KR101280500B1 - High strength and high manganese steel wire rod having excellent hydrogen delated fracture resistance and method for manufacturing the same - Google Patents

High strength and high manganese steel wire rod having excellent hydrogen delated fracture resistance and method for manufacturing the same Download PDF

Info

Publication number
KR101280500B1
KR101280500B1 KR1020100116350A KR20100116350A KR101280500B1 KR 101280500 B1 KR101280500 B1 KR 101280500B1 KR 1020100116350 A KR1020100116350 A KR 1020100116350A KR 20100116350 A KR20100116350 A KR 20100116350A KR 101280500 B1 KR101280500 B1 KR 101280500B1
Authority
KR
South Korea
Prior art keywords
steel wire
hydrogen
fracture resistance
steel
manufacturing
Prior art date
Application number
KR1020100116350A
Other languages
Korean (ko)
Other versions
KR20120054941A (en
Inventor
이종수
전영수
이유환
김지수
이태경
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020100116350A priority Critical patent/KR101280500B1/en
Priority to US13/270,856 priority patent/US20120128524A1/en
Publication of KR20120054941A publication Critical patent/KR20120054941A/en
Application granted granted Critical
Publication of KR101280500B1 publication Critical patent/KR101280500B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Abstract

본 발명은 고강도화를 도모하면서, 우수한 수소지연파괴 저항성을 갖는 강선재와 이를 제조하는 방법을 제공하고자 하는 것으로서,
망간(Mn)을 12~25중량% 포함하는 고망간강을 1150~1200℃로 가열하는 단계;
상기 가열된 강을 700~1100℃의 온도범위에서 열간 압연(hot rolling)하는 단계;
및 상기 열간 압연된 강을 냉각한 후, 200℃ 이하의 온도에서 냉간 공형 압연을 행하는 단계를 포함하는 수소지연파괴 저항성이 우수한 고강도 고망간 강선재의 제조방법과 상기 제조방법으로 제조된 강선재를 제공한다.
The present invention is to provide a steel wire having a high hydrogen delayed fracture resistance and a method of manufacturing the same, while increasing the strength,
Heating the high manganese steel containing 12-25 wt% of manganese (Mn) to 1150 to 1200 ° C .;
Hot rolling the heated steel at a temperature in the range of 700 to 1100 ° C .;
And cooling the hot rolled steel, and then performing cold cold rolling at a temperature of 200 ° C. or lower, and a method of manufacturing a high strength high manganese steel wire having excellent hydrogen delay fracture resistance and a steel wire manufactured by the manufacturing method. to provide.

Description

수소지연파괴 저항성이 우수한 고강도 고망간 강선재 및 그 제조방법{HIGH STRENGTH AND HIGH MANGANESE STEEL WIRE ROD HAVING EXCELLENT HYDROGEN DELATED FRACTURE RESISTANCE AND METHOD FOR MANUFACTURING THE SAME}High-strength high manganese steel wire with excellent hydrogen delay fracture resistance and manufacturing method thereof

본 발명은 강선재에 관한 것으로써, 보다 상세하게는 수소지연파괴 저항성이 우수하고, 높은 강도를 갖는 고망간 강선재와 이를 제조하는 방법에 관한 것이다.The present invention relates to a steel wire, and more particularly, to a high manganese steel wire having a high strength and excellent strength of hydrogen delayed fracture resistance, and a method of manufacturing the same.

강선재는 고강도 와이어, 타이어 코드, 볼트 등을 제조하기 위해 사용되는 강재로서, 높은 강도에 대한 요구가 지속적으로 증가하고 있는 추세이다.
Steel wire is a steel used to manufacture high-strength wire, tire cords, bolts, and the like, and the demand for high strength is continuously increasing.

이러한 강선재의 고강도화에 있어서, 가장 큰 걸림돌이 되는 것은 재료의 안정성을 보장할 수 없는 수소지연파괴이다. 수소지연파괴는 외부환경에 존재하는 황화수소가스, 물 등으로부터 수소원자가 재료내부로 침투하여 재료의 금속결합을 약화시킴으로써 재료의 응집력(cohesive strength) 저하를 야기시킨다. 강재의 수소용해도는 상온에서 매우 낮기 때문에 재료에 침투된 수소는 에너지적으로 안정한 전위, 결정립계, 상간계면 등에 트랩되어 존재하는데, 그에 따라 결정립계 등에서 수소에 의한 집중적인 결합력 약화로 입계 파괴 등이 발생한다.
In increasing the strength of such steel wires, the biggest obstacle is hydrogen delayed fracture which cannot guarantee the stability of the material. Hydrogen delayed destruction causes a decrease in cohesive strength of materials by hydrogen atoms penetrating into the material from the hydrogen sulfide gas and water present in the external environment and weakening the metal bond of the material. Hydrogen solubility of steel is very low at room temperature, so the hydrogen penetrated into the material is trapped in the energy stable potential, grain boundary, interphase interface, etc. As a result, the grain boundary breakdown occurs due to the weakening of the binding force by hydrogen in the grain boundary. .

특히, 1GPa 이상의 고강도강에서는 수소지연파괴 저항성이 현저히 감소하는 것으로 알려져 있다. 이것은 재료의 고강도화가 될수록 재료내 필수결함인 전위밀도의 증가와 결정립 미세화에 따른 결정립계 밀도의 증가로 인해 확산성 수소 트랩부의 증가에서 기인한다. In particular, hydrogen high strength steel of 1GPa or more is known to significantly reduce the hydrogen delayed fracture resistance. This is due to the increase in the dispersibility of the hydrogen trap due to the increase in dislocation density, which is an essential defect in the material, and the increase in grain boundary density due to grain refinement.

따라서, 고강도강 개발과 동시에 수소지연파괴에 대한 저항성이 우수한 강선재가 요구되고 있다.
Therefore, there is a demand for a steel wire having excellent resistance to hydrogen delayed fracture while developing high strength steel.

한편, 고망간강에 대한 종래 기술로는 한국특허등록 제0851158호가 있다. 상기 특허는 충돌특성이 우수한 고망간형 고강도 강판 및 그 제조방법에 관한 것으로, Mn을 10~25중량% 첨가한 고망간강을 이용한 판재의 제조방법에 대하여 기재되어 있으나, 상기 특허는 판재 적용에는 가능하지만, 변형 모드가 다른 공형압연기를 이용한 선재의 제조에는 부적합하며, 특히 선재에서 문제되는 수소지연파괴 특성에 대해서는 전혀 나타나 있지 않다.Meanwhile, Korean Patent Registration No. 0851158 is a conventional technology for high manganese steel. The patent relates to a high manganese high strength steel sheet having excellent impact characteristics and a method for manufacturing the same, and describes a method for manufacturing a plate using high manganese steel added with 10-25 wt% of Mn, but the patent is applicable to plate materials. However, it is unsuitable for the production of wire rods using other rolling mills with different deformation modes, and there is no indication of hydrogen delayed fracture characteristics, which are particularly problematic in wire rods.

본 발명의 일측면은 고강도화를 도모하면서, 우수한 수소지연파괴 저항성을 갖는 강선재 및 이를 제조하는 방법을 제공하고자 하는 것이다.One aspect of the present invention is to provide a steel wire having a high hydrogen delayed fracture resistance and a method of manufacturing the same, while increasing the strength.

본 발명은 망간(Mn)을 12~25중량% 포함하는 고망간강을 1150~1200℃로 가열하는 단계;The present invention comprises the steps of heating a high manganese steel containing 12 to 25% by weight of manganese (Mn) to 1150 ~ 1200 ℃;

상기 가열된 강을 700~1100℃의 온도범위에서 열간 압연(hot rolling)하는 단계;Hot rolling the heated steel at a temperature in the range of 700 to 1100 ° C .;

및 상기 열간 압연된 강을 냉각한 후, 200℃ 이하의 온도에서 냉간 공형 압연을 행하는 단계를 포함하는 수소지연파괴 저항성이 우수한 고강도 고망간 강선재의 제조방법 및 상기 방법으로 제조된 강선재를 제공한다.And cooling the hot rolled steel, and then performing cold cold rolling at a temperature of 200 ° C. or less, thereby providing a method of manufacturing high strength high manganese steel wire having excellent hydrogen delaying resistance and a steel wire manufactured by the above method. do.

본 발명에 의하면, 우수한 수소지연파괴 저항성을 갖는 초고강도 강선재를 제공함으로써, 산업적으로 내구성 향상 및 안전성을 확보할 수 있는 고부가가치 제품 개발에 활용될 수 있다.According to the present invention, by providing an ultra-high strength steel wire having excellent hydrogen delayed fracture resistance, it can be utilized in the development of high value-added products that can improve the durability and safety industrially.

도 1은 본 발명의 강선재 제조공정 이력을 시간과 온도로 나타낸 그래프임.
도 2(a) 및 (b)는 비교예의 후방 산란 전자의 회절 패턴의 이미지 맵(image map)과 입자 맵(grain map)을 나타낸 것이고, (c) 및 (d)는 각각 발명예 3의 이미지 맵(image map)과 입자 맵(grain map)을 나타낸 것임.
도 3(a) 및 (b)는 각각 판재압연한 강판과 공형압연한 선재의 투과전자현미경 사진을 나타낸 것임.
도 4은 공형 압연시 단면 감소율에 따른 변형에 대한 강도 변화를 나타낸 그래프임.
도 5는 확산성 수소량에 따른 노치 파단 강도를 나타낸 그래프임.
1 is a graph showing the steel wire manufacturing process history of the present invention in time and temperature.
2 (a) and 2 (b) show an image map and a grain map of the diffraction pattern of backscattered electrons of the comparative example, and (c) and (d) respectively show the image of Inventive Example 3 Represents an image map and a grain map.
3 (a) and 3 (b) show transmission electron micrographs of sheet rolled steel sheets and wire rolled wires, respectively.
Figure 4 is a graph showing the strength change for deformation according to the reduction rate of the cross section in the ball rolling.
5 is a graph showing notch breaking strength according to the amount of diffusible hydrogen.

이하, 본 발명에 대하여 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명자들은 수소지연파괴 저항성은 기존의 체심입방구조의 결정구조에서의 수소확산은 8면체의 틈자리(octahedral interstitial site)에서 바로 옆 8면체 틈자리로 확산이 이루어지지만, 면심입방구조의 결정구조에서는 4면체 틈자리(tetrahedral interstitial site)에 안정한 수소가 8면체 자리를 걸쳐 최인접 4면체 틈자리로 확산이 되어, 면심입방구조에서 수소의 확산은 체심입방구조에 비해 약 100~10000배 느리게 되는 점에 착안한 결과, 본 발명의 고망간 강선재에서는 오스테나이트계를 갖는 고망간 강선재를 이용하여 수소지연파괴 저항성을 향상시키게 되었다.
The present inventors found that hydrogen delayed fracture resistance is due to the diffusion of hydrogen from the octahedral interstitial site into the octahedral gap immediately adjacent to the crystal structure of the existing body-centered cubic structure. In the tetrahedral interstitial site, stable hydrogen diffuses through the octahedral to the nearest tetrahedral gap, and hydrogen diffusion in the surface-centered cubic structure is about 100 to 10,000 times slower than the body-centered cubic structure. As a result of focusing on the point, in the high manganese steel wire of the present invention, resistance to hydrogen delayed fracture is improved by using a high manganese steel wire having an austenite system.

또한, 강재의 수소 균열도는 상온에서 약 10-4ppm의 매우 낮은 수소 균열도를 갖기 때문에, 강재 내부에 침입한 수소는 주로 미세조직적 결함인 전위 및 결정립계 등에 트랩(trap)되어 존재한다. 기존의 강선재에서는 높은 전위 밀도와 미세결정립을 통하여 강도를 확보하여, 수소의 트랩에 대한 취약한 점이 있었으나, 본 발명의 고망간 강선재는 동적강화 효과를 바탕으로 하여, 낮은 전위밀도와 높은 쌍정계면에 의해 강도를 확보하는 동시에, 낮은 밀도의 확산성 수소 트랩부가 존재하여 수소지연파괴 저항성을 향상시키게 되었다.
In addition, since the hydrogen cracking degree of the steel material has a very low hydrogen cracking degree of about 10 -4 ppm at room temperature, hydrogen penetrating into the steel material is trapped and exists mainly in dislocations and grain boundaries, which are microstructure defects. In the existing steel wire rod, strength was secured through high dislocation density and fine grains, and there was a weak point for trapping hydrogen. However, the high manganese wire rod of the present invention has a low dislocation density and high twin interface based on the dynamic strengthening effect. As a result, the strength is secured, and a low density diffused hydrogen trap portion exists to improve hydrogen delayed fracture resistance.

이하, 본 발명의 강선재를 제조하는 방법에 대하여 상세히 설명한다.Hereinafter, the method of manufacturing the steel wire of the present invention will be described in detail.

본 발명의 강선재는 Mn을 12~25중량% 포함하는 고망간강을 이용하여 제조하는 것이 바람직하다. 본 발명 강선재의 일예로는 C 0.5~1.0중량%, Al 1.0~2.0 중량%를 포함하고 나머지는 Fe와 불가피한 불순물을 포함하는 것이 바람직하다.
It is preferable to manufacture the steel wire of this invention using high manganese steel containing 12-25 weight% of Mn. As an example of the steel wire of the present invention, it is preferable to include C 0.5 to 1.0% by weight, Al to 1.0 to 2.0% by weight, and the rest include Fe and unavoidable impurities.

먼저, 상기 1150~1200℃로 가열하는 단계를 통해 균질화 처리한다. 이는 주조시에 발생하는 원소의 편석을 방지하기 위함이다.
First, the homogenization treatment through the heating to 1150 ~ 1200 ℃. This is to prevent segregation of elements that occur during casting.

상기 가열된 고망간강을 700~1100℃의 온도범위에서 크기 조정을 위해서 선재 열간 압연(hot rolling)한다. 700℃ 미만의 온도에서 압연을 할 경우 압연 중에 발생하는 쌍정으로 인하여 냉간 공형 압연시에 압하율의 저하를 야기할 수 있으며, 1100℃를 초과한 온도에서 압연할 경우, 결정립 크기가 조대해져 냉간 공형 압연시에 쌍정이 효과적으로 발생하지 않아 압하율의 저하를 가져오기 때문에 700~1100℃에서 압연하는 것이 바람직하다.
The heated high manganese steel is hot rolled (wire rolling) to adjust the size in the temperature range of 700 ~ 1100 ℃. When rolling at a temperature below 700 ℃, due to twins generated during rolling may cause a reduction in the reduction rate during cold ball rolling, when rolling at a temperature above 1100 ℃, grain size becomes coarse It is preferable to roll at 700-1100 degreeC, since twins do not generate | occur | produce effectively at the time of rolling and a fall of a reduction ratio is brought.

상기 열간 압연된 강을 200℃ 이하의 온도에서 냉간 공형 압연한다. 이때 냉간 공형 압연(cold caliber rolling)의 단면 감소율은 선재의 용도에 따라 30~90%로 하는 것이 바람직하다.The hot rolled steel is cold rolled at a temperature of 200 ° C. or less. In this case, the reduction rate of the cross section of cold caliber rolling is preferably 30 to 90% depending on the purpose of the wire rod.

상기 냉간 공형 압연 온도가 200℃를 초과하는 경우에는 낮은 변형률에서 쌍정 생성이 급격하여, 고변형률에서 쌍정이 발생하지 않는 문제점이 있어 재료의 단면 감소율이 오히려 더 낮아진다. When the cold cold rolling temperature exceeds 200 ° C., twine formation is abrupt at low strain, and twine does not occur at high strain rate, so that the cross-sectional reduction rate of the material is lower.

상기 단면 감소율은 선재의 용도에 따라 30%이상 행하는 것이 바람직하고, 90%는 재료의 단면 감소율 한계치라고 할 수 있다.
It is preferable to perform 30% or more of said cross-sectional reduction rate according to a use of a wire rod, and 90% can be said to be a limit of a cross-sectional reduction rate of a material.

상기 냉간 공형 압연시에는 재료 내부에 발생하는 쌍정의 발생으로 결정립 미세화와 동일한 재료의 강화효과를 가져온다, 또한 판재압연에서 보다 높은 냉간 단면 감소율 및 고강도화를 얻을 수 있는 것은 도 3에 나타난 바와 같이, 판재압연한 강판과 공형 압연한 강선재의 투과전자현미경 사진을 통해 설명할 수 있다. 도 3(b)에 나타난 바와 같이, 판재압연을 행한 도 3(a)와 달리, 공형 압연시에 발생하는 쌍정은 4개의 다른방향 (4th variant) 쌍정이 모두 형성이 되고 이는 기존의 판재 압연에서 발생하는 1개의 방향 (1st variant) 쌍정만 형성되는 것과는 다르다. 4개의 다른방향 쌍정이 형성됨에 따라 결정립 미세화 효과는 극대화 되어 보다 높은 강도구현이 용이하며, 4개의 다른방향에서 쌍정이 재료의 주변형기구로 작용하여 높은 단면 감소율을 구현할 수 있어, 다양한 강도의 선재강 제조를 용이하게 한다.
In the cold cold rolling, the twinning occurs inside the material, resulting in the reinforcing effect of the same material as the grain refinement. Further, it is possible to obtain a higher cold sectional reduction rate and higher strength in sheet rolling, as shown in FIG. It can be explained through the transmission electron micrograph of the rolled steel sheet and the steel wire rod rolled. As shown in FIG. 3 (b), unlike FIG. 3 (a) in which sheet rolling is performed, twins generated at the time of rolling are all formed in four different directions (4 th variant) twins, which is a conventional sheet rolling. Only one direction (1 st variant) occurs in the twin, unlike that formed. As four different directions of twins are formed, the effect of grain refinement is maximized, so that higher strength can be easily realized, and in four different directions, twins can act as a peripheral device of the material to realize a high cross-sectional reduction rate. Facilitates steel fabrication.

이하, 본 발명의 강선재에 대하여 상세히 설명한다.Hereinafter, the steel wire of the present invention will be described in detail.

본 발명의 강선재는 12~25중량%의 Mn, 0.5~1.0중량%의 C, 1.0~2.0중량%의 Al, 나머지는 Fe 및 불가피한 불순물을 포함하는 것이 바람직하다.The steel wire of the present invention preferably contains 12 to 25% by weight of Mn, 0.5 to 1.0% by weight of C, 1.0 to 2.0% by weight of Al, the rest of Fe and unavoidable impurities.

본 발명의 수소지연파괴 저항성이 우수한 고강도 고망간 강선재는 오스테나이트 단상조직으로 이루어진다. 오스테나이트계는 수소의 확산속도가 느린 면심입방구조(FCC)임에 따라 재료내부에 트랩된 수소의 이동도가 기존의 페라이트계 강에 비해서 늦다. 또한 확산성 수소의 트랩부로 작용하는 결정립계 혹은 극미세 탄화물에 의한 강화가 아닌 기계적 쌍정을 통한 동적강화를 구현하는 고망간 강선재는 쌍정이 비확산성 수소의 트랩부로 작용하여 오히려 수소 지연 파괴에 긍정적인 효과를 가져온다. 이것은 기계적으로 형성된 쌍정은 기존에 알려진 정합 계면이 아닌 반정합 계면이기 때문에 수소와의 트랩 활성화 에너지가 큰 것으로 알려져 있다. 이에 따라 고망간 강선재는 느린 수소 확산속도와 높은 수소 트랩 확산성 에너지를 동시에 가지는 장점이 있어 수소 지연 파괴 저항성이 매우 우수하다.
The high-strength high manganese steel wire having excellent hydrogen delayed fracture resistance of the present invention is composed of an austenite single phase structure. As austenitic has a slow diffusion rate of hydrogen, a surface centered cubic structure (FCC) has a low mobility of hydrogen trapped inside the material, compared to conventional ferritic steels. In addition, the high manganese steel wire which provides dynamic reinforcement through mechanical twins, rather than grain boundary or ultrafine carbide, which acts as a trapping part of diffusive hydrogen, has a positive effect on the hydrogen delayed destruction because twins act as trapping part of non-diffusing hydrogen. Bring it. It is known that the trap activation energy with hydrogen is high because the mechanically formed twins are semi-matched interfaces rather than known interfaces. Accordingly, the high manganese steel wire has the advantages of having both a slow hydrogen diffusion rate and a high hydrogen trap diffusive energy at the same time, so the hydrogen delayed fracture resistance is excellent.

이하, 본 발명의 실시예에 대하여 상세히 설명한다. 다만 하기 실시예에 의하여 본 발명이 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited by the following examples.

(실시예)(Example)

Fe에 C: 0.6중량%, Mn: 18중량%, Al: 1.5중량%를 포함한 강을 도 1의 제조공정 이력에 따라 1200℃에서 가열하여 균열 처리하고, 1100℃에서 열간 압연을 실시한 후, 냉간에서 공형압연을 실시하여 강선재를 제조하였다. 상기 강선재는 냉간 공형 압연시 압하율에 따라서, 82%의 단면감소율로 공형 압연한 시편(발명예 1), 70%의 단면감소율로 공형 압연한 시편(발명예 2), 54%의 단면감소율로 공형 압연한 시편(발명예 3), 43%의 단면감소율로 공형 압연한 시편(발명예 4) 및 31%의 단면감소율로 공형 압연한 시편(발명예 5)을 각각 마련하였다.
The steel containing C: 0.6% by weight, Mn: 18% by weight, and Al: 1.5% by weight of Fe was heated and cracked at 1200 ° C. according to the manufacturing process history of FIG. 1, followed by hot rolling at 1100 ° C., followed by cold The steel wire was manufactured by performing a cold rolling at. The steel wires were specimens rolled by a 82% cross-sectional reduction rate (Invention Example 1), specimens rolled by a 70% cross-section reduction rate (Inventive Example 2), and 54% cross-sectional reduction rate, depending on the rolling reduction rate in cold steel rolling. Specimen rolled to specimen (Inventive Example 3), specimen rolled to 43% cross-sectional reduction rate (Invention Example 4) and specimen rolled to 31% cross-sectional reduction rate (Invention Example 5) were prepared.

한편, 종래예는 열간압연을 행하고, 냉간 공형 압연 없이 900℃에서 30분간 가열처리 후 오일 켄칭(oil quenching)을 행하고, 다시 460℃에서 90분간 가열한 후 공냉하여, 템퍼드 마르텐사이트 조직을 갖는 시편을 제조하였다.On the other hand, the prior art is subjected to hot rolling, heat quenching (oil quenching) at 900 ℃ for 30 minutes without cold ball rolling, heated at 460 ℃ for 90 minutes and then air-cooled, having a tempered martensite structure Specimen was prepared.

또한, 비교예로는 열간압연 후 1000℃에서 10분간 가열처리한 후, 520℃까지 연욕처리를 통한 켄칭을 행하고, 공냉하여, 펄라이트 조직의 시편을 제조하였다.
In addition, as a comparative example, after hot rolling for 10 minutes at 1000 ℃ after hot rolling, it was quenched through a bath treatment to 520 ℃, air-cooled to prepare a specimen of a pearlite structure.

도 2(a) 및 (b)는 비교예의 후방 산란 전자의 회절 패턴의 이미지 맵(image map)과 입자 맵(grain map)을 나타낸 것이고, (c) 및 (d)는 각각 발명예 3의 이미지 맵(image map)과 입자 맵(grain map)을 나타낸 것이다. 도 2의 (c)와 (d)에 나타난 바와 같이, 본 발명에서는 냉간 공형 압연을 실시함으로써, 매우 치밀한 기계적 쌍정이 생성된 미세조직을 갖는 것을 확인할 수 있다. 이러한 변형에 의한 기계적 쌍정은 전위의 평균자유 이동거리(mean free path)를 감소시키는 장애물로 작용하여 강선재의 결정립 미세화 효과의 강화기구로 작용하여 재료의 강도를 증가시킨다.
2 (a) and 2 (b) show an image map and a grain map of the diffraction pattern of backscattered electrons of the comparative example, and (c) and (d) respectively show the image of Inventive Example 3 It shows an image map and a grain map. As shown in (c) and (d) of FIG. 2, in the present invention, by performing cold cold rolling, it can be confirmed that the microstructure has a very dense mechanical twin. The mechanical twin due to this deformation acts as an obstacle to reduce the mean free path of dislocations and acts as a reinforcing mechanism of grain refining effect of the steel wire to increase the strength of the material.

도 4은 발명예 1 내지 5와 종래예의 변형량에 따른 강도변화를 나타낸 그래프이다. 도 4의 결과로부터, 냉간 공형 압연시 단면 감소율에 따라 강도와 연성을 변화시킬 수 있으며, 이는 냉간 공형 압연을 통해 종래예에 비해 연성은 유지하면서, 강도는 더 높일 수 있음을 알 수 있다.
4 is a graph showing the intensity change according to the deformation amount of the invention examples 1 to 5 and the conventional example. From the results of Figure 4, it can be seen that the strength and ductility can be changed according to the reduction rate of the cross section during cold cold rolling, which can be increased while maintaining the ductility compared to the conventional example through cold cold rolling.

한편, 수소지연파괴 저항성의 정량적 비교를 위해 양극 수소주입법과 저속도 인장시험을 행하고, 그 결과를 도 5에 나타내었다. 본 발명의 오스테나이트계 고망간 발명예 3과 펄라이트계인 비교예 및 템퍼드 마르텐사이트계인 종래예의 동일한 수소량을 주입하기 위해 수소 주입 수용액을 달리하여 적용하였다.
On the other hand, in order to quantitatively compare the hydrogen delayed fracture resistance, a positive hydrogen injection method and a low speed tensile test were performed, and the results are shown in FIG. 5. In order to inject the same amount of hydrogen in the austenitic high manganese invention example 3 of the present invention, the comparative example which is a pearlite system, and the prior art example which is a tempered martensite system, the hydrogen injection aqueous solution was applied differently.

본 발명예 3에서는 비교예나 종래예에 비해 확산성 수소의 트랩부가 적기 때문에 동일한 환경에서 수소주입량이 약 100배 정도 낮으므로, 발명예 3은 좀 더 가혹한 수용액인 티오시안산암모늄과 염화나트륨 혼합 용액에서 10~50A/㎡의 전류밀도로 3일간 수소 주입하였고, 종래예와 비교예는 비교적 덜 가혹한 0.1노르말 농도를 갖는 수산화나트륨 수용액에서 1~20A/㎡의 전류밀도로 3일간 수소 주입하였다.
In Inventive Example 3, since the amount of trapping of diffusible hydrogen is less than that of the comparative example or the conventional example, since the hydrogen injection amount is about 100 times lower in the same environment, Inventive Example 3 is used in a more severe aqueous solution of ammonium thiocyanate and sodium chloride. Hydrogen was injected for 3 days at a current density of 10 to 50 A / m 2, and the conventional and comparative examples were hydrogen injected for 3 days at a current density of 1 to 20 A / m 2 in an aqueous sodium hydroxide solution having a relatively less severe 0.1 normal concentration.

저속도 인장시험은 10-5/sec의 변형율 속도로 진행하여, 응력중심부로의 수소확산을 모사하여 노치 파단 강도를 측정하고 그 결과를 도 5에 나타내었다. 도 5에 나타난 바와 같이, 확산성 수소량이 증가할수록 시료의 노치파단 강도는 줄어든다. 다만, 주목할 점은 수소에 의해 취화되는 정도이다. 종래예와 비교예의 경우에는 약 2ppm의 확산성 수소에 대해 각각 68%와 58%의 수소취화도(도 5에서의 파단 강도 감소율)을 나타내었으나, 발명예 3의 경우에는 약 14%의 수소취화도를 나타내었다.
The low-speed tensile test proceeds at a strain rate of 10 −5 / sec, simulates hydrogen diffusion to the stress center, and measures the notched fracture strength, and the results are shown in FIG. 5. As shown in FIG. 5, the notch breaking strength of the sample decreases as the amount of diffusible hydrogen increases. However, note that the degree of embrittlement by hydrogen. In the case of the conventional example and the comparative example, the hydrogen embrittlement rate (breaking strength reduction rate in FIG. 5) was 68% and 58%, respectively, for about 2 ppm of diffusible hydrogen, but in the case of Inventive Example 3, the hydrogen embrittlement was about 14%. Is also shown.

따라서, 본 발명의 강선재는 수소유입에 대하여, 획기적인 수소지연파괴 저항성을 갖는 것을 확인할 수 있다.Therefore, it can be confirmed that the steel wire of the present invention has breakthrough hydrogen delayed fracture resistance against hydrogen inflow.

Claims (5)

망간(Mn) 12~25중량%, 탄소(C) 0.5~1.0중량%, 알루미늄(Al) 1.0~2.0중량%, 나머지는 철(Fe) 및 불가피한 불순물을 포함하는 강을 1150~1200℃로 가열하는 단계;
상기 가열된 강을 700~1100℃의 온도범위에서 열간 압연(hot rolling)하는 단계; 및
상기 열간 압연된 강을 냉각한 후, 200℃ 이하의 온도에서 냉간 공형 압연을 행하는 단계;를 포함하고,
상기 냉간 공형 압연된 강은 4개의 다른 방향 (4th variant) 쌍정이 형성되어 있으며, 오스테나이트 단상조직으로 이루어지는 것을 특징으로 하는 수소지연파괴 저항성이 우수한 고강도 고망간 강선재의 제조방법.
Manganese (Mn) 12 to 25% by weight, carbon (C) 0.5 to 1.0% by weight, aluminum (Al) 1.0 to 2.0% by weight, the rest of the steel containing iron (Fe) and unavoidable impurities heated to 1150 ~ 1200 ℃ Making;
Hot rolling the heated steel at a temperature in the range of 700 to 1100 ° C .; And
After cooling the hot-rolled steel, and performing cold cold rolling at a temperature of 200 ℃ or less;
The cold-rolled steel has four different directions (4 th variant) twins are formed, a method of producing a high-strength high manganese steel wire having excellent hydrogen delay fracture resistance, characterized in that the austenitic single-phase structure.
청구항 1에 있어서,
상기 냉간 공형 압연은 30~90%의 단면감소율로 행하는 수소지연파괴 저항성이 우수한 고강도 고망간 강선재의 제조방법.
The method according to claim 1,
The cold cold rolling is a method for producing a high strength high manganese steel wire having excellent hydrogen delayed fracture resistance performed at a section reduction rate of 30 to 90%.
삭제delete 청구항 1 또는 2의 방법으로 제조된 수소지연파괴 저항성이 우수한 고강도 고망간 강선재.
A high strength high manganese steel wire having excellent hydrogen delayed fracture resistance prepared by the method of claim 1 or 2.
삭제delete
KR1020100116350A 2010-11-22 2010-11-22 High strength and high manganese steel wire rod having excellent hydrogen delated fracture resistance and method for manufacturing the same KR101280500B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020100116350A KR101280500B1 (en) 2010-11-22 2010-11-22 High strength and high manganese steel wire rod having excellent hydrogen delated fracture resistance and method for manufacturing the same
US13/270,856 US20120128524A1 (en) 2010-11-22 2011-10-11 Steel wire rod having excellent cold heading quality and hydrogen delayed fracture resistance, method of manufacturing the same, and mehod of manufacturing bolt using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100116350A KR101280500B1 (en) 2010-11-22 2010-11-22 High strength and high manganese steel wire rod having excellent hydrogen delated fracture resistance and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20120054941A KR20120054941A (en) 2012-05-31
KR101280500B1 true KR101280500B1 (en) 2013-07-01

Family

ID=46270593

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100116350A KR101280500B1 (en) 2010-11-22 2010-11-22 High strength and high manganese steel wire rod having excellent hydrogen delated fracture resistance and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR101280500B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180066801A (en) 2016-12-09 2018-06-19 포항공과대학교 산학협력단 High manganese steel having ultra high strength and good ductility and preparation method for the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280502B1 (en) * 2011-03-11 2013-07-01 포항공과대학교 산학협력단 High strength and high manganese steel wire rod having excellent cold head quality and method for manufacturing the same, and method for manufacturing bolt using the same
KR101449111B1 (en) 2012-08-09 2014-10-08 주식회사 포스코 Steel wire rod having excellent strength and ductility and method for manufacturing the same
KR101726081B1 (en) 2015-12-04 2017-04-12 주식회사 포스코 Steel wire rod having excellent low temperature inpact toughness and method for manufacturing the same
KR102020443B1 (en) * 2017-12-22 2019-09-10 주식회사 포스코 Steel wire for spring having excellent low temperature fatigue strength and method of manufacturing the same
CN113275405B (en) * 2021-04-23 2024-02-06 中国科学院合肥物质科学研究院 TWIP steel wire direct drawing forming method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278258A (en) * 1986-05-27 1987-12-03 Chuo Spring Co Ltd Surface treatment of nonmagnetic high manganese steel
KR100241016B1 (en) 1995-12-26 2000-03-02 이구택 High mn-steel having high toughness and its hot-rolling method
KR100851158B1 (en) 2006-12-27 2008-08-08 주식회사 포스코 High Manganese High Strength Steel Sheets With Excellent Crashworthiness, And Method For Manufacturing Of It

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278258A (en) * 1986-05-27 1987-12-03 Chuo Spring Co Ltd Surface treatment of nonmagnetic high manganese steel
KR100241016B1 (en) 1995-12-26 2000-03-02 이구택 High mn-steel having high toughness and its hot-rolling method
KR100851158B1 (en) 2006-12-27 2008-08-08 주식회사 포스코 High Manganese High Strength Steel Sheets With Excellent Crashworthiness, And Method For Manufacturing Of It

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180066801A (en) 2016-12-09 2018-06-19 포항공과대학교 산학협력단 High manganese steel having ultra high strength and good ductility and preparation method for the same

Also Published As

Publication number Publication date
KR20120054941A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
Zhao et al. The combining effects of ausforming and below-Ms or above-Ms austempering on the transformation kinetics, microstructure and mechanical properties of low-carbon bainitic steel
JP5334769B2 (en) High strength bolt
Xie et al. Microstructure and mechanical properties of a novel 1000 MPa grade TMCP low carbon microalloyed steel with combination of high strength and excellent toughness
US20120128524A1 (en) Steel wire rod having excellent cold heading quality and hydrogen delayed fracture resistance, method of manufacturing the same, and mehod of manufacturing bolt using the same
JP5674620B2 (en) Steel wire for bolt and bolt, and manufacturing method thereof
JP7370320B2 (en) Spring wire rods and steel wires with excellent corrosion resistance and fatigue resistance, and their manufacturing method
EP2238272B1 (en) High strength bainitic steel for octg applications
KR101280500B1 (en) High strength and high manganese steel wire rod having excellent hydrogen delated fracture resistance and method for manufacturing the same
JP4291860B2 (en) High-strength steel sheet and manufacturing method thereof
JP2016534230A (en) High hardness hot rolled steel product and method for producing the same
JP4189133B2 (en) High strength and high ductility steel sheet with ultrafine grain structure obtained by low strain processing and annealing of ordinary low carbon steel and method for producing the same
JP4109619B2 (en) High strength steel plate with excellent elongation and stretch flangeability
JP2009215571A (en) High strength cold rolled steel sheet having excellent stretch-flange formability
JPWO2014136966A1 (en) Strength member and manufacturing method thereof
Ding et al. Effect of intercritical temperature on quenching and partitioning steels originated from martensitic pre-microstructure
JP5826383B2 (en) Wire rod excellent in hydrogen delayed fracture resistance, method for producing the same, high strength bolt using the same, and method for producing the same
JP4043754B2 (en) High strength PC steel bar with excellent delayed fracture characteristics
JP5747243B2 (en) Warm working steel
KR100544752B1 (en) Method of manufacturing high carbon wire rod having superior cold formability for bolt
KR100900646B1 (en) Method of manufacturing high Si added high carbon wire rod
KR101277835B1 (en) Wire rod having high strength and ductility and method for manufacturing the same
KR100516518B1 (en) Steel having superior cold formability and delayed fracture resistance, and method for manufacturing working product made of it
CN103938104B (en) The marine drilling platform steel of fatigue strength >=560MPa and production method
KR101449113B1 (en) High carbon steel wire having excellent bending-fatigue properties and ductility and method for manufacturing thereof
KR101271837B1 (en) Hyper eutectoid steel wire having high strength and ductility and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 6