KR101113666B1 - Ultra-high strength twip steel sheets and the method thereof - Google Patents

Ultra-high strength twip steel sheets and the method thereof Download PDF

Info

Publication number
KR101113666B1
KR101113666B1 KR1020080079405A KR20080079405A KR101113666B1 KR 101113666 B1 KR101113666 B1 KR 101113666B1 KR 1020080079405 A KR1020080079405 A KR 1020080079405A KR 20080079405 A KR20080079405 A KR 20080079405A KR 101113666 B1 KR101113666 B1 KR 101113666B1
Authority
KR
South Korea
Prior art keywords
steel sheet
heat treatment
ultra
grain boundary
tipped
Prior art date
Application number
KR1020080079405A
Other languages
Korean (ko)
Other versions
KR20100020692A (en
Inventor
김소연
홍승현
Original Assignee
기아자동차주식회사
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 기아자동차주식회사, 현대자동차주식회사 filed Critical 기아자동차주식회사
Priority to KR1020080079405A priority Critical patent/KR101113666B1/en
Priority to US12/276,725 priority patent/US20100037993A1/en
Publication of KR20100020692A publication Critical patent/KR20100020692A/en
Application granted granted Critical
Publication of KR101113666B1 publication Critical patent/KR101113666B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Abstract

망간을 15~25중량% 포함하는 오스테나이트 기지조직의 초고강도 트윕 강판이 소개된다. 이 트윕 강판은, 냉간 압연 후 열처리 과정에서 황동 방위가 억제되고 {3 5 2}<2 2 1>가 주방위로 발달된 재결정 집합조직을 가지며, 평균 소성변형비가 적어도 1.2 이상, 바람직하게는 1.5 이상이다. 이러한 트윕 강판은 가공성 및 강도가 우수하여, 프레스 성형을 통해 크랙이나 터짐 없이 복잡한 형상의 차체 부품을 손쉽게 제작할 수 있다.An ultra-high-strength tipped steel sheet of austenitic matrix containing 15-25 wt% manganese is introduced. This twipe steel sheet has a recrystallized texture in which brass orientation is suppressed during the heat treatment after cold rolling and {3 5 2} <2 2 1> is developed as a kitchen table, and the average plastic strain ratio is at least 1.2 or more, preferably 1.5 or more. to be. The twipe steel sheet is excellent in workability and strength, and can be easily manufactured to complex body parts without cracking or bursting through press molding.

트윕강, 쌍정, 집합조직, 황동 방위, 어닐링 Twisted steel, twin, aggregate, brass bearing, annealing

Description

초고강도 트윕 강판 및 그 제조방법{ULTRA-HIGH STRENGTH TWIP STEEL SHEETS AND THE METHOD THEREOF}Ultra-high strength tipped steel plate and manufacturing method thereof {ULTRA-HIGH STRENGTH TWIP STEEL SHEETS AND THE METHOD THEREOF}

본 발명은 소성변형 시 슬립(slip)과 쌍정(twin)이 동시에 변형기구로 작용하는 트윕(Twining Induced Plasticity: TWIP) 강판 및 그 제조방법에 관한 것으로, 특히, 소성변형비가 우수한 차체 부품용 초고강도 트윕 강판 및 그 제조방법에 관한 것이다.The present invention relates to a Twiping Induced Plasticity (TWIP) steel sheet and a method of manufacturing the same, in which slip and twin act simultaneously as a deformation mechanism during plastic deformation, and in particular, ultra high strength for vehicle parts having excellent plastic deformation ratio. The present invention relates to a tipped steel sheet and a method of manufacturing the same.

일반적으로 차체 부품용 소재로 널리 적용되고 있는 고장력 강판은 인장강도 590~780MPa, 항복강도 270~350MPa, 연신률 25~35%, 소성변형비 0.9~1.2 정도의 물성을 가지는 강판이 주를 이루고 있다.In general, high tensile steel sheets are widely used as materials for body parts, and steel sheets having physical properties of tensile strength of 590 to 780 MPa, yield strength of 270 to 350 MPa, elongation of 25 to 35% and plastic strain ratio of 0.9 to 1.2 are mainly used.

그런데, 강판이 고장력화됨에 따라, 부품 프레스 성형시 터짐 및 주름 등 연신률 부족 등으로 인하여 발생되는 제반 문제와 요구되는 부품 강성을 고려하여, 강판 두께를 크게 하여 사용하고 있는 실정이다. 또한 연신률이 충분히 확보된다고 하더라도 부품의 복잡화와 다 기능화에 따라 성형이 어려운 경우가 대부분이라, 금형 기술의 개발과 더불어 강판 소성변형비를 크게 증가시킬 필요가 있다.However, as the steel sheet becomes high, the steel sheet thickness is increased in consideration of various problems caused by elongation such as bursting and wrinkles during component press molding and required component rigidity. In addition, even if the elongation is sufficiently secured, molding is often difficult due to the complexity of the parts and the multifunctionalization. Therefore, it is necessary to greatly increase the plastic deformation ratio with the development of mold technology.

위와 같은 요구에 부응하기 위하여, 본 출원인은, 중량%로, 탄소 0.15~ 0.30%, 실리콘 0.01~0.03%, 망간 15~25%, 알루미늄 1.2~3.0%, 인 0.020% 이하, 황 0.001~0.002%, 나머지 철을 포함하는 차체 부품용 초고강도 트윕 강판을 제안(한국 공개특허 제2007-0018416호)한 바 있다.In order to meet the above requirements, the applicant, in weight%, carbon 0.15-0.30%, silicon 0.01-0.03%, manganese 15-25%, aluminum 1.2-3.0%, phosphorus 0.020% or less, sulfur 0.001-0.002% , Has proposed a super high-strength twipe steel sheet for the body parts including the remaining iron (Korean Patent Publication No. 2007-0018416).

그러나, 위 공개특허에서 제안된 강판의 획기적인 물성에도 불구하고, 복잡한 형상의 차체 부품 적용 요구가 증가하고 있는 현 시점에서는 성형성에 미치는 가장 큰 인자인 소성변형비를 더욱 향상시킬 필요가 있다.However, despite the breakthrough physical properties of the steel sheet proposed in the above patents, at this point in time when the demand for the application of complex body parts increases, it is necessary to further improve the plastic strain ratio, which is the largest factor on the formability.

본 발명은 상술한 바와 같은 문제점을 해결하기 위하여 제안된 것으로, 소성변형비가 향상된 초고강도 트윕 강판 및 그 제조방법을 제공함을 목적으로 한다.The present invention has been proposed to solve the above problems, and an object of the present invention is to provide an ultra-high strength steel sheet and a method of manufacturing the same with improved plastic strain ratio.

상기의 목적을 달성하기 위한 본 발명은, 한국 공개특허 제2007-0018416호에서와 같이 새로운 트윕 강판의 조성을 제안하기 보다는, 냉간압연 후 어닐링 과정에서의 재결정 집합조직(texture) 제어를 통해 주어진 조성에서 소성변형비를 획기적으로 향상시키는 방안을 제안하고자 한다.In order to achieve the above object, the present invention, rather than propose a new twipe steel sheet composition as in Korean Patent Laid-Open No. 2007-0018416, in a given composition through the recrystallization texture control in the annealing process after cold rolling The purpose of this paper is to propose a method to significantly improve the plastic strain ratio.

구체적으로, 본 발명에 따른 초고강도 트윕 강판은, 냉간 압연 후 열처리 과정에서 황동 방위가 억제되고 {3 5 2}<2 2 1>가 주방위로 발달된 재결정 집합조직을 가지며, 평균 소성변형비가 적어도 1.2 이상, 바람직하게는 1.5 이상인 것이 특징이다. 이러한 본 발명에 따른 트윕 강판은 통상적인 트윕 강판과 마찬가지로 망간을 15~25중량% 함유하며, 오스테나이트 기지조직을 갖는다. 매우 부분적으로 마르텐사이트나 페라이트가 존재할 수 있으나, 오스테나이트 단상을 갖는다고 말할 수 있다.
본 설명에서, 주방위는, 그 의미 그대로, 집합조직에서 가장 발달한 방위를 말한다.
Specifically, the ultra-high strength tipped steel sheet according to the present invention has a recrystallized texture in which brass orientation is suppressed and {3 5 2} <2 2 1> is developed as a kitchen table during the heat treatment after cold rolling, and the average plastic strain ratio is at least. It is characterized by being 1.2 or more, preferably 1.5 or more. Twisted steel sheet according to the present invention contains 15 to 25% by weight of manganese, and has an austenite matrix as in the conventional twipe steel sheet. Very partially martensite or ferrite may be present, but it can be said to have an austenite single phase.
In this description, the National Assembly, as it is, refers to the most developed orientation in the collective.

자연에서 얻거나 가공하여 사용하는 재료들은 거의 대부분이 다결정(polycrystalline)이라 불리는 결정의 덩어리 상태이다. 이들의 결정학적 방위 배열은 대부분의 경우 무질서하지 않고 특정한 방위의 배열이 강하게 나타난다. 무질서하지 않은 결정방위를 갖는 재료를, 우선 방위, 다시 말해 집합조직을 갖고 있 다고 말한다.Almost all materials obtained or processed in nature are lumps of crystals called polycrystalline. Their crystallographic orientations are in most cases not disordered and certain orientations appear strongly. A material with an unordered crystal orientation is said to have an orientation, that is, an aggregate.

일반적으로 트윕 강과 같은 오스테나이트 기지의 금속 판재는 구리 방위, 고스 방위, 황동 방위, S 방위 및 입방정 방위로 구성된 결정학적인 집합조직을 나타낸다. 이들의 상대적인 부피 분률은 평균 소성변형비에 영향을 주게 된다. 압연으로 생산한 판재에서 결정의 방위는 압연 판재면과 압연 방향으로 정의된다. 다시 말하면, 압연 면과 평행하게 놓인 결정의 면과, 압연 방향과 평행하게 놓인 결정의 방향으로 집합조직을 나타낼 수 있다. 결정의 면은 밀러지수 {hkl}로 표시되고 방향은 <uvw>로 표시되는데, 예를 들어, 구리 방위는 {112}<111>, 고스 방위는 {011}<100>, 황동 방위는 {112}<110>, S 방위는 {123}<634>, 입방정 방위는 {001}<100>로 표시될 수 있다.In general, austenitic-based metal plates such as twipe steel exhibit crystallographic textures consisting of copper bearings, goth bearings, brass bearings, S bearings and cubic crystal bearings. Their relative volume fraction affects the average plastic strain ratio. The orientation of the crystal in the plate produced by rolling is defined by the rolled plate surface and the rolling direction. In other words, the texture can be exhibited in the plane of the crystal placed in parallel with the rolled surface and in the direction of the crystal placed in parallel with the rolling direction. The face of the crystal is represented by the Miller index {hkl} and the direction is represented by <uvw>, for example, the copper orientation is {112} <111>, the goth orientation is {011} <100>, and the brass orientation is {112 } <110>, the S orientation may be indicated as {123} <634> and the cubic orientation as {001} <100>.

트윕 강과 같은 적층결함에너지(Stacking Fault Energy: SFE)가 낮은 금속은 냉간 압연 시 특히 황동 방위가 발달하는데, 이렇게 냉연된 트윕 강판을 종래 기술에 따라 어닐링 처리(800~900℃에서 8~10시간 동안 어닐링 처리)하면 집합조직의 변화가 거의 없는 소위 연속 재결정이 일어나며 어닐링 쌍정(즉, Σ3 입계)이 증가하게 된다. 그런데, 이렇게 어닐링 처리된 종래 트윕 강판의 평균 소성변형비는 0.911 정도로서, 그 이상으로 증가시키기는 어렵다. 이에, 본 발명에서는, 소성 변형비의 향상을 위해, 어닐링 과정에서 황동 방위를 억제하고 {3 5 2}<2 2 1>가 주방위로 발달시킨다.Metals with low Stacking Fault Energy (SFE), such as Twisted Steel, develop brass orientation, especially during cold rolling.The cold rolled tipped steel sheet is annealed according to the prior art (8 to 10 hours at 800 to 900 ° C). Annealing treatment results in a so-called continuous recrystallization with little change in the texture of the aggregates and annealing twins (ie, Σ3 grain boundaries). However, the average plastic strain ratio of the conventional annealed tweezers steel sheet is about 0.911, it is difficult to increase more than that. Thus, in the present invention, in order to improve the plastic strain ratio, the brass orientation is suppressed in the annealing process and {3 5 2} <2 2 1> is developed as a kitchen plate.

본 발명에 따른 초고강도 트윕 강판 제조방법은, 냉간 압연된 트윕 강판(이하, 단순히 "냉연 트윕강판" 이라 함)에 대한 어닐링 처리를 2원화하여 실시하는 것을 특징으로 한다. 즉, 첫 번째로, 고경각 입계 중 재결정이 쉽게 일어나지 않는 Σ3와 같은 CSL(Coincide Site Lattice) 입계 분율이 감소되도록 제1 온도 구간 내에서 회복 열처리를 실시한 다음에, 두 번째로, 재결정, 특히 1차 재결정이 이루어지도록 제2 온도 구간 내에서 재결정 열처리를 한다. 이와 같은 어닐링 처리를 통해 얻어진 트윕 강판은 황동 방위 대신 {3 5 2}<2 2 1>이 주방위로 발달되며, 어닐링 쌍정이 종래에 비해 현저하게 감소된다. 나아가, 이러한 트윕 강판은 어긋남 각(misorientation angle) 60°인 Σ3 입계 분율이 10% 이하, 어긋남 각 5°이하의 입계분율이 50% 이상일 수 있으며, 그리고, 어긋남 각 15°이상의 입계 분율이 40% 미만일 수 있다.
알려진 바와 같이, CSL 입계는 "정합"을 이루고 있어서 결정립계의 에너지가 낮은 것이 특징이며, 위의 Σ3 입계는 CSL 입계에 해당한다.
금속의 집합조직에 관한 연구분야의 교과서, 논문 등에서 이미 알려진 바와 같이, 어긋남 각(misorientation) 60°는 두 개의 결정립이 인접해 있을 때 하나의 결정립의 <111>방향과 다른 결정립의 <111> 방향간의 각도가 60°의 회전 관계를 보이는 경우를 말하며, 이러한 경우의 결정립계가 Σ3로 표시된다.
The ultra-high strength twipe steel sheet manufacturing method according to the present invention is characterized by performing an annealing treatment on a cold rolled tipped steel sheet (hereinafter, simply referred to as a "cold rolled steel sheet"). That is, firstly, a recovery heat treatment is performed in the first temperature section to reduce the Coincide Site Lattice (CSL) grain fraction, such as Σ3, where recrystallization does not easily occur during high-angle grain boundaries. The recrystallization heat treatment is performed in the second temperature section so that the next recrystallization is performed. In the twipe steel sheet obtained through the annealing treatment, {3 5 2} <2 2 1> is developed as a kitchen plate instead of the brass bearing, and the annealing twin is significantly reduced in comparison with the prior art. Further, such a tipped steel sheet may have a grain boundary fraction of Σ3 having a misorientation angle of 60 ° of 10% or less, a grain boundary fraction of 5 ° or less of the deviation angle of 50% or more, and a grain boundary fraction of 15 ° or more of a deviation angle of 40%. May be less than.
As is known, the CSL grain boundary is "matched", and the energy of the grain boundary is low, and the above? 3 grain boundary corresponds to the CSL grain boundary.
As is already known in textbooks, papers, and the like in the field of research on metal textures, the misorientation angle of 60 ° is the <111> direction of one grain and the <111> direction of the other grain when two grains are adjacent to each other. The angle between these parts shows the rotational relationship of 60 degrees, and the grain boundary in this case is represented by Σ3.

상기 냉연 트윕강판은, 중량%로, 탄소 0.15~0.30%, 실리콘 0.01~0.03%, 망간 15~25%, 알루미늄 1.2~3.0%, 인 0.020% 이하, 황 0.001~0.002%, 나머지 철을 포함하는 조성을 가질 수 있다. 상기 회복 열처리는 230~280℃에서 20~30분간, 그리고, 상기 재결정 열처리는 700~820℃에서 6~8시간 실시될 수 있다.The cold rolled tipped steel sheet, in weight percent, 0.15 to 0.30% carbon, 0.01 to 0.03% silicon, 15 to 25% manganese, 1.2 to 3.0% aluminum, phosphorus 0.020% or less, sulfur 0.001 to 0.002%, containing the remaining iron It may have a composition. The recovery heat treatment may be performed at 230 to 280 ° C. for 20 to 30 minutes, and the recrystallization heat treatment may be performed at 700 to 820 ° C. for 6 to 8 hours.

한편, 상기 냉연 트윕강판은 바람직하게는 다음과 같이 제조된다. 소재 조성물을 전로에 용해시키고 연속 주조하여 얻어진 슬라브를 1300~1100℃에서 열간 압연한다. 그리고, 마르텐사이트가 발생하지 않도록 900~600℃까지 60℃/sec 이하의 속도로 서냉한 후 권취하며, 이렇게 제조된 열연코일을 5~7패스에 걸쳐 패스당 20~30% 압하율로 냉간 압연한다.On the other hand, the cold rolled tipped steel sheet is preferably manufactured as follows. The slab obtained by dissolving a raw material composition in a converter and continuously casting is hot-rolled at 1300-1100 degreeC. Then, after cooling by slow cooling at a rate of 60 ° C./sec or less to 900 to 600 ° C. to prevent martensite from occurring, the hot rolled coil thus manufactured is cold rolled at a 20 to 30% reduction rate per pass over 5 to 7 passes. do.

상술한 바와 같은 본 발명에 따른 초고강도 트윕 강판은 평균 소성변형비가 우수하여 프레스 성형을 통해 크랙이나 터짐 없이 복잡한 형상의 차체 부품을 손쉽게 제작할 수 있다.As described above, the ultra-high-strength tipped steel sheet according to the present invention has an excellent average plastic deformation ratio, and thus, it is possible to easily manufacture a vehicle body part having a complicated shape without cracking or bursting through press molding.

또한, 본 발명에 따른 초고강도 트윕 강판은 강도 및 성형성이 모두 우수하여, 강판의 두께를 감소시키면서도 차체 부품에 요구되는 강성 및 가공성을 만족시킬 수 있으므로, 차량 경량화가 가능하다.In addition, the ultra-high-strength twipe steel sheet according to the present invention is excellent in both strength and formability, and can reduce the thickness of the steel sheet, thereby satisfying the stiffness and workability required for the vehicle body parts, thereby reducing vehicle weight.

이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 다른 초고강도 트윕 강판 및 그 제조방법에 대하여 살펴본다.Hereinafter, with reference to the accompanying drawings looks at the ultra-high strength steel sheet and the manufacturing method according to another embodiment of the present invention.

본 발명에 따른 초고강도 트윕 강판은 망간을 15~25wt% 포함하는 고망간 강판이다. 구체적으로, 본 발명에 따른 초고강도 트윕 강판은 한국 공개특허 제2007-0018416호에서 제안된 트윕 강판의 조성(아래의 표 1 참조)을 가질 수 있다. 각 합금 성분의 함량 한정 이유는 상기 공개특허의 명세서에 기재된 것과 다르지 않다.Ultra high strength twipe steel sheet according to the present invention is a high manganese steel sheet containing 15 to 25wt% manganese. Specifically, the ultra-high strength tipped steel sheet according to the present invention may have a composition (see Table 1 below) of the tipped steel sheet proposed in Korean Patent Laid-Open Publication No. 2007-0018416. The reason for limiting the content of each alloy component is not different from that described in the specification of the above patent.

성분ingredient CC SiSi MnMn AlAl PP SS FeFe 함량
(wt%)
content
(wt%)
0.15
~0.30
0.15
~ 0.30
0.01
~0.03
0.01
~ 0.03
15.0
~25.0
15.0
~ 25.0
1.20
~3.00
1.20
~ 3.00
0.020
이하
0.020
Below
0.001
~0.002
0.001
~ 0.002
나머지Remainder

본 발명에 따른 초고강도 트윕 강판의 물성 확인을 위해, 아래의 표 2에 기재된 조성을 갖는 냉연 트윕 강판에 대해, 다양한 조건에서 어닐링 처리를 실시한 후, 평균 소성변형비를 측정하는 실험을 진행하였다.In order to confirm the properties of the ultra-high strength twipe steel sheet according to the present invention, the cold-rolled twipe steel sheet having the composition shown in Table 2 below was subjected to annealing treatment under various conditions, and then experiments were conducted to measure the average plastic strain ratio.

성분ingredient CC SiSi MnMn AlAl PP SS FeFe 함량(wt%)Content (wt%) 0.220.22 0.030.03 2121 2.02.0 0.010.01 0.0010.001 나머지Remainder

실험에 사용된 냉연 트윕 강판은 다음과 같이 제조된 것이다. 먼저, 표 2에 기재된 조성을 갖는 조성물을 전로에 용해시키고 연속 주조하여 얻어진 슬라브를 1300℃에서 열간 압연을 시작하여 1100℃에서 최종 열간 압연을 마쳤다. 그리고, 900~600℃까지 40℃/sec의 속도로 서냉한 후 권취하였으며, 이렇게 제조된 열연코일을 7패스에 걸쳐 냉간 압연하였다. 냉간 압연은 매 패스당 압하율 30% 이하의 평편 변형 조건(plane strain conditions of deformation)하에서 실시되었다.The cold rolled tipped steel sheet used in the experiment was manufactured as follows. First, the slab obtained by dissolving the composition having the composition shown in Table 2 in a converter and continuously casting was started hot rolling at 1300 ℃ and finished the final hot rolling at 1100 ℃. And, after slowly cooling to 900 ~ 600 ℃ at a rate of 40 ℃ / sec was wound, and the hot rolled coil thus produced was cold rolled over 7 passes. Cold rolling was carried out under plane strain conditions of deformation of up to 30% reduction per pass.

위와 같이 제조된 냉연 트윕 강판에 대한 어닐링 조건은 아래의 표 3에 기재된 바와 같다. 표 3에서 보듯이, 본 발명에 따른 실시예 1~9의 경우, 회복 열처리와 재결정 열처리로 명확히 구분된 이원화된 어닐링 열처리가 실시되었다. 구체적으로, 실시예 1~9에 대한 회복 열처리는 온도 230~280℃에서 30분 실시되었으며, 재결정 열처리는 온도 700~820℃에서 8시간 실시되었다. 그리고, 비교예 1~9의 경우 종래 기술에 따라 800~900℃에서 8~10시간 어닐링 처리되었으며, 비교예 10~25의 경우 본 발명에서와 같이 이원화된 어닐링을 실시하되, 열처리 온도와 시간 조건을 본 발명에 따른 조건과는 다르게 하였다. 구체적으로, 비교예 10~25의 회복 열처리는 온도 230~280℃에서 5분 또는 40분 실시되었으며, 재결정 처리는 온도 650℃ 또는 900℃에서 7시간 또는 9시간 실시되었다. 참고로, 회복 열처리와 재결정 열처리 각각은 배치로(batch furnace)에서 실시되었다.Annealing conditions for the cold-rolled twipe steel sheet prepared as described above are as shown in Table 3 below. As shown in Table 3, in Examples 1 to 9 according to the present invention, a binary annealing heat treatment clearly distinguished into a recovery heat treatment and a recrystallization heat treatment was performed. Specifically, the recovery heat treatment for Examples 1 to 9 was carried out for 30 minutes at a temperature of 230 ~ 280 ℃, recrystallization heat treatment was carried out for 8 hours at a temperature of 700 ~ 820 ℃. In Comparative Examples 1 to 9, annealing was performed at 800 to 900 ° C. for 8 to 10 hours according to the prior art, and Comparative Examples 10 to 25 were subjected to dual annealing as in the present invention, but the heat treatment temperature and time conditions were as follows. Was different from the conditions according to the invention. Specifically, the recovery heat treatment of Comparative Examples 10-25 was carried out for 5 minutes or 40 minutes at a temperature 230 ~ 280 ℃, recrystallization treatment was carried out for 7 hours or 9 hours at a temperature of 650 ℃ or 900 ℃. For reference, the recovery heat treatment and the recrystallization heat treatment were each performed in a batch furnace.

구분division 회복 열처리Recovery heat treatment 재결정 열처리Recrystallization heat treatment 평균
소성변형비
Average
Plastic deformation ratio
온도(℃)Temperature (℃) 시간(분)Minutes 온도(℃)Temperature (℃) 시간(h)Time (h) 실시 예 1Example 1 230230 3030 700700 88 1.611.61 실시 예 2Example 2 230230 3030 770770 88 1.711.71 실시 예 3Example 3 230230 3030 820820 88 1.741.74 실시 예 4Example 4 250250 3030 700700 88 1.621.62 실시 예 5Example 5 250250 3030 770770 88 1.681.68 실시 예 6Example 6 250250 3030 820820 88 1.681.68 실시 예 7Example 7 280280 3030 700700 88 1.741.74 실시 예 8Example 8 280280 3030 770770 88 1.751.75 실시 예 9Example 9 280280 3030 820820 88 1.881.88 비교 예 1Comparative Example 1 -- -- 800800 88 0.830.83 비교 예 2Comparative Example 2 -- -- 800800 99 0.830.83 비교 예 3Comparative Example 3 -- -- 800800 1010 0.810.81 비교 예 4Comparative Example 4 -- -- 850850 88 0.900.90 비교 예 5Comparative Example 5 -- -- 850850 99 0.890.89 비교 예 6Comparative Example 6 -- -- 850850 1010 0.890.89 비교 예 7Comparative Example 7 -- -- 900900 88 0.910.91 비교 예 8Comparative Example 8 -- -- 900900 99 0.880.88 비교 예 9Comparative Example 9 -- -- 900900 1010 0.880.88 비교 예 10Comparative Example 10 230230 55 650650 77 0.770.77 비교 예 11Comparative Example 11 230230 55 650650 99 0.770.77 비교 예 12Comparative Example 12 230230 4040 650650 77 0.810.81 비교 예 13Comparative Example 13 230230 4040 650650 99 0.800.80 비교 예 14Comparative Example 14 230230 55 900900 77 0.780.78 비교 예 15Comparative Example 15 230230 55 900900 99 0.780.78 비교 예 16Comparative Example 16 230230 4040 900900 77 0.660.66 비교 예 17Comparative Example 17 230230 4040 900900 99 0.640.64 비교 예 18Comparative Example 18 280280 55 650650 77 0.830.83 비교 예 19Comparative Example 19 280280 55 650650 99 0.780.78 비교 예 20Comparative Example 20 280280 4040 650650 77 0.860.86 비교 예 21Comparative Example 21 280280 4040 650650 99 0.810.81 비교 예 22Comparative Example 22 280280 55 900900 77 0.820.82 비교 예 23Comparative Example 23 280280 55 900900 99 0.760.76 비교 예 24Comparative Example 24 280280 4040 900900 77 0.730.73 비교 예 25Comparative Example 25 280280 4040 900900 99 0.710.71

위 표 3에 기재된 조건으로 어닐링 처리된 트윕 강판들에 대해 KS 규격에 준하여 50% 인장변형을 가한 후 평균 소성변형비(R값)을 산출하였다. 평균 소성변형비는 압연방향에 대하여 각각 0°, 45°및 90°방향의 소성변형비를 측정한 후 계산된 것이다. 그 결과, 위 표 3에서 보듯이, 실시예 1~9에 따른 트윕 강판들은 모두 평균 소성변형비(R값)이 1.5 이상으로 나타난 것에 비해, 비교예 1~25는 1.0을 넘지 못하였다.The average plastic strain ratio (R value) was calculated after applying 50% tensile strain in accordance with the KS standard for the tweezers annealed under the conditions described in Table 3 above. The average plastic strain ratio is calculated after measuring the plastic strain ratios in the 0 °, 45 ° and 90 ° directions with respect to the rolling direction, respectively. As a result, as shown in Table 3, the tweezers steel sheet according to Examples 1 to 9, the average plastic strain ratio (R value) is shown as more than 1.5, Comparative Examples 1 to 25 did not exceed 1.0.

도 1 내지 도 6을 참조하여 실시예와 비교예를 구체적으로 비교해 본다. 도 1 내지 도 3은 각각, 비교예 7에 따른 트윕 강판의 집합조직을 나타낸 방위분포함수(ODF: Orientation Distribution Function) 그래프, 압연 방향에 대한 각도별 소성변형비(R) 그래프, 그리고 어긋남 각도별 결정립계 분포 그래프이다. 그리고, 도 1 내지 도 3에 각각 대응하는 도 4 내지 도 6은, 실시예 8에 따른 트윕 강판과 관련된 그래프들이다.With reference to Figures 1 to 6 concretely compare the Example and Comparative Example. 1 to 3 are each an Orientation Distribution Function (ODF) graph showing the aggregate structure of the tipped steel sheet according to Comparative Example 7, a plastic strain ratio (R) graph for each angle with respect to the rolling direction, and for each deviation angle Grain boundary distribution graph. 4 to 6 respectively corresponding to FIGS. 1 to 3 are graphs related to the tipped steel sheet according to the eighth embodiment.

도 1에서 보듯이 비교예 7에 따른 트윕 강판은 황동 방위가 주방위로 발달되었고, 도 2에서 보듯이 평균 소성변형비(R값)는 1.0을 넘지 못하는 0.91 정도였다. 그리고, EBSD(Electron Back Scattering Diffraction) 장비를 이용한 분석 결과, 도 3에서 보듯이 이 트윕 강판은 고경각 입계, 특히 어긋남 각 60°(Σ3 입계)부근의 밀도가 높게 나타났다. Σ3 입계의 분율은 약23% 정도인데, 이와 같은 Σ3 입계의 증가는 어닐링 쌍정이 증가하였음을 알려준다. 한편, 어긋남 각 15°이상 입계의 분율은 81.2% 정도로 나타났다.As shown in FIG. 1, the tweezer steel sheet according to Comparative Example 7 had a brass bearing developed in the kitchen, and as shown in FIG. 2, the average plastic strain ratio (R value) was about 0.91 not exceeding 1.0. As a result of analysis using an EBSD (Electron Back Scattering Diffraction) device, as shown in FIG. 3, the twipe steel sheet exhibited high density near the high-angle grain boundary, particularly, the deviation angle of 60 ° (Σ 3 grain boundary). The fraction of Σ3 grain boundaries is about 23%, and this increase in Σ3 grain boundaries indicates that annealing twins have increased. On the other hand, the fraction of the grain boundary of the deviation angle of 15 degrees or more appeared about 81.2%.

도 4에서 보듯이 실시예 8에 따른 트윕 강판은 황동 방위는 현저히 줄어들고 (20°, 70°, 30°)인 {3 5 2}<2 2 1>가 주방위로 발달되며, 도 5에서 보듯이 평균 소성변형비(R값)은 1.754로서 비교예 7에 따른 트윕 강판에 비하여 190% 이상 증가하였다. 도 6에서 보듯이, 이 트윕 강판은 어긋남 각 60°부근의 밀도가 현저히 감소되어, Σ3 입계 분율이 8% 정도로 나타났다. 이와 같은 Σ3 입계의 감소는 어닐링 쌍정 또한 감소되었음을 의미한다. 한편, 어긋남 각 5°이하 저경각 입계의 분율이 52% 정도로 증가하였으며, 어긋남 각 15°이상의 입계 분율은 40% 미만인, 36.1% 정도로 나타났다. 흥미롭게도, 비교예 7에서 나타난 어긋남 각 60°를 초과하는 입계가 실시예 8에서는 전혀 나타나지 않았다(도 3과 도 6 참조).As shown in FIG. 4, in the tipped steel sheet according to Example 8, the brass orientation is significantly reduced (20 °, 70 °, 30 °), and {3 5 2} <2 2 1> is developed as a kitchen table, as shown in FIG. 5. The average plastic strain ratio (R value) was 1.754, which was increased by 190% or more as compared to the tipped steel sheet according to Comparative Example 7. As shown in FIG. 6, the density of the twisted steel sheet around 60 ° was significantly reduced, and the Σ3 grain boundary fraction was about 8%. This reduction in Σ3 grain boundaries means that the annealing twins have also been reduced. On the other hand, the fraction of low-angle grain boundary less than 5 ° of shift angle increased to about 52%, and the fraction of grain boundary above 15 ° of deviation angle was about 36.1%, less than 40%. Interestingly, no grain boundaries exceeding 60 ° of deviation shown in Comparative Example 7 were found in Example 8 (see FIGS. 3 and 6).

위와 같은 결과에 따르면, 본 발명에 따른 회복 열처리를 통해 Σ3의 밀도가 감소되며 이후 재결정 열처리 과정을 통해 잔여 고경각 입계의 이동 또는 결정립 재결정이 활성화된다고 볼 수 있을 것이다. 실시예 8에서와 같이 감소된 어닐링 쌍정은 이후 소정 과정에서 발달되면서, 트윕 강판의 가공성을 향상시키는 것으로 보인다. 본 발명에 따른 {3 5 2}<2 2 1> 집합조직의 발달은, 아주 간단하게 표현하면, 어닐링 처리를 회복 열처리와 재결정 열처리로 이원화하는 것, 그리고 각 열처리의 온도, 시간 조건을 적정화함에 의해 달성된다고 말할 수 있다.According to the above results, it can be seen that the density of Σ3 is reduced through the recovery heat treatment according to the present invention, and then the recrystallization heat treatment causes the movement of the remaining high-angle grain boundaries or crystal recrystallization to be activated. The reduced annealing twins, as in Example 8, later developed during certain processes, appearing to improve the machinability of the tipped steel sheet. The development of the {3 5 2} <2 2 1> texture according to the present invention, in a very simple manner, is to dualize the annealing treatment into recovery heat treatment and recrystallization heat treatment, and to optimize the temperature and time conditions of each heat treatment. It can be said that it is achieved by.

이상, 본 발명의 특정 실시예에 관하여 도시하고 설명하였지만, 본 발명의 기술분야에서 통상의 지식을 가진 자라면 하기의 특허청구범위에 기재된 발명의 기술적 사상으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음이 이해될 필요가 있다.While specific embodiments of the present invention have been illustrated and described, those of ordinary skill in the art may vary the present invention without departing from the spirit of the invention as set forth in the following claims. It is to be understood that modifications and variations are possible.

도 1은 비교예에 따른 트윕 강판의 방위분포함수(ODF) 그래프의 일례,1 is an example of an orientation distribution function (ODF) graph of a twipe steel sheet according to a comparative example,

도 2는 비교예에 따른 트윕 강판의 압연 방향에 대한 각도별 소성변형비(R) 그래프의 일례,Figure 2 is an example of the plastic strain ratio (R) graph for each angle with respect to the rolling direction of the twipe steel sheet according to a comparative example,

도 3은 비교예에 따른 트윕 강판의 어긋남 각도별 결정립계 분포 그래프의 일례,3 is an example of a grain boundary distribution graph for each deviation angle of a tipped steel sheet according to a comparative example;

도 4는 본 발명의 실시예에 따른 트윕 강판의 방위분포함수 그래프의 일례,Figure 4 is an example of the azimuth distribution function graph of the twipe steel sheet according to an embodiment of the present invention,

도 5는 본 발명의 실시예에 따른 트윕 강판의 압연 방향에 대한 각도별 소성변형비(R) 그래프의 일례,5 is an example of the angle-specific plastic strain ratio (R) graph with respect to the rolling direction of the twipe steel sheet according to an embodiment of the present invention,

도 6은 본 발명의 실시예에 따른 트윕 강판의 어긋남 각도별 결정립계 분포 그래프의 일례이다.6 is an example of a grain boundary distribution graph for each deviation angle of a tweezer steel sheet according to an embodiment of the present invention.

Claims (8)

중량%로, 탄소 0.15~0.30%, 실리콘 0.01~0.03%, 망간 15~25%, 알루미늄 1.2~3.0%, 인 0.020% 이하, 황 0.001~0.002%, 나머지 철을 포함하는 조성과 오스테나이트 기지조직을 가지며,By weight%, carbon 0.15 to 0.30%, silicon 0.01 to 0.03%, manganese 15 to 25%, aluminum 1.2 to 3.0%, phosphorus 0.020% or less, sulfur 0.001 to 0.002%, composition containing the remaining iron and austenitic matrix Has, 냉간 압연 후 열처리에 의해 {3 5 2}<2 2 1>가 주방위로 발달된 재결정 집합조직을 가지며, 평균 소성변형비가 적어도 1.2 이상인 초고강도 트윕 강판.An ultra-high strength tipped steel sheet having a recrystallized texture in which {3 5 2} <2 2 1> is developed into a kitchen plate by cold rolling and has an average plastic strain ratio of at least 1.2. 삭제delete 청구항 1에 있어서, 어긋남 각 60°인 Σ3 입계 분율이 10% 이하이며 어긋남 각 5°이하의 입계분율이 50% 이상인 초고강도 트윕 강판.The ultrahigh-strength tipped steel sheet according to claim 1, wherein a grain boundary fraction of Σ3 having a shift angle of 60 ° is 10% or less and a grain boundary fraction of a shift angle of 5 ° or less is 50% or more. 청구항 1에 있어서, 어긋남 각 15°이상의 입계 분율이 40% 미만인 것을 특징으로 하는 초고강도 트윕 강판.The ultrahigh-strength tipped steel sheet according to claim 1, wherein a grain boundary fraction of a deviation angle of 15 ° or more is less than 40%. 평균 소성변형비가 향상된 고강도 트윕 강판 제조방법에 있어서,In the method of manufacturing a high strength tipped steel sheet having an improved average plastic strain ratio, 중량%로, 탄소 0.15~0.30%, 실리콘 0.01~0.03%, 망간 15~25%, 알루미늄 1.2~3.0%, 인 0.020% 이하, 황 0.001~0.002%, 나머지 철을 포함하는 조성을 갖는 오스테나이트 기지조직의 냉연 트윕강판을, {3 5 2}<2 2 1>을 주방위로 갖는 재결정 집합조직이 발달되도록 어닐링하되, 이 어닐링은,Austenitic matrix having a composition containing, by weight, 0.15 to 0.30% carbon, 0.01 to 0.03% silicon, 15-25% manganese, 1.2 to 3.0% aluminum, 0.020% or less phosphorus, 0.001 to 0.002% sulfur, and remaining iron Anneal the cold rolled tweezers of the steel to develop a recrystallized texture with {3 5 2} <2 2 1> as the kitchen table. Σ3 입계 분율이 감소되도록 하기 위하여 230~280℃에서 회복 열처리하는 과정과, 상기 재결정 집합조직이 발달되도록 하기 위하여 상기 회복 열처리의 온도보다 높은 700~820℃에서 재결정 열처리하는 과정으로 구분 실시되는 것을 특징으로 하는 초고강도 트윕 강판 제조방법.Recovery heat treatment at 230 ~ 280 ℃ to reduce the Σ3 grain boundary fraction and recrystallization heat treatment at 700 ~ 820 ℃ higher than the temperature of the recovery heat treatment to develop the recrystallized texture Ultra-high strength tipped steel sheet manufacturing method. 삭제delete 청구항 5에 있어서, 상기 회복 열처리는 20~30분간 실시되는 것을 특징으로 하는 초고강도 트윕 강판 제조방법.The method of claim 5, wherein the recovery heat treatment is performed for 20 to 30 minutes. 청구항 5에 있어서, 상기 재결정 열처리는 6~8시간 실시되는 것을 특징으로 하는 초고강도 트윕 강판 제조방법.The method of claim 5, wherein the recrystallization heat treatment is performed for 6 to 8 hours.
KR1020080079405A 2008-08-13 2008-08-13 Ultra-high strength twip steel sheets and the method thereof KR101113666B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020080079405A KR101113666B1 (en) 2008-08-13 2008-08-13 Ultra-high strength twip steel sheets and the method thereof
US12/276,725 US20100037993A1 (en) 2008-08-13 2008-11-24 Ultrahigh-strength twip steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080079405A KR101113666B1 (en) 2008-08-13 2008-08-13 Ultra-high strength twip steel sheets and the method thereof

Publications (2)

Publication Number Publication Date
KR20100020692A KR20100020692A (en) 2010-02-23
KR101113666B1 true KR101113666B1 (en) 2012-02-14

Family

ID=41680435

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080079405A KR101113666B1 (en) 2008-08-13 2008-08-13 Ultra-high strength twip steel sheets and the method thereof

Country Status (2)

Country Link
US (1) US20100037993A1 (en)
KR (1) KR101113666B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101054773B1 (en) * 2008-09-04 2011-08-05 기아자동차주식회사 Manufacturing Method of TPI Type Ultra High Strength Steel Sheet
UA117592C2 (en) 2013-08-01 2018-08-27 Арселорміттал PAINTED GALVANIZED STEEL SHEET AND METHOD OF MANUFACTURING
CN105441796B (en) * 2014-09-26 2017-02-22 鞍钢股份有限公司 TWIP steel with high product of strength and elongation and preparation method thereof
WO2017203313A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Method for the manufacture of a recovered steel sheet having an austenitic matrix
WO2017203315A1 (en) 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
WO2017203310A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Method for producing a twip steel sheet having an austenitic microstructure
CN114990438B (en) * 2022-05-31 2023-10-20 江西宝顺昌特种合金制造有限公司 High-manganese high-aluminum low-magnetic austenitic steel and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259325A (en) * 1991-02-13 1992-09-14 Sumitomo Metal Ind Ltd Production of hot rolled high strength steel sheet excellent in workability
KR20070018416A (en) * 2005-08-10 2007-02-14 현대자동차주식회사 TWinning Induced Plasticity type ultra-high strength steel sheets and process of manufacturing the same
KR20070067950A (en) * 2005-12-26 2007-06-29 주식회사 포스코 High manganese steel strips with excellent coatability and superior surface property, coated steel strips using steel strips and method for manufacturing the steel strips
KR100851158B1 (en) 2006-12-27 2008-08-08 주식회사 포스코 High Manganese High Strength Steel Sheets With Excellent Crashworthiness, And Method For Manufacturing Of It

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0952233B1 (en) * 1998-04-21 2003-03-19 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Steel wire rod or bar with good cold deformability and machine parts made thereof
EP1757376B2 (en) * 2004-05-28 2013-12-04 Nippon Steel & Sumitomo Metal Corporation Process for producing seamless steel pipe
CN101065503A (en) * 2004-11-03 2007-10-31 蒂森克虏伯钢铁股份公司 High-strength steel strip or sheet exhibiting twip properties and method for producing said strip by direct strip casting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259325A (en) * 1991-02-13 1992-09-14 Sumitomo Metal Ind Ltd Production of hot rolled high strength steel sheet excellent in workability
KR20070018416A (en) * 2005-08-10 2007-02-14 현대자동차주식회사 TWinning Induced Plasticity type ultra-high strength steel sheets and process of manufacturing the same
KR20070067950A (en) * 2005-12-26 2007-06-29 주식회사 포스코 High manganese steel strips with excellent coatability and superior surface property, coated steel strips using steel strips and method for manufacturing the steel strips
KR100851158B1 (en) 2006-12-27 2008-08-08 주식회사 포스코 High Manganese High Strength Steel Sheets With Excellent Crashworthiness, And Method For Manufacturing Of It

Also Published As

Publication number Publication date
KR20100020692A (en) 2010-02-23
US20100037993A1 (en) 2010-02-18

Similar Documents

Publication Publication Date Title
KR101113666B1 (en) Ultra-high strength twip steel sheets and the method thereof
KR100742933B1 (en) Baking hardening type cold rolled steel sheet having good formability and process for producing the same
KR101054773B1 (en) Manufacturing Method of TPI Type Ultra High Strength Steel Sheet
JP2016534230A (en) High hardness hot rolled steel product and method for producing the same
WO2011122237A1 (en) Steel sheet with high tensile strength and superior ductility and method for producing same
JP5569657B2 (en) Steel sheet with excellent aging resistance and method for producing the same
KR20120074798A (en) Method for manufacturing tensile strength 1.5gpa class steel sheet and the steel sheet manufactured thereby
WO2015077932A1 (en) Manganese steel and production method thereof
WO2022063244A1 (en) 700 mpa grade hot-formed axle housing steel and preparation method therefor
KR20150108396A (en) Ultra-High Strength Cold-Rolled Corten Steel Plate and Method of Fabricating Same
KR20180033202A (en) A moldable lightweight steel having improved mechanical properties and a method for producing a semi-finished product from said steel
US11384406B2 (en) Production method for inline increase in precipitation toughening effect of Ti microalloyed hot-rolled high-strength steel
WO2009008548A1 (en) Process for producing high-strength cold rolled steel sheet with low yield strength and with less material quality fluctuation
JP5145315B2 (en) Aging-resistant cold-rolled steel sheet with excellent workability and method for producing the same
KR101299896B1 (en) METHOD FOR MANUFACTURING TENSILE STRENGTH 1.5GPa CLASS STEEL SHEET
CN106498297B (en) Precision stamping automotive seat adjuster fluted disc cold-rolled steel sheet and its manufacturing method
KR20150074943A (en) Hot rolled steel sheet having excellent deformation anisotropy in sheared edge and anti fatigue property and method for manufacturing the same
EP3061840B1 (en) High manganese steel sheet having high strength and excellent vibration-proof properties and method for manufacturing same
EP1888799A1 (en) Cold rolled steel sheet having superior formability , process for producing the same
Zhou et al. Influence of Annealing Temperature on Microstructure and Three-Stage Strain Hardening Behavior in Cold-Rolled Fe-Mn-Al-C Steel
KR20100106649A (en) Ultra-high strength twip steel sheets and the manufacturing method thereof
KR100957965B1 (en) High Strength Hot Rolled Steel Sheet for Hot Forming with Reduced Cracking in Cooling and Coiling and Manufacturing Method Thereof
KR20150039008A (en) Precipitation hardening steel sheet having excellent yield strength and yield ratio and method for manufacturing the same
CN113862563B (en) High-strength cold-rolled steel sheet
KR101105055B1 (en) Bake-hardenable cold rolled steel sheet having excellent resistance to second work embrittleness and high strength, and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150130

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180130

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190130

Year of fee payment: 8