JP5393459B2 - High manganese type high strength steel plate with excellent impact characteristics - Google Patents

High manganese type high strength steel plate with excellent impact characteristics Download PDF

Info

Publication number
JP5393459B2
JP5393459B2 JP2009523729A JP2009523729A JP5393459B2 JP 5393459 B2 JP5393459 B2 JP 5393459B2 JP 2009523729 A JP2009523729 A JP 2009523729A JP 2009523729 A JP2009523729 A JP 2009523729A JP 5393459 B2 JP5393459 B2 JP 5393459B2
Authority
JP
Japan
Prior art keywords
steel sheet
steel
manganese
rolling
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009523729A
Other languages
Japanese (ja)
Other versions
JP2009545676A (en
Inventor
ソン キュ キム、
クワン グン チン、
イー リョン ソン、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2009545676A publication Critical patent/JP2009545676A/en
Application granted granted Critical
Publication of JP5393459B2 publication Critical patent/JP5393459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Description

本発明は自動車用鋼板に使用される高マンガン鋼及びその製造法に関する。より詳しくは、延伸率が高くて加工性に優れ、降伏強度が高くて衝突特性に優れた高加工性高強度鋼板とその製造方法に関する。   The present invention relates to a high manganese steel used for automobile steel plates and a method for producing the same. More specifically, the present invention relates to a high workability high-strength steel sheet having a high draw ratio, excellent workability, high yield strength, and excellent impact characteristics, and a method for producing the same.

自動車メーカは環境汚染防止、燃費向上、安定性向上を目的に軽量素材、高強度素材の適用を拡大しており、これは自動車部品以外の多くの構造部材に適用される材料が有すべき特性でもある。しかし、素材の強度が増加すると延伸率が減少する特性を有し、これを克服するため成形性に優れた二相鋼と変態誘起塑性鋼などを使用している。   Automakers are expanding the use of lightweight materials and high-strength materials for the purpose of preventing environmental pollution, improving fuel efficiency, and improving stability. This is a characteristic that materials applied to many structural members other than automotive parts should have. But there is. However, when the strength of the raw material increases, the stretch ratio decreases, and in order to overcome this, duplex stainless steel and transformation-induced plastic steel with excellent formability are used.

しかし、現在まで開発された自動車構造部材及び内板材に適用される加工用高強度鋼は自動車部品が要求する加工性を満足しないため、複雑な形状を有している部品を製造することが難しい。これを解消するため、自動車メーカは部品の形状を簡素化したり、複数の部品に区分して成形し、再び溶接する工程を利用している。溶接する場合、溶接部の強度が母材部分と異なるため車体の設計に多くの制約が伴うだけでなく、溶接部の劣位による部品特性の低下は勿論、部品を分けて成形することで工程費用が大きく増加する。従って、自動車メーカでは複雑な形状の部品に適用し車体設計時に設計自由度を高めるため、高強度でありながらも加工性の高い材料を求め続けている。   However, high strength steel for machining applied to automotive structural members and inner plate materials developed to date does not satisfy the workability required for automotive parts, so it is difficult to produce parts having complicated shapes. . In order to solve this problem, automakers use a process of simplifying the shape of the parts, dividing the parts into a plurality of parts, and then welding them again. When welding, the strength of the welded part is different from the base metal part, which not only imposes many restrictions on the design of the car body, but also reduces the part characteristics due to the inferiority of the welded part. Greatly increases. Therefore, in order to increase the degree of freedom in designing a vehicle body by applying it to a component having a complicated shape, an automobile manufacturer continues to demand a material having high strength but high workability.

自動車用鋼板分野では、最近、燃費向上と大気汚染を減らすため自動車の重さを減らすことのできる成形性に優れた高強度の鋼板が求められている実情である。従来の自動車用鋼板としては成形性を考慮して基地組織がフェライトである低炭素鋼系列の高強度鋼が使用されている。しかし、自動車用鋼板として低炭素鋼系列の高強度鋼を使用する場合には、引張強度が800MPa級以上では延伸率が商業的に最高30%以上確保することが難しい。従って、800MPa級以上の高強度鋼を複雑な形状の部品に適用することは難しいため部品の形状を簡単にするなどの自由な部品設計が困難な実情である。上記のような問題を解決するため、延性と強度に優れたオーステナイト系高マンガン鋼(特許文献1、特許文献2)が提案されている。しかし、上記特許文献1は高マンガン添加により延性は確保されるが、変形部にひずみ硬化が酷く、加工後、鋼板が容易に破断してしまう現象がある。また、上記特許文献2も延性は確保されるが、多量のシリコン添加によって電気メッキ性及び溶融メッキ性に不利という短所がある。また上記の鋼板は加工性には優れるが降伏強度が低いため衝突特性が劣位という短所がある。   In the field of automotive steel sheets, recently, there is a demand for high-strength steel sheets with excellent formability that can reduce the weight of automobiles in order to improve fuel efficiency and reduce air pollution. As a conventional automobile steel sheet, a low-carbon steel series high-strength steel whose base structure is ferrite is used in consideration of formability. However, when a high-strength steel of the low carbon steel series is used as a steel plate for automobiles, it is difficult to ensure a stretch ratio of 30% or more commercially when the tensile strength is 800 MPa or higher. Therefore, since it is difficult to apply high strength steel of 800 MPa class or higher to a component having a complicated shape, it is difficult to freely design a component such as simplifying the shape of the component. In order to solve the above problems, austenitic high manganese steel (Patent Document 1, Patent Document 2) excellent in ductility and strength has been proposed. However, in Patent Document 1, ductility is ensured by addition of high manganese, but there is a phenomenon that the strained part is severely strain-hardened and the steel sheet is easily broken after processing. Further, although the above-mentioned Patent Document 2 also ensures ductility, there is a disadvantage that electroplating properties and hot dipping properties are disadvantageous by adding a large amount of silicon. Further, the above steel sheet is excellent in workability, but has a disadvantage that the impact property is inferior due to low yield strength.

自動車素材として使用される素材は衝突時に衝突エネルギーを吸収し、変形を防ぐため降伏強度が高い場合有利である。しかし、高マンガン鋼の場合、オーステナイト組織を有することにより降伏強度が低い特性を示すため、これを克服することが必要である。   A material used as an automobile material is advantageous when the yield strength is high in order to absorb collision energy and prevent deformation in the event of a collision. However, in the case of high manganese steel, since it has a low yield strength due to having an austenite structure, it is necessary to overcome this.

日本国公開特許公報1992−259325号公報Japanese Patent Publication No. 1992-259325 国際公開WO02/101109号パンフレットInternational Publication WO02 / 101109 Pamphlet

本発明は、延伸率に優れて加工性が高く、降伏強度が高くて衝突特性に優れた高加工性高強度鋼板とその製造方法を提供することを目的とする。   It is an object of the present invention to provide a high workability high strength steel sheet having excellent stretch ratio, high workability, high yield strength and excellent impact characteristics, and a method for producing the same.

上記目的を達成すべく、本発明の鋼板は、重量%で、炭素(C)0.2〜1.5%、マンガン(Mn)10〜25%、アルミニウム(Al)0.01〜3.0%、リン(P)0.03%以下、硫黄(S)0.03%以下、窒素(N)0.040%以下を含み、これにシリコン(Si)0.02〜2.5%、チタニウム(Ti)0.01〜0.10%、及びニオビウム(Nb)0.01〜0.10%のグループから選択される少なくとも1種、残りのFe及びその他不可避に含有される不純物で組成される。本発明の鋼板はオーステナイト単相組織からなる。   In order to achieve the above object, the steel sheet of the present invention is, by weight%, carbon (C) 0.2 to 1.5%, manganese (Mn) 10 to 25%, aluminum (Al) 0.01 to 3.0. %, Phosphorus (P) 0.03% or less, sulfur (S) 0.03% or less, nitrogen (N) 0.040% or less, silicon (Si) 0.02-2.5%, titanium It is composed of at least one selected from the group of (Ti) 0.01 to 0.10% and niobium (Nb) 0.01 to 0.10%, the remaining Fe and other impurities inevitably contained. . The steel sheet of the present invention has an austenite single phase structure.

本発明の鋼板は、400〜600MPa以上の降伏強度と900〜1000MPa以上の引張強度を有し、冷間での圧延によるひずみ硬化により750MPa以上の降伏強度と1000MPa以上の引張強度を有するようになる。   The steel sheet of the present invention has a yield strength of 400 to 600 MPa or more and a tensile strength of 900 to 1000 MPa or more, and has a yield strength of 750 MPa or more and a tensile strength of 1000 MPa or more by strain hardening by cold rolling. .

本発明では、上記の本発明の成分系を有する鋼板を冷間で10〜80%の圧下率で圧延する。ここで、圧延は調質圧延、二重圧延、及び熱間最終圧延のうちいずれか一つの圧延であることができる。また、上記鋼板は熱延鋼板、冷延鋼板、及びメッキ鋼板のうちいずれか一つから選択されることができる。   In the present invention, the steel sheet having the above component system of the present invention is cold-rolled at a rolling reduction of 10 to 80%. Here, the rolling can be any one of temper rolling, double rolling, and hot final rolling. The steel plate may be selected from any one of a hot rolled steel plate, a cold rolled steel plate, and a plated steel plate.

本発明では冷延鋼板を製造する場合には、上記の成分系を有する鋼を1050〜1300℃で均質化処理した後850〜1000℃の仕上げ圧延温度条件で熱間圧延し、700℃以下の温度範囲で巻取した後、30〜80%の圧下率で冷間圧延し、600℃以上の温度で連続焼鈍して製造することができる。   In the present invention, when producing a cold-rolled steel sheet, the steel having the above component system is homogenized at 1050 to 1300 ° C. and then hot-rolled at a finish rolling temperature condition of 850 to 1000 ° C. After winding in the temperature range, it can be cold rolled at a rolling reduction of 30 to 80% and continuously annealed at a temperature of 600 ° C. or higher.

本発明によると、延伸率が高く、高強度であるため車体の構造部材だけでなく、形状が複雑な内板材としても適合した鋼板が提供される。この鋼板は鋼板の特性の中で、衝撃吸収能に優れるため自動車のフロントサイドメンバーなどの部品に使用することができる有用な効果がある。   According to the present invention, a steel sheet suitable not only as a structural member of a vehicle body but also as an inner plate material having a complicated shape is provided because the stretch ratio is high and the strength is high. This steel plate has a useful effect that can be used for parts such as a front side member of an automobile because of its excellent shock absorbing ability among the properties of the steel plate.

微細組織の写真である。It is a photograph of a fine structure. 冷間圧延鋼板の増加量による引張曲線の変化と強度−延伸率の変化とを示したグラフである。It is the graph which showed the change of the tension curve by the increase amount of a cold rolled steel plate, and the change of a strength-stretching rate.

以下、本発明を詳しく説明する。
本発明では、シリコン、チタニウム、及びニオビウムの少なくとも1種の適切な量を添加することにより、鋼板の降伏強度を増加しようとする。製造された熱間圧延、冷間圧延、及びメッキ鋼板を利用して冷間で圧延することにより、降伏強度が高くて衝突特性に優れた鋼を製造することができる。
The present invention will be described in detail below.
The present invention seeks to increase the yield strength of the steel sheet by adding an appropriate amount of at least one of silicon, titanium, and niobium. By using the produced hot rolling, cold rolling, and cold rolling using the plated steel sheet, steel having high yield strength and excellent impact characteristics can be produced.

本発明では、オーステナイト単相を得て、双晶により加工性を向上するため、マンガン、炭素、アルミニウムの添加量を適切に調節しながら微細組織を制御して降伏強度を増加させるため、シリコン、チタニウム、及びニオビウムの添加量を最適化することに、特徴がある。また、双晶によりひずみ硬化処理される場合、延伸率が非常に優れるため、冷間加工により延伸率が多少減少しても自動車部品に必要な成形性を確保することができるという実験結果に基づいて、冷間加工を通して降伏強度が増加するようにする。   In the present invention, in order to obtain an austenite single phase and improve workability by twinning, in order to increase the yield strength by controlling the microstructure while appropriately adjusting the addition amount of manganese, carbon, aluminum, silicon, There is a feature in optimizing the addition amount of titanium and niobium. Moreover, when the strain hardening process is performed by twins, the stretch ratio is very excellent, and therefore, based on the experimental results that the formability necessary for automobile parts can be secured even if the stretch ratio is slightly reduced by cold working. Thus, the yield strength is increased through cold working.

本発明は、常温で完全オーステナイト相を確保するため、オーステナイト安定化元素であるマンガンと炭素の量を最適化し、これら成分により変形時に双晶を形成するようにする。また、アルミニウムの量を調節して双晶が形成される速度を制御して引張特性を改善する。製造コストを減らすため添加されるマンガン(Mn)の添加量を最小化することが重要で、マンガンの量を減らすためには炭素を一部添加することが重要である。鋼の加工中に双晶変形を助長するためにも炭素、及びアルミニウムの添加量を適切に調節する。一方、降伏強度を増加させるためには、結晶粒度を減らすことが好ましく、このため、シリコン、チタニウム、及びニオビウムなどの少なくとも1種を添加する。   In the present invention, in order to ensure a complete austenite phase at room temperature, the amounts of manganese and carbon, which are austenite stabilizing elements, are optimized, and twins are formed by deformation of these components. Also, the tensile properties are improved by controlling the rate at which twins are formed by adjusting the amount of aluminum. It is important to minimize the amount of manganese (Mn) added in order to reduce manufacturing costs, and in order to reduce the amount of manganese, it is important to add some carbon. In order to promote twin deformation during the processing of the steel, the addition amount of carbon and aluminum is appropriately adjusted. On the other hand, in order to increase the yield strength, it is preferable to reduce the crystal grain size. For this reason, at least one of silicon, titanium, niobium and the like is added.

本発明において鋼板は、熱延鋼板、冷延鋼板、及びメッキ鋼板に該当するものである。   In the present invention, the steel sheet corresponds to a hot rolled steel sheet, a cold rolled steel sheet, and a plated steel sheet.

以下、上記の鋼成分の選定及び成分範囲の限定理由などについて説明する。   Hereinafter, selection of the above steel components and reasons for limiting the component range will be described.

炭素(C)の含量は、0.2〜1.5%が好ましい。   The carbon (C) content is preferably 0.2 to 1.5%.

炭素はオーステナイト相の安定化に寄与するため、その添加量が増加するほど有利である。炭素の添加量が0.2%未満では、相変形中にα’−マルテンサイト相が生成されるため、加工中にクラックが発生し、延性が低下することがあるという短所がある。そして、炭素の添加量が1.5%を超える場合には、オーステナイト相の安定度が大きく増加してスリップ変形による変形挙動の転移により加工性が低くなることがある。   Since carbon contributes to the stabilization of the austenite phase, it is more advantageous as the amount added increases. If the amount of carbon added is less than 0.2%, an α'-martensite phase is generated during phase deformation, so that cracks are generated during processing and ductility may be reduced. When the amount of carbon added exceeds 1.5%, the stability of the austenite phase is greatly increased, and the workability may be lowered due to the transition of deformation behavior due to slip deformation.

マンガン(Mn)の含量は10〜30%、より好ましくは10〜25%にする。   The content of manganese (Mn) is 10 to 30%, more preferably 10 to 25%.

マンガンもオーステナイト相を安定化させるために必須の元素であるが、10%未満では成形性を損なうα’−マルテンサイト相が生成され、強度は増加するが、延性が急激に減少する。そして、マンガンの添加量が30%超過では、双晶形成が抑制され強度は増加するが延性が減少する。そして、マンガンの添加量が増加するほど熱間圧延中のクラック発生が起こりやすく、原料コストが高いマンガンの多量添加により鋼板製造コストが増加するため、好ましくは、マンガンの含量を25%以下にする。   Manganese is also an essential element for stabilizing the austenite phase, but if it is less than 10%, an α′-martensite phase that impairs the formability is generated, the strength increases, but the ductility decreases rapidly. If the amount of manganese added exceeds 30%, twin formation is suppressed and the strength increases but the ductility decreases. And as the addition amount of manganese increases, cracks are likely to occur during hot rolling, and the manufacturing cost of the steel sheet increases due to the large amount of addition of manganese, which has a high raw material cost. Therefore, the manganese content is preferably 25% or less. .

アルミニウム(Al)の含量は0.01〜3.0%が好ましい。   The content of aluminum (Al) is preferably 0.01 to 3.0%.

アルミニウムは通常、鋼の脱酸のため添加されるが、本発明ではアルミニウムが延性の向上のため添加される。すなわち、アルミニウムはフェライト相の安定化元素であるが、鋼のスリップ面で積層欠陥エネルギーを増加させ、ε−マルテンサイト相の生成を抑制して延性を向上させる。また、アルミニウムは低いマンガン添加量の場合にもε−マルテンサイト相の生成を抑制するため、マンガンの添加量を最小化し加工性を向上させるために非常に役立つ。従って、アルミニウムの添加量が0.01%未満の場合にはε−マルテンサイトが生成され強度は増加するが、延性が急激に減少する。そして、アルミニウムの添加量が3.0%を超える場合には双晶発生を抑制して延性を減少させ、連続鋳造時に鋳造性を劣らせ、熱間圧延時に表面酸化が酷くて製品の表面品質を低下させるようになる。   Aluminum is usually added for deoxidation of steel. In the present invention, aluminum is added for improving ductility. That is, aluminum is a ferrite phase stabilizing element, but increases the stacking fault energy on the slip surface of the steel, suppresses the formation of the ε-martensite phase, and improves the ductility. In addition, since aluminum suppresses the formation of the ε-martensite phase even at a low manganese addition amount, it is very useful for minimizing the addition amount of manganese and improving workability. Therefore, when the added amount of aluminum is less than 0.01%, ε-martensite is generated and the strength is increased, but the ductility is rapidly decreased. And when the amount of aluminum added exceeds 3.0%, twinning is suppressed and ductility is reduced, castability is deteriorated during continuous casting, surface oxidation is severe during hot rolling, and surface quality of the product. Will come down.

リン(P)と硫黄(S)の含量はそれぞれ0.03%以下にすることが好ましい。   The contents of phosphorus (P) and sulfur (S) are each preferably 0.03% or less.

リンと硫黄は鋼板の製造時に不可避に含有される元素であるため、その添加範囲を0.03%以下に制限する。特にリンは、偏析が生じて鋼の加工性を減少させ、硫黄は粗大なマンガン硫黄化物(MnS)を形成してフランジクラックのような欠陥を発生させ、鋼板の孔拡張性を減少させるため、その添加量を最小に抑制することが好ましい。   Phosphorus and sulfur are elements inevitably contained during the production of the steel sheet, so the range of addition is limited to 0.03% or less. In particular, phosphorus causes segregation to reduce the workability of steel, and sulfur forms coarse manganese sulfide (MnS) to generate defects such as flange cracks, thereby reducing the hole expandability of the steel sheet. It is preferable to suppress the addition amount to a minimum.

窒素(N)の含量は、0.04%以下が好ましい。   The content of nitrogen (N) is preferably 0.04% or less.

窒素は凝固過程でアルミニウムと作用してオーステナイト結晶粒内で微細な窒化物を析出させ双晶発生を促進するため、鋼板の成形時に強度と延性を向上させる。しかし、窒素の添加量が0.04%を超える場合には窒化物が過度に析出され熱間加工性及び延伸率が低下する。   Nitrogen acts with aluminum during the solidification process to precipitate fine nitrides in the austenite crystal grains and promote the generation of twins, thus improving the strength and ductility when forming the steel sheet. However, when the addition amount of nitrogen exceeds 0.04%, nitrides are excessively precipitated and the hot workability and the stretching ratio are lowered.

上記のように組成される鋼にシリコン、チタニウム、及びニオビウムのグループから選択された少なくとも1種が含まれる。   The steel composed as described above includes at least one selected from the group of silicon, titanium, and niobium.

シリコン(Si)の含量は、0.02〜2.5%が好ましい。   The content of silicon (Si) is preferably 0.02 to 2.5%.

シリコンは固溶強化される元素で固溶強化効果により結晶粒度を減らすことにより、降伏強度を増加させる元素である。通常、シリコンを添加し過ぎる場合、鋼板の表面にシリコン酸化層を形成して溶融メッキ性を劣らせるものと知られている。しかし、マンガンが多量に添加された鋼では、適切な量のシリコンが添加される場合、表面に薄いシリコン酸化層が形成されマンガンの酸化を抑制するため、冷延鋼板で圧延後に形成される厚いマンガン酸化層が形成されることを防ぐことができ、焼鈍の後に冷延鋼板で進行される腐食を防いで表面品質を向上させ、電気メッキ材の素地鋼板として優れた表面品質を維持することができる。   Silicon is an element that is solid solution strengthened and is an element that increases the yield strength by reducing the crystal grain size due to the solid solution strengthening effect. Usually, when silicon is added excessively, it is known that a silicon oxide layer is formed on the surface of the steel sheet to deteriorate the hot dipping property. However, in steels with a large amount of manganese added, when an appropriate amount of silicon is added, a thin silicon oxide layer is formed on the surface and suppresses oxidation of manganese. Can prevent the formation of a manganese oxide layer, can prevent corrosion that proceeds in the cold-rolled steel sheet after annealing, improve the surface quality, and maintain excellent surface quality as a base steel sheet for electroplating it can.

しかし、シリコンの添加量が増加すると、鋼板の熱間圧延を行うとき鋼板表面にシリコン酸化物が形成され、酸洗性を悪くして熱延鋼板の表面品質を悪くする短所がある。そして、シリコンは、連続焼鈍工程と連続溶融メッキ工程で高温焼鈍時に鋼板表面に濃縮され、鋼板の溶融メッキを行うとき鋼板表面に溶融亜鉛の濡れ性を減少させるため、メッキ特性を減少させる。さらに、多量のシリコン添加は、鋼の溶接性を大きく低下させる。従って、シリコンの上限添加量は2.5%が好ましい。衝突特性はメッキ層の腐食性とは異なって内部金属基地層の機械的特性と関連し、メッキのための熱処理条件がオーステナイト単相組織を有する高マンガン鋼板の機械的特性に影響を与えないため、本製品はメッキ製品の衝突特性を含む。   However, when the amount of silicon added is increased, silicon oxide is formed on the surface of the steel sheet when the steel sheet is hot-rolled, thereby deteriorating the pickling property and the surface quality of the hot-rolled steel sheet. Silicon is concentrated on the surface of the steel sheet during high-temperature annealing in the continuous annealing process and the continuous hot-dip plating process, and reduces the wettability of molten zinc on the steel sheet surface when hot-plating the steel sheet, thus reducing the plating characteristics. Further, the addition of a large amount of silicon greatly reduces the weldability of steel. Therefore, the upper limit addition amount of silicon is preferably 2.5%. The impact characteristics are different from the corrosiveness of the plated layer and are related to the mechanical characteristics of the inner metal matrix layer, and the heat treatment conditions for plating do not affect the mechanical characteristics of the high manganese steel sheet with austenite single phase structure. This product includes the impact characteristics of plated products.

チタニウム(Ti)の含量は、0.01〜0.1%が好ましい。   The content of titanium (Ti) is preferably 0.01 to 0.1%.

チタニウムは、炭素と結合して炭化物を形成する強炭化物形成元素で、この際に形成された炭化物は結晶粒の成長を妨げて、結晶粒度の微細化に効果的な元素である。しかし、チタニウムの含量が0.005%未満と微量添加する場合は効果が現れず、0.10%を超えると過量のチタニウムが結晶粒界に偏析して粒界脆化を起こしたり、析出相が過度に粗大化して結晶粒の成長効果を劣らせることがある。   Titanium is a strong carbide-forming element that forms a carbide by combining with carbon. The carbide formed at this time is an element that prevents the growth of crystal grains and is effective in reducing the crystal grain size. However, when a very small amount of titanium is added at less than 0.005%, no effect appears, and when it exceeds 0.10%, an excessive amount of titanium segregates at the grain boundaries to cause grain boundary embrittlement or a precipitation phase. May be excessively coarsened to deteriorate the crystal grain growth effect.

ニオビウム(Nb)の含量は0.005〜0.1%、より好ましくは0.01〜0.1%にする。   The content of niobium (Nb) is 0.005 to 0.1%, more preferably 0.01 to 0.1%.

ニオビウムは、チタニウムと同じ形態で炭素と結合して炭化物を形成する強炭化物形成元素である。同じく、この際に形成された炭化物は結晶粒の成長を妨げて結晶粒度の微細化に効果的な元素で、通常のチタニウムより低い温度で析出相を形成するため、結晶粒度の微細化と析出相の形成による析出強化の効果が大きい元素である。しかし、ニオブの含量を0.005%未満に微量添加する場合は析出強化効果が現れず、0.10%を超えると過量のニオビウムが結晶粒界に偏析して粒界脆化を起こしたり、析出相が過度に粗大化して結晶粒の成長効果を劣らせることがある。好ましいニオビウムの添加量は0.01〜0.1%である。   Niobium is a strong carbide-forming element that combines with carbon to form carbides in the same form as titanium. Similarly, the carbide formed at this time is an element that hinders the growth of crystal grains and is effective in refining the crystal grain size, and forms a precipitation phase at a temperature lower than that of normal titanium. It is an element that has a large effect of precipitation strengthening due to the formation of phases. However, when a small amount of niobium is added to less than 0.005%, no precipitation strengthening effect appears, and when it exceeds 0.10%, an excessive amount of niobium segregates at the crystal grain boundary, causing grain boundary embrittlement, The precipitated phase may be excessively coarsened to deteriorate the crystal grain growth effect. The preferred amount of niobium is 0.01 to 0.1%.

以下、高マンガン鋼板の製造方法について説明する。   Hereinafter, the manufacturing method of a high manganese steel plate is demonstrated.

一般的に、高マンガン熱延鋼板の製造は、通常の鋼の製造工程と同様に連続鋳造法を利用することができる。上記組成で鋼を通常の条件と同様に均質化処理を実施した後、仕上げ圧延し巻取して熱延鋼板を製造する。   Generally, the production of a high manganese hot rolled steel sheet can utilize a continuous casting method in the same manner as a normal steel production process. The steel is homogenized with the above composition in the same manner as normal conditions, and then finish-rolled and wound to produce a hot-rolled steel sheet.

本発明において、熱間圧延時に高マンガン鋼板の連鋳スラブ加熱温度を1050〜1300℃にすることが好ましい。加熱温度の上限を1300℃に限定した理由は、温度が高いほど結晶粒度が増加し、表面酸化が発生して強度が減少したり、表面の物理的特性が劣位される特性をみせるためである。また、1300℃を超えて加熱すると連鋳スラブの柱状晶粒界に液状膜が生じるため、熱間圧延時に亀裂が発生することもある。一方、加熱温度の下限を1050℃に限定した理由は、加熱温度が低いと仕上げ圧延時に必要な温度の確保が難しくなり、温度減少により圧延荷重が増加して所定の厚さまで十分圧延することができないためである。すなわち、通常の仕上げ圧延温度は熱延工程で少なくとも850℃以上、好ましくは900℃程度であるため、仕上げ圧延温度を低めると圧延荷重が高くなって圧延機に無理がかかるだけでなく、鋼板内部の品質にも悪影響を及ぼすようになる。そして、圧延仕上げ温度を過度に高くする場合、圧延時に表面酸化が発生するため、圧延仕上げ温度は1000℃に制限する。   In this invention, it is preferable that the continuous slab heating temperature of a high manganese steel plate shall be 1050-1300 degreeC at the time of hot rolling. The reason why the upper limit of the heating temperature is limited to 1300 ° C. is that the higher the temperature, the larger the crystal grain size, the surface oxidation occurs, the strength decreases, and the physical properties of the surface are degraded. . Moreover, since a liquid film will arise in the columnar grain boundary of a continuous casting slab when it heats exceeding 1300 degreeC, a crack may generate | occur | produce at the time of hot rolling. On the other hand, the reason why the lower limit of the heating temperature is limited to 1050 ° C. is that if the heating temperature is low, it becomes difficult to secure the necessary temperature at the time of finish rolling, the rolling load increases due to the decrease in temperature, and the rolling can be sufficiently rolled to a predetermined thickness. This is because it cannot be done. In other words, the normal finish rolling temperature is at least 850 ° C. or more, preferably about 900 ° C. in the hot rolling process, so that lowering the finish rolling temperature increases the rolling load and does not force the rolling mill. It will also adversely affect the quality of the product. And when making rolling finishing temperature too high, since surface oxidation generate | occur | produces at the time of rolling, rolling finishing temperature is restrict | limited to 1000 degreeC.

熱延巻取温度は700℃以下で行う。巻取温度が700℃を超えると、熱延鋼板表面に厚い酸化膜が形成され、また内部酸化が起きるため、酸洗過程で酸化層が容易に除去されない。従って、熱延鋼板の巻取温度は低くすることが好ましい。   The hot rolling coiling temperature is 700 ° C. or less. When the coiling temperature exceeds 700 ° C., a thick oxide film is formed on the surface of the hot rolled steel sheet, and internal oxidation occurs, so that the oxide layer is not easily removed during the pickling process. Therefore, it is preferable to lower the winding temperature of the hot-rolled steel sheet.

上記から得られた熱延鋼板は必要に応じて冷延鋼板へと製造する。   The hot-rolled steel sheet obtained from the above is manufactured into a cold-rolled steel sheet as necessary.

冷延鋼板は鋼板の形状と厚さを合わせるため冷間圧延して得られるが、好ましい冷間圧延は30〜80%の圧下率で行う。   The cold-rolled steel sheet is obtained by cold rolling in order to match the shape and thickness of the steel sheet, but preferred cold rolling is performed at a reduction rate of 30 to 80%.

冷間圧延鋼板は600℃以上で連続焼鈍する。この際、焼鈍温度が低すぎると十分な加工性を確保することが難しく、低温でオーステナイト相を維持することができるほどオーステナイトへの変態が十分起こらないため、焼鈍温度を600℃以上にすることが好ましい。本発明では相変態が簡単に起こらないオーステナイト鋼を使用するため、再結晶温度以上に加熱すると十分加工性を確保することができるため、通常の焼鈍条件で焼鈍を行って冷延鋼板を製造することができる。   Cold rolled steel sheets are continuously annealed at 600 ° C. or higher. At this time, if the annealing temperature is too low, it is difficult to ensure sufficient workability, and the transformation to austenite does not occur enough to maintain the austenite phase at a low temperature, so the annealing temperature should be 600 ° C. or higher. Is preferred. In the present invention, since austenitic steel that does not easily undergo phase transformation is used, workability can be ensured when heated to a temperature higher than the recrystallization temperature, and thus cold-rolled steel sheets are manufactured by annealing under normal annealing conditions. be able to.

上記から得られた焼鈍鋼板を必要に応じてメッキするが、メッキは溶融メッキ、電気メッキ、及び蒸着メッキなどの方法を選択することができ、好ましくは溶融メッキする。メッキ鋼板の製造方法は、冷延鋼板を利用して600℃以上で連続焼鈍を実施し、溶融メッキ、電気メッキ、及び蒸着メッキ鋼板を製造するものとして構成される。電気メッキ工程や溶融メッキ工程中の通常の熱処理条件は、一般的な変態誘起塑性鋼板の場合に影響を及ぼすが、本発明の鋼はオーステナイト単相を有し、変態が無く機械的な特性に大きな差が発生しないため、通常の条件でメッキを実施することができる。   The annealed steel sheet obtained from the above is plated as necessary. For plating, a method such as hot dipping, electroplating, and vapor deposition can be selected, preferably hot dipping. The method for producing a plated steel sheet is configured to produce a hot-dip plated, electroplated, and vapor-deposited steel sheet by performing continuous annealing at 600 ° C. or higher using a cold-rolled steel sheet. Normal heat treatment conditions during electroplating and hot dipping processes have an effect on typical transformation-induced plastic steel sheets, but the steel of the present invention has an austenite single phase and has no transformation and mechanical properties. Since there is no significant difference, plating can be performed under normal conditions.

本発明では、上記の本発明の成分を満たす高マンガン鋼板の例を挙げて熱延鋼板、冷延鋼板、及びメッキ鋼板のうちいずれか一つを冷間で10〜80%の圧下率で再度圧延して、降伏強度を高くすることができる。ここで圧延は、製鉄所で使用する調質圧延、二重圧延、及び熱間コイル処理のうちいずれか一つを利用して行うことができる。   In this invention, the example of the high manganese steel plate which satisfy | fills the said component of this invention is given, and any one is hot-rolled steel plate, a cold-rolled steel plate, and a plated steel plate again with the rolling reduction of 10 to 80% in cold. The yield strength can be increased by rolling. Here, the rolling can be performed using any one of temper rolling, double rolling, and hot coil treatment used in the steelworks.

以下の実施例を通して本発明を詳しく説明する。   The present invention will be described in detail through the following examples.

表1は本発明鋼と比較鋼の化学成分を表したもので、溶解された鋼の鋼塊を1200℃の加熱炉で一時間維持した後、熱間圧延を実施した。この際、熱間圧延の仕上げ温度は900℃、巻取温度は650℃にした。熱間圧延鋼板の一部はJIS5号の規格で引張試片を加工した後、万能引張試験機を利用して引張試験を実施した。そして、熱間圧延を行った鋼板を利用して、酸洗を実施し、冷間圧下率を50%にして冷間圧延を実施した。冷間圧延された試片を焼鈍温度を800℃にし、過時効温度を400℃にして、連続焼鈍疑似熱処理を実施した。連続焼鈍疑似熱処理の後、万能引張試験機を利用して引張試験を実施した。一方、冷間圧延試片を焼鈍温度800℃にし溶融亜鉛浴を460℃にして連続焼鈍疑似熱処理を実施した。   Table 1 shows the chemical composition of the steel of the present invention and the comparative steel. A steel ingot of molten steel was maintained in a heating furnace at 1200 ° C. for 1 hour, and then hot rolled. At this time, the finishing temperature of hot rolling was 900 ° C., and the winding temperature was 650 ° C. A part of the hot-rolled steel sheet was subjected to a tensile test using a universal tensile testing machine after processing a tensile specimen according to the standard of JIS5. And the steel plate which hot-rolled was utilized, pickling was implemented, and cold rolling was implemented by making the cold reduction rate 50%. The cold-rolled specimen was subjected to a continuous annealing pseudo heat treatment at an annealing temperature of 800 ° C. and an overaging temperature of 400 ° C. After the continuous annealing simulated heat treatment, a tensile test was performed using a universal tensile tester. On the other hand, a cold-rolled specimen was annealed at a temperature of 800 ° C. and a molten zinc bath at 460 ° C., and a continuous annealing pseudo heat treatment was performed.

Figure 0005393459
Figure 0005393459

Figure 0005393459
Figure 0005393459

表2は本発明鋼と比較鋼の製造条件による機械的な性質の変化を表したものである。備考に発明鋼と表示された本発明の鋼板は、熱延鋼板を示し、連続焼鈍疑似熱処理を行った後、引張試験を実施した場合、引張強度(TS)700MPa以上、延伸率(T−El)40%以上、降伏強度(YS)500MPa以上の熱延鋼板を得た。したがって、自動車メンバー、フィラーのような構造部材用材料として適切な材質を確保した。   Table 2 shows changes in mechanical properties depending on the production conditions of the steel of the present invention and the comparative steel. The steel sheet of the present invention, which is indicated as “invention steel” in the remarks, shows a hot-rolled steel sheet, and after carrying out a continuous annealing pseudo heat treatment, when a tensile test is carried out, a tensile strength (TS) of 700 MPa or more, a draw ratio (T-El) ) A hot-rolled steel sheet having a yield strength (YS) of 500 MPa or more was obtained. Therefore, a material suitable for a structural member material such as an automobile member or filler was secured.

試料番号1、2番の鋼板はマンガンの添加量が少なく十分な強度と延性を確保することができない。   Sample Nos. 1 and 2 have a small amount of manganese and cannot ensure sufficient strength and ductility.

試料番号3〜6、8〜9、14〜15、19の鋼板は炭素、マンガン、シリコン、アルミニウムの添加量が適切でないため、延伸率が低かったり、降伏強度が500MPa以下と低いため構造部材として適しない。   As steel plates of sample numbers 3-6, 8-9, 14-15, 19 are not suitable for the addition amount of carbon, manganese, silicon, and aluminum, the stretching ratio is low, and the yield strength is as low as 500 MPa or less, so that it is a structural member. Not suitable.

試料番号7、10〜13、16〜18の鋼板は、炭素、マンガン、アルミニウムの添加量が適当で、シリコン、チタニウム、ニオビウムの添加により好ましい降伏強度を有して、構造部材に適切な材質を有する。
[実施例2]
Steel plates of Sample Nos. 7, 10-13, and 16-18 have appropriate yields of carbon, manganese, and aluminum, and have preferable yield strength due to the addition of silicon, titanium, and niobium. Have.
[Example 2]

実施例1から得られたオーステナイト単相組織を有する高加工性高マンガン型高強度鋼板を再び冷間圧延する場合に対する機械的な性質を測定し、その結果を表3に表した。   The mechanical properties with respect to the case where the high workability high manganese type high strength steel sheet having an austenite single phase structure obtained from Example 1 was cold-rolled again were measured, and the results are shown in Table 3.

Figure 0005393459
Figure 0005393459

表3に表したように、降伏強度が増加することを示す。通常、10%の変形でも降伏強度が750MPa以上と大きく増加し、延伸率は44%の優れた結果を示して、構造部材としての成形性と衝突特性を有することが分かる。   As shown in Table 3, it shows that the yield strength increases. Usually, even when the deformation is 10%, the yield strength is greatly increased to 750 MPa or more, and the drawing ratio shows an excellent result of 44%, which indicates that the structural member has formability and impact characteristics.

本発明において、上記実施形態は一つの例示であって、本発明がこれに限定されるのではない。本発明の特許請求の範囲に記載された技術的な思想と実質的に同じ構成を有し、同じ作用効果を成すものは如何なるものであっても本発明の技術的範囲に含まれる。従って、当該技術分野の通常の知識を有する者が本発明の特許請求の範囲に記載された本発明の技術的思想を外れない範囲内で多様な形態の置換、変形、変更が可能であり、このようなものは本発明の範囲に属する。   In the present invention, the above embodiment is an example, and the present invention is not limited to this. Anything that has substantially the same configuration as the technical idea described in the claims of the present invention and has the same function and effect is included in the technical scope of the present invention. Accordingly, a person having ordinary knowledge in the technical field can perform various forms of substitution, modification, and change within the scope of the technical idea of the present invention described in the claims of the present invention. Such are within the scope of the present invention.

Claims (2)

重量%で、炭素0.2〜1.5%、マンガン10〜25%、アルミニウム0.01〜3.0%、リン0.03%以下、硫黄0.03%以下、窒素0.040%以下を含み、これにシリコン0.02〜2.5%、チタニウム0.01〜0.10%、及びニオビウム0.01〜0.10%のグループから選択される少なくとも1種、残りのFe及びその他不可避に含有される不純物で組成される鋼板を冷間で10〜80%の圧下率で圧延して製造され、600MPa以上の降伏強度と900MPa以上の引張強度を有する、衝突特性に優れた高マンガン型高強度鋼板。   % By weight, carbon 0.2-1.5%, manganese 10-25%, aluminum 0.01-3.0%, phosphorus 0.03% or less, sulfur 0.03% or less, nitrogen 0.040% or less At least one selected from the group consisting of 0.02-2.5% silicon, 0.01-0.10% titanium, and 0.01-0.10% niobium, the remaining Fe and others High manganese with excellent impact characteristics, produced by rolling steel plate composed of impurities inevitably contained at a rolling reduction of 10-80%, having yield strength of 600 MPa or more and tensile strength of 900 MPa or more Type high strength steel plate. 前記鋼板は、オーステナイト単相組織である、請求項1に記載の衝突特性に優れた高マンガン型高強度鋼板。   The high manganese-type high-strength steel sheet having excellent collision characteristics according to claim 1, wherein the steel sheet has an austenite single-phase structure.
JP2009523729A 2006-12-27 2007-12-24 High manganese type high strength steel plate with excellent impact characteristics Active JP5393459B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020060135658A KR100851158B1 (en) 2006-12-27 2006-12-27 High Manganese High Strength Steel Sheets With Excellent Crashworthiness, And Method For Manufacturing Of It
KR10-2006-0135658 2006-12-27
PCT/KR2007/006780 WO2008078940A1 (en) 2006-12-27 2007-12-24 High manganese high strength steel sheets with excellent crashworthiness, and method for manufacturing of it

Publications (2)

Publication Number Publication Date
JP2009545676A JP2009545676A (en) 2009-12-24
JP5393459B2 true JP5393459B2 (en) 2014-01-22

Family

ID=39562686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009523729A Active JP5393459B2 (en) 2006-12-27 2007-12-24 High manganese type high strength steel plate with excellent impact characteristics

Country Status (6)

Country Link
US (1) US20090074605A1 (en)
EP (1) EP2097548A4 (en)
JP (1) JP5393459B2 (en)
KR (1) KR100851158B1 (en)
CN (1) CN101432456A (en)
WO (1) WO2008078940A1 (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2878257B1 (en) * 2004-11-24 2007-01-12 Usinor Sa PROCESS FOR MANUFACTURING AUSTENITIC STEEL SHEET, FER-CARBON-MANGANIZED WITH VERY HIGH RESISTANCE AND ELONGATION CHARACTERISTICS, AND EXCELLENT HOMOGENEITY
KR101020546B1 (en) * 2008-07-18 2011-03-09 현대자동차주식회사 Ultra-high strength twip steel sheets and the method thereof
KR101113666B1 (en) 2008-08-13 2012-02-14 기아자동차주식회사 Ultra-high strength twip steel sheets and the method thereof
KR101054773B1 (en) * 2008-09-04 2011-08-05 기아자동차주식회사 Manufacturing Method of TPI Type Ultra High Strength Steel Sheet
EP2208803A1 (en) 2009-01-06 2010-07-21 ThyssenKrupp Steel Europe AG High-tensile, cold formable steel, steel flat product, method for producing a steel flat product and use of a steel flat product
WO2010126268A2 (en) * 2009-04-28 2010-11-04 연세대학교 산학협력단 High manganese nitrogen-containing steel sheet having high strength and high ductility, and method for manufacturing same
DE102010034161B4 (en) * 2010-03-16 2014-01-02 Salzgitter Flachstahl Gmbh Method for producing workpieces made of lightweight steel with material properties that can be adjusted via the wall thickness
DE102010018602A1 (en) * 2010-04-28 2011-11-03 Volkswagen Ag Use of high manganese-containing lightweight steel produced from the main constituents of iron and manganese, and noble elements, for structural components e.g. backrest-head sheet, of a seat structure of vehicle seats
BR112012031466B1 (en) * 2010-06-10 2019-07-09 Tata Steel Ijmuiden Bv METHOD OF PRODUCING AN EXCELLENT AUSTENTIC STEEL SHEET IN RESISTANCE TO DELAYED FRACTURE AND STRIP OR SHEET
EP2402472B2 (en) 2010-07-02 2017-11-15 ThyssenKrupp Steel Europe AG High-tensile, cold formable steel and flat steel product composed of such steel
WO2012052626A1 (en) 2010-10-21 2012-04-26 Arcelormittal Investigacion Y Desarrollo, S.L. Hot-rolled or cold-rolled steel plate, method for manufacturing same, and use thereof in the automotive industry
KR101280500B1 (en) 2010-11-22 2013-07-01 포항공과대학교 산학협력단 High strength and high manganese steel wire rod having excellent hydrogen delated fracture resistance and method for manufacturing the same
CN102127704B (en) * 2011-03-02 2012-11-28 武汉钢铁(集团)公司 900MPa-level high-strength high-plasticity medium-carbon hot rolled steel and manufacturing method thereof
JP5856002B2 (en) 2011-05-12 2016-02-09 Jfeスチール株式会社 Collision energy absorbing member for automobiles excellent in impact energy absorbing ability and method for manufacturing the same
WO2013095005A1 (en) * 2011-12-23 2013-06-27 주식회사 포스코 Non-magnetic high manganese steel sheet with high strength and manufacturing method thereof
EP2860124B2 (en) * 2012-06-06 2020-03-18 JFE Steel Corporation Three-piece can and method for producing same
KR101406400B1 (en) * 2012-06-08 2014-06-13 주식회사 포스코 Ultra-high strength steel sheet with excellent weldability and formability, and method for manufacturing the same
KR101406471B1 (en) * 2012-06-08 2014-06-13 주식회사 포스코 Ultra-high strength steel sheet with excellent crashworthiness, and method for manufacturing the same
KR101406634B1 (en) * 2012-06-08 2014-06-11 주식회사 포스코 Ultra-high strength steel sheet with excellent coating property and crashworthiness, and method for manufacturing the same
KR101439613B1 (en) * 2012-07-23 2014-09-11 주식회사 포스코 The high strength high manganese steel sheet having excellent bendability and elongation and manufacturing method for the same
KR101510505B1 (en) * 2012-12-21 2015-04-08 주식회사 포스코 Method for manufacturing high manganese galvanized steel steet having excellent coatability and ultra high strength and manganese galvanized steel steet produced by the same
US10041156B2 (en) 2012-12-26 2018-08-07 Posco High strength austenitic-based steel with remarkable toughness of welding heat-affected zone and preparation method therefor
KR101482344B1 (en) * 2012-12-26 2015-01-13 주식회사 포스코 High strength austenitic steel having excellent toughness of heat affected zone and method for manufacturing the same
KR101482343B1 (en) * 2012-12-26 2015-01-13 주식회사 포스코 High strength austenitic steel having excellent toughness of heat affected zone and method for manufacturing the same
KR101490567B1 (en) 2012-12-27 2015-02-05 주식회사 포스코 High manganese wear resistance steel having excellent weldability and method for manufacturing the same
DE102013101276A1 (en) * 2013-02-08 2014-08-14 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle stabilizer
ES2734993T3 (en) * 2013-07-26 2019-12-13 Nippon Steel Corp High strength steel material for use in oil wells, and oil well pipes
EP3034641B1 (en) * 2013-08-14 2019-10-09 Posco Ultrahigh-strength steel sheet and manufacturing method thereof
KR20160003967A (en) * 2014-07-01 2016-01-12 주식회사 포스코 Steel having excellent energy absorbing in high velocity deformation and method for manufacturing thereof
AR101904A1 (en) * 2014-09-29 2017-01-18 Nippon Steel & Sumitomo Metal Corp STEEL MATERIAL AND EXPANSIBLE PIPES FOR THE PETROLEUM INDUSTRY
KR101657791B1 (en) * 2014-12-11 2016-09-20 주식회사 포스코 High manganese steel sheet having high-yield-ratio and high-strength and manufacturing method for the same
CN105369130B (en) * 2015-10-27 2017-05-03 天津威尔朗科技有限公司 Multielement alloying high-strength high-abrasion-resistance steel and manufacturing method of hot-rolled plate
KR101746996B1 (en) * 2015-12-24 2017-06-28 주식회사 포스코 Hot dip aluminium or aluminium alloy coated steel sheet containing high manganese content having excellent coating adhesion property
KR101747034B1 (en) 2016-04-28 2017-06-14 주식회사 포스코 Ultra high strength and high ductility steel sheet having excellent yield ratio, and method for manufacturing the same
KR101876752B1 (en) * 2016-05-19 2018-07-16 동해금속(주) Manufacturing method for cross member for automobile vehicle and cross member for automobile vehicle thereof
US11414721B2 (en) 2016-05-24 2022-08-16 Arcelormittal Method for the manufacture of TWIP steel sheet having an austenitic matrix
WO2017203310A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Method for producing a twip steel sheet having an austenitic microstructure
DE102016110661A1 (en) 2016-06-09 2017-12-14 Salzgitter Flachstahl Gmbh Process for producing a cold-rolled steel strip from a high-strength, manganese-containing steel
CN106521331A (en) * 2016-10-21 2017-03-22 山西中煤电气有限公司 Aluminum-contained manganese steel
KR101839235B1 (en) 2016-10-24 2018-03-16 주식회사 포스코 Ultra high strength steel sheet having excellent hole expansion ratio and yield ratio, and method for manufacturing the same
RU2631069C1 (en) * 2016-10-27 2017-09-18 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Method of producing sheets from high-manganese steel
CN108796383A (en) * 2017-04-27 2018-11-13 宝山钢铁股份有限公司 A kind of titaniferous high-intensity and high-tenacity nonmagnetic steel and its manufacturing method
CN107177786B (en) * 2017-05-19 2018-12-21 东北大学 A kind of design and its manufacturing method of the high manganese cut deal of LNG storage tank
KR20190035142A (en) * 2017-09-26 2019-04-03 주식회사 포스코 Cold rolled steel sheet having excellent yield strength and drawing-workability and method of manufacturing the same
KR102020406B1 (en) * 2017-12-21 2019-09-10 주식회사 포스코 High-strength steel sheet having excellent yield strength and formability, and method for manufacturing thereof
KR102020386B1 (en) * 2017-12-24 2019-09-10 주식회사 포스코 High manganese austenitic steel having high strength and method for manufacturing the same
CN108467991B (en) * 2018-03-12 2020-09-29 上海交通大学 High-strength and high-toughness high manganese steel for ultralow temperature and heat treatment process thereof
CN109097680B (en) * 2018-08-10 2020-07-28 宝武集团鄂城钢铁有限公司 Method for manufacturing high-manganese high-aluminum nonmagnetic steel plate smelted by 50t intermediate frequency induction furnace
KR102290780B1 (en) * 2018-10-25 2021-08-20 주식회사 포스코 High manganese austenitic steel having high yield strength and manufacturing method for the same
WO2020085852A1 (en) * 2018-10-25 2020-04-30 주식회사 포스코 High manganese austenitic steel having high yield strength and manufacturing method for same
CN111850419A (en) * 2020-07-31 2020-10-30 燕山大学 High-manganese austenitic steel and preparation method thereof
KR20230072727A (en) * 2021-11-18 2023-05-25 주식회사 포스코 Hot rolled steel plate and steel tube having excellent abrasion resistance and manufacturing method thereof
WO2023212717A1 (en) * 2022-04-29 2023-11-02 United States Steel Corporation Low ni-containing steel alloys with hydrogen degradation resistance
CN117265419A (en) * 2022-06-15 2023-12-22 宝山钢铁股份有限公司 High-formability, easy-phosphating and high-manganese cold-rolled steel sheet with strength of 1000-1600MPa and manufacturing method thereof
CN115961213A (en) * 2022-12-19 2023-04-14 江苏鸿泰钢铁有限公司 Steel with high yield strength and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126956A (en) * 1982-01-22 1983-07-28 Nippon Steel Corp High-strength steel sheet with superior press workability
IN165225B (en) * 1986-03-26 1989-09-02 Bruss Ti Kirova
JPH02104633A (en) * 1989-07-28 1990-04-17 Daido Steel Co Ltd High strength and non-magnetic high manganese steel
JPH04259325A (en) * 1991-02-13 1992-09-14 Sumitomo Metal Ind Ltd Production of hot rolled high strength steel sheet excellent in workability
US5431753A (en) * 1991-12-30 1995-07-11 Pohang Iron & Steel Co. Ltd. Manufacturing process for austenitic high manganese steel having superior formability, strengths and weldability
KR970001324B1 (en) * 1994-03-25 1997-02-05 김만제 Hot rolling method of high mn steel
JP3787224B2 (en) * 1996-08-29 2006-06-21 株式会社大東製作所 Sliding shaft member and non-magnetic shaft member
DE10128544C2 (en) * 2001-06-13 2003-06-05 Thyssenkrupp Stahl Ag High-strength, cold-workable sheet steel, process for its production and use of such a sheet
FR2857980B1 (en) * 2003-07-22 2006-01-13 Usinor PROCESS FOR MANUFACTURING HIGH-STRENGTH FERRO-CARBON-MANGANESE AUSTENITIC STEEL SHEET, EXCELLENT TENACITY AND COLD SHAPINGABILITY, AND SHEETS THUS PRODUCED
WO2006082104A1 (en) * 2005-02-02 2006-08-10 Corus Staal Bv Austenitic steel having high strength and formability, method of producing said steel and use thereof
KR100742823B1 (en) * 2005-12-26 2007-07-25 주식회사 포스코 High Manganese Steel Strips with Excellent Coatability and Superior Surface Property, Coated Steel Strips Using Steel Strips and Method for Manufacturing the Steel Strips

Also Published As

Publication number Publication date
EP2097548A1 (en) 2009-09-09
KR20080060982A (en) 2008-07-02
KR100851158B1 (en) 2008-08-08
JP2009545676A (en) 2009-12-24
CN101432456A (en) 2009-05-13
EP2097548A4 (en) 2010-02-24
WO2008078940A1 (en) 2008-07-03
US20090074605A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
JP5393459B2 (en) High manganese type high strength steel plate with excellent impact characteristics
JP6043801B2 (en) Steel plate for warm press forming, warm press forming member, and manufacturing method thereof
KR100931140B1 (en) High tensile steel sheet with excellent formability and manufacturing method thereof
CN109415790B (en) Clad steel sheet having excellent strength and formability, and method for manufacturing same
KR101353787B1 (en) Ultra high strength colde rolled steel sheet having excellent weldability and bendability and method for manufacturing the same
JP2009506206A (en) High-manganese-type high-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
KR20120074798A (en) Method for manufacturing tensile strength 1.5gpa class steel sheet and the steel sheet manufactured thereby
KR100957974B1 (en) High Managese Steel Plate, Hot Rolled Steel Plate, Cold Rolled Steel Plate, Galvanized Steel Plate Having Excellent Hole Expansibility and Manufacturing Method Thereof
KR20160078840A (en) High manganese steel sheet having superior yield strength and fromability, and method for manufacturing the same
JP2019505668A (en) High yield ratio type high strength cold-rolled steel sheet and manufacturing method thereof
KR101747034B1 (en) Ultra high strength and high ductility steel sheet having excellent yield ratio, and method for manufacturing the same
WO2013054464A1 (en) High-strength cold-rolled steel plate having excellent deep drawability and in-coil material uniformity, and method for manufacturing same
KR20090070504A (en) Manufacturing method of high manganese steel sheet and coated steel sheet with excellent coatability
KR100928795B1 (en) High manganese hot-dip galvanized steel sheet with excellent workability and strength and manufacturing method
KR101439613B1 (en) The high strength high manganese steel sheet having excellent bendability and elongation and manufacturing method for the same
KR101299896B1 (en) METHOD FOR MANUFACTURING TENSILE STRENGTH 1.5GPa CLASS STEEL SHEET
KR20090070502A (en) Manufacturing method of high manganese steel sheet and coated steel sheet with high strength and excellent formability
KR20190075589A (en) High-strength steel sheet having high yield ratio and method for manufacturing thereof
KR20100071619A (en) High manganese steel sheet with high yield ratio, excellent yield strength and formability and manufacturing method thereof
KR101778404B1 (en) Clad steel sheet having excellent strength and formability, and method for manufacturing the same
KR20140014500A (en) 1500mpa-ultra high strength high manganese steel sheet having excellent bendability
KR101406471B1 (en) Ultra-high strength steel sheet with excellent crashworthiness, and method for manufacturing the same
KR20090070503A (en) High managese steel plate, hot rolled steel plate, cold rolled steel plate, galvanized steel plate having excellent deep drawability and manufacturing method thereof
KR101403215B1 (en) Ultra high strength high manganese steel sheet with excellent ductility and method of manufacturing the same
KR20150073005A (en) Austenitic galvanized steel sheet having excellent resistance crack of welding point and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5393459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250