においてベイナイト組織、マルテンサイト組織又はそれらの組合せ組織の組織分率が上記下限以上となるようにすることで、当該鍛鋼品用低合金鋼は、舶用の組立型大型クランク軸等として要求される高い降伏強度(450MPa以上)を有する。なお、ベイナイト組織、マルテンサイト組織又はそれらの組合せ組織の組織分率の測定方法としては、例えば鍛鋼品用低合金鋼からミクロ組織観察用の試験片を切り出し、この試験片の表面を鍛伸方向に鏡面研磨し、ナイタールで腐食して光学顕微鏡で観察することにより行うことができる。
<Metallic structure>
The metal structure of the low alloy steel for forgings is a bainite structure, martensite structure or a combination structure thereof (structure fraction) of 17% or more, and the balance is a pearlite structure, a ferrite structure or a combination structure thereof. is there. Thus, by making the structure fraction of the bainite structure, the martensite structure, or a combination structure thereof in the metal structure to be equal to or higher than the lower limit, the low alloy steel for forged steel is an assembly type large crankshaft for ships, etc. As high yield strength (450 MPa or more). In addition, as a method for measuring the structure fraction of the bainite structure, martensite structure or a combination thereof, for example, a specimen for microstructural observation is cut out from a low alloy steel for forged steel, and the surface of this specimen is in the forging direction. Can be mirror-polished, corroded with nital, and observed with an optical microscope.

<組成>
当該鍛鋼品用低合金鋼は、C:0.30質量%以上0.40質量%以下、Si:0質量%超0.45質量%以下、Mn:0.50質量%以上1.90質量%以下、Ni:0.70質量%以上2.00質量%以下、Cr:1.00質量%以上2.30質量%以下、Mo:0質量%超0.35質量%以下、V:0質量%超0.20質量%以下の基本成分を含み、残部がFe及び不可避的不純物である組成を有し、かつ下記式(1)を満たす。
(1.5×Mn+2×Ni)/Cr<2.35 ・・・(1)
<Composition>
The low alloy steel for forged steel is C: 0.30 mass% or more and 0.40 mass% or less, Si: more than 0 mass% and 0.45 mass% or less, Mn: 0.50 mass% or more and 1.90 mass%. Hereinafter, Ni: 0.70% by mass or more and 2.00% by mass or less, Cr: 1.00% by mass or more and 2.30% by mass or less, Mo: more than 0% by mass and 0.35% by mass or less, V: 0% by mass The composition contains a basic component of more than 0.20% by mass and the balance is Fe and inevitable impurities, and satisfies the following formula (1).
(1.5 × Mn + 2 × Ni) / Cr <2.35 (1)

当該鍛鋼品用低合金鋼のC含有率の下限としては、0.30質量%であり、0.32質量%が好ましい。一方、当該鍛鋼品用低合金鋼のC含有率の上限としては、0.40質量%であり、0.39質量%が好ましい。当該鍛鋼品用低合金鋼のC含有率が上記下限未満であると、十分な焼入れ性が得られず、焼ならし後に焼戻しを行う処理による調質で十分な降伏強度が得られる金属組織の組織分率を確保できないおそれがある。逆に、当該鍛鋼品用低合金鋼のC含有率が上記上限を超えると、靭性が極端に低下すると共に、セメンタイトの安定性を高めて焼ならし時のパーライトの生成が促進されるため、降伏強度が低下するおそれがある。当該鍛鋼品用低合金鋼のC含有率を上記範囲とすることで、当該鍛鋼品用低合金鋼の焼入れ性及び降伏強度を適切に確保することができる。   The lower limit of the C content of the low alloy steel for forged steel is 0.30% by mass, preferably 0.32% by mass. On the other hand, the upper limit of the C content of the low alloy steel for forged products is 0.40% by mass, and preferably 0.39% by mass. When the C content of the low alloy steel for forged steel is less than the above lower limit, sufficient hardenability cannot be obtained, and a sufficient microstructure can be obtained by tempering by tempering after normalization. There is a possibility that the organization fraction cannot be secured. Conversely, if the C content of the low alloy steel for forgings exceeds the above upper limit, the toughness is extremely lowered, and since the formation of pearlite during normalization is promoted by increasing the stability of cementite, Yield strength may be reduced. By setting the C content of the low alloy steel for forged steel to be in the above range, the hardenability and the yield strength of the low alloy steel for forged steel can be appropriately ensured.

当該鍛鋼品用低合金鋼のSi含有率の下限としては、0質量%超である。一方、当該鍛鋼品用低合金鋼のSi含有率の上限としては、0.45質量%であり、0.32質量%が好ましい。当該鍛鋼品用低合金鋼のSi含有率が上記上限を超えると、靭性が損なわれるおそれがある。当該鍛鋼品用低合金鋼のSi含有率を上記範囲とすることで、当該鍛鋼品用低合金鋼の焼き入れ性を向上させ十分な靭性を確保することができる。   The lower limit of the Si content of the low alloy steel for forged steel products is more than 0% by mass. On the other hand, the upper limit of the Si content of the low alloy steel for forged steel products is 0.45 mass%, preferably 0.32 mass%. If the Si content of the low alloy steel for forged products exceeds the above upper limit, the toughness may be impaired. By setting the Si content of the low alloy steel for forged steel to be in the above range, the hardenability of the low alloy steel for forged steel can be improved and sufficient toughness can be ensured.

当該鍛鋼品用低合金鋼のMn含有率の下限としては、0.50質量%であり、0.80質量%が好ましい。一方、当該鍛鋼品用低合金鋼のMn含有率の上限としては、1.90質量%であり、1.50質量%が好ましい。当該鍛鋼品用低合金鋼のMn含有率が上記下限未満であると、十分な焼入れ性が得られず、焼ならし後に焼戻しを行う処理による調質で十分な降伏強度が得られる金属組織の組織分率を確保できなくなると共に、十分な靭性が得られないおそれがある。逆に、当該鍛鋼品用低合金鋼のMn含有率が上記上限を超えると、セメンタイト中のCr濃度が低下し被削性が損なわれるおそれがある。当該鍛鋼品用低合金鋼のMn含有率を上記範囲とすることで、当該鍛鋼品用低合金鋼の降伏強度及び靭性を適切に確保することができる。   As a minimum of Mn content of the low alloy steel for forged steel products, it is 0.50 mass%, and 0.80 mass% is preferred. On the other hand, the upper limit of the Mn content of the low alloy steel for forged steel products is 1.90% by mass, preferably 1.50% by mass. When the Mn content of the low alloy steel for forged steel is less than the above lower limit, sufficient hardenability cannot be obtained, and sufficient yield strength can be obtained by refining by tempering after normalization. There is a possibility that the tissue fraction cannot be secured and sufficient toughness cannot be obtained. On the other hand, if the Mn content of the low alloy steel for forged products exceeds the upper limit, the Cr concentration in the cementite is lowered and the machinability may be impaired. By setting the Mn content of the low alloy steel for forged steel in the above range, the yield strength and toughness of the low alloy steel for forged steel can be appropriately ensured.

当該鍛鋼品用低合金鋼のNi含有率の下限としては、0.70質量%であり、0.74質量%が好ましい。一方、当該鍛鋼品用低合金鋼のNi含有率の上限としては、2.00質量%であり、1.50質量%が好ましい。当該鍛鋼品用低合金鋼のNi含有率が上記下限未満であると、十分な焼入れ性が得られず、焼ならし後に焼戻しを行う処理による調質で十分な降伏強度が得られる金属組織の組織分率を確保できなくなるおそれがある。また、当該鍛鋼品用低合金鋼のNi含有率が上記上限を超えると、セメンタイト中のCr濃度を低下させ被削性が損なわれるおそれがある。当該鍛鋼品用低合金鋼のNi含有率を上記範囲とすることで、当該鍛鋼品用低合金鋼の焼入れ性及び強度を適切に確保することができる。   The lower limit of the Ni content of the low alloy steel for forged products is 0.70% by mass, preferably 0.74% by mass. On the other hand, the upper limit of the Ni content of the low alloy steel for forged products is 2.00% by mass, and preferably 1.50% by mass. When the Ni content of the low alloy steel for forged steel is less than the above lower limit, sufficient hardenability cannot be obtained, and a sufficient microstructure can be obtained by tempering by tempering after normalization. There is a risk that the organization fraction cannot be secured. Moreover, when the Ni content of the low alloy steel for forged steel products exceeds the above upper limit, the Cr concentration in the cementite is lowered, and the machinability may be impaired. By making the Ni content of the low alloy steel for forged steel within the above range, the hardenability and strength of the low alloy steel for forged steel can be appropriately ensured.

当該鍛鋼品用低合金鋼のCr含有率の下限としては、1.00質量%であり、1.40質量%が好ましい。一方、当該鍛鋼品用低合金鋼のCr含有率の上限としては、2.30質量%であり、2.10質量%が好ましい。当該鍛鋼品用低合金鋼のCr含有率が上記下限未満であると、十分な焼入れ性が得られず、焼ならし後に焼戻しを行う処理による調質で十分な降伏強度が得られる金属組織の組織分率を確保できなくなり、十分な強度が得られなくなるおそれがある。逆に、当該鍛鋼品用低合金鋼のCr含有率が上記上限を超えると、金属組織のセメンタイトの割合が増加し靭性が損なわれるおそれがある。当該鍛鋼品用低合金鋼のCr含有率を上記範囲とすることで、当該鍛鋼品用低合金鋼の焼入れ性、強度及び靭性を適切に確保することができる。   The lower limit of the Cr content of the low alloy steel for forged steel products is 1.00% by mass, preferably 1.40% by mass. On the other hand, the upper limit of the Cr content of the low alloy steel for forged products is 2.30% by mass, and preferably 2.10% by mass. If the Cr content of the low alloy steel for forged steel is less than the above lower limit, sufficient hardenability cannot be obtained, and sufficient yield strength can be obtained by refining by tempering after normalization. The tissue fraction cannot be secured and sufficient strength may not be obtained. Conversely, if the Cr content of the low alloy steel for forged steel exceeds the upper limit, the cementite ratio in the metal structure increases and the toughness may be impaired. By setting the Cr content of the low alloy steel for forged steel to be in the above range, the hardenability, strength, and toughness of the low alloy steel for forged steel can be appropriately ensured.

当該鍛鋼品用低合金鋼のMo含有率の下限としては、0質量%超である。一方、当該鍛鋼品用低合金鋼のMo含有率の上限としては、0.35質量%であり、0.32質量%が好ましい。当該鍛鋼品用低合金鋼のMo含有率が上記上限を超えると、微細炭化物が生成され靭性が損なわれるおそれがある。当該鍛鋼品用低合金鋼が上記範囲のMoを含有することで、焼入れ性が向上し、焼ならし後に焼戻しを行う処理による調質で十分な降伏強度が得られる金属組織の組織分率を確保でき、十分な強度が得られる。   The lower limit of the Mo content of the low alloy steel for forged steel products is more than 0% by mass. On the other hand, the upper limit of the Mo content of the low alloy steel for forged products is 0.35% by mass, and preferably 0.32% by mass. If the Mo content of the low alloy steel for forged steel exceeds the above upper limit, fine carbides may be generated and the toughness may be impaired. When the low alloy steel for forged steel contains Mo in the above range, the hardenability is improved, and the microstructure fraction of the metal structure that can obtain sufficient yield strength by tempering after tempering after normalization is obtained. Can be secured, and sufficient strength can be obtained.

当該鍛鋼品用低合金鋼のV含有率の下限としては、0質量%超である。一方、当該鍛鋼品用低合金鋼のV含有率の上限としては、0.20質量%であり、0.10質量%が好ましい。当該鍛鋼品用低合金鋼のV含有率が上記上限を超えると、微細炭化物が生成され靭性が損なわれるおそれがある。当該鍛鋼品用低合金鋼が上記範囲のVを含有することで、焼入れ性が向上し、焼ならし後に焼戻しを行う処理による調質で十分な降伏強度が得られる金属組織の組織分率を確保でき、十分な強度が得られる。   The lower limit of the V content of the low alloy steel for forged steel is more than 0% by mass. On the other hand, the upper limit of the V content of the low alloy steel for forged products is 0.20% by mass, and preferably 0.10% by mass. When the V content of the low alloy steel for forged products exceeds the above upper limit, fine carbides may be generated and the toughness may be impaired. When the low alloy steel for forged steel contains V in the above range, the hardenability is improved, and the microstructure fraction of the metal structure at which sufficient yield strength can be obtained by tempering by tempering after normalization is obtained. Can be secured, and sufficient strength can be obtained.

当該鍛鋼品用低合金鋼は、上述した基本成分以外に残部にFe及び不可避的不純物を含む。また、不可避的不純物としては、例えば原料、資材、製造設備等の状況によって持ち込まれるCu(銅)、Sn(スズ)、As(ヒ素)、Pb(鉛)、Ti(チタン)等の元素の混入が許容される。また、さらにその他の組成を積極的に含有させることも有効であり、含有される組成の種類によって鍛鋼材の特性がさらに改善される。   The low alloy steel for forged steel products contains Fe and inevitable impurities in the balance other than the basic components described above. Inevitable impurities include, for example, elements such as Cu (copper), Sn (tin), As (arsenic), Pb (lead), and Ti (titanium) brought in depending on the situation of raw materials, materials, manufacturing equipment, and the like. Is acceptable. In addition, it is effective to further contain other compositions, and the characteristics of the forged steel are further improved depending on the kinds of the contained compositions.

<各組成の関係式>
当該鍛鋼品用低合金鋼において、各元素の含有量が下記式(1)を満たす。
(1.5×Mn+2×Ni)/Cr<2.35 ・・・(1)
<Relational formula of each composition>
In the low alloy steel for forged steel products, the content of each element satisfies the following formula (1).
(1.5 × Mn + 2 × Ni) / Cr <2.35 (1)

各元素の含有量が上記式(1)を満たす範囲では、Cr濃度が24%以上の比較的脆いセメンタイトが生成する。この比較的脆いセメンタイトが生成することで、切削時の抵抗力が減少し、被削性が向上すると考えられる。なお、セメンタイト中のCr濃度が少なくとも22%以上であれば、大型クランク軸用の部品の切削加工で要求される十分な被削性が得られる。   In the range where the content of each element satisfies the above formula (1), relatively brittle cementite having a Cr concentration of 24% or more is generated. It is considered that the formation of this relatively brittle cementite reduces the resistance during cutting and improves the machinability. In addition, if the Cr concentration in cementite is at least 22% or more, sufficient machinability required for cutting of a large crankshaft component can be obtained.

<機械的性質>
当該鍛鋼品用低合金鋼の降伏強度(YS)の下限としては、450MPaが好ましく、500MPaがより好ましい。当該鍛鋼品用低合金鋼の降伏強度が上記下限以上であると、組立型の大型クランク軸の要求を持たし、軸径が650mm以上のクランク軸を製造できる。降伏強度の評価は、例えばJIS−Z2241(2011)に準拠した引張試験により行うことができる。
<Mechanical properties>
The lower limit of the yield strength (YS) of the low alloy steel for forged steel products is preferably 450 MPa, and more preferably 500 MPa. If the yield strength of the low alloy steel for forged steel is equal to or higher than the above lower limit, a crankshaft having a shaft diameter of 650 mm or more can be manufactured with a demand for an assembly-type large crankshaft. Yield strength can be evaluated by, for example, a tensile test based on JIS-Z2241 (2011).

当該鍛鋼品用低合金鋼の吸収エネルギーvE(室温での吸収エネルギー)の下限としては、20Jが好ましく、30Jがより好ましい。当該鍛鋼品用低合金鋼の吸収エネルギーが上記下限以上であると、組立型の大型クランク軸に要求される靭性を満たすことができる。吸収エネルギーの評価は、例えばJIS−Z2242(2005)に準拠したシャルピー衝撃試験により行うことができる。   The lower limit of the absorbed energy vE (absorbed energy at room temperature) of the low alloy steel for forged steel products is preferably 20J, and more preferably 30J. When the absorbed energy of the low alloy steel for forged steel is equal to or higher than the lower limit, the toughness required for the assembled large crankshaft can be satisfied. The absorption energy can be evaluated by, for example, a Charpy impact test based on JIS-Z2242 (2005).

<鍛鋼品用低合金鋼及びクランク軸の製造方法>
当該鍛鋼品用低合金鋼は、例えば溶製工程、鋳造工程、加熱工程、鍛造工程及び熱処理工程を備える製造方法により製造される。さらに、当該鍛鋼品用低合金鋼を機械加工工程により加工することで当該クランク軸が製造される。
<Manufacturing method of low alloy steel for forged steel and crankshaft>
The low alloy steel for forged steel products is manufactured by a manufacturing method including, for example, a melting process, a casting process, a heating process, a forging process, and a heat treatment process. Furthermore, the crankshaft is manufactured by processing the low alloy steel for forged steel products by a machining process.

(溶製工程)
溶製工程では、まず高周波溶解炉、電気炉、転炉などを用いて、上述した所定の組成に調整した鋼を溶製する。その後、その溶鋼に真空処理を施し、O(酸素)、H(水素)等のガス成分や不純元素を除去する。
(Melting process)
In the melting step, first, the steel adjusted to the above-described predetermined composition is melted using a high-frequency melting furnace, an electric furnace, a converter, or the like. Thereafter, the molten steel is subjected to vacuum treatment to remove gas components such as O (oxygen) and H (hydrogen) and impure elements.

(鋳造工程)
鋳造工程では、上記溶製工程で成分調整した鋼を用いてインゴット(鋼塊)を鋳造する。大型鍛鋼品用鋼の場合は、主としてインゴット鋳造が採用され、比較的小型の鍛鋼品の場合は連続鋳造法を採用することも可能である。
(Casting process)
In the casting process, an ingot is cast using the steel whose components have been adjusted in the melting process. Ingot casting is mainly used for large steel forgings, and continuous casting can be used for relatively small forgings.

(加熱工程)
加熱工程では、所定の温度で所定時間、鋼塊を加熱する。低温になると材料の変形抵抗が増大するので、材料の変形能の良好な範囲で加工を行うために、加熱温度は例えば1150℃以上とする。また、鋼塊の表面と内部との温度を均一にするために所定の加熱時間が必要であり、加熱時間は例えば3時間以上とする。加熱時間は、一般的に被加工物の直径の2乗に比例すると考えられており、大型材ほど加熱保持時間は長くなる。
(Heating process)
In the heating step, the steel ingot is heated at a predetermined temperature for a predetermined time. Since the deformation resistance of the material increases at a low temperature, the heating temperature is set to, for example, 1150 ° C. or higher in order to perform processing within a good range of the material deformability. Moreover, in order to make the temperature of the surface and the inside of the steel ingot uniform, a predetermined heating time is required, and the heating time is, for example, 3 hours or more. The heating time is generally considered to be proportional to the square of the diameter of the workpiece, and the larger the material, the longer the heating and holding time.

(鍛造工程)
鍛造工程では、加熱工程で1150℃以上の温度に加熱された鋼塊を鍛造する。ザク巣やミクロポロシティなどの鋳造欠陥を圧着させるために、鍛錬成形比としては3S以上が好ましい。
(Forging process)
In the forging process, the steel ingot heated to a temperature of 1150 ° C. or higher in the heating process is forged. In order to crimp a casting defect such as a zest nest or microporosity, the forging ratio is preferably 3S or more.

(熱処理工程)
熱処理工程では、焼鈍処理及び焼ならし処理を行った後、焼戻し処理を行う。
(Heat treatment process)
In the heat treatment step, an annealing process and a normalizing process are performed, and then a tempering process is performed.

まず、鍛造した鋼塊の焼鈍処理を行う。焼鈍処理では、鍛造鋼塊を加熱して所定の温度(例えば250℃以上350℃以下)で所定時間(例えば5時間以上)保持する。その後、オーステナイト化温度以上(例えば850℃以上920℃以下)まで加熱し、所定時間(例えば3時間以上)保持した後、所定温度(例えば50℃以上200℃以下)となるまで徐冷する。さらに、上記冷却後、所定の温度(例えば500℃以上800℃以下)まで昇温速度30℃/hr以上70℃/hr以下で徐加熱し、一定時間(例えば5時間以上)保持する。   First, the forged steel ingot is annealed. In the annealing treatment, the forged steel ingot is heated and held at a predetermined temperature (for example, 250 ° C. or higher and 350 ° C. or lower) for a predetermined time (for example, 5 hours or longer). Thereafter, the mixture is heated to an austenitizing temperature or higher (for example, 850 ° C. or higher and 920 ° C. or lower), held for a predetermined time (for example, 3 hours or longer), and then gradually cooled to a predetermined temperature (for example, 50 ° C. or higher and 200 ° C. or lower). Further, after the cooling, it is gradually heated to a predetermined temperature (for example, 500 ° C. or more and 800 ° C. or less) at a temperature rising rate of 30 ° C./hr or more and 70 ° C./hr or less, and held for a certain time (for example, 5 hours or more).

焼ならし処理では、焼鈍処理後、室温まで冷却された鍛造鋼塊から鋼材を切り出し、まず、その鋼材のオーステナイト化を行う。オーステナイト化は、Ac3変態点(830℃)以上に昇温速度30℃/hr以上70℃/hr以下で徐加熱して、一定時間(例えば1時間以上)保持する。なお、大型の鋼材の場合、加熱時に材料の内外で温度差が生じるため、オーステナイト化温度まで徐加熱し、鋼材の表面と内部との温度を均一にするために一定時間保持する必要がある。この保持時間は、鋼材直径に依存し、大型材ほど長くする必要がある。   In the normalizing process, after annealing, the steel material is cut out from the forged steel ingot cooled to room temperature, and first, the steel material is austenitized. Austenitization is performed by gradually heating at a temperature rising rate of 30 ° C./hr or more and 70 ° C./hr or less to the Ac3 transformation point (830 ° C.) or more and holding for a certain time (for example, 1 hour or more). In the case of a large steel material, a temperature difference occurs between the inside and outside of the material during heating. Therefore, it is necessary to gradually heat the material to the austenitizing temperature and hold the steel material for a certain time in order to make the temperature uniform between the surface and the inside. This holding time depends on the diameter of the steel material and needs to be longer for larger materials.

次に、焼ならし処理において、オーステナイト化により鋼材の温度が均質になった後、鋼材を冷却する。このときの冷却速度の下限としては、0.5℃/分が好ましく、1℃/分がより好ましい。また、上記冷却速度の上限としては、8℃/分が好ましく、5℃/分がより好ましい。上記冷却速度が上記下限未満であると、ベイナイト組織、マルテンサイト組織又はそれらの組合せ組織が減少し、十分な降伏強度が得られなくなるおそれがある。一方、上記冷却速度が上記上限を超えると、冷却時の熱応力や変態応力により割れが発生するおそれがある。   Next, in the normalizing process, after the temperature of the steel material becomes uniform due to austenitization, the steel material is cooled. The lower limit of the cooling rate at this time is preferably 0.5 ° C./min, and more preferably 1 ° C./min. Moreover, as an upper limit of the said cooling rate, 8 degree-C / min is preferable and 5 degree-C / min is more preferable. If the cooling rate is less than the lower limit, the bainite structure, the martensite structure, or a combination structure thereof may decrease, and a sufficient yield strength may not be obtained. On the other hand, if the cooling rate exceeds the upper limit, cracking may occur due to thermal stress or transformation stress during cooling.

上記冷却後、焼戻し処理を行うことにより当該鍛鋼品用低合金鋼が得られる。鋼材の焼戻しは、所定の温度まで昇温速度30℃/hr以上70℃/hr以下で徐加熱し、一定時間(例えば5時間以上)保持する。焼戻しは、強度、延性及び靭性のバランスを調整するとともに、相変態で生じた内部応力(残留応力)を除去するため例えば550℃以上で行う。ただし、高温になると炭化物の粗大化、転位組織の回復などにより鋼材が軟化し、十分な強度が確保できないため例えば650℃以下とする。   The said low alloy steel for forged products is obtained by performing a tempering process after the said cooling. In the tempering of the steel material, the steel material is gradually heated to a predetermined temperature at a temperature rising rate of 30 ° C./hr to 70 ° C./hr and held for a certain time (for example, 5 hours or more). Tempering is performed at, for example, 550 ° C. or higher in order to adjust the balance of strength, ductility, and toughness and to remove internal stress (residual stress) generated by the phase transformation. However, when the temperature becomes high, the steel material softens due to the coarsening of carbides, recovery of the dislocation structure, and the like, and sufficient strength cannot be secured.

(機械加工工程)
熱処理工程後の当該鍛鋼品用低合金鋼をクランクスローやクランクジャーナルに鍛造した後、切削又は研削を含む仕上げ機械加工を施すことで、当該クランク軸用の部品を得ることができる。そして、仕上げ機械加工を施したクランクスローとクランクジャーナルとを焼嵌めることにより当該クランク軸が得られる。
(Machining process)
The forged steel low alloy steel after the heat treatment step is forged into a crank throw or a crank journal, and then subjected to finish machining including cutting or grinding, whereby the crankshaft component can be obtained. Then, the crankshaft is obtained by shrink fitting the crank throw and the crank journal subjected to finish machining.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

〔鋼種及び調質方法の評価〕
まず、鋼種及び調質方法に関して、大型クランク軸への適用性について評価した。
[Evaluation of steel grade and tempering method]
First, the applicability to large crankshafts was evaluated for steel types and tempering methods.

(実施例1)
実施例1は、表1に示す組成を有する綱を900℃以上1230℃以下の温度間で熱間鍛造した後、ガス切断により軸径950mmのクランクスローの形状に成形した。次に、この成形したクランクスローを870℃に加熱した後、空冷により冷却し、焼ならしを行った。さらに、冷却したクランクスローを620℃まで加熱し、焼戻しを施した。
(Example 1)
In Example 1, a rope having the composition shown in Table 1 was hot-forged between 900 ° C. and 1230 ° C., and then formed into a crank throw shape with a shaft diameter of 950 mm by gas cutting. Next, the molded crank throw was heated to 870 ° C., cooled by air cooling, and normalized. Further, the cooled crank throw was heated to 620 ° C. and tempered.

(比較例1〜3)
比較例1〜3は、表1に示す組成を有する鋼を900℃以上1230℃以下の温度間で熱間鍛造した後、ガス切断により軸径620mm、720mm及び1062mmのクランクスローの形状に成形した。次に、これらの成形したクランクスローを870℃に加熱した後、空冷により冷却し、焼ならしを行った。さらに、冷却したクランクスローを620℃まで加熱し、焼戻しを施した。
(Comparative Examples 1-3)
In Comparative Examples 1 to 3, steel having the composition shown in Table 1 was hot-forged between 900 ° C. and 1230 ° C., and then formed into crank throw shapes having shaft diameters of 620 mm, 720 mm, and 1062 mm by gas cutting. . Next, these molded crank throws were heated to 870 ° C., cooled by air cooling, and normalized. Further, the cooled crank throw was heated to 620 ° C. and tempered.

(比較例4)
比較例4は、表1に示す組成を有する綱を900℃以上1230℃以下の温度間で熱間鍛造した後、ガス切断により軸径720mmのクランクスローの形状に成形した。次に、この成形したクランクスローを870℃に加熱した後、水溶液の濃度を25質量%に調整したポリアルキレングリコール系のポリマー液により冷却し、焼入れを行った。さらに、冷却したクランクスローを620℃まで加熱し、焼戻しを施した。
(Comparative Example 4)
In Comparative Example 4, a rope having the composition shown in Table 1 was hot-forged between 900 ° C. and 1230 ° C., and then molded into a crank throw shape with a shaft diameter of 720 mm by gas cutting. Next, the molded crank throw was heated to 870 ° C., and then cooled with a polyalkylene glycol-based polymer solution in which the concentration of the aqueous solution was adjusted to 25% by mass, followed by quenching. Further, the cooled crank throw was heated to 620 ° C. and tempered.

[焼割れ評価]
調質を行ったクランクスローを目視検査により観察し、割れの有無を確認した。
[Scoring evaluation]
The tempered crank throw was observed by visual inspection to check for cracks.

[降伏強度評価]
調質を行ったクランクスローの焼嵌め部近傍から試験片を採取し、JIS−Z2241(2011)に準拠して引張試験を実施した。試験片の形状は、JIS−Z2241(2011)の14A号試験片でφ6×G.L.30mmとし、降伏強度を測定した。本試験では、降伏強度450MPa以上のものを合格とした。
[Yield strength evaluation]
A test piece was collected from the vicinity of the shrink-fitted portion of the tempered crank throw, and a tensile test was performed in accordance with JIS-Z2241 (2011). The shape of the test piece was a JIS-Z2241 (2011) No. 14A test piece, φ6 × G. L. The yield strength was measured at 30 mm. In this test, those having a yield strength of 450 MPa or more were accepted.

本試験では、クランクスローに割れが認められず、かつ降伏強度が450MPa以上のものを総合評価「A」とした。また、降伏強度が450MPa未満のものを総合評価「B」、割れが認められたものを総合評価「C」とした。これらの測定結果を表1に示す。   In this test, a crank throw with no cracks and a yield strength of 450 MPa or more was designated as a comprehensive evaluation “A”. Moreover, the thing whose yield strength was less than 450 MPa was made into comprehensive evaluation "B", and the thing in which the crack was recognized was made into comprehensive evaluation "C". These measurement results are shown in Table 1.

Figure 2015190040
Figure 2015190040

[測定結果]
実施例1のクランクスローは、焼割れが認められず、かつ450MPa以上の降伏強度が得られた。これにより、本発明の基本成分を含有し、焼ならし後に焼戻しを行う処理による調質を行った鋼が、大型クランク軸に好適に使用できることがわかった。
[Measurement result]
In the crank throw of Example 1, no cracking was observed, and a yield strength of 450 MPa or more was obtained. Thereby, it turned out that the steel which contained the basic component of this invention and tempered by the process of tempering after normalization can be used suitably for a large-sized crankshaft.

一方、比較例1〜3の鋼を用いたクランクスローは、焼割れは認められなかったものの、降伏強度が低く、組立型の大型クランク軸に適用できないといえる。   On the other hand, although the crank throw using the steels of Comparative Examples 1 to 3 did not show any burning cracks, it can be said that the yield strength is low and it cannot be applied to an assembly-type large crankshaft.

また、比較例4の鋼を用いたクランクスローは、比較的軸径が大きいにもかかわらず焼入れしたために表層と内部との温度差が生じ易く、焼入れ時に生じた上記温度差によって熱応力又は変態応力が発生し、そのために割れが発生したと考えられる。   In addition, the crank throw using the steel of Comparative Example 4 is hardened despite the relatively large shaft diameter, so that a temperature difference between the surface layer and the inside tends to occur, and thermal stress or transformation is caused by the temperature difference generated during quenching. It is thought that stress was generated and cracking occurred.

〔鋼の組成及び金属組織評価〕
次に、鋼の組成及び金属組織について評価した。
[Evaluation of steel composition and microstructure]
Next, the steel composition and the metal structure were evaluated.

(実施例2〜5、比較例5〜15)
実施例2〜5、比較例5〜15は、表2に示す組成を有する鋼を溶製し、試験用の鍛鋼品用鋼を製造した。まず、高周波炉を用いて表1に示す組成の鋼を溶製し、幅170mm×厚み120mm×高さ230mmの40kgの鋼塊を鋳造した。次に、得られた鋼塊の押湯部分を切除し、1230℃で5時間以上10時間以下加熱した。次に、自由鍛造プレス機により、加熱した鋼塊を高さ比で1/2まで圧縮し、鋼塊中心線を90°回転させて鍛造し、幅90mm×厚み90mm×長さ450mmまで引き伸ばした後、その素材を大気中で放冷した。その後、250℃以上300℃以下に冷却された素材を加熱炉で10時間以上保持した後、50℃/hrで加熱し870℃で5時間保持した。その後、その素材を100℃以上150℃以下まで炉冷した後、再び50℃/hrで加熱し、650℃で15時間保持した後、大気中で放冷し焼鈍し処理を施した。
(Examples 2-5, Comparative Examples 5-15)
In Examples 2 to 5 and Comparative Examples 5 to 15, steels having the compositions shown in Table 2 were melted to produce test steels for forged products. First, steel having the composition shown in Table 1 was melted using a high-frequency furnace, and a 40 kg steel ingot having a width of 170 mm, a thickness of 120 mm, and a height of 230 mm was cast. Next, the feeder part of the obtained steel ingot was excised and heated at 1230 ° C. for 5 hours to 10 hours. Next, with a free forging press machine, the heated steel ingot was compressed to ½ in height ratio, the steel ingot center line was rotated by 90 ° and forged, and stretched to width 90 mm × thickness 90 mm × length 450 mm. Later, the material was allowed to cool in the atmosphere. Thereafter, the material cooled to 250 ° C. or higher and 300 ° C. or lower was held in a heating furnace for 10 hours or more, then heated at 50 ° C./hr and held at 870 ° C. for 5 hours. Thereafter, the material was furnace cooled to 100 ° C. or higher and 150 ° C. or lower, heated again at 50 ° C./hr, held at 650 ° C. for 15 hours, and then allowed to cool in the atmosphere and annealed.

次に、室温まで放冷した上記素材から幅20mm×厚み20mm×長さ200mmの角材を切り出し、小型シミュレート炉を用いてオーステナイト化処理を施した。オーステナイト化処理は、切り出した素材(上記角材)を50℃/hrで870℃まで昇温して1時間保持した後、870℃から500℃までの温度範囲における平均冷却速度が1.0℃/minとなるよう冷却を行った。その後、上記素材を室温まで冷却した後、焼戻し処理として620℃で10時間保持してから大気中で放冷した。なお、上述のオーステナイト化処理した後の870℃から500℃までの温度範囲における1.0℃/minという平均冷却速度は、大型鍛鋼品中の焼ならし後の冷却を模擬した冷却速度である。   Next, a square member having a width of 20 mm, a thickness of 20 mm, and a length of 200 mm was cut out from the above-mentioned raw material that had been allowed to cool to room temperature, and austenitized using a small simulated furnace. In the austenitizing treatment, the cut material (the above-mentioned square bar) is heated to 870 ° C. at 50 ° C./hr and held for 1 hour, and then the average cooling rate in the temperature range from 870 ° C. to 500 ° C. is 1.0 ° C. / Cooling was performed to reach min. Then, after cooling the said raw material to room temperature, after hold | maintaining at 620 degreeC for 10 hours as a tempering process, it stood to cool in air | atmosphere. In addition, the average cooling rate of 1.0 ° C./min in the temperature range from 870 ° C. to 500 ° C. after the above-described austenitizing treatment is a cooling rate that simulates cooling after normalization in a large forged steel product. .

(比較例16〜19)
比較例16〜19は、組成が実施例2〜5と同じ組成の鋼を用いて、焼ならし後の冷却における平均冷却速度を0.3℃/minとした以外は上記実施例2と同様の製造方法により試験用素材を製造した。
(Comparative Examples 16-19)
Comparative Examples 16 to 19 are the same as Example 2 except that steel having the same composition as Examples 2 to 5 was used and the average cooling rate in cooling after normalization was set to 0.3 ° C./min. The test material was manufactured by the manufacturing method.

(比較例20、21)
比較例20、21は、表2に示す組成を有する鋼を用いて、上記実施例2と同様の製造方法により試験用素材を製造した。なお、比較例20、21で用いた鋼は、その組成が上記式(1)を持たさないものである。
(Comparative Examples 20 and 21)
In Comparative Examples 20 and 21, a test material was produced by the same production method as in Example 2 above, using steel having the composition shown in Table 2. The steel used in Comparative Examples 20 and 21 has a composition that does not have the above formula (1).

(実施例6〜9)
実施例6〜9は、組成が実施例2〜5と同じ組成の鋼を用いて、焼ならし後の冷却における平均冷却速度を5.0℃/minとした以外は上記実施例2と同様の製造方法により試験用素材を製造した。
(Examples 6 to 9)
Examples 6 to 9 are the same as Example 2 except that the steel has the same composition as Examples 2 to 5 and the average cooling rate in cooling after normalization is 5.0 ° C./min. The test material was manufactured by the manufacturing method.

(比較例22、23)
比較例22、23は、組成が比較例20、21と同じ組成の鋼を用いて、焼ならし後の冷却における平均冷却速度を5.0℃/minとした以外は上記実施例2と同様の製造方法により試験用素材を製造した。
(Comparative Examples 22 and 23)
Comparative Examples 22 and 23 are the same as Example 2 except that the steel has the same composition as Comparative Examples 20 and 21 and the average cooling rate in cooling after normalization is 5.0 ° C./min. The test material was manufactured by the manufacturing method.

[機械的性質の測定]
製造した上記試験素材から試験片を採取し、JIS−Z2241(2011)に準拠して引張試験を実施した。試験片の形状は、JIS−Z2241(2011)の14A号試験片でφ6×G.L.30mmとし、降伏強度(YS)を測定した。この試験では、降伏強度450MPa以上のものを合格とした。
[Measuring mechanical properties]
A test piece was collected from the manufactured test material and subjected to a tensile test in accordance with JIS-Z2241 (2011). The shape of the test piece was a JIS-Z2241 (2011) No. 14A test piece, φ6 × G. L. The yield strength (YS) was measured at 30 mm. In this test, those with a yield strength of 450 MPa or more were accepted.

また、シャルピー衝撃試験により上記試験素材の吸収エネルギー(vE)(室温での吸収エネルギー)を測定し、靭性の評価を行った。シャルピー衝撃試験はJIS−Z2242(2005)に準拠して実施し、このときの試験片形状はJIS−Z2242(2005)の2mmVノッチを採用した。この試験では、吸収エネルギーが20J以上のものを合格と判定した。   Further, the absorbed energy (vE) (absorbed energy at room temperature) of the test material was measured by a Charpy impact test, and the toughness was evaluated. The Charpy impact test was performed according to JIS-Z2242 (2005), and the 2 mmV notch of JIS-Z2242 (2005) was adopted as the shape of the test piece at this time. In this test, the absorption energy of 20 J or more was determined to be acceptable.

[金属組織の観察]
試験素材から金属組織観察用の試験片を切出し、その試験片を3%ナイタール液で腐食して光学顕微鏡で観察した。具体的には、光学顕微鏡で100倍の倍率で観察及び撮影を行い、撮影した写真に対して11行×11列の格子を当ててベイナイト組織又はマルテンサイト組織に当たる格子点を数えた。そして、この格子点の数を全格子数121で割ることによって各視野におけるベイナイト組織、マルテンサイト組織又はそれらの組合せ組織の組織分率(金属組織における割合)とした。試験素材毎に同様の測定を3視野で行い、その平均値を各素材におけるベイナイト組織、マルテンサイト組織又はそれらの組合せ組織の組織分率とした。表2では、この組織分率を「B・M分率」と記載した。
[Observation of metal structure]
A specimen for observing the metal structure was cut out from the test material, and the specimen was corroded with 3% nital solution and observed with an optical microscope. Specifically, observation and photographing were performed with an optical microscope at a magnification of 100 times, and a lattice of 11 rows × 11 columns was applied to the photographed photo to count lattice points corresponding to a bainite structure or a martensite structure. Then, the number of lattice points was divided by the total number of lattices 121 to obtain the structure fraction (ratio in the metal structure) of the bainite structure, the martensite structure, or a combination structure thereof in each field of view. The same measurement was performed for each test material in three fields of view, and the average value was taken as the structure fraction of the bainite structure, martensite structure, or combination thereof in each material. In Table 2, this tissue fraction was described as “B / M fraction”.

[セメンタイト中の合金元素の濃度分析]
セメンタイト中の合金元素の濃度分析は、走査型電子顕微鏡(SEM)付属のEDXにて定量分析することにより行った。EDXは、電子線照射により発生する特性X線を検出し、エネルギーで分光することによって元素分析や組成分析を行う手法である。なお、表2中で「セメンタイト中Cr濃度」の欄に斜線を付している比較例5〜8、10、12〜19については、セメンタイト中の合金元素の濃度分析を実施していない。
[Concentration analysis of alloying elements in cementite]
The concentration analysis of the alloy elements in the cementite was performed by quantitative analysis using EDX attached to a scanning electron microscope (SEM). EDX is a technique for performing elemental analysis and composition analysis by detecting characteristic X-rays generated by electron beam irradiation and performing spectral analysis with energy. In Table 2, for Comparative Examples 5 to 8, 10, and 12 to 19 in which the column of “Cr concentration in cementite” is hatched, the concentration analysis of the alloy elements in cementite is not performed.

[被削性評価]
被削性の評価として、試験素材についてドリル穴加工時のトルク抵抗値の測定試験を行った。幅20mm×厚み20mm×200mmの試験素材から長さ12mmで切断した角材を試験片とし、この試験片の切断面に対してドリル穴加工を行った。φ5mmの超硬ドリル(サンドビック株式会社の「860.1−0500−019A1−PM4234」)を用い、試験片一つにつき1本のドリルで深さ10mmの穴を2つ開けた。ドリル加工は、回転数4,000rpm、送り速度0.25mm/revで、潤滑油(水溶性潤滑剤(ユシロ化学工業株式会社のユシローケン「EC50」)を50倍希釈)を10L/minの流量でドリル加工部に供給しながら行った。被削性評価では、ドリルが試験片に接触してから深さ10mmの穴を開け終えるまでの間のトルク抵抗の平均値を測定し、180N・cm以下を合格とした。なお、表2中で「トルク抵抗」の欄に斜線を付している比較例5〜8、10、12〜19については、被削性の評価を実施していない。
[Machinability evaluation]
As an evaluation of machinability, the test material was subjected to a measurement test of a torque resistance value during drilling. A square material cut at a length of 12 mm from a test material having a width of 20 mm × thickness of 20 mm × 200 mm was used as a test piece, and a drill hole was formed on the cut surface of the test piece. Using a carbide drill of φ5 mm (“860.1-0500-019A1-PM4234” from Sandvik Co., Ltd.), two 10 mm deep holes were drilled with one drill per test piece. Drilling is performed at a flow rate of 10 L / min at a rotational speed of 4,000 rpm, a feed rate of 0.25 mm / rev, and a lubricating oil (water-soluble lubricant (Yushiroken "EC50" from Yushiro Chemical Industry Co., Ltd.) diluted 50 times). This was done while supplying to the drilling section. In the machinability evaluation, an average value of torque resistance was measured from when the drill contacted the test piece until the drilling of a depth of 10 mm was completed, and 180 N · cm or less was accepted. In Table 2, the machinability is not evaluated for Comparative Examples 5 to 8, 10, and 12 to 19 in which the “torque resistance” column is hatched.

本試験では、降伏強度、吸収エネルギー及び被削性が共に合格と判定されたものを総合評価「A」とした。また、降伏強度(YS)が450MPa未満のものを総合評価「B」、吸収エネルギー(vE)が20J未満のものを総合評価「C」、ドリル穴加工時のトルク抵抗が180N・cmを超えるものを総合評価「D」とした。これらの測定結果を表2に示す。   In this test, the overall evaluation “A” was determined when all the yield strength, absorbed energy, and machinability were determined to be acceptable. In addition, those with a yield strength (YS) of less than 450 MPa are comprehensively evaluated “B”, those with an absorbed energy (vE) of less than 20 J are comprehensively evaluated “C”, and torque resistance during drilling exceeds 180 N · cm. Was evaluated as “D”. These measurement results are shown in Table 2.

Figure 2015190040
Figure 2015190040

[測定結果]
実施例2〜9は、いずれも降伏強度が高く靭性及び被削性も優れており総合評価Aであった。これらの鍛鋼品用低合金鋼は、大型クランク軸として好適に使用できるといえる。
[Measurement result]
Each of Examples 2 to 9 had a high yield strength and excellent toughness and machinability, and was a comprehensive evaluation A. It can be said that these low alloy steels for forged steel can be suitably used as large crankshafts.

これに対し、比較例5〜15は、降伏強度、靭性及び被削性の少なくともいずれかが合格の範囲を満たさなかった。これらの試験素材は、本発明の基本成分の範囲を満たさない組成を有する鋼を用いて作成したものである。本発明の基本成分のうち、C、Mn、Ni、Crは強度向上に寄与する元素であり、本発明で規定するこれらの元素の含有量の下限未満の元素を有する組成のもの(比較例5、8、10、12)の降伏強度が低下しているといえる。また、本発明の基本成分のうち、C、Si、Cr、Mo、Vは、過剰であると靱性を損なう元素であり、本発明で規定するこれらの元素の含有量の上限を超える元素を有する組成のもの(比較例6、7、13、14、15)の靱性が低下している。また、本発明の基本成分のうち、Mn及びNiは、過剰であるとセメンタイト組織中のCr濃度が低下するので、本発明で規定するこれらの元素の含有量の上限を超える元素を有する組成のもの(比較例9、11)は被削性が低下している。   In contrast, in Comparative Examples 5 to 15, at least one of yield strength, toughness, and machinability did not satisfy the acceptable range. These test materials are prepared using steel having a composition that does not satisfy the basic component range of the present invention. Among the basic components of the present invention, C, Mn, Ni, and Cr are elements that contribute to strength improvement, and have a composition having an element that is less than the lower limit of the content of these elements defined in the present invention (Comparative Example 5). , 8, 10, 12) It can be said that the yield strength is lowered. Among the basic components of the present invention, C, Si, Cr, Mo, and V are elements that impair toughness when they are excessive, and have elements that exceed the upper limit of the content of these elements defined in the present invention. The toughness of the composition (Comparative Examples 6, 7, 13, 14, 15) is reduced. In addition, among the basic components of the present invention, if Mn and Ni are excessive, the Cr concentration in the cementite structure decreases, so that the composition having elements exceeding the upper limit of the content of these elements defined in the present invention. The thing (Comparative Examples 9 and 11) has reduced machinability.

比較例16〜19は、焼ならし後の冷却における平均冷却速度を小さくしたために、試験素材中のベイナイト組織及びマルテンサイト組織が少なくなり、いずれの試験素材中にもベイナイト組織及びマルテンサイト組織が認められなかった。比較例16〜19は、ベイナイト組織及びマルテンサイト組織が少ないため、降伏強度が低下していると考えられる。   In Comparative Examples 16 to 19, since the average cooling rate in cooling after normalization was reduced, the bainite structure and the martensite structure in the test material were reduced, and the bainite structure and the martensite structure were present in any of the test materials. I was not able to admit. In Comparative Examples 16 to 19, since the bainite structure and the martensite structure are small, it is considered that the yield strength is lowered.

比較例20及び21は、本発明の基本成分の範囲を満たす組成を有する鋼を用いているが、Mn、Ni及びCrの含有量が上記式(1)を満たしていない。そのため、セメンタイト中のCr濃度が低くなり、被削性が低下したと考えられる。   Comparative Examples 20 and 21 use steel having a composition that satisfies the range of the basic components of the present invention, but the contents of Mn, Ni, and Cr do not satisfy the above formula (1). Therefore, it is considered that the Cr concentration in the cementite is lowered and the machinability is lowered.

実施例6〜9は、焼ならし後の冷却における平均冷却速度を大きくしたために、試験素材中のベイナイト組織又はマルテンサイト組織の割合が多くなり、試験素材の金属組織の全てがベイナイト組織及びマルテンサイト組織となった。そのため、セメンタイト中のCr濃度が低下せず、被削性が低下しなかったといえる。また、実施例6〜9は、降伏強度が実施例2〜5よりも向上しており、焼ならし後の冷却における平均冷却速度を制御することにより降伏強度を向上させることができるといえる。   In Examples 6 to 9, since the average cooling rate in the cooling after normalization was increased, the ratio of the bainite structure or martensite structure in the test material was increased, and all of the metal structures of the test material were bainite structure and martensite. It became a site organization. Therefore, it can be said that the Cr concentration in cementite did not decrease and the machinability did not decrease. In Examples 6 to 9, the yield strength is higher than that in Examples 2 to 5, and it can be said that the yield strength can be improved by controlling the average cooling rate in cooling after normalization.

比較例22及び23は、比較例20及び21よりも焼ならし後の冷却における平均冷却速度を大きくしたために、試験素材中のベイナイト組織又はマルテンサイト組織の割合が比較例20及び21よりも多くなっている。しかし、Mn、Ni及びCrの含有量が上記式(1)を満たしていないため、セメンタイト中のCr濃度が高くならず、比較例20及び21に対して被削性が向上しなかったと考えられる。   In Comparative Examples 22 and 23, since the average cooling rate in the cooling after normalization was larger than those in Comparative Examples 20 and 21, the ratio of the bainite structure or the martensite structure in the test material was higher than that in Comparative Examples 20 and 21. It has become. However, since the contents of Mn, Ni, and Cr do not satisfy the above formula (1), the Cr concentration in cementite does not increase, and it is considered that machinability was not improved with respect to Comparative Examples 20 and 21. .

上記実施例2〜9、比較例5〜23の測定結果について、ベイナイト組織、マルテンサイト組織又はそれらの組合せ組織の組織分率(B・M分率)と降伏強度(YS)との関係を図1に示す。図1の黒丸のプロットは実施例の測定結果を示し、四角形のプロットは比較例の測定結果を示している。図1より、ベイナイト組織、マルテンサイト組織又はそれらの組合せ組織の組織分率が高いほど降伏強度が向上する傾向があり、ベイナイト組織、マルテンサイト組織又はそれらの組合せ組織の組織分率が17%以上であると450MPa以上の高い降伏強度が得られることがわかる。   Regarding the measurement results of Examples 2 to 9 and Comparative Examples 5 to 23, the relationship between the structure fraction (B / M fraction) and the yield strength (YS) of the bainite structure, martensite structure or a combination structure thereof is illustrated. It is shown in 1. The black circle plots in FIG. 1 show the measurement results of the example, and the square plots show the measurement results of the comparative example. From FIG. 1, the yield strength tends to improve as the structure fraction of the bainite structure, martensite structure, or combination thereof increases, and the structure fraction of the bainite structure, martensite structure, or combination thereof increases by 17% or more. It can be seen that a high yield strength of 450 MPa or more can be obtained.

また、上記実施例2〜9、比較例9、11、20〜23の測定結果について、上記式(1)の左辺の値とトルク抵抗との関係を図2に示す。図2の黒丸のプロットは実施例の測定結果を示し、四角形のプロットは比較例の測定結果を示している。図2より、上記式(1)の左辺の値が大きいほどトルク抵抗が大きくなる傾向があり、上記式(1)の左辺の値が2.35未満であるとトルク抵抗が180N・cm以下となり、優れた被削性が得られることがわかる。   Moreover, the relationship between the value of the left side of said Formula (1) and torque resistance is shown in FIG. 2 about the measurement result of the said Examples 2-9 and the comparative examples 9, 11, 20-23. The black circle plots in FIG. 2 show the measurement results of the example, and the square plots show the measurement results of the comparative example. From FIG. 2, the torque resistance tends to increase as the value on the left side of the above formula (1) increases. When the value on the left side of the above formula (1) is less than 2.35, the torque resistance becomes 180 N · cm or less. It can be seen that excellent machinability can be obtained.

以上説明したように、当該鍛鋼品用低合金鋼は、大型鍛鋼品に要求される高い降伏強度及び靭性を有し、かつ被削性に優れるので、舶用の組立型大型クランク軸等に好適に用いられる。   As described above, the low alloy steel for forged steel products has high yield strength and toughness required for large forged steel products, and is excellent in machinability. Used.

Claims (2)

C:0.30質量%以上0.40質量%以下、
Si:0質量%超0.45質量%以下、
Mn:0.50質量%以上1.90質量%以下、
Ni:0.70質量%以上2.00質量%以下、
Cr:1.00質量%以上2.30質量%以下、
Mo:0質量%超0.35質量%以下、
V:0質量%超0.20質量%以下
の基本成分を含み、残部がFe及び不可避的不純物である組成を有し、
ベイナイト組織、マルテンサイト組織又はそれらの組合せ組織を17%以上含有し、残部がパーライト組織、フェライト組織又はそれらの組合せ組織であり、
下記式(1)を満たす鍛鋼品用低合金鋼。
(1.5×Mn+2×Ni)/Cr<2.35 ・・・(1)
C: 0.30 mass% or more and 0.40 mass% or less,
Si: more than 0% by mass and 0.45% by mass or less,
Mn: 0.50% by mass or more and 1.90% by mass or less,
Ni: 0.70% by mass or more and 2.00% by mass or less,
Cr: 1.00% by mass to 2.30% by mass,
Mo: more than 0% by mass and 0.35% by mass or less,
V: containing a basic component of more than 0% by mass and 0.20% by mass or less, with the balance being Fe and inevitable impurities,
The bainite structure, martensite structure or a combination structure thereof is 17% or more, the balance is a pearlite structure, a ferrite structure or a combination structure thereof,
Low alloy steel for forgings that satisfies the following formula (1).
(1.5 × Mn + 2 × Ni) / Cr <2.35 (1)
請求項1に記載の鍛鋼品用低合金鋼から製造されるクランク軸。   A crankshaft manufactured from the low alloy steel for forged steel product according to claim 1.
JP2014070215A 2014-03-28 2014-03-28 Low alloy steel for steel forging and crank shaft Pending JP2015190040A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014070215A JP2015190040A (en) 2014-03-28 2014-03-28 Low alloy steel for steel forging and crank shaft
CN201510048376.4A CN104946999B (en) 2014-03-28 2015-01-30 Forge steel part low-alloy steel and crank axle
KR1020150042163A KR101647920B1 (en) 2014-03-28 2015-03-26 Low alloy steel for forging, and crankshaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014070215A JP2015190040A (en) 2014-03-28 2014-03-28 Low alloy steel for steel forging and crank shaft

Publications (1)

Publication Number Publication Date
JP2015190040A true JP2015190040A (en) 2015-11-02

Family

ID=54162054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014070215A Pending JP2015190040A (en) 2014-03-28 2014-03-28 Low alloy steel for steel forging and crank shaft

Country Status (3)

Country Link
JP (1) JP2015190040A (en)
KR (1) KR101647920B1 (en)
CN (1) CN104946999B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107937829A (en) * 2017-12-01 2018-04-20 宝鼎科技股份有限公司 High-voltage motor highly stressed rotor forging shaft and heat treatment method
KR20180109715A (en) 2017-03-27 2018-10-08 가부시키가이샤 고베 세이코쇼 Steel for steel forging, and forged steel crank throw and forged steel journal for assembling type crankshaft
CN112342437A (en) * 2020-11-20 2021-02-09 宁波北理汽车科技股份有限公司 Crankshaft connecting rod preparation process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108149154B (en) * 2017-12-01 2019-12-10 宝鼎科技股份有限公司 High-strength rotor shaft forging for high-voltage motor and heat treatment processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241892A (en) * 2000-11-22 2002-08-28 Kobe Steel Ltd High strength steel for forging and crankshaft using the steel
JP2005344149A (en) * 2004-06-01 2005-12-15 Kobe Steel Ltd High strength steel for large-sized steel forging, and crankshaft

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150054A (en) 1990-10-12 1992-05-22 Nec Corp Processing method for polyimide film
CN1163942A (en) * 1996-02-08 1997-11-05 阿斯克迈塔尔公司 Steel for manufacture of forging and process for manufacturing forging
JP4347579B2 (en) * 2003-01-24 2009-10-21 株式会社神戸製鋼所 Forging steel and forged products obtained using the same
JP4150054B2 (en) * 2006-06-21 2008-09-17 株式会社神戸製鋼所 FORGING STEEL, PROCESS FOR PRODUCING THE SAME AND FORGED PRODUCT
KR101482258B1 (en) * 2007-12-26 2015-01-13 주식회사 포스코 Hot Rolled Steel Sheet Having Superior Hot Press Forming Property and High Tensile Strength, Formed Article Using the Steel Sheet and Method for Manufacturing the Steel Sheet and the Formed Article
WO2013117953A1 (en) * 2012-02-10 2013-08-15 Ascometal Process for making a steel part, and steel part so obtained
JP5859384B2 (en) * 2012-06-06 2016-02-10 株式会社神戸製鋼所 Large high strength forged steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241892A (en) * 2000-11-22 2002-08-28 Kobe Steel Ltd High strength steel for forging and crankshaft using the steel
JP2005344149A (en) * 2004-06-01 2005-12-15 Kobe Steel Ltd High strength steel for large-sized steel forging, and crankshaft

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180109715A (en) 2017-03-27 2018-10-08 가부시키가이샤 고베 세이코쇼 Steel for steel forging, and forged steel crank throw and forged steel journal for assembling type crankshaft
CN107937829A (en) * 2017-12-01 2018-04-20 宝鼎科技股份有限公司 High-voltage motor highly stressed rotor forging shaft and heat treatment method
CN107937829B (en) * 2017-12-01 2020-10-02 宝鼎科技股份有限公司 High-strength rotor shaft forging for high-voltage motor and heat treatment method
CN112342437A (en) * 2020-11-20 2021-02-09 宁波北理汽车科技股份有限公司 Crankshaft connecting rod preparation process

Also Published As

Publication number Publication date
KR20150112865A (en) 2015-10-07
CN104946999B (en) 2018-01-30
CN104946999A (en) 2015-09-30
KR101647920B1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
KR101745224B1 (en) Steel for carburizing
WO2010116555A1 (en) Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same
JP6384629B2 (en) Induction hardening steel
JP6384630B2 (en) Induction hardening steel
JP6652019B2 (en) Machine structural steel and induction hardened steel parts for induction hardening
JP6628014B1 (en) Steel for parts to be carburized
JP6468366B2 (en) Steel, carburized steel parts, and method of manufacturing carburized steel parts
JP6384628B2 (en) Induction hardening steel
JP4941252B2 (en) Case-hardened steel for power transmission parts
JP2006291310A (en) Crankshaft and producing method therefor
WO2015098528A1 (en) Steel material for hot forging, process for manufacturing same and roughly shaped product of hot forging of said steel material
WO2017090731A1 (en) Steel, carburized steel component, and carburized steel component production method
JP5886119B2 (en) Case-hardened steel
JPWO2020145325A1 (en) Steel material
KR101647920B1 (en) Low alloy steel for forging, and crankshaft
US20180245172A1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
JP2014101565A (en) Method of manufacturing case hardened steel and parts omissible of normalizing after hot-forging and excellent in high temperature carburizability
JP5472063B2 (en) Free-cutting steel for cold forging
JP6029950B2 (en) After hot forging, normalizing can be omitted, and a method for producing case-hardened steel and parts with excellent high-temperature carburizing properties
JP6521089B2 (en) Machine structural steels and induction hardened steel parts
JP6465206B2 (en) Hot-rolled bar wire, parts and method for producing hot-rolled bar wire
JP5679440B2 (en) Induction hardening steel with excellent cold forgeability and excellent torsional strength after induction hardening, and method for producing the same
JP7127999B2 (en) Steel for forgings, forged steel crank throws and forged journals for assembled crankshafts
JP5976581B2 (en) Steel material for bearings and bearing parts with excellent rolling fatigue characteristics
JP2020094236A (en) Carburized component, shaped material for carburized component, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180227