KR20100047016A - High tensile hot -rolled steel sheet having excellent stretch flanging formability, and method for producing the same - Google Patents

High tensile hot -rolled steel sheet having excellent stretch flanging formability, and method for producing the same Download PDF

Info

Publication number
KR20100047016A
KR20100047016A KR1020080106088A KR20080106088A KR20100047016A KR 20100047016 A KR20100047016 A KR 20100047016A KR 1020080106088 A KR1020080106088 A KR 1020080106088A KR 20080106088 A KR20080106088 A KR 20080106088A KR 20100047016 A KR20100047016 A KR 20100047016A
Authority
KR
South Korea
Prior art keywords
steel sheet
rolled steel
less
weight
high tensile
Prior art date
Application number
KR1020080106088A
Other languages
Korean (ko)
Inventor
도형협
강춘구
한성경
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020080106088A priority Critical patent/KR20100047016A/en
Publication of KR20100047016A publication Critical patent/KR20100047016A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Abstract

PURPOSE: A high strength hot rolled steel sheet with a superior hole enlargeability and a manufacturing method thereof are provided to manufacture the hot rolled steel sheet with the superior elongation ratio by controlling the contain amount of vanadium and niobium. CONSTITUTION: A high strength hot rolled steel sheet is made of carbon 0.05~0.15 weight%, silicon 0.3~1.0 weight%, manganese 0.8~3.0 weight%, aluminum 0.3~1.0 weight%, vanadium 0.02~0.20 weight%, niobium 0.01~0.06 weight%, boron 0.0001~0.002 weight%, phosphorus 0.02 weight%, sulfur 0.006 weight%, nitrogen 0.015 weight% and the rest iron. Micro-structure has the dual phase structure of bainite and ferrite.

Description

구멍확장성이 우수한 고장력 열연강판 및 그 제조방법{High tensile hot -rolled steel sheet having excellent stretch flanging formability, and method for producing the same}High tensile hot-rolled steel sheet having excellent stretch flanging formability, and method for producing the same

본 발명은 구멍확장성이 우수한 고장력 열연강판 및 그 제조방법에 관한 것으로, 더욱 상세하게는 구멍확장성과 용접성이 우수한 1GPa급 고장력 열연강판 및 그 제조방법에 관한 것이다.The present invention relates to a high tensile strength hot rolled steel sheet having excellent hole expandability and a method of manufacturing the same, and more particularly, to a 1GPa class high tensile strength hot rolled steel sheet having excellent hole expandability and weldability.

철강 수요의 상당 부분을 차지하는 자동차 산업은 전 세계적인 공급과잉에 의해 경쟁이 심화되면서 자동차 품질에 대한 고급화, 다양화 요구가 날로 높아지고 있고, 지구환경보호에 대한 관심이 높아지면서 자동차 연비효율의 개선 및 배기가스의 감축을 위해 다양한 연구가 진행되고 있다. 또한 자동차 충돌시 승객 안전을 도모하고 소비자 욕구의 다양화에 따른 복잡한 디자인의 자동차 생산을 위해 자동차 업계에서는 고강도이면서 가공성과 성형성이 우수한 강을 필요로 하고 있다. The automobile industry, which accounts for a large portion of the steel demand, is intensifying competition due to global oversupply, increasing the demand for quality and diversification of automobile quality, and increasing interest in global environmental protection. Various studies are underway to reduce the gas. In addition, in order to promote passenger safety in the event of a car crash and to produce a car with a complex design according to diversification of consumer desires, the automobile industry needs a high-strength, workability and formability steel.

자동차 구조부품에 사용되는 열연강판은 냉연강판에 비해 차체 중량의 저감효과가 크기 때문에 강판의 고장력화가 급속히 발전하고 수요가 확대되고 있다. 열연강판의 경우 강도의 증가에 따라 연신율이 저하되는 것이 일반적이다. 따라서 높 은 가공성이 필요한 자동차용으로 적용하는데 한계가 있는 것으로 인식되고 있다.Hot rolled steel sheet used in automobile structural parts has a greater effect of reducing the weight of the body compared to cold rolled steel sheet, so the high tensile strength of the steel sheet is rapidly developing and the demand is expanding. In the case of hot-rolled steel sheet, the elongation is generally lowered with increasing strength. Therefore, it is recognized that there is a limit to the application for automobiles requiring high processability.

최근에는 다양한 형태의 저온변태조직 및 미변태 오스테나이트 상을 적정량 분산시켜 고강도화에 따른 연성 혹은 신장플랜지성의 저하를 억제하거나 개선시킨 열연강판이 개발되고 있다. 특히 열연강판을 성형하는 경우 연성과 구멍확장성이 중요한데, 일본공개특허 평6-387685호, 일본공개특허 평6-200351호에는 590 ~ 780MPa 급 강도레벨의 강판에 대해 티타늄(Ti), 니오븀(Nb)을 첨가하여 조정함으로써 구멍확장성을 향상시키는 기술이 제안되고 있다. 열연강판의 경우 고강도화로 갈수록 석출물 첨가원소를 다량 첨가하기 때문에 강도가 상승할수록 연신율 및 구멍 확장성이 모두 열화되고, 또한 구멍확장성과 연성은 상반되는 경향을 나타내고 있어 고강도화가 진행될수록 우수한 연신율, 구멍확장성을 갖는 강판의 제조가 어려운 실정이다. 그리고, 범용으로 사용되고 있는 석출경화강의 경우 강도가 증가함에 따라 연신율과 신장플랜지성이 저하되므로 자동차 샤시부품에 적용하기 위해서는 이러한 문제의 개선이 필요하다.Recently, hot-rolled steel sheets have been developed in which various types of low-temperature transformation tissues and untransformed austenite phases are dispersed in an appropriate amount to suppress or improve degradation of ductility or extension flanges due to high strength. In particular, when forming a hot rolled steel sheet, ductility and hole expandability are important. Japanese Patent Laid-Open No. 6-387685 and Japanese Patent Laid-Open No. Hei 6-200351 disclose that titanium (Ti) and niobium ( The technique which improves hole expansion property by adding and adjusting Nb) is proposed. In the case of hot rolled steel sheet, as the strength increases, a large amount of precipitate added elements are added, so as the strength increases, both the elongation and the hole expandability deteriorate. Also, as the strength increases, the elongation increases and the elongation increases. It is difficult to manufacture the steel sheet having the properties. In addition, in case of the precipitation hardened steel that is used for general purpose, since the elongation and elongation flange property are decreased as the strength is increased, it is necessary to improve these problems in order to apply to automobile chassis parts.

현재, 인장강도 590MPa급의 경우는 니오븀(Nb)을 주로 첨가하여 석출효과 및 변태조직강을 형성하여 개발하고 있다. 그리고, 인장강도 780MPa급의 경우는 다양한 합금성분을 첨가하여 개발하고 있는 데, 주로 티타늄(Ti)을 첨가하여 고온 석출물을 조장하여 강도를 상승시키고 변태조직을 이용하여 구멍확장성을 확보하고 있다. 그러나, 티타늄을 다량 첨가할 경우에는 TiN 석출물이 연속주조공정 중에 생성되므로 주조성을 좋지 못하게 하는 경향이 있다. At present, the tensile strength of 590MPa grade is mainly developed by adding niobium (Nb) to form precipitation effect and transformation tissue steel. In addition, in the case of the tensile strength of 780MPa class, various alloy components are added and developed, mainly by adding titanium (Ti) to promote high temperature precipitates to increase the strength and secure the hole expandability using the transformation structure. However, when a large amount of titanium is added, the TiN precipitate is formed during the continuous casting process, which tends to deteriorate castability.

일반적으로 강판의 조직은 페라이트, 마르텐사이트 및 베이나이트의 3상조직 으로 되어 있는데, 마르텐사이트 강은 다른 강에 비해 기지조직인 페라이트와의 상간 경도차가 크기 때문에 신장플랜지성 뿐만 아니라 구멍확장성을 저하하는 문제점이 있다. In general, the steel plate is composed of three-phase structure of ferrite, martensite and bainite, and since martensite steel has a large phase difference between ferrite, which is a base structure, compared with other steels, it is not only used for elongation flanges but also for hole expansion. There is a problem.

강도x신장플랜지성 밸런스의 경우, 일본 철강회사인 JFE(NKK) 등에서 제안한 페라이트-베이나이트 복합조직강이 가장 우수한 것으로 알려져 있다. 이 강의 제조방법은 열간압연후 런 아웃 테이블 상에서 3단 제어냉각패턴을 사용하는 방법인데, 다단 냉각패턴은 중간에 일정한 공냉 유지구간이 필요하여 열연공정 중 ROT(Run Out Table)의 길이가 짧을 경우 적용하기가 어렵다는 문제점이 있다. 또한 권취온도를 400~500℃의 베이나이트 역에서 행하여 페라이트와 베이나이트 상을 형성하여 상간 경도차이를 최소화하고 입계 세멘타이트의 생성을 억제하여 강도x신장플랜지성 밸런스가 훌륭한 열연강판의 제조방법을 제안하고 있지만, 연신율이 낮으므로 열연강판의 다양한 성형성 요구를 만족하지 못하고 있다는 문제점이 있다.In the case of strength x extension flange balance, ferritic-bainite composite steel proposed by JFE (NKK), a Japanese steel company, is known to be the best. The method of manufacturing this steel is to use a 3-stage controlled cooling pattern on the run-out table after hot rolling. In the case of a multi-stage cooling pattern, which requires a constant air cooling maintenance section in the middle, the length of the run out table (ROT) is short during the hot rolling process. There is a problem that it is difficult to apply. In addition, the coiling temperature is performed in the bainite region of 400 to 500 ° C. to form ferrite and bainite phases to minimize the difference in hardness between phases and to suppress the formation of grain boundary cementite, thus producing a method for producing a hot rolled steel sheet having a good balance of strength x elongation flangeability. Although it has been proposed, there is a problem that the low elongation does not satisfy the various moldability requirements of the hot rolled steel sheet.

본 발명은 상기 종래 기술의 문제점인 강도상승에 따른 연신율 감소를 최소화하도록 강성분을 최적화함과 아울러 석출경화형 원소(Nb, V등)를 적절하게 복합첨가하며 최적의 열간압연 공정조건 및 냉각조건을 제어하여, 고강도와 우수한 연신율, 구멍확장성 및 최적의 밸런스를 갖는 용접성이 우수한 1GPa 급 고장력 열연강판 및 그 제조방법을 제공하는데 그 목적이 있다. The present invention optimizes the steel component to minimize the decrease in elongation due to the increase in strength, which is a problem of the prior art, and also adds the compound of precipitation hardening elements (Nb, V, etc.) to obtain optimal hot rolling process conditions and cooling conditions. It is an object of the present invention to provide a 1GPa class high tensile strength hot rolled steel sheet having high strength and excellent elongation, hole expandability, and optimum balance, and a method of manufacturing the same.

상기한 바와 같은 목적을 달성하기 위한 본 발명에 의한 구멍확장성이 우수한 고장력 열연강판은, 탄소(C) 0.05~0.15wt%, 실리콘(Si) 0.3~1.0wt%, 망간(Mn) 0.8~3.0wt%, 알루미늄(Al) 0.3~1.0wt%, 바나듐(V) 0.02~0.20wt%, 니오븀(Nb) 0.01~0.06wt%, 보론(B) 0.0001~0.002wt%, 인(P) 0.02wt% 이하, 황(S) 0.006wt% 이하, 질소(N) 0.015wt% 이하 및 잔부 철(Fe)의 합금조성을 가지며, 미세조직은 60~70vol%의 페라이트와 30~40vol%의 베이나이트로 된 2상 조직을 가진다.High tensile hot rolled steel sheet having excellent hole expandability according to the present invention for achieving the above object, carbon (C) 0.05 ~ 0.15wt%, silicon (Si) 0.3 ~ 1.0wt%, manganese (Mn) 0.8 ~ 3.0 wt%, aluminum (Al) 0.3 ~ 1.0wt%, vanadium (V) 0.02 ~ 0.20wt%, niobium (Nb) 0.01 ~ 0.06wt%, boron (B) 0.0001 ~ 0.002wt%, phosphorus (P) 0.02wt% It has a alloy composition of sulfur (S) 0.006wt% or less, nitrogen (N) 0.015wt% or less and balance iron (Fe), and the microstructure is composed of 60-70vol% ferrite and 30-40vol% bainite. Has a phase organization.

본 발명에 의한 구멍확장성이 우수한 고장력 열연강판의 제조방법은, 탄소(C) 0.05~0.15wt%, 실리콘(Si) 0.3~1.0wt%, 망간(Mn) 0.8~3.0wt%, 알루미늄(Al) 0.3~1.0wt%, 바나듐(V) 0.02~0.20wt%, 니오븀(Nb) 0.01~0.06wt%, 보론(B) 0.0001~0.002wt%, 인(P) 0.02wt% 이하, 황(S) 0.006wt% 이하, 질소(N) 0.015wt% 이하 및 잔부 철(Fe)의 합금조성을 가지는 강슬라브를, 1200±50℃의 온도에서 재가열한 후, 열간압연을 실시하고 최종압연온도를 840~880℃로 열간압연을 종료한 후, 권취온도까지 다단냉각하는 것을 특징으로 한다.The method for manufacturing a high tensile strength hot rolled steel sheet having excellent hole expandability according to the present invention includes carbon (C) 0.05 to 0.15 wt%, silicon (Si) 0.3 to 1.0 wt%, manganese (Mn) 0.8 to 3.0 wt%, and aluminum (Al). ) 0.3 ~ 1.0wt%, Vanadium (V) 0.02 ~ 0.20wt%, Niobium (Nb) 0.01 ~ 0.06wt%, Boron (B) 0.0001 ~ 0.002wt%, Phosphorus (P) 0.02wt% or less, Sulfur (S) After reheating the steel slab having an alloy composition of 0.006wt% or less, nitrogen (N) 0.015wt% or less, and iron (Fe) at a temperature of 1200 ± 50 ° C, hot rolling is performed and the final rolling temperature is 840 to 880. After finishing the hot rolling at ℃, it is characterized in that the multi-stage cooling to the coiling temperature.

상기 다단 냉각은, 열간압연을 종료한 후 20~150℃/s의 냉각속도로 650~700℃까지 냉각하는 1단 냉각과, 이어서 4~15초간의 공냉을 하는 2단 냉각과, 이어서 20~100℃/s의 냉각속도로 400~500℃까지 냉각하는 3단냉각으로 이루어진다.The multi-stage cooling is one-stage cooling to cool down to 650-700 ° C. at a cooling rate of 20 to 150 ° C./s after completion of hot rolling, followed by two-stage cooling to air-cool for 4 to 15 seconds, and then 20 to It consists of three stages of cooling to 400 ~ 500 ℃ at a cooling rate of 100 ℃ / s.

본 발명은 1Gpa 이상의 인장강도와 우수한 연신율을 가져 구멍확장성(또는 신장플랜지성) 및 용접성이 뛰어난 고장력 강판의 제조가 가능하므로 자동차를 비롯한 각종 구조용 강판에 적용할 수 있다는 효과가 있다. The present invention has a tensile strength of 1Gpa or more and has excellent elongation, so that it is possible to manufacture a high tensile strength steel sheet having excellent hole expandability (or elongation flangeability) and weldability, and thus it can be applied to various structural steel sheets including automobiles.

이하 본 발명에 의한 구멍확장성이 우수한 고장력 열연강판 및 그 제조방법의 바람직한 실시예를 상세하게 설명한다.Hereinafter, a preferred embodiment of a high tensile strength hot rolled steel sheet having excellent hole expandability and a method of manufacturing the same according to the present invention will be described in detail.

본 발명은, 우수한 용접성을 얻기 위해 강의 주요성분인 탄소(C), 실리콘(Si), 망간(Mn)의 함량을 최적화하여 첨가하고 그 대신 결정립 미세화를 통한 강도를 확보하고자 바나듐(V) 및 니오븀(Nb)을 적당량 첨가한다. 그리고, 구멍확장성에 큰 영향을 주는 베이나이트 상의 분율을 용이하게 하기 위해 알루미늄(Al), 실리콘(Si), 보론(B), 망간(Mn)등의 함량을 최적화하였다.In the present invention, vanadium (V) and niobium are added to optimize the content of carbon (C), silicon (Si), and manganese (Mn), which are the main components of steel, in order to obtain excellent weldability, and to secure strength through grain refinement. An appropriate amount of (Nb) is added. In addition, the content of aluminum (Al), silicon (Si), boron (B), manganese (Mn), etc. was optimized to facilitate the fraction of bainite phase having a large influence on the hole expandability.

본 발명의 구체적인 합금 조성은, 탄소(C) 0.05~0.15wt%, 실리콘(Si) 0.3~1.0wt%, 망간(Mn) 0.8~3.0wt%, 알루미늄(Al) 0.3~1.0wt%, 바나듐(V) 0.02~0.20wt%, 니오븀(Nb) 0.01~0.06wt%, 보론(B) 0.0001~0.002wt%, 인(P) 0.02wt% 이하, 황(S) 0.006wt% 이하, 질소(N) 0.015wt% 이하 및 잔부 철(Fe) 및 기타 불가 피하게 포함되는 불순물로 이루어진다. Specific alloy composition of the present invention, carbon (C) 0.05 ~ 0.15wt%, silicon (Si) 0.3 ~ 1.0wt%, manganese (Mn) 0.8 ~ 3.0wt%, aluminum (Al) 0.3 ~ 1.0wt%, vanadium ( V) 0.02 to 0.20 wt%, niobium (Nb) 0.01 to 0.06 wt%, boron (B) 0.0001 to 0.002 wt%, phosphorus (P) 0.02 wt% or less, sulfur (S) 0.006 wt% or less, nitrogen (N) 0.015 wt% or less and the balance of iron (Fe) and other inevitable impurities.

본 발명이 적용된 열연강판의 미세조직은, 베이나이트, 페라이트의 2상 조직을 가진다. 상기 베이나이트의 상분율은 30~40Vol%이며, 상기 페라이트의 상분율은 60~70Vol%로 되어 있으며, 합금성분 및 냉각패턴에 의해 조직이 결정된다. The microstructure of the hot rolled steel sheet to which the present invention is applied has a biphasic structure of bainite and ferrite. The phase fraction of the bainite is 30-40 vol%, the phase fraction of the ferrite is 60-70 vol%, and the structure is determined by the alloy component and the cooling pattern.

이하, 본 발명의 합금원소들의 기능과 함유량에 대하여 상세히 설명한다.Hereinafter, the function and content of the alloying elements of the present invention will be described in detail.

탄소(C): 0.05~0.15wt%Carbon (C): 0.05-0.15 wt%

고장력강으로서 필요한 강도의 확보를 위해서는 불가결한 원소이지만, 다량 첨가 시 신장플랜지성 및 스폿용접성이 저하되므로, 그 함량을 0.15wt%이하로 하며, 0.05wt% 이하로 첨가할 경우에는 원하는 강도를 얻을 수 없다.Although it is an indispensable element to secure the required strength as a high tensile strength steel, the elongated flange property and the spot weldability deteriorate when a large amount is added, so that the content thereof should be 0.15 wt% or less, and when it is added below 0.05 wt%, the desired strength can be obtained. none.

실리콘(Si): 0.3~1.0wt%Silicon (Si): 0.3 ~ 1.0wt%

실리콘(Si)은 페라이트에 고용되는 페라이트 안정화 원소로 연성의 열화없이 강도를 상승시키는 고용강화원소이나, 열간압연강판 표면에 산화스케일에 의한 결함을 발생시킬 뿐만 아니라 용접성을 저하시키는 문제점이 있으며, 또한 0.30wt%이하인 경우 페라이트의 강도가 감소하므로 0.30wt% 이상 첨가하여야 한다. 그리고, 1.0wt% 이상인 경우 용접성이 양호하지 못하다.Silicon (Si) is a ferrite stabilizing element employed in ferrite, which is a solid solution element that increases strength without deterioration of ductility, but also causes defects due to oxidation scale on the surface of hot rolled steel sheet, and also deteriorates weldability. If the content is less than 0.30wt%, the strength of ferrite decreases, so more than 0.30wt% should be added. And, if it is more than 1.0wt% weldability is not good.

망간(Mn) 0.8~3.0wt%Manganese (Mn) 0.8 ~ 3.0wt%

망간(Mn)은, 강판의 강도를 확보하거나, 펄라이트 변태를 억제하고 베이나이트 조직을 얻기 위해 불가결한 성분이지만, 그 함량이 0.8wt% 이하에서는 목적하는 효과를 얻을 수 없고 3.0wt% 이상에서는 연속주조의 슬라브 압연시에 균열이 심하게 발생하여 생산성을 저하시키는 결과를 초래하고 용접성이 떨어지고, 폴리고날 페라이트가 충분히 생성되지 않고 가공성 열화를 초래하게 된다.Manganese (Mn) is an indispensable component for securing the strength of steel sheet, suppressing pearlite transformation and obtaining bainite structure. However, the content of manganese (Mn) is not effective at 0.8 wt% or less, and is continuous at 3.0 wt% or more. In the slab rolling of the casting, cracks are severely generated, resulting in a decrease in productivity, poor weldability, and insufficient polygonal ferrite being produced, resulting in workability deterioration.

알루미늄(Al): 0.3~1.0wt%Aluminum (Al): 0.3 ~ 1.0wt%

알루미늄은 탈산제 및 탄화물 형성 원소이다. 알루미늄의 첨가량이 0.3wt%이하 첨가되면 첨가에 따른 상기 효과를 얻을 수 없고, 알루미늄이 1.0wt% 이상 첨가되면 가공성이 저해되고 강도가 낮아지게 된다.Aluminum is a deoxidizer and carbide forming element. If the amount of aluminum added is less than 0.3wt%, the above effect according to the addition cannot be obtained. If the amount of aluminum is added more than 1.0wt%, workability is impaired and strength is lowered.

바나듐(V) : 0.02~0.20wt%Vanadium (V): 0.02 ~ 0.20wt%

바나듐은 니오븀과 같이 탄질화물로 석출하여 강의 강도를 높이는데, 유효한 원소로서 첨가하는데, 그 첨가량이 너무 많은 경우 석출량이 포화되어 강도가 더 증가하지 않으므로 0.20wt%로 그 함량을 제한한다. 바나늄의 탄화물은 비교적 저온에서 용해될 수 있고 슬라브 재가열시 쉽게 용해된다. 바나듐의 첨가량이 0.02wt% 이하이면 미세하게 분산된 복합탄화물의 양은 충분히 발휘할 수 없고, 바나듐의 첨가량이 0.2wt%를 초과하는 경우 복합탄화물이 조대해져 강도를 저하시킨다.Vanadium is precipitated with carbonitrides, such as niobium, to increase the strength of the steel, and is added as an effective element. If the amount is too large, the amount of vanadium is saturated and the strength does not increase further, so the content is limited to 0.20 wt%. Carbide of vananium can dissolve at relatively low temperatures and readily dissolve upon slab reheating. If the added amount of vanadium is 0.02 wt% or less, the amount of finely dispersed composite carbide cannot be sufficiently exhibited. If the added amount of vanadium exceeds 0.2 wt%, the composite carbide coarsens to lower the strength.

니오븀(Nb): 0.01~0.06wt%Niobium (Nb): 0.01 to 0.06 wt%

니오븀 원소는 강 중의 탄소 또는 질소와 함께 Nb(CN), NbC, TiC, TiN 형태로 석출하여 열간압연과 이상역소둔 시 입계성장을 가로막아 미세한 입계사이즈를 형성한다. 고용원소로 니오븀은 강도향상 역할을 하고 오스테나이트가 마르텐사이트보다 저온변태상으로 변태하는 것을 막아준다. 니오븀을 0.06wt% 이상 첨가하였을 때는 연성을 감소시키고 0.01wt% 이하로 첨가하였을 때는 강화효과를 발휘할 수 없다.Niobium element precipitates in the form of Nb (CN), NbC, TiC, TiN together with carbon or nitrogen in the steel to prevent grain boundary growth during hot rolling and annealing annealing to form fine grain size. Niobium, a solid solution, acts as a strength enhancer and prevents austenite from transforming to a lower temperature than martensite. When niobium is added in an amount of 0.06 wt% or more, the ductility decreases, and when it is added in an amount of 0.01 wt% or less, a reinforcing effect cannot be obtained.

보론(B) 0.0001~0.002wt%Boron (B) 0.0001 ~ 0.002wt%

보론은 강중에 소량 첨가되어 강의 경화능을 크게 하는 성분으로, 에시큘러 페라이트 및 베이나이트와 같은 저온 변태상 형성을 용이하게 한다. 0.0001wt%이상 첨가되면 고온에서 오스테나이트 입계에서 편석되어 페라이트 형성을 억제함으로써 강의 경화능에 기여하며, 0.002wt% 이상 첨가될 경우 용접성을 열화시키고 재결정 온도를 과다하게 상승시켜 드로잉성을 저하시키므로, 그 함량을 0.0001~0.002wt% 범위로 제한되는 것이 바람직하다. Boron is a component added to the steel in a small amount to increase the hardenability of the steel, and facilitates the formation of low-temperature transformation phase, such as ecicular ferrite and bainite. If it is added more than 0.0001wt%, it is segregated at the austenite grain boundary at high temperature, which contributes to the hardenability of the steel by suppressing the formation of ferrite, and if it is added more than 0.002wt%, the weldability is degraded and the recrystallization temperature is excessively increased, which lowers the drawing ability. The content is preferably limited to the range 0.0001 ~ 0.002wt%.

황(S) 0.006wt% 이하Sulfur (S) 0.006wt% or less

황은 사상압연의 과정에서 미세한 유화물계(MnS) 비금속 개재물을 증가시켜 크랙 등의 발생을 야기하여, 신장플랜지성에 악영향을 미치게 되므로 포함하지 않는 것이 좋다. 0.006wt% 이하의 범위로 제한한다. Sulfur is not included because it increases the fine sulfide-based (MnS) non-metallic inclusions in the course of finishing rolling, causing cracks and the like, which adversely affects the stretch flangeability. It is limited to the range of 0.006 wt% or less.

인(P) : 0.02wt% 이하Phosphorus (P): 0.02wt% or less

인(P)은 알루미늄과 마찬가지로 세멘타이트의 형성을 억제하고 강도를 증가시키기 위해 첨가되지만 적을수록 바람직하다. 0.02wt%를 초과하면 용접성이 악화되고 슬라브 중심 편석에 의해 최종재질편차가 발생하는 문제가 있으므로 0.02wt% 이하의 범위로 제한하는 것이 바람직하다.Phosphorus (P), like aluminum, is added to inhibit the formation of cementite and to increase strength, but less is preferred. If it exceeds 0.02wt%, there is a problem that deterioration of weldability and final material deviation occurs due to slab center segregation, so it is preferable to limit it to the range of 0.02wt% or less.

질소(N) : 0.015wt% 이하Nitrogen (N): 0.015wt% or less

탄질화물 형성원소인 N의 경우 연성에 악영향을 주는 원소로써 가급적 낮게 유지하는 것이 유리하다. 질소가 과잉으로 존재하면 질화물이 다량으로 석출하고,연성의 열화를 일으키기 쉬우므로 0.015wt% 이하로 억제하는 것이 바람직하다.In the case of the carbonitride-forming element N, it is advantageous to keep it as low as possible as an element adversely affecting ductility. When nitrogen is present in excess, nitride is precipitated in a large amount, and ductile deterioration is likely to occur, so it is preferable to suppress it to 0.015 wt% or less.

본 발명의 강판은 상기 성분들을 함유하고, 나머지는 실질적으로 철(Fe) 및 불가피한 원소들이며, 원료, 자재, 제조설비 등의 상황에 따라 함유되는 원소로서 불가피한 불순물의 미세량 혼입도 허용된다. The steel sheet of the present invention contains the above components, and the rest are substantially iron (Fe) and unavoidable elements, and fine amounts of inevitable impurities are also allowed as elements contained according to the situation of raw materials, materials, manufacturing facilities, and the like.

본 발명은 페라이트 및 베이나이트가 실질적인 2상 조직강에 있어서 연성을 좋게 하는 페라이트와 강도를 확보하는 TiC, NbC, VC로 이루어지는 석출물에 착안하여 페라이트 입자를 충분히 성장시킴으로써 구멍 확장성을 저하시키지 않고 연성을 개선하고, 석출물을 생성시켜 강도를 확보하는 것이다. 이와같은 강판의 금속조직을 얻음으로써, 구멍확장성, 연성 및 신장플랜지성을 동시에 만족하는 고강도 열연강판을 얻을 수 있다. (Ti, Nb, V)라 함은 Ti, Vb, V의 1종류 또는 2종류 이상의 특정량을 함유하는 것을 의미한다. 본 발명에서는 Nb와 동일한 함량의 Ti를 추가할 수도 있다. The present invention focuses on precipitates composed of ferrite and ferrite which improves ductility in TiN, NbC, and VC, which ensures good ductility in substantially two-phase tissue steels. It is to improve the strength, and to produce a precipitate to secure the strength. By obtaining the metal structure of such a steel plate, the high strength hot rolled steel sheet which satisfy | fills hole expandability, ductility, and elongation flange property simultaneously can be obtained. (Ti, Nb, V) means containing one or two or more specific amounts of Ti, Vb and V. In the present invention, Ti having the same content as Nb may be added.

상기한 바와 같은 조성을 갖는 슬라브는 제강공정을 통해 용강을 얻은 다음에 주괴 또는 연속주조공정을 통해 제조되며, 여기서는 열간압연을 거쳐 강판 형태로 제조되어 냉각 및 권취된다.The slabs having the composition as described above are obtained through molten steel through a steelmaking process and then manufactured through an ingot or continuous casting process, where the steel slab is hot-rolled to be cooled and wound.

각 공정은 아래와 같다. Each process is as follows.

[가열로 공정][Heating process]

슬라브를 가열하는 공정은 주조시 편석된 성분을 재고용하기 위한 것으로, 재가열온도가 낮은 경우 편석된 성분이 재고용되지 못하며, 과도하게 높으면 오스테나이트 결정입도가 증가하여 페라이트 입도가 조대화되면서 강도가 감소하게 된다. 따라서 본 발명강의 경우 1200±50℃의 온도가 바람직하다. The slab heating process is used to reclaim segregated components during casting. If the reheating temperature is low, segregated components are not reusable. Excessively high slab size increases austenite grain size, resulting in coarsening of ferrite grain size and decreasing strength. do. Therefore, the temperature of 1200 ± 50 ℃ is preferred for the present invention steel.

또한 슬라브의 두께에 따라 재가열 온도 유지시간을 조절할 필요가 있다. 두 께가 두꺼워질수록 재가열시간을 길게 유지하고, 두께가 얇을수록 재가열유지시간을 짧게 유지할 필요가 있다. 적정 유지시간을 1~2시간이다. 이 시간 이상 유지할 경우 비경제적이고 너무 짧으면 재질의 균질화 정도가 떨어져 품질이 나빠지는 문제가 발생할 수 있다. It is also necessary to adjust the reheat temperature holding time according to the thickness of the slab. The thicker the thickness, the longer the reheating time needs to be. The thinner the thickness, the shorter the reheating time needs to be maintained. The proper holding time is 1-2 hours. If it is maintained for more than this time, it is uneconomical and if it is too short, the quality of the material may be degraded due to the homogenization of the material.

[열간압연, 냉각 및 권취공정][Hot rolling, cooling and winding process]

가열로 공정에서 재가열된 슬라브는 열간압연 후 냉각 전까지 840~880℃ 온도범위에서 열간압연을 마무리한다. 열간압연 마무리 온도는 변태 후 페라이트의 입도에 영향을 준다. 마무리 압연온도가 840℃ 이하이면 압연시 압하력이 과다하여 압연 통판성에 좋지 못한 영향을 끼치게 되고, 880℃를 초과하게 되면 조직이 조대해져 강도와 연성의 저하를 가져오게 된다. The slab reheated in the furnace process is hot rolled and then hot rolled in the 840 ~ 880 ℃ temperature range before cooling. Hot rolling finish temperature affects the particle size of ferrite after transformation. If the finish rolling temperature is 840 ° C. or less, the rolling force is excessively reduced during rolling, which adversely affects the rolling sheetability. When the finish rolling temperature is higher than 880 ° C., the structure becomes coarse to reduce the strength and ductility.

열간압연된 슬라브는, 열간압연을 종료한 후 20~150℃/s의 냉각속도로 650~700℃까지 냉각하는 1단 냉각과, 이어서 4~15초간의 공냉을 하는 2단 냉각과, 이어서 20~100℃/s의 냉각속도로 400~500℃까지 냉각하는 3단냉각으로 다단냉각하여 권취한다. 이와 같이 냉각하여 권취한 강판은 베이나이트, 페라이트의 2상 조직이 되며, 상기 베이나이트의 상분율은 30~40Vol%이며, 상기 페라이트의 상분율은 60~70Vol%로 된다.The hot rolled slab is composed of one stage cooling to cool down to 650 to 700 캜 at a cooling rate of 20 to 150 캜 / s after the completion of hot rolling, followed by two stage cooling to air cool for 4 to 15 seconds, and then 20 Multistage cooling with three stage cooling to 400 ~ 500 ℃ with cooling rate of ~ 100 ℃ / s and wound up. The steel sheet thus wound and wound is a two-phase structure of bainite and ferrite, the bainite phase fraction is 30 to 40 vol%, and the ferrite phase fraction is 60 to 70 vol%.

상기 1단 냉각의 종료온도가 650℃가 되면 에시큘러 타입의 페라이트 분율이 많아지고 700℃이상의 경우 페라이트 분율이 적어지고 오랜시간 유지시 펄라이트가 생성되어 가공성이 저하될 우려가 있다.When the end temperature of the first stage cooling reaches 650 ° C., the ferrite fraction of the cyclic type increases, and in the case of 700 ° C. or more, the ferrite fraction decreases.

그리고, 권취온도(CT)는 450℃를 기준으로 가장 높은 구멍확장성의 값을 나 타내는 것으로 확인되었다. In addition, the coiling temperature (CT) was found to represent the highest hole expandability based on 450 ℃.

표 1은 본 발명의 발명예와 다른 비교예의 성분비를 나타낸 것이다. 이때, 상기 바나듐(V)은 니오븀(Nb)의 4배까지 첨가했을 때 표 2에 기계적 성질에 유사한 경향을 나타내었다.Table 1 shows the component ratio of the invention example of this invention and another comparative example. At this time, the vanadium (V) showed a similar tendency to the mechanical properties in Table 2 when added up to four times niobium (Nb).

구분 division 화학성분(wt%, 잔부Fe)Chemical composition (wt%, balance Fe) CC SiSi MnMn P maxP max S maxS max AlAl CrCr CuCu VV NbNb TiTi NiNi B (ppm)B (ppm) N (ppm)N (ppm) 비교예1Comparative Example 1 0.050.05 1.001.00 1.51.5 0.010.01 0.0050.005 0.060.06 0.710.71 -- -- 0.040.04 0.060.06 -- -- 4040 발명예1Inventive Example 1 0.150.15 0.300.30 2.52.5 0.010.01 0.0060.006 0.300.30 0.200.20 -- -- 0.050.05 0.020.02 -- 1818 8080 발명예2Inventive Example 2 0.150.15 0.300.30 2.52.5 0.010.01 0.0060.006 0.300.30 0.200.20 0.10.1 -- 0.050.05 0.020.02 0.10.1 1818 8080 발명예3Inventive Example 3 0.150.15 0.300.30 2.52.5 0.010.01 0.0060.006 0.300.30 0.200.20 0.10.1 0.150.15 0.040.04 -- 0.10.1 1919 8080

상기 표 1과 같이 조성된 슬라브를 사용하여 다음과 같은 열처리 및 압연조건에 의해 제조된 시편의 기계적 성질을 측정한 결과는 표 2에 나타내었다.The results of measuring the mechanical properties of the specimens prepared by the following heat treatment and rolling conditions using the slab composition as shown in Table 1 are shown in Table 2.

발명예 : 1215℃에서 1시간 가열 후, 840~880℃에서 마무리 열간 압연한 다음 460℃로 냉각하여 권취기에서 권취하였다. 냉각속도는 압연 후 20~100℃/sec 로 수냉 또는 공냉하였다.Inventive example: After heating at 1215 ° C. for 1 hour, the final hot rolling was performed at 840˜880 ° C., and then cooled to 460 ° C. and wound up in a winder. Cooling rate was water-cooled or air-cooled at 20 ~ 100 ℃ / sec after rolling.

권취온도Coiling temperature 460℃로 냉각 Cooled to 460 ℃ 비고 Remarks 구분division FDTFDT TSTS YS YS ELEL λ λ 비교예1Comparative Example 1 870870 780780 764 764 1717 42 42 발명예1Inventive Example 1 870870 10201020 987 987 12.812.8 50 50 발명예2Inventive Example 2 870870 10021002 955 955 12.512.5 6868 발명예3Inventive Example 3 870870 10141014 968 968 13.913.9 4848

상기 표 2에서, FDT는 열간마무리온도(℃)이고, TS는 인장강도(MPa)이며, YS는 항복강도(MPa)이고, EL은 연신율(%)이고, λ는 구멍확장성(%)이다.In Table 2, FDT is hot finish temperature (° C.), TS is tensile strength (MPa), YS is yield strength (MPa), EL is elongation (%), and λ is porosity (%). .

표 2에서 보는 바와 같이 본 발명이 적용된 열연강판은 1G MPa이상의 초고강도를 나타내며 우수한 구멍확장성을 나타냄을 알 수 있다.As shown in Table 2 it can be seen that the hot-rolled steel sheet to which the present invention is applied exhibits ultra high strength of 1G MPa or more and shows excellent hole expandability.

Claims (4)

탄소(C) 0.05~0.15wt%, 실리콘(Si) 0.3~1.0wt%, 망간(Mn) 0.8~3.0wt%, 알루미늄(Al) 0.3~1.0wt%, 바나듐(V) 0.02~0.20wt%, 니오븀(Nb) 0.01~0.06wt%, 보론(B) 0.0001~0.002wt%, 인(P) 0.02wt% 이하, 황(S) 0.006wt% 이하, 질소(N) 0.015wt% 이하 및 잔부 철(Fe)의 합금조성을 가지며, 0.05 ~ 0.15wt% carbon (C), 0.3 ~ 1.0wt% silicon (Si), 0.8 ~ 3.0wt% manganese (Mn), 0.3 ~ 1.0wt% aluminum (Al), 0.02-0.20wt% vanadium (V), Niobium (Nb) 0.01 ~ 0.06wt%, Boron (B) 0.0001 ~ 0.002wt%, Phosphorous (P) 0.02wt% or less, Sulfur (S) 0.006wt% or less, Nitrogen (N) 0.015wt% or less and balance iron ( Fe) alloy composition, 미세조직은 페라이트와 베이나이트의 2상 조직을 가지는 것을 특징으로 하는 구멍확장성이 우수한 고장력 열연강판.Microstructure has a high tensile strength hot rolled steel sheet, characterized in that it has a two-phase structure of ferrite and bainite. 청구항 1에 있어서,The method according to claim 1, 상기 페라이트 조직의 상분율은 60~70vol%이고,The phase fraction of the ferrite tissue is 60 ~ 70vol%, 상기 베이나이트 조직의 상분율은 30~40vol%으로 되어 있는 것을 특징으로 하는 구멍확장성이 우수한 고장력 열연강판.High tensile strength hot rolled steel sheet, characterized in that the phase ratio of the bainite structure is 30 to 40 vol%. 탄소(C) 0.05~0.15wt%, 실리콘(Si) 0.3~1.0wt%, 망간(Mn) 0.8~3.0wt%, 알루미늄(Al) 0.3~1.0wt%, 바나듐(V) 0.02~0.20wt%, 니오븀(Nb) 0.01~0.06wt%, 보론(B) 0.0001~0.002wt%, 인(P) 0.02wt% 이하, 황(S) 0.006wt% 이하, 질소(N) 0.015wt% 이하 및 잔부 철(Fe)의 합금조성을 가지는 강슬라브를, 0.05 ~ 0.15wt% carbon (C), 0.3 ~ 1.0wt% silicon (Si), 0.8 ~ 3.0wt% manganese (Mn), 0.3 ~ 1.0wt% aluminum (Al), 0.02-0.20wt% vanadium (V), Niobium (Nb) 0.01 ~ 0.06wt%, Boron (B) 0.0001 ~ 0.002wt%, Phosphorous (P) 0.02wt% or less, Sulfur (S) 0.006wt% or less, Nitrogen (N) 0.015wt% or less and balance iron ( Steel slab having an alloy composition of Fe), 1200±50℃의 온도에서 재가열한 후, 열간압연을 실시하고 최종압연온도를 840~880℃로 열간압연을 종료한 후, 권취온도까지 다단냉각하는 것을 특징으로 하 는 구멍확장성이 우수한 고장력 열연강판의 제조방법. After reheating at a temperature of 1200 ± 50 ℃, hot rolling is performed and the final rolling temperature is 840 ~ 880 ℃, and hot rolling is performed, followed by multi-step cooling to coiling temperature. Method of manufacturing steel sheet. 청구항 3에 있어서,The method according to claim 3, 상기 다단 냉각은, The multi-stage cooling is, 열간압연을 종료한 후 20~150℃/s의 냉각속도로 650~700℃까지 냉각하는 1단 냉각과, 이어서 4~15초간의 공냉을 하는 2단 냉각과, 이어서 20~100℃/s의 냉각속도로 400~500℃까지 냉각하는 3단냉각으로 이루어지는 것을 특징으로 하는 구멍확장성이 우수한 고장력 열연강판의 제조방법.After the end of hot rolling, 1st stage cooling to 650 ~ 700 ℃ at the cooling rate of 20 ~ 150 ℃ / s, followed by 2 stage cooling for 4 ~ 15 seconds air cooling, and then 20 ~ 100 ℃ / s Method for producing a high tensile strength hot rolled steel sheet having excellent hole expansion, characterized in that consisting of three stage cooling to 400 ~ 500 ℃ at a cooling rate.
KR1020080106088A 2008-10-28 2008-10-28 High tensile hot -rolled steel sheet having excellent stretch flanging formability, and method for producing the same KR20100047016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080106088A KR20100047016A (en) 2008-10-28 2008-10-28 High tensile hot -rolled steel sheet having excellent stretch flanging formability, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080106088A KR20100047016A (en) 2008-10-28 2008-10-28 High tensile hot -rolled steel sheet having excellent stretch flanging formability, and method for producing the same

Publications (1)

Publication Number Publication Date
KR20100047016A true KR20100047016A (en) 2010-05-07

Family

ID=42274198

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080106088A KR20100047016A (en) 2008-10-28 2008-10-28 High tensile hot -rolled steel sheet having excellent stretch flanging formability, and method for producing the same

Country Status (1)

Country Link
KR (1) KR20100047016A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353745B1 (en) * 2011-12-21 2014-01-22 주식회사 포스코 Hot-rolled steel plate having superior strength and excellent hole expansibility and manufacturing method thereof
CN109207849A (en) * 2018-09-26 2019-01-15 武汉钢铁有限公司 High-strength high-plasticity 1000MPa level hot rolled steel plate and preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353745B1 (en) * 2011-12-21 2014-01-22 주식회사 포스코 Hot-rolled steel plate having superior strength and excellent hole expansibility and manufacturing method thereof
CN109207849A (en) * 2018-09-26 2019-01-15 武汉钢铁有限公司 High-strength high-plasticity 1000MPa level hot rolled steel plate and preparation method

Similar Documents

Publication Publication Date Title
KR101256523B1 (en) Method for manufacturing low yield ratio type high strength hot rolled steel sheet and the steel sheet manufactured thereby
KR20120033008A (en) High strength cold-rolled dual phase steel sheet for automobile with excellent formability and method of manufacturing the cold-rolled multi phase steel sheet
KR101899674B1 (en) High strength steel sheet having excellent burring property in low-temperature region and manufacturing method for same
KR20100001333A (en) High strength hot rolled steel sheet having stretch flangeability and good weldability, and method for producing the same
KR20110046684A (en) High Strength Hot Rolled Steel Plate Excellent In Enlargeability and Ductility and Method for Production thereof
KR20140083787A (en) High-strength hot-rolled steel plate having execellent weldability and bending workbility and method for manufacturing tereof
KR101543918B1 (en) Ultra high strength cold rolled steel sheet having excellent shape property and method for manufacturing the same
KR20100047015A (en) Hot-rolled steel sheet having ultra-high strength, and method for producing the same
KR101066691B1 (en) Hot-rolled steel sheet having ultra-high strength and high burring workability, and method for producing the same
KR101109953B1 (en) High strenth hot rolled steel sheet having excellent elongation-stretch flangeability property, and method for manufacturing the same
KR100957965B1 (en) High Strength Hot Rolled Steel Sheet for Hot Forming with Reduced Cracking in Cooling and Coiling and Manufacturing Method Thereof
KR20100047016A (en) High tensile hot -rolled steel sheet having excellent stretch flanging formability, and method for producing the same
KR101130013B1 (en) High strenth hot rolled steel sheet, and method for manufacturing the same
KR101412262B1 (en) High strength cold-rolled steel sheet for automobile with excellent bendability and formability and method of manufacturing the same
KR101988760B1 (en) Ultra-high strength steel sheet having excellent formability, and method for manufacturing thereof
KR101076082B1 (en) Hot-rolled steel sheet having ultra-high strength, and method for producing the same
KR20040059293A (en) High strength cold rolled steel sheet having superior workability
KR20210147254A (en) Cold rolled steel sheet and method of manufacturing the same
KR101153696B1 (en) Steel Sheet having Excellent Yield Strength and Stretch Flange Ability and Manufacturing Method Thereof
KR20100047001A (en) Hot-rolled steel sheet having ultra-high strength, and method for producing the same
JP2021502480A (en) Ultra-high-strength, high-ductility steel sheet with excellent cold formability and its manufacturing method
KR20190079299A (en) High strength cold rolled steel sheet and manufacturing method thereof
KR101149193B1 (en) Steel sheet having excellent formability and galvanizing property, and method for producing the same
KR101412365B1 (en) High strength steel sheet and method of manufacturing the same
KR20090103619A (en) High-strength steel sheet, and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20110805

Effective date: 20120209