KR101054773B1 - Manufacturing Method of TPI Type Ultra High Strength Steel Sheet - Google Patents

Manufacturing Method of TPI Type Ultra High Strength Steel Sheet Download PDF

Info

Publication number
KR101054773B1
KR101054773B1 KR1020080087282A KR20080087282A KR101054773B1 KR 101054773 B1 KR101054773 B1 KR 101054773B1 KR 1020080087282 A KR1020080087282 A KR 1020080087282A KR 20080087282 A KR20080087282 A KR 20080087282A KR 101054773 B1 KR101054773 B1 KR 101054773B1
Authority
KR
South Korea
Prior art keywords
heat treatment
steel sheet
elongation
manufacturing
high strength
Prior art date
Application number
KR1020080087282A
Other languages
Korean (ko)
Other versions
KR20100028310A (en
Inventor
박상천
홍승현
Original Assignee
기아자동차주식회사
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 기아자동차주식회사, 현대자동차주식회사 filed Critical 기아자동차주식회사
Priority to KR1020080087282A priority Critical patent/KR101054773B1/en
Priority to US12/552,634 priority patent/US20100051146A1/en
Publication of KR20100028310A publication Critical patent/KR20100028310A/en
Application granted granted Critical
Publication of KR101054773B1 publication Critical patent/KR101054773B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Abstract

탄소(C), 실리콘(Si), 망간(Mn), 알루미늄(Al), 몰리브덴(Mo), 인(P) 및 황(S)의 함량이 적절히 조절된 TWIP형(TWinning Induced Plasticity) 초고강도 강판의 항복강도, 인장강도 및 연신율을 높일 수 있는 제조방법이 소개된다. 이러한 제조방법의 특징은 전위와 트윈 간의 결합을 유도하여 오스테나이트 기지의 결정립 내에 아결정립의 발생이 촉진될 수 있도록 냉간 압연 중간에 200~220℃에서 회복 열처리를 시행하고, 이후 700~850℃에서 소둔 열처리를 단시간 시행하여 결정립 크기를 2~3㎛로 미세화하는 것이다. Twinning induced plasticity ultra-high strength steel sheet with appropriately controlled contents of carbon (C), silicon (Si), manganese (Mn), aluminum (Al), molybdenum (Mo), phosphorus (P) and sulfur (S) The manufacturing method to increase yield strength, tensile strength and elongation is introduced. Characteristic of this manufacturing method is to induce the bond between the dislocation and the twin to promote the generation of sub-crystal grains in the austenite matrix grain recovery recovery heat treatment in the middle of cold rolling at 200 ~ 220 ℃, then at 700 ~ 850 ℃ Annealing heat treatment is performed for a short time to refine the grain size to 2-3㎛.

트윕강, 결정립, 미세화, 열처리 Twisted steel, grain, refinement, heat treatment

Description

TWIP형 초고강도 강판의 제조방법{METHOD FOR MANUFACTURING TWINNNING INDUCED PLASTICITY TYPE ULTRA-HIGH STRENGTH STEEL SHEET} Manufacturing Method of TPP Type Ultra High Strength Steel Sheet {METHOD FOR MANUFACTURING TWINNNING INDUCED PLASTICITY TYPE ULTRA-HIGH STRENGTH STEEL SHEET}

본 발명은 TWIP형 초고강도 강판의 제조방법에 관한 것으로, 차체 부품용으로 유용한 TWIP형 초고강도 강판의 항복강도와 인장강도, 및 연신율을 모두 높일 수 있는 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a TWIP type ultra high strength steel sheet, and to a method for producing both yield strength, tensile strength, and elongation of a TWIP type ultra high strength steel sheet useful for vehicle body parts.

일반적으로 차량의 차체 부품용 소재로 널리 적용되고 있는 고장력 강판은 인장강도 590~780MPa, 항복강도 270~350MPa, 연신율 25∼35%, 소성변형비 0.9~1.2 정도의 물성을 가지는 강판이 주를 이루고 있다. 강판이 고장력화됨에 따라 부품 프레스 성형시 연신율 부족 등으로 인하여 발생되는 터짐 및 주름 등의 현상과, 요구되는 부품 강성의 측면을 고려하여 고장력 강판의 두께를 두껍게 제조하여 사용하고 있었다. In general, the high tensile steel sheet widely applied as a material for vehicle body parts is mainly made of steel sheets having physical properties of tensile strength of 590 to 780 MPa, yield strength of 270 to 350 MPa, elongation of 25 to 35% and plastic strain ratio of 0.9 to 1.2. have. As the steel sheet became high tension, the thickness of the high tensile steel sheet was made and used in consideration of phenomena such as bursting and wrinkles caused by lack of elongation at the time of press forming parts and required side rigidity.

하지만, 고장력 강판의 연신율이 충분히 확보된다고 하더라도 오늘날 부품이 복잡화되고 다 기능화됨에 따라 고장력 강판에 대한 성형이 어려운 경우가 대부분이어서 금형 기술의 개발과 함께 고장력 강판의 물성을 개선할 필요가 있었다. However, even if the elongation of the high tensile strength steel sheet is sufficiently secured, it is often difficult to form the high tensile strength steel sheet as the parts are complicated and multifunctional, and thus, it is necessary to improve the properties of the high tensile strength steel sheet with the development of mold technology.

그리하여, 초고장력 및 고 연신율이 보장될 수 있도록 하기 위해 탄소(C)와 망간(Mn)을 기본으로 하되, 탄소(C) 0.15∼0.30 중량%, 실리콘(Si) 0.01∼0.03 중량%, 망간(Mn) 15∼25 중량%, 알루미늄(Al) 1.2∼3.0 중량%, 인(P) 0.020 중량% 이하, 황(S) 0.001∼0.002 중량%, 잔량의 철(Fe) 및 기타 불가피한 불순물로 이루어지며, 강의 기지조직이 오스테나이트 상으로 이루어진 것을 특징으로 하는 TWIP(TWin Induced Plasticity)형 초고강도 강판이 개발되어 차체 경량화 요구에 대응하기 위한 시도를 하고 있다.(KR 1020070018416) Therefore, carbon and manganese (Mn) are based on carbon (C) and manganese (Mn), so that ultra high tensile strength and high elongation can be ensured, while carbon (C) is 0.15 to 0.30% by weight, silicon (Si) 0.01 to 0.03% by weight, and manganese ( Mn) 15-25 wt%, aluminum (Al) 1.2-3.0 wt%, phosphorus (P) 0.020 wt% or less, sulfur (S) 0.001-0.002 wt%, residual iron (Fe) and other unavoidable impurities In addition, TWIP (Twin Induced Plasticity) type ultra-high strength steel sheet, which is characterized in that the base structure of the steel is formed of austenite phase, has been attempted to meet the demand for weight reduction of the vehicle body. (KR 1020070018416)

그러나, 상기 강판 소재의 획기적인 물성에도 불구하고 높은 충돌 강성이 확보되어야 한다는 요구와, 복잡한 형상을 갖는 차체 부품으로 사용될 수 있어야 한다는 요구 등이 증가하고 있는 현 시점에서는 위 TWIP(Twin Induced Plasticity)형 초고강도 강판의 항복강도와, 인장강도, 및 연신율을 모두 향상시켜야 할 필요가 있었다. 왜냐하면, 연신율이 낮을 경우 제품 성형 중 불량률이 높아지는 문제가 발생하기 때문이다.However, in spite of the increasing demand for high impact stiffness despite the breakthrough properties of the steel plate material and the demand for it to be used as a body part having a complicated shape, the TWIP (Twin Induced Plasticity) type super It was necessary to improve both the yield strength, the tensile strength, and the elongation of the high strength steel sheet. This is because, when the elongation is low, a problem arises in that the defective rate increases during molding of the product.

이를 위해서는 다양한 합금 원소의 첨가가 요구되었으나, 원자재 가격 급등에 대한 대응책 마련과, 친환경 소재를 사용해야할 시대적 요구 등의 이유로 합금 원소를 줄이는 방향이 최근 연구 추세인 바, 조성물의 변동없이 물성을 획기적으로 향상시키는 방법을 개발할 필요가 있었다.To this end, the addition of various alloying elements was required, but the direction of reducing alloying elements has been recently researched due to the preparation of countermeasures against soaring raw material prices and the demand for eco-friendly materials. There was a need to develop ways to improve.

본 발명은 상술한 바와 같은 문제점의 해결과 필요성의 충족을 위하여 제안된 것으로서, 위 TWIP(TWin Induced Plasticity)형 초고강도 강판의 항복강도와 인장강도를 높이면서도 연신율을 높일 수 있는 제조방법을 제공하는 것을 목적으로 한다.The present invention has been proposed to solve the above problems and to meet the necessity, to provide a manufacturing method which can increase the elongation while increasing the yield strength and tensile strength of the TWIP (TWin Induced Plasticity) type ultra high strength steel sheet. For the purpose of

상기의 목적을 달성하기 위한 본 발명에 따른 TWIP(TWin Induced Plasticity)형 초고강도 강판의 제조방법은 탄소(C): 0.15~0.30중량%, 실리콘(Si): 0.01~0.03중량%, 망간(Mn): 15~25중량%, 알루미늄(Al): 1.2~3.0중량%, 인(P): 0.020중량% 이하, 황(S): 0.001~0.002중량%, 잔량의 철(Fe) 및 기타 불가피한 불순물을 포함하는 조성을 갖는 열연 강판에 대해 4패스 이상으로 이루어진 냉간압연을 실시하되, 3 패스 후에 200~220℃에서 회복 열처리를 시행하고, 이후 소둔 열처리를 시행하는 것을 특징으로 한다.Method for producing a TWIP (Twin Induced Plasticity) type ultra high strength steel sheet according to the present invention for achieving the above object is carbon (C): 0.15 ~ 0.30% by weight, silicon (Si): 0.01 ~ 0.03% by weight, manganese (Mn) ): 15-25 wt%, aluminum (Al): 1.2-3.0 wt%, phosphorus (P): 0.020 wt% or less, sulfur (S): 0.001-0.002 wt%, residual iron (Fe) and other unavoidable impurities Cold rolling is made of four passes or more for the hot rolled steel sheet having a composition comprising a, but after three passes, the recovery heat treatment is performed at 200 ~ 220 ℃, after which annealing heat treatment is performed.

상기 회복 열처리는 5~6분간 시행되는 것이 바람직하다.The recovery heat treatment is preferably performed for 5 to 6 minutes.

상기 소둔 열처리는 700~850℃에서 5~6분간 시행되는 것이 바람직하다.The annealing heat treatment is preferably performed for 5 to 6 minutes at 700 ~ 850 ℃.

상술한 바와 같은 TWIP형 초고강도 강판의 제조방법에 따르면, 항복강도와 인장강도를 높이면서도 동시에 연신율을 높일 수 있게 되고, 이에 따라 부품 성형 불량률을 현저히 낮출 수 있게 된다.According to the manufacturing method of the TWIP-type super high strength steel sheet as described above, it is possible to increase the yield strength and tensile strength, and at the same time increase the elongation, thereby significantly lowering the component molding failure rate.

이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 TWIP형 초고강도 강판의 제조방법에 대하여 살펴본다.Hereinafter, with reference to the accompanying drawings looks at the manufacturing method of the TWIP type ultra high strength steel sheet according to a preferred embodiment of the present invention.

위 TWIP형 초고강도 강판은, 탄소(C): 0.15~0.30중량%, 실리콘(Si): 0.01~0.03중량%, 망간(Mn): 15~25중량%, 알루미늄(Al): 1.2~3.0중량%, 인(P): 0.020중량% 이하, 황(S): 0.001~0.002중량%, 잔량의 철(Fe) 및 기타 불가피한 불순물을 포함하는 강판 조성물로 이루어진다.Above TWIP type ultra high strength steel sheet, carbon (C): 0.15 ~ 0.30% by weight, silicon (Si): 0.01 ~ 0.03% by weight, manganese (Mn): 15-25% by weight, aluminum (Al): 1.2 ~ 3.0% %, Phosphorus (P): 0.020% by weight or less, sulfur (S): 0.001 to 0.002% by weight, steel sheet composition containing the remaining amount of iron (Fe) and other unavoidable impurities.

본 발명의 실시예에 따른 TWIP형 초고강도 강판의 제조방법은 상기와 같은 조성 및 함량을 갖는 강판 조성물을 전로에서 용해시키고 연속주조한 후, 1100∼1300 ℃에서 열간압연을 실시한 다음 600∼900 ℃에서 권취하는 단계까지는 기존의 제조방법과 동일하다. In the method of manufacturing a TWIP type ultra high strength steel sheet according to an embodiment of the present invention, the steel sheet composition having the composition and content as described above is dissolved in a converter and continuously cast, followed by hot rolling at 1100 to 1300 ° C., followed by 600 to 900 ° C. Winding step is the same as the existing manufacturing method.

이후 총 5 패스로 이루어진 냉간압연을 실시하되, 3 패스 후에 200~220℃에서 회복 열처리를 시행한다. 이후 700~850℃에서 소둔 열처리를 시행한다. 이 경우 상기 회복 열처리는 5~6분간 시행되는 것이 바람직하고, 상기 소둔 열처리도 5~6분간 시행되는 것이 바람직하다. After performing a cold rolling consisting of a total of five passes, the recovery heat treatment is performed at 200 ~ 220 ℃ after three passes. After the annealing heat treatment is performed at 700 ~ 850 ℃. In this case, the recovery heat treatment is preferably performed for 5 to 6 minutes, and the annealing heat treatment is also preferably performed for 5 to 6 minutes.

여기서, 회복 열처리를 시행하는 것은 전위와 트윈 간의 결합을 유도하여 오스테나이트 기지의 결정립 내에 아결정립(subgrain)의 발생이 촉진될 수 있도록 하기 위함이다. 구체적으로는, 냉간압연의 3 패스 후에 시행되는 회복 열처리를 통해 전위와 트윈 간의 결합이 유도되고 4 패스와 5 패스의 냉간압연을 통해 결합된 전위와 트윈이 오스테나이트 결정립 내에서 아결정립으로 생성되도록 유도된다.Here, the recovery heat treatment is performed to induce the bond between the dislocation and the twin so that the generation of subgrains in the austenite matrix can be promoted. Specifically, the bond between dislocation and twin is induced through a recovery heat treatment performed after three passes of cold rolling, and the dislocation and twin combined through cold rolling of four passes and five passes are generated as sub-crystals in the austenite grains. Induced.

상기 5 패스로 이루어진 냉간압연은 매 패스당 20~30% 압하율로 시행하는 것이 바람직한데, 이는 5~7 패스로 이루어진 종래의 냉간압연이 매 패스당 30% 내외의 압하율로 시행되는 것과 흡사하며 이러한 압하율로 냉간압연을 하는 것은 트윕강 뿐만 아니라 재료 전반에 걸쳐 적용되고 있는 방법이다.The cold rolling consisting of the five passes is preferably carried out at a rate of 20-30% reduction per pass, which is similar to the conventional cold rolling of 5-7 passes having a reduction ratio of about 30% per pass. Cold rolling at this rolling rate is a method that is applied not only to tweezers but also to materials.

TWIP형 초고강도 강판의 변형기구(Deformation Mechanism)는 일반적인 강판과는 달리 트윈과 슬립이 동시에 일어나기 때문에 결정립 미세화를 위해서는 냉간압연 중간에 회복 열처리과정이 도입되어야 한다는 것이 발명자의 연구를 통해 확인되었다. 따라서, 상기와 같이 총 5 패스로 이루어진 냉간압연 실시 중 3 패스 후에 회복 열처리를 도입한 것이다. Unlike the general steel sheet, the deformation mechanism of the TWIP type ultra high strength steel sheet is twin and slip simultaneously. Therefore, it was confirmed by the inventor's research that a recovery heat treatment process should be introduced in the middle of cold rolling to refine the grain. Therefore, the recovery heat treatment is introduced after three passes during the cold rolling, which is performed in five passes as described above.

냉간압연의 1 패스 혹은 2 패스 후에 회복 열처리를 시행하는 경우 미처 발달하지 못한 아결정립으로 인해 소기의 목적을 달성할 수 없으며, 4 패스 후에 회복 열처리를 시행하는 경우 발달한 아결정립간의 방위차(misorientation)가 저경각으로 되어 소둔 열처리 시 원하는 목표 물성을 달성할 수 없기 때문에 냉간압연의 3 패스 후에 회복 열처리를 시행하는 것이 바람직하다.If the recovery heat treatment is performed after 1 pass or 2 passes of cold rolling, the desired purpose cannot be achieved due to undeveloped sub-crystal grains, and if the recovery heat treatment is performed after 4 passes, misorientation between the developed granules It is preferable to perform a recovery heat treatment after three passes of cold rolling because the) has a low angle and cannot achieve the desired target properties during annealing heat treatment.

한편, 위 중간 열처리가 도입된 냉간안연 후 700~850℃에서 단시간 동안 소둔 열처리를 시행하는 것은 결정립 크기를 2~3㎛로 미세화하기 위함이다. 이와 같이 결정립을 미세화함으로써, 연신율을 높일 수 있게 된다.On the other hand, the cold annealing introduced into the intermediate heat treatment after the annealing heat treatment for a short time at 700 ~ 850 ℃ is to refine the grain size to 2 ~ 3㎛. By making the crystal grains fine in this manner, the elongation can be increased.

이하, 본 발명의 실시예와 비교예의 대비를 통해 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail through comparison with Examples.

본 발명의 실시예와 비교예는 하기의 표 1의 조성 및 함량으로 TWIP형 초고강도 강판을 제조한 후 인장시험을 통해 기계적 물성을 측정하였고, 광학 현미경과 이미지 분석기와, EBSD(Electron Back Scattered Diffraction) 측정을 통해 결정립 크기 등을 분석하였다. 이와 같은 측정과 분석을 통한 결과는 하기의 표 2와 같다.Examples and comparative examples of the present invention were prepared by the TWIP type ultra high strength steel sheet according to the composition and content of the following Table 1 and measured the mechanical properties through a tensile test, an optical microscope and an image analyzer, EBSD (Electron Back Scattered Diffraction The grain size was analyzed through the measurement. The results through such measurement and analysis are shown in Table 2 below.

실시예는 전로에서의 용해 및 연속주조를 통해 제조한 슬라브를 1300 ℃에서 열간 압연을 시작하여 1100 ℃에서 최종 압연하고, 900℃에서 600℃까지 40℃/sec의 속도로 냉각한 후 권취하고, 이후 5패스에 걸쳐 매 패스당 30%이하의 압하율로 냉간압연을 실시하되, 3패스 후 200~220℃에서 5분간 열처리한 후 나머지 2패스를 시행하여 5패스를 완성한 뒤, 연속소둔로를 사용하여 700~850℃에서 5분간 소둔 열처리를 시행하여 결정립을 미세화한 것이다.Example is the slab prepared by melting in the converter and continuous casting start the hot rolling at 1300 ℃ and finally rolled at 1100 ℃, after cooling at a rate of 40 ℃ / sec from 900 ℃ to 600 ℃ and wound up, After 5 passes, cold rolling is carried out at a rolling reduction of 30% or less for each pass, but after 3 passes, heat treatment is performed at 200 to 220 ° C. for 5 minutes, and the remaining 2 passes are completed to complete 5 passes. By using the annealing heat treatment for 5 minutes at 700 ~ 850 ℃ to refine the grains.

한편, 비교예는 통상적으로 제조방법을 따른 것이며, 구체적으로는 열간압연 까지는 위 실시예와 동일하며, 냉간압연은 매 패스당 30% 이하의 압하율로 총 5패스로 이루어진 냉간압연을 시행한 후, 상자로를 사용하여 850℃에서 8~10시간 소둔 열처리를 시행한 것이다. On the other hand, the comparative example is generally according to the manufacturing method, specifically up to hot rolling is the same as the above embodiment, cold rolling is carried out cold rolling consisting of a total of five passes at a rolling rate of less than 30% per pass. The annealing heat treatment was performed at 850 ℃ for 8-10 hours using a furnace.

한편, 본 발명의 실시예에 적용하기 위한 소둔 열처리 온도를 정하기 위해 상기 TWIP형 초고강도 강판을 600℃부터 920℃까지 5분간 열처리하여 결정립 크기를 측정하였으며, 이는 도 1에 도시된 바와 같다. 도 1을 참조하면, 700℃에서 850℃구간에서는 결정립 크기가 2~3㎛ 내외임을 알 수 있다.On the other hand, in order to determine the annealing heat treatment temperature for applying to the embodiment of the present invention, the grain size was measured by heat-treating the TWIP type ultra high strength steel sheet from 600 ℃ to 920 ℃ for 5 minutes, as shown in FIG. Referring to Figure 1, it can be seen that the grain size is about 2 ~ 3㎛ in the section of 700 ℃ to 850 ℃.


화학 성분 (wt%)

Chemical composition (wt%)
CC SiSi MnMn AlAl PP SS FeFe
0.15
~0.30
0.15
~ 0.30
0.01
~0.03
0.01
~ 0.03
15.0
~25.0
15.0
~ 25.0
1.20
~3.00
1.20
~ 3.00
0.020
이하
0.020
Below
0.001
~0.002
0.001
~ 0.002
remainremain

회복 열처리 온도, ℃Recovery heat treatment temperature, ℃ 회복 열처리 시간, 분Recovery heat treatment time, min 회복 열처리 시행 패스Recovery heat treatment trial pass 소둔 열처리 온도, ℃Annealing Heat Treatment Temperature, ℃ 소둔 열처리 시간, 분Annealing Heat Treatment Time, Min 항복강도, MPaYield strength, MPa 인장강도, MPaTensile strength, MPa 연신율, %Elongation,% 평균결정립도, ㎛Average grain size, μm 실시예 1Example 1
200

200

5

5

3

3

700

700

5

5

580

580

1020

1020

53

53

2.1

2.1
실시예 2Example 2
200

200

5

5

3

3

750

750

5

5

580

580

1020

1020

53.2

53.2

2.3

2.3
실시예 3Example 3
200

200

5

5

3

3

800

800

5

5

560

560

992

992

52.1

52.1

2.5

2.5
실시예 4Example 4
200

200

5

5

3

3

850

850

5

5

520

520

989

989

52.1

52.1

2.9

2.9
실시예 5Example 5
220

220

5

5

3

3

700

700

5

5

592

592

1008

1008

52.3

52.3

2.0

2.0
실시예 6Example 6
220

220

5

5

3

3

750

750

5

5

590

590

1010

1010

52.2

52.2

2.12

2.12
실시예 7Example 7
220

220

5

5

3

3

800

800

5

5

577

577

998

998

52.8

52.8

2.6

2.6
실시예 8Example 8
220

220

5

5

3

3

850

850

5

5

580

580

992

992

53.1

53.1

2.88

2.88
비교예 1Comparative Example 1
-

-

-

-

-

-

850

850

480

480

510

510

978

978

48.2

48.2

6.83

6.83
비교예 2Comparative Example 2
-

-

-

-

-

-

850

850

540

540

502

502

978

978

48.5

48.5

9.35

9.35
비교예 3Comparative Example 3
-

-

-

-

-

-

850

850

600

600

490

490

950

950

48.8

48.8

12.1

12.1
비교예 4Comparative Example 4
200

200

5

5

3

3

850

850

480

480

505

505

980

980

48

48

7.0

7.0
비교예 5Comparative Example 5
200

200

5

5

3

3

850

850

540

540

493

493

960

960

48.2

48.2

11.1

11.1
비교예 6Comparative Example 6
200

200

5

5

3

3

800

800

600

600

462

462

963

963

48.5

48.5

12.4

12.4
비교예 7Comparative Example 7
220

220

5

5

3

3

850

850

480

480

499

499

942

942

46.5

46.5

8.3

8.3
비교예 8Comparative Example 8
220

220

5

5

3

3

850

850

540

540

493

493

931

931

47.3

47.3

9.2

9.2
비교예 9Comparative Example 9
220

220

5

5

3

3

800

800

600

600

460

460

922

922

48.1

48.1

12.4

12.4
비교예 10Comparative Example 10
200

200

4

4

3

3

700

700

5

5

530

530

980

980

42.1

42.1

3.3

3.3
비교예 11Comparative Example 11
200

200

4

4

3

3

850

850

5

5

510

510

977

977

43.2

43.2

4.2

4.2
비교예 12Comparative Example 12
220

220

4

4

3

3

700

700

5

5

523

523

977

977

42.8

42.8

3.5

3.5
비교예 13Comparative Example 13
220

220

4

4

3

3

850

850

5

5

499

499

963

963

44.6

44.6

3.9

3.9
비교예 14Comparative Example 14
200

200

7

7

3

3

700

700

5

5

510

510

977

977

41.2

41.2

3.8

3.8
비교예 15Comparative Example 15
200

200

7

7

3

3

850

850

5

5

503

503

973

973

40.2

40.2

4.1

4.1
비교예 16Comparative Example 16
220

220

7

7

3

3

700

700

5

5

511

511

974

974

45.1

45.1

3.9

3.9
비교예 17Comparative Example 17
220

220

7

7

3

3

850

850

5

5

482

482

958

958

42.6

42.6

4.7

4.7

한편, 700℃미만의 온도에서는 재결정이 일어나지 않음을 확인하였고, 이 경우 최종 제품의 연신율이 20%에도 미치지 못함을 별도로 확인하였기에, 700℃미만의 온도에서의 소둔 열처리는 배제하였다.On the other hand, it was confirmed that recrystallization does not occur at a temperature of less than 700 ℃, in this case separately confirmed that the elongation of the final product is less than 20%, annealing heat treatment at a temperature below 700 ℃ was excluded.

표 2에 나타난 결과를 살펴보면, 본 발명의 실시예에 의할 경우 비교예1~3 대비 항복강도가 최소 30MPa 이상 최대 100MPa 내외로 증가하였고, 연신율도 3~4% 이상 증가한 것을 확인할 수 있다. 통상적으로 강도가 높아지면 연신율은 낮아지게 되는데, 본 발명의 실시예의 경우 중간 열처리에 의해 생성된 아결정립 내의 트윈의 존재로 인하여 강도와 연신율이 모두 높아질 수 있게 되는 것이다. Looking at the results shown in Table 2, according to the embodiment of the present invention it can be seen that the yield strength compared to Comparative Examples 1 to 3 at least 30MPa or more increased up to about 100MPa, the elongation also increased by more than 3 ~ 4%. In general, the higher the strength, the lower the elongation. In the embodiment of the present invention, both the strength and the elongation can be increased due to the presence of the twin in the amorphous grains produced by the intermediate heat treatment.

한편, 비교예4~9에서 보듯이, 냉간압연 중 중간 열처리를 상기 실시예와 동일하게 하더라도 소둔 열처리 조건이 기존과 동일한 경우에는 전혀 효과가 없음을 볼 수 있다. On the other hand, as shown in Comparative Examples 4 to 9, even if the intermediate heat treatment during cold rolling in the same as the above embodiment can be seen that no effect at all when the annealing heat treatment conditions are the same as before.

또한, 비교예10~17에서 보듯이, 냉간압연 중 중간 열처리 시간은 5분 정도가 가장 효과가 큼을 알 수 있다. In addition, as shown in Comparative Examples 10 to 17, it can be seen that the medium heat treatment time during cold rolling has the greatest effect of about 5 minutes.

한편, 본 발명의 실시예에서 소둔 열처리 시간을 5분으로 정한 이유는 그 이하의 열처리 시간에서는 재결정이 일어나지 않기 때문이며, 이러한 경우 연신율의 상승을 기대할 수 없기 때문이다. On the other hand, the reason why the annealing heat treatment time is set to 5 minutes in the embodiment of the present invention is because recrystallization does not occur in the heat treatment time below that, and in this case, an increase in elongation cannot be expected.

그런데, 소둔 열처리 시간이 5분을 상당히 초과하는 경우에는 연신율의 상승을 기대할 수는 있으나 결정립이 과다 성장하여 항복강도의 급격한 저하를 초래하기에 바람직하지 못하다. 이는 700℃에서 시간에 따른 항복강도의 감소를 나타낸 도 2를 통해 확인할 수 있다. By the way, when the annealing heat treatment time significantly exceeds 5 minutes, it can be expected to increase the elongation, but it is not preferable to cause excessive decrease in yield strength due to excessive growth of grains. This can be confirmed through Figure 2 showing the decrease in yield strength with time at 700 ℃.

따라서, 소둔 열처리 시간은 5분에서 6분 사이인 것이 바람직하며, 이는 도 3에 나타난 연신율 변화를 통해서도 확인 가능하다. 즉, 도 3을 참조하면, 5분 이상 6분 미만의 열처리 시간에서만 50% 이상의 양호한 연신율이 확보될 수 있음을 확인할 수 있다.Therefore, the annealing heat treatment time is preferably 5 minutes to 6 minutes, which can be confirmed through the change in elongation shown in FIG. That is, referring to Figure 3, it can be seen that good elongation of 50% or more can be secured only in the heat treatment time of 5 minutes or more and less than 6 minutes.

한편, 하기의 표 3은 위 실시예에서의 조성 및 함량으로 TWIP형 초고강도 강판을 제조한 후 냉간압연 중 중간 열처리를 시행하는 시점에 따른 물성 변화를 확인하기 위해 표 2에 제시된 실시예 중 일부와 다른 비교예를 나타낸 것이다. 표 3을 참조하면, 비교예19~22 및 비교예23~26에서 보듯이, 4 패스 후 또는 2 패스 후 중간 열처리를 시행하는 것은 물성에 전혀 영향을 주지 못한다는 것을 알 수 있다. 따라서, 중간 열처리의 시행 시점은 냉간압연의 3 패스 후가 가장 바람직하다.On the other hand, Table 3 below is a part of the examples shown in Table 2 to confirm the change in physical properties of the TWIP type ultra high strength steel sheet after the intermediate heat treatment during cold rolling after the composition and content in the above embodiment And Comparative Examples are shown. Referring to Table 3, as shown in Comparative Examples 19 to 22 and Comparative Examples 23 to 26, it can be seen that performing the intermediate heat treatment after 4 passes or after 2 passes does not affect the physical properties at all. Therefore, the point of time of intermediate heat treatment is most preferably after three passes of cold rolling.

회복 열처리 온도, ℃Recovery heat treatment temperature, ℃ 회복 열처리 시간, 분Recovery heat treatment time, min 회복 열처리 시행 패스Recovery heat treatment trial pass 소둔 열처리 온도, ℃Annealing Heat Treatment Temperature, ℃ 소둔 열처리 시간, 분Annealing Heat Treatment Time, Min 항복강도, MPaYield strength, MPa 인장강도, MPaTensile strength, MPa 연신율, %Elongation,% 평균결정립도, ㎛Average grain size, μm 실시예 1Example 1
200

200

5

5

3

3

700

700

5

5

580

580

1020

1020

53

53

2.1

2.1
실시예 4Example 4
200

200

5

5

3

3

850

850

5

5

520

520

989

989

52.1

52.1

2.9

2.9
실시예 5Example 5
220

220

5

5

3

3

700

700

5

5

592

592

1008

1008

52.3

52.3

2.0

2.0
실시예 7Example 7
220

220

5

5

3

3

800

800

5

5

577

577

998

998

52.8

52.8

2.6

2.6
비교예 19Comparative Example 19
200

200

5

5

4

4

700

700

5

5

492

492

977

977

46.3

46.3

4.1

4.1
비교예 20Comparative Example 20
200

200

5

5

4

4

850

850

5

5

488

488

976

976

46.3

46.3

3.9

3.9
비교예 21Comparative Example 21
220

220

5

5

4

4

700

700

5

5

479

479

943

943

45.5

45.5

4.0

4.0
비교예
22
Comparative example
22

220

220

5

5

4

4

800

800

5

5

482

482

930

930

46.1

46.1

4.6

4.6
비교예 23Comparative Example 23
200

200

5

5

2

2

700

700

5

5

490

490

975

975

47.1

47.1

3.7

3.7
비교예 24Comparative Example 24
200

200

5

5

2

2

850

850

5

5

490

490

975

975

47.3

47.3

3.6

3.6
비교예 25Comparative Example 25
220

220

5

5

2

2

700

700

5

5

483

483

950

950

43.5

43.5

4.2

4.2
비교예 26Comparative Example 26
220

220

5

5

2

2

800

800

5

5

480

480

945

945

46.2

46.2

3.9

3.9

상기와 같은 본 발명의 실시예에 따른 TWIP형 초고강도 강판의 제조방법에 따르면 TWIP형 초고강도 강판의 항복강도를 기존 대비 최대 100MPa까지 높일 수 있고, 이와 더불어 연신율이 기존 대비 3~4% 가량 상승하여 연신율이 50%이상이 될 수 있게 되며, 인장강도 역시 980MPa 이상이 될 수 있게 된다. 따라서, 충돌 성능에 부합하는 강성이 확보되면서도 복잡한 성형이 가능한 TWIP형 초고강도 강판을 제조할 수 있게 된다. 이와 같은 사항은 실시예와 비교예의 항복강도 및 연신율을 나타낸도 4를 통해 확인할 수 있다. 도 4를 참조하면, 실시예의 항복강도 및 연신율 데이타(A)는 실시예에 따른 따른 TWIP형 초고강도 강판의 항복강도가 520~592MPa 임을 나타내고 있고, 연신율은 50% 이상임을 나타내고 있다. 이에 반해, 비교예의 항복강도 및 연신율 데이타(B)는 비교예에 따른 TWIP형 초고강도 강판의 항복강도가 520MPa 이하임을 나타내고 있고, 연신율은 50% 이하임을 나타내고 있다. According to the manufacturing method of the TWIP type ultra high strength steel sheet according to the embodiment of the present invention as described above, the yield strength of the TWIP type ultra high strength steel sheet can be increased up to 100 MPa, and the elongation is increased by 3 to 4%. Elongation can be more than 50%, tensile strength can also be more than 980MPa. Therefore, it is possible to manufacture a TWIP-type ultra high strength steel sheet capable of complex molding while securing rigidity corresponding to the collision performance. Such matters can be confirmed through FIG. 4 showing the yield strength and the elongation of the Examples and Comparative Examples. Referring to FIG. 4, the yield strength and elongation data (A) of the embodiment indicate that the yield strength of the TWIP type ultra high strength steel sheet according to the embodiment is 520 to 592 MPa, and the elongation is 50% or more. On the contrary, the yield strength and elongation data (B) of the comparative example indicate that the yield strength of the TWIP type ultra high strength steel sheet according to the comparative example is 520 MPa or less, and the elongation is 50% or less.

이상, 본 발명의 특정 실시예에 관하여 도시하고 설명하였지만, 본 발명의 기술분야에서 통상의 지식을 가진 자라면 하기의 특허청구범위에 기재된 발명의 기술적 사상으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음이 이해될 필요가 있다.While specific embodiments of the present invention have been illustrated and described, those of ordinary skill in the art may vary the present invention without departing from the spirit of the invention as set forth in the following claims. It is to be understood that modifications and variations are possible.

도 1은 TWIP형 초고강도 강판의 소둔 열처리 시간에 따른 결정립 크기를 나타낸 그래프. 1 is a graph showing the grain size according to the annealing heat treatment time of TWIP type ultra high strength steel sheet.

도 2는 실시예의 소둔 열처리 시간에 따른 항복강도를 나타낸 그래프.Figure 2 is a graph showing the yield strength according to the annealing heat treatment time of the embodiment.

도 3은 실시예의 소둔 열처리 시간에 따른 연신율을 나타낸 그래프.Figure 3 is a graph showing the elongation according to the annealing heat treatment time of the embodiment.

도 4는 실시예와 비교예의 항복강도 및 연신율을 나타낸 그래프.Figure 4 is a graph showing the yield strength and elongation of Examples and Comparative Examples.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

A : 실시예의 항복강도 및 연신율 데이타A: Yield Strength and Elongation Data of Examples

B : 비교예의 항복강도 및 연신율 데이타B: Yield Strength and Elongation Data of Comparative Example

Claims (3)

탄소(C): 0.15~0.30중량%, 실리콘(Si): 0.01~0.03중량%, 망간(Mn): 15~25중량%, 알루미늄(Al): 1.2~3.0중량%, 인(P): 0.020중량% 이하, 황(S): 0.001~0.002중량%, 잔량의 철(Fe) 및 기타 불가피한 불순물을 포함하는 조성을 갖는 열연 강판에 대해 4패스 이상으로 이루어진 냉간압연을 실시하되, 3 패스 후에 200~220℃에서 5분간 회복 열처리를 시행하고, 이후 700~850℃에서 5~6분간 소둔 열처리를 시행하는 것을 특징으로 하는 TWIP(TWin Induced Plasticity)형 초고강도 강판의 제조방법.Carbon (C): 0.15 to 0.30 wt%, Silicon (Si): 0.01 to 0.03 wt%, Manganese (Mn): 15 to 25 wt%, Aluminum (Al): 1.2 to 3.0 wt%, Phosphorus (P): 0.020 Less than or equal to weight, sulfur (S): 0.001 to 0.002% by weight, cold-rolled four or more passes for a hot-rolled steel sheet having a composition containing a residual amount of iron (Fe) and other unavoidable impurities, but 200 to 3 after three passes Recovery heat treatment is performed at 220 ℃ for 5 minutes, and then annealing heat treatment for 5-6 minutes at 700 ~ 850 ℃ manufacturing method of ultra-high strength TWIP (Twin Induced Plasticity) type steel sheet. 삭제delete 삭제delete
KR1020080087282A 2008-09-04 2008-09-04 Manufacturing Method of TPI Type Ultra High Strength Steel Sheet KR101054773B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020080087282A KR101054773B1 (en) 2008-09-04 2008-09-04 Manufacturing Method of TPI Type Ultra High Strength Steel Sheet
US12/552,634 US20100051146A1 (en) 2008-09-04 2009-09-02 Method of manufacturing twinning induced plasticity type ultra-high strength steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080087282A KR101054773B1 (en) 2008-09-04 2008-09-04 Manufacturing Method of TPI Type Ultra High Strength Steel Sheet

Publications (2)

Publication Number Publication Date
KR20100028310A KR20100028310A (en) 2010-03-12
KR101054773B1 true KR101054773B1 (en) 2011-08-05

Family

ID=41723558

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080087282A KR101054773B1 (en) 2008-09-04 2008-09-04 Manufacturing Method of TPI Type Ultra High Strength Steel Sheet

Country Status (2)

Country Link
US (1) US20100051146A1 (en)
KR (1) KR101054773B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099214A1 (en) 2013-12-23 2015-07-02 주식회사 포스코 Quenched steel sheet having excellent strength and ductility and method for manufacturing same
KR20160074868A (en) 2014-12-18 2016-06-29 주식회사 포스코 Quenched steel sheet having excellent strength and ductility and method for manufacturing the steel sheet using the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2574684B1 (en) * 2011-09-29 2014-06-18 Sandvik Intellectual Property AB TWIP and NANO-twinned austenitic stainless steel and method of producing the same
KR101374825B1 (en) * 2012-05-14 2014-03-13 포항공과대학교 산학협력단 Fe-Mn-C BASED TWIP STEEL WITH SUPERIOR MECHANICAL PROPERTIES AT CRYOGENIC CONDITION, AND METHOD TO MANUFACTURE THE SAME
EP3095889A1 (en) 2015-05-22 2016-11-23 Outokumpu Oyj Method for manufacturing a component made of austenitic steel
SI3117922T1 (en) 2015-07-16 2018-07-31 Outokumpu Oyj Method for manufacturing a component of austenitic twip or trip/twip steel
EP3173504A1 (en) 2015-11-09 2017-05-31 Outokumpu Oyj Method for manufacturing an austenitic steel component and use of the component
WO2017201986A1 (en) * 2016-05-27 2017-11-30 燕山大学 Nano-twinned crystal pure iron, and preparation method and process therefor
WO2018188766A1 (en) * 2017-04-11 2018-10-18 Thyssenkrupp Steel Europe Ag Cold-rolled flat steel product annealed in a bell-type furnace, and method for the production of said product
CN114990438B (en) * 2022-05-31 2023-10-20 江西宝顺昌特种合金制造有限公司 High-manganese high-aluminum low-magnetic austenitic steel and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970043162A (en) * 1995-12-30 1997-07-26 김종진 Annealing heat treatment method and pickling method of high manganese cold rolled steel
KR20070085757A (en) * 2007-06-04 2007-08-27 티센크루프 스틸 악티엔게젤샤프트 High-strength steel strip or sheet exhibiting twip properties and method for producing said strip by direct strip casting
KR20080060982A (en) * 2006-12-27 2008-07-02 주식회사 포스코 High manganese high strength steel sheets with excellent crashworthiness, and method for manufacturing of it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2307391A (en) * 1938-10-14 1943-01-05 American Rolling Mill Co Art of producing magnetic material
FR2796083B1 (en) * 1999-07-07 2001-08-31 Usinor PROCESS FOR MANUFACTURING IRON-CARBON-MANGANESE ALLOY STRIPS, AND STRIPS THUS PRODUCED
KR101113666B1 (en) * 2008-08-13 2012-02-14 기아자동차주식회사 Ultra-high strength twip steel sheets and the method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970043162A (en) * 1995-12-30 1997-07-26 김종진 Annealing heat treatment method and pickling method of high manganese cold rolled steel
KR20080060982A (en) * 2006-12-27 2008-07-02 주식회사 포스코 High manganese high strength steel sheets with excellent crashworthiness, and method for manufacturing of it
KR20070085757A (en) * 2007-06-04 2007-08-27 티센크루프 스틸 악티엔게젤샤프트 High-strength steel strip or sheet exhibiting twip properties and method for producing said strip by direct strip casting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099214A1 (en) 2013-12-23 2015-07-02 주식회사 포스코 Quenched steel sheet having excellent strength and ductility and method for manufacturing same
US10294541B2 (en) 2013-12-23 2019-05-21 Posco Quenched steel sheet having excellent strength and ductility
KR20160074868A (en) 2014-12-18 2016-06-29 주식회사 포스코 Quenched steel sheet having excellent strength and ductility and method for manufacturing the steel sheet using the same

Also Published As

Publication number Publication date
US20100051146A1 (en) 2010-03-04
KR20100028310A (en) 2010-03-12

Similar Documents

Publication Publication Date Title
KR101054773B1 (en) Manufacturing Method of TPI Type Ultra High Strength Steel Sheet
KR100742955B1 (en) Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR101020546B1 (en) Ultra-high strength twip steel sheets and the method thereof
KR101747001B1 (en) Steel having superior brittle crack arrestability and method for manufacturing the steel
KR20140129365A (en) Low density steel with good stamping capability
KR101113666B1 (en) Ultra-high strength twip steel sheets and the method thereof
KR101518571B1 (en) Non heat treated wire rod having excellent high strength and impact toughness and method for manafacturing the same
KR20100106649A (en) Ultra-high strength twip steel sheets and the manufacturing method thereof
KR100470640B1 (en) A high strength bake-hardenable cold rolled steel sheet, and a method for manufacturing it
KR101185332B1 (en) Cold rolled soft steel sheet having improved roll fatigue defect and method for making the same
KR100555581B1 (en) Cold Rolled Steel Sheet Having Homogeneous Plastic Deformation Property And Manufacturing Method Thereof
JP4151443B2 (en) Thin steel plate with excellent flatness after punching and method for producing the same
KR101568501B1 (en) A formable hot-rolled steel having excellent surface quality, and manufacturing of the same
KR101572318B1 (en) Method of manufacturing steel product
KR20140076360A (en) A wire rod having excellent cold forging and method for manufacturing the same
KR20090119265A (en) High yield ratio hot rolled steel sheet and hot rolled pickled steel sheet with excellent descalability and manufacturing method thereof
JPS62167855A (en) Unrefined steel for hot forging having superior fatigue resistance
KR20110066634A (en) Cold-rolled steel sheet having excellent formability and strength, and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150731

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160729

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee