KR20100035835A - High strenth hot rolled steel sheet having excellent elongation-stretch flangeability property, and method for manufacturing the same - Google Patents
High strenth hot rolled steel sheet having excellent elongation-stretch flangeability property, and method for manufacturing the same Download PDFInfo
- Publication number
- KR20100035835A KR20100035835A KR1020080095191A KR20080095191A KR20100035835A KR 20100035835 A KR20100035835 A KR 20100035835A KR 1020080095191 A KR1020080095191 A KR 1020080095191A KR 20080095191 A KR20080095191 A KR 20080095191A KR 20100035835 A KR20100035835 A KR 20100035835A
- Authority
- KR
- South Korea
- Prior art keywords
- steel sheet
- niobium
- elongation
- vanadium
- rolled steel
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
본 발명은 열연강판에 관한 것으로, 보다 상세하게는 연신율과 신장플랜지성이 우수한 인장강도 600MPa 이상의 고장력 열연강판 및 그 제조방법에 관한 것이다. The present invention relates to a hot-rolled steel sheet, and more particularly, to a high tensile strength hot-rolled steel sheet having a tensile strength of 600MPa or more excellent in elongation and elongation flange, and a manufacturing method thereof.
철강수요의 대부분을 차지하고 있는 자동차 산업은 전 세계적으로 자동차 연비향상과 환경규제에 대한 법규를 만족시키기 위해 차체 중량을 감소시키고 강성을 증대시키려는 노력을 하고 있다. The automobile industry, which accounts for the majority of steel demand, is trying to reduce the weight of the vehicle body and increase its rigidity in order to meet the regulations on automobile fuel efficiency and environmental regulations worldwide.
최근 자동차업계에서는 자동차 경량화 및 소비자들의 욕구를 충족을 위해 고강도이면서 차체중량 저감 효과가 큰 열연강판의 수요가 증가하고 있다. 이에 따라 자동차의 경량화에 따른 고가공성 고장력 열연강판을 제조하기 위해 다양한 연구들이 진행되고 있다. Recently, in the automotive industry, demand for hot rolled steel sheets having high strength and large body weight reduction effects is increasing to lighten automobiles and satisfy consumer demands. Accordingly, various studies have been conducted to manufacture high-processability high tensile strength hot rolled steel sheets according to the weight reduction of automobiles.
일반적으로 자동차에서 복잡한 형상의 제조가 필요한 부분에는 냉연강판이 주로 사용되고, 자체의 보강재나 휠(Wheel), 섀시(Chassis) 등의 구조부재에는 열 연강판이 주로 사용된다. In general, the cold rolled steel sheet is mainly used in the part requiring the manufacture of a complex shape in the automobile, and the hot rolled steel sheet is mainly used in the structural member such as its reinforcement, wheel, chassis.
열연강판의 가공성은 굽힘성, 장출성 및 신장플랜지성 등으로 구분하고 있는데, 자동차의 휠(Wheel), 디스크(Disk), 로워암(Lower Arm) 등의 자동차용 섀시부품에서 요구되는 성질은 신장플랜지성이다. 홀 확장성으로 평가되는 신장플랜지성은 강판의 미세조직과 연관이 있는 것으로 알려져 있다. The machinability of hot rolled steel is divided into bendability, elongation property, and elongation flange property. The properties required for automotive chassis parts such as wheel, disk, and lower arm of an automobile are elongated. It is flangeable. The elongated flangeability, which is evaluated as the hole expandability, is known to be associated with the microstructure of the steel sheet.
하지만 최근 범용으로 사용되고 있는 석출경화형 열연강판의 경우 강도가 증가함에 따라 연신율 및 신장플랜지성이 저하되어 자동차 섀시부품에 적용하기에는 문제가 있다. However, the precipitation hardening hot rolled steel sheet, which is widely used in recent years, has a problem in that it is applied to automobile chassis parts because elongation and elongation flange deteriorate as strength increases.
이러한 문제를 개선하기 위한 종래의 기술로는 일본특허 특개소 57-70257호, 평6-49591호, 평6-293910호, 일본특허 JP91358007 및 대한민국 공개특허공보 2003-55339호가 있다.Conventional techniques for improving this problem include Japanese Patent Laid-Open Nos. 57-70257, 6-49591, 6-293910, Japanese Patent JP91358007, and Korean Patent Publication No. 2003-55339.
일본특허 특개소 57-70257호에서는 강판의 조직을 페라이트, 마르텐사이트 및 베이나이트의 3상 조직으로 만드는 방법을 제시하고 있다. 이러한 방법은 마르텐사이트의 일부를 베이나이트로 대체하는 것으로 연성의 향상과 신장플랜지성을 개선하고자 한 것이다. Japanese Patent Application Laid-Open No. 57-70257 discloses a method of making a steel sheet structure into a three-phase structure of ferrite, martensite and bainite. This method is to replace part of martensite with bainite to improve the ductility and extension flange.
강도×신장플랜지성 밸런스의 경우에는 일본 철강회사인 NKK등에서 제안된 페라이트-베이나이트 복합조직강이 가장 우수한 것으로 알려져 있다. In the case of strength x extension flange balance, the ferritic-bainite composite steel proposed by NKK, a Japanese steel company, is known to be the best.
NKK 철강회사의 특허는 열간압연 후 런 아웃 테이블상에서 3단 제어냉각패턴 및 400~500℃로 냉각하여 권취는 것으로서 페라이트와 베이나이트상을 형성하여 상간 경도차이를 최소화하고 입계 세멘타이트의 생성을 억제하여 강도×신장플랜지성 밸런스가 훌륭한 열연강판의 제조방법을 제시하고 있다. NKK Steel Company's patent is a three-stage controlled cooling pattern on a run-out table after hot rolling and cooling to 400 ~ 500 ℃ to form a ferrite and bainite phase to minimize the difference in hardness between phases and to suppress the formation of grain boundary cementite. Therefore, a method of manufacturing a hot rolled steel sheet having a good balance of strength and extension flange is proposed.
하지만 이 복합조직강은 연신율이 낮고, 열연강판의 고강도화를 위하여 고용강화원소 또는 석출강화원소가 첨가되면 연성저하가 더욱 증대되는 문제점이 있다. 그리고 열연공정 중 일정한 공냉 유지구간을 필요로 하므로 런 아웃 테이블의 길이가 짧을 경우 적용하기가 어려운 문제점이 있다. However, this composite tissue steel has a low elongation, and when the solid solution strengthening element or precipitation strengthening element is added to increase the strength of the hot rolled steel sheet has a problem that the ductility decrease is further increased. In addition, there is a problem that it is difficult to apply when the length of the run-out table is short, because a constant air cooling maintenance section is required during the hot rolling process.
본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 합금원소의 조절과 열연공정의 제어로 연신율과 신장플랜지성이 우수한 고장력 열연강판 및 그 제조방법을 제공하는 것이다. . The present invention is to solve the conventional problems as described above, it is an object of the present invention to provide a high-strength hot rolled steel sheet excellent in elongation and elongation flange by the control of the alloying element and the control of the hot rolling process and a manufacturing method thereof. .
상기한 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은 탄소(C): 0.05~0.10wt%, 실리콘(Si): 0.01~0.5wt%, 망간(Mn): 0.8~2.0wt%, 알루미늄(Al): 0.005~0.05wt%, 바나듐(V): 0.02~0.1wt%, 니오븀(Nb): 0.01~0.05wt%, 질소(N): 0.015wt% 이하, 황(S): 0.006wt% 이하를 포함하고, 나머지 철(Fe) 및 기타 불가피한 불순물의 합금조성을 가진다. According to a feature of the present invention for achieving the above object, the present invention is carbon (C): 0.05 ~ 0.10wt%, silicon (Si): 0.01 ~ 0.5wt%, manganese (Mn): 0.8 ~ 2.0wt%, Aluminum (Al): 0.005 to 0.05 wt%, Vanadium (V): 0.02 to 0.1 wt%, Niobium (Nb): 0.01 to 0.05 wt%, Nitrogen (N): 0.015 wt% or less, Sulfur (S): 0.006 wt It contains less than%, and has an alloy composition of the remaining iron (Fe) and other unavoidable impurities.
상기 니오븀(Nb)과 바나듐(V)은 1:3~5의 비율로 만족하는 범위로 함유된다. The niobium (Nb) and vanadium (V) are contained in a range satisfying the ratio of 1: 3-5.
탄소(C): 0.05~0.10wt%, 실리콘(Si): 0.01~0.5wt%, 망간(Mn): 0.8~2.0wt%, 알루미늄(Al): 0.005~0.05wt%, 바나듐(V): 0.02~0.1wt%, 니오븀(Nb): 0.01~0.05wt%, 질소(N): 0.015wt% 이하, 황(S): 0.006wt% 이하를 포함하고, 나머지 철(Fe) 및 기타 불가피한 불순물로 이루어지며, 상기 니오븀(Nb)과 바나듐(V)은 1:3~5의 비율로 함유되는 합금조성을 갖는 강슬라브를 Ac3점 이상의 온도에서 재가열하여 1~2시간 유지하고, 840~900℃에서 열간 마무리 압연을 행하여 600~640℃ 사이에서 권취한다.Carbon (C): 0.05-0.10 wt%, Silicon (Si): 0.01-0.5 wt%, Manganese (Mn): 0.8-2.0 wt%, Aluminum (Al): 0.005-0.05 wt%, Vanadium (V): 0.02 ~ 0.1 wt%, niobium (Nb): 0.01 ~ 0.05 wt%, nitrogen (N): 0.015wt% or less, sulfur (S): 0.006wt% or less, consisting of the remaining iron (Fe) and other unavoidable impurities The niobium (Nb) and vanadium (V) are reheated to a steel slab having an alloy composition in a ratio of 1: 3 to 5 at a temperature of Ac3 or more and maintained for 1 to 2 hours, and hot finished at 840 to 900 ° C. It rolls and winds up between 600-640 degreeC.
본 발명은 니오븀과 바나듐의 함량조절과 열간압연의 공정조건인 열간압연 마무리온도, 권취온도를 제어하여 인장강도와 연신율 및 신장플랜지성으로 대변되는 홀확장성이 향상된 강판을 제조한다. 따라서 소비자의 욕구를 다양하게 반영한 디자인의 자동차용 강판을 제공할 수 있고, 우수한 가공성을 이용하여 원하는 자동차용 부품으로 제조가 용이한 효과가 있다. The present invention manufactures a steel sheet having improved hole expandability represented by tensile strength, elongation and elongation flange by controlling the content of niobium and vanadium and controlling the hot rolling finish temperature and winding temperature, which are the process conditions of hot rolling. Therefore, it is possible to provide a steel sheet for a vehicle having a design that variously reflects the desires of the consumer, and has an effect of easily manufacturing into desired automotive parts using excellent processability.
이하 본 발명에 의한 연신율과 신장플랜지성이 우수한 고장력 열연강판 및 그 제조방법의 바람직한 실시예를 상세하게 설명한다.Hereinafter, a preferred embodiment of a high tensile strength hot rolled steel sheet excellent in elongation and stretch flange according to the present invention and a method of manufacturing the same will be described in detail.
본 발명의 열연강판은 탄소(C): 0.05~0.10wt%, 실리콘(Si): 0.01~0.5wt%, 망간(Mn): 0.8~2.0wt%, 알루미늄(Al): 0.005~0.05wt%, 바나듐(V): 0.02~0.1wt%, 니오븀(Nb): 0.01~0.05wt%, 질소(N): 0.015wt% 이하, 황(S): 0.006wt% 이하를 포함하고, 나머지 철(Fe) 및 기타 불가피한 불순물로 구성된다. Hot-rolled steel sheet of the present invention is carbon (C): 0.05 ~ 0.10wt%, silicon (Si): 0.01 ~ 0.5wt%, manganese (Mn): 0.8 ~ 2.0wt%, aluminum (Al): 0.005 ~ 0.05 wt%, Vanadium (V): 0.02 to 0.1 wt%, niobium (Nb): 0.01 to 0.05 wt%, nitrogen (N): 0.015 wt% or less, sulfur (S): 0.006 wt% or less, and remaining iron (Fe) And other unavoidable impurities.
그리고, 상기와 같은 조성을 갖는 강슬라브를 가열로에서 1200℃ 이상으로 가열하고 840~900℃의 마무리 온도로 열간압연을 종료한 후 600~640℃ 온도범위에서 권취한다. Then, the steel slab having the composition as described above is heated to 1200 ° C or more in a heating furnace and finished hot rolling at a finishing temperature of 840 to 900 ° C and wound up at a temperature range of 600 to 640 ° C.
본 발명은 우수한 용접성을 확보하기 위해 Pcm(용접성 지수)가 0.25이하를 만족하는 성분계를 바탕으로 한다. Pcm값이 낮을수록 용접 저온균열 가능성은 감소하므로 용접조건에서 저온균열을 형성시키지 않고 용접하기 위해 Pcm 값이 0.25 이하가 되도록 탄소(C), 실리콘(Si), 망간(Mn)의 함량을 최적화한다.The present invention is based on the component system satisfies 0.25 or less in order to ensure excellent weldability. The lower the Pcm value, the lower the likelihood of cold cracking in welding, so optimize the contents of carbon (C), silicon (Si), and manganese (Mn) so that the Pcm value is 0.25 or less for welding without forming cold cracks under welding conditions. .
그리고, Pcm 값을 0.25 이하로 낮춘 강에서 강도를 높이기 위해 니오븀(Nb) 과 바나듐(V)의 합금성분 비율을 조절하고 신장플랜지성을 확보하기 위해 권취온도를 제어한다. And, in order to increase the strength in the steel lowering the Pcm value to 0.25 or less, the alloying ratio of niobium (Nb) and vanadium (V) is controlled and the winding temperature is controlled to secure the elongation flangeability.
도 1에 도시된 바에 의하면, 열간 마무리 압연 후의 권취온도에 따라 강판 조직이 달라진다. 여기서, 권취온도에 따른 강판의 조직은 바나듐을 니오븀의 3~5배 범위로 함유한 경우를 기준으로 한 것이다. As shown in Fig. 1, the steel sheet structure varies depending on the winding temperature after hot finishing rolling. Here, the structure of the steel sheet according to the coiling temperature is based on the case that contains vanadium in the range of 3 to 5 times of niobium.
도 1의 냉각곡선에서 A 영역은 오스테나이트, B 영역은 페라이트, C 영역은 펄라이트, D 영역은 베이나이트, E 영역은 마르텐사이트 변태 구간을 나타낸다. 열간 마무리 압연 후 C 영역으로 냉각하면 페라이트와 펄라이트의 2상 조직(a)이 형성되고, D 영역으로 냉각하면 페라이트+베이나이트(b) 또는 잔류오스테나이트를 가진 변태유기소성(TRIP)(c)강이 형성되며 E 영역으로 냉각하면 마르텐사이트 조직을 가진 2상조직(DP)강(d)이 형성된다. In the cooling curve of FIG. 1, A region is austenite, B region is ferrite, C region is pearlite, D region is bainite, and E region is a martensite transformation section. Cooling in the C region after hot finish rolling forms a two-phase structure (a) of ferrite and perlite, and cooling in the D region is transformed organic plasticity (TRIP) with ferrite + bainite (b) or residual austenite (c). The steel is formed, and cooling to the E region forms a two-phase (DP) steel (d) having a martensite structure.
따라서 본 발명에서는 홀확장성에 큰 영향을 미치는 것으로 알려져 있는 제 2상을 베이나이트 조직이 아닌 중간의 공냉구간 없이 일반 냉각을 통한 후 권취온도를 제어하여 강판의 조직을 펄라이트와 폴리고날페라이트의 조직이 되도록 한다.Therefore, in the present invention, the second phase, which is known to have a great influence on the hole expandability, is controlled by the winding temperature after general cooling without intermediate air cooling section, not the bainite structure. Be sure to
니오븀과 바나듐은 1:3~5의 비율로 첨가된다. 결정립 미세화 효과에 영향이 큰 니오븀을 저감하고 저온 석출이 활발한 바나듐 원소를 첨가하여 저온 석출을 최대한 조장한다. 따라서 권취온도의 경우 600~640℃ 온도범위 석출이 가장 활발한 온도에서 권취를 행한다. 또한, 바나듐은 니오븀 함량의 3배 미만으로 첨가되면 고강도 확보가 어렵고, 니오븀 함량의 5배 이상으로 첨가되면 효과 포화로 원가상승을 유발한다. Niobium and vanadium are added at a ratio of 1: 3-5. Niobium, which has a great influence on the grain refining effect, is reduced, and vanadium element which is active in low temperature precipitation is added to promote low temperature precipitation. Therefore, in the case of winding temperature, winding is performed at the temperature at which the precipitation of the temperature range of 600 to 640 ° C. is most active. In addition, vanadium is difficult to secure high strength when added to less than three times the niobium content, and when added to more than five times the niobium content causes a cost increase due to the effect saturation.
그리고, 바나듐의 석출이 활발한 온도범위로 권취온도를 제어하여 폴리고날페라이트와 펄라이트 및 미세 석출물로 이루어진 조직이 되도록 하는 것이다. And, by controlling the winding temperature in the active temperature range of vanadium is to be a structure consisting of polygonal ferrite, pearlite and fine precipitates.
미세조직은 평균입계사이즈가 2~20㎛인 폴리고날페라이트가 80~85%로 형성되고, 제 2상인 펄라이트가 15~20%로 형성된다. 폴리고날페라이트는 둥근 다각형 형상의 조직으로 페라이트 보다 신장플랜지성에 더 효과적이다. The microstructure is formed of 80 to 85% of polygonal ferrite having an average grain size of 2 to 20 µm, and 15 to 20% of pearlite as the second phase. Polygonal ferrite is a round polygonal structure that is more effective for stretching flange than ferrite.
본 발명의 기본성분이 되는 합금원소들의 기능과 함유량은 다음과 같다. The function and content of the alloying elements which are the basic components of the present invention are as follows.
탄소(C): 0.05~0.10wt%Carbon (C): 0.05-0.10wt%
탄소는 강판의 강도확보에 불가결한 원소로서, 다량 첨가시 신장플랜지성 및 스팟용접성이 저하되므로 그 상한치를 0.1wt%로 한다. 하지만 소재의 강도를 확보하기 위해 0.05wt%이상은 첨가되어야 한다. Carbon is an indispensable element for securing the strength of the steel sheet, and the upper limit thereof is made 0.1 wt% because the elongated flange property and the spot weldability deteriorate when a large amount is added. However, more than 0.05wt% should be added to secure the strength of the material.
실리콘(Si): 0.01~0.5wt%Silicon (Si): 0.01 ~ 0.5wt%
실리콘은 페라이트에 고용되는 페라이트 안정화 원소로 연성의 열화없이 강도를 상승시키는 고용강화원소이다. 실리콘은 0.01wt% 미만 첨가시 페라이트의 강도가 감소하므로 0.01wt% 이상의 첨가가 필요하다. 하지만 과잉첨가시 열연강판의 표면에 산화스케일에 의한 표면결함을 발생시키고 용접성을 저하시키므로 그 상한치를 0.5 wt%로 한다. Silicon is a ferrite stabilizing element that is a solid solution element that raises the strength without deterioration of ductility as a ferrite stabilizing element employed in ferrite. Since the strength of ferrite decreases when silicon is added below 0.01 wt%, it is necessary to add 0.01 wt% or more. However, when the additive is excessively added, the surface defect of the hot-rolled steel sheet is generated by oxidation scale and the weldability is lowered, so the upper limit thereof is 0.5 wt%.
망간(Mn): 0.8~2.0wt%Manganese (Mn): 0.8-2.0 wt%
망간은 고용강화와 소입성을 개선하는 효과를 통해 강도를 확보한다. 망간은 펄라이트 변태를 억제하고 베이나이트조직을 얻기 위해 불가결한 성분이지만 그 함량이 0.8wt%미만이면 효과가 미비하고 2.0wt%초과 첨가되면 용접성이 저하된다. 또한 2.0wt%초과 첨가시 폴리고폴날 페라이트가 충분히 생성되지 않고, 열간압연시 가공성 열화를 초래하므로 그 함유량을 2.0wt%이하로 제한한다. Manganese gains strength through strengthening employment and improving hardenability. Manganese is an indispensable component for inhibiting pearlite transformation and obtaining bainite structure, but if the content is less than 0.8 wt%, the effect is insufficient. In addition, when the content exceeds 2.0wt%, the polygonal ferrite is not sufficiently produced and the workability is degraded during hot rolling, so the content is limited to 2.0wt% or less.
알루미늄(Al): 0.005~0.05wt%Aluminum (Al): 0.005 ~ 0.05wt%
알루미늄은 탈산제 및 탄화물형성 원소이다. 알루미늄은 강 중의 질소와 결합하여 AlN을 형성시켜 조직을 미세화하며 강 중의 산소를 제거함으로써 슬라브의 제조시 균열을 방지하는 기능을 갖는다. 알루미늄은 0.005wt% 미만으로 첨가되면 그 효과가 미비하고, 과다 첨가시에는 가공성을 저해하므로 그 상한치를 0.05wt%로 제한한다. Aluminum is a deoxidizer and a carbide forming element. Aluminum combines with nitrogen in the steel to form AlN to refine the structure and remove oxygen in the steel to prevent cracking in the manufacture of the slab. When aluminum is added at less than 0.005 wt%, its effect is insignificant, and when added excessively, workability is inhibited, so the upper limit thereof is limited to 0.05 wt%.
바나듐(V): 0.02~0.1wt%Vanadium (V): 0.02 to 0.1 wt%
바나듐은 니오븀과 같이 탄질화물 원소로 강의 강도를 높이기 위해 첨가된다. 바나듐은 0.02wt%미만으로 첨가되면 미세하게 분산된 복합탄화물의 양이 충분하지 않고, 0.1wt%를 초과하여 첨가되면 석출량이 포화되어 강도증가를 더 이상 보이지 않는다. 이에 따라 복합탄화물이 조대해져 강도가 저하되므로 바나듐의 상한치는 0.1%로 제한한다. Vanadium is a carbonitride element, such as niobium, added to increase the strength of the steel. If the amount of vanadium is less than 0.02 wt%, the amount of finely dispersed complex carbides is not sufficient. If the amount of vanadium is added more than 0.1 wt%, the amount of precipitation is saturated and no increase in strength is observed. As a result, the composite carbide becomes coarse and the strength decreases, so the upper limit of vanadium is limited to 0.1%.
니오븀(Nb): 0.01~0.05wt%Niobium (Nb): 0.01 to 0.05 wt%
니오븀은 C또는 N과 결합하여 NbC, NbN 석출물을 석출한다. 이러한 석출물은 열간압연시 입계성장을 가로막아 결정립사이즈를 미세화한다. 고용원소인 니오븀은 강도향상 역할을 하고 오스테나이트가 마르텐사이트보다 저온변태상으로 변태하는 것을 막는다. Niobium combines with C or N to precipitate NbC and NbN precipitates. These precipitates prevent grain boundary growth during hot rolling, thereby miniaturizing the grain size. Niobium, an element of employment, acts as a strength enhancer and prevents austenite from transforming to a lower temperature than martensite.
니오븀은 0.01wt%미만 첨가되면 석출량이 너무 적어 석출경화로 인한 강도향상의 효과를 기대할 수 없고, 첨가량이 0.05wt%를 초과하면 항복강도를 증가시켜 연성을 감소시키게 된다. 따라서 니오븀의 함량은 0.01~0.05wt%범위로 첨가되는 것이 바람직하다. When niobium is added less than 0.01wt%, the precipitation amount is too small to expect the effect of strength improvement due to precipitation hardening, and when the addition amount exceeds 0.05wt%, the yield strength is increased to decrease the ductility. Therefore, the content of niobium is preferably added in the range of 0.01 ~ 0.05 wt%.
질소(N): 0.015wt% 이하Nitrogen (N): 0.015 wt% or less
질소는 오스테나이트 형성을 증가시키고, 질화알루미늄(AlN) 또는 질화티타늄(TiN)을 형성하여 강도를 증가시키므로 그 첨가량을 가급적 낮게 유지하는 것이 유리하다. 특히, 질소는 과다 첨가시 연신율을 저감시켜 가공성을 저해하므로 0.015wt% 이하의 범위로 제한하는 것이 바람직하다. Nitrogen increases austenite formation and forms aluminum nitride (AlN) or titanium nitride (TiN) to increase its strength, so it is advantageous to keep the addition amount as low as possible. In particular, nitrogen is preferably limited to the range of 0.015 wt% or less since the elongation is reduced when excessively added to inhibit workability.
황(S): 0.006wt% 이하Sulfur (S): 0.006wt% or less
황은 인성 및 용접성을 저해하고 사상압연에서 MnS 비금속 개재물을 증가시켜 강의 가공중 크랙을 발생하며 과다 첨가시 조대한 개재물을 증가시켜 피로특성을 열화하는 원인이 된다. 황은 0.006wt%이상 첨가되면 신장플랜지성을 약화시키므로 그 함량을 0.006wt%이하로 제한한다. 하지만 황은 첨가하지 않는 것이 가장 바 람직하다. Sulfur inhibits toughness and weldability, increases MnS non-metallic inclusions in finishing rolling, causing cracks during processing of steel, and increases coarse inclusions when excessively added, thereby causing fatigue properties. Sulfur weakens the elongation flange when added more than 0.006wt%, so the content is limited to 0.006wt% or less. However, it is best not to add sulfur.
본 발명은 상기 강판의 성분들을 함유하고, 나머지는 실질적으로 철(Fe) 및 불가피한 원소들이며, 이때, 불가피한 불순물의 혼입은 최소로 한다. The present invention contains the components of the steel sheet, with the remainder being substantially iron (Fe) and unavoidable elements, where the incorporation of unavoidable impurities is minimized.
상술한 조성에 의해 페라이트 보다 바람직하게는 폴리고날페라이트와 펄라이트가 기본인 2상 조직강을 제조하며, 상기 2상 조직강은 NbC, VC로 이루어지는 석출물을 생성하여 강도를 확보하고 페라이트 입자를 충분히 성장시켜 홀확장성인 신장플랜지성이 저하되지 않도록 한다. According to the above-described composition, two-phase tissue steel, preferably based on polygonal ferrite and pearlite, is prepared, and the two-phase tissue steel generates precipitates consisting of NbC and VC to secure strength and sufficiently grow ferrite particles. This prevents the extension of the extension flange, which is the hole expansion property, from being lowered.
상술한 바와 같은 조성을 갖는 슬라브는 제강공정을 통해 용강을 얻은 다음에 주괴 또는 연속주조공정을 통해 제조되며, 여기서 제조되는 강판의 연신율과 신장플랜지성은 금속의 조직을 제어하는 공정에 따라 크게 변화되므로 이하, 각 공정별 제조조건을 상세히 설명한다. The slabs having the composition as described above are obtained by ingot or continuous casting process after obtaining molten steel through the steelmaking process, the elongation and elongation flange of the steel sheet produced here is greatly changed according to the process of controlling the structure of the metal Hereinafter, manufacturing conditions for each process will be described in detail.
[가열로 공정][Heating process]
주조시 편석된 성분을 재고용하기 위하여 슬라브를 가열로에서 Ac3이상의 온도에서 가열한다. 재가열온도는 낮을 경우 편석된 성분이 재고용되지 못하고, 과도하게 높을 경우 오스테나이트 결정입도가 증가하여 페라이트 입도가 조대화되므로 강도가 감소된다. In order to reclaim segregated components during casting, the slabs are heated at a temperature of Ac 3 or higher in a furnace. If the reheating temperature is low, the segregated components are not reusable. If the reheating temperature is excessively high, the austenite grain size increases and the ferrite grain size is coarsened, thereby decreasing the strength.
슬라브는 두께에 따라 가열 온도 유지시간이 조절가능하다. 예를 들어 두꺼워질수록 재가열시간을 길게 유지하고 두께가 얇아질수록 유지시간을 짧게 한다. 적정유지시간은 1~2시간이며 그 이상 유지할 경우에는 경제적으로 비효율적이고, 너무 짧을 경우에는 균질화 정도가 미비하여 품질이 나빠지는 문제가 발생할 수 있 다. The slab is adjustable in heating temperature holding time according to the thickness. For example, the thicker it is, the longer the reheating time is. The thinner the thickness, the shorter the time. The proper holding time is 1 ~ 2 hours, and if it is kept longer, it may be economically inefficient. If it is too short, the quality may be deteriorated due to the lack of homogenization.
열간압연, 냉각, 권취 공정;Hot rolling, cooling and winding processes;
가열로 공정에서 재가열된 슬라브를 840~900℃에서 열간압연을 마무리한 후 20~150℃/sec의 냉각속도로 급냉한 후 600~640℃에서 권취한다.The slab reheated in the furnace process is hot rolled at 840 ~ 900 ℃, quenched at a cooling rate of 20 ~ 150 ℃ / sec, and wound up at 600 ~ 640 ℃.
마무리 열간압연 온도는 변태 후 페라이트의 입도에 영향을 미친다. 마무리 압연온도가 840℃이하이면 압연시 압하력이 과다하여 압연 통판성에 좋지 못한 영향을 끼치게 되고, 900℃를 초과하게 되면 조직이 너무 조대해져 강도와 연성의 저하를 가져오게 된다. 따라서 840℃~900℃의 온도범위로 열간압연 제어하는 것이 바람직하다.The finish hot rolling temperature affects the particle size of the ferrite after transformation. If the finish rolling temperature is 840 ℃ or less, excessive rolling force during rolling has an adverse effect on the rolling sheetability, and if it exceeds 900 ℃, the structure becomes too coarse, leading to a decrease in strength and ductility. Therefore, it is preferable to control hot rolling in the temperature range of 840 degreeC-900 degreeC.
홀확장성을 좋게 하기 위해서는 기존의 경우 권취온도를 450~500℃ 사이에서 권취를 행하여 페라이트 베이나이트의 2상 조직으로 만들었다. 그러나 발명재의 경우 열연강판의 조직이 미세한 석출물을 갖는 폴리고날페라이트와 퍼얼라이트를 갖도록 600~640℃로 권취하였다. 도 1에서 확인되듯이, 권취온도가 400℃미만이면 오스테나이트상이 모두 마르텐사이트로 변할 수 있고, 640℃를 초과하면 입계에 시멘타이트가 발생할 수 있다, In order to improve the hole expandability, in the conventional case, the coiling temperature was wound at 450 to 500 ° C. to form a two-phase structure of ferrite bainite. However, in the case of the inventive material, the structure of the hot rolled steel sheet was wound at 600 to 640 ° C. so as to have polygonal ferrite and pearlite having fine precipitates. As shown in Figure 1, if the coiling temperature is less than 400 ℃ all austenite phase can be changed to martensite, if it exceeds 640 ℃ cementite may occur at the grain boundary,
즉, 권취온도가 기준치보다 낮을 경우에는 강도의 급격한 상승으로 가공성 및 홀확장성으로 대변되는 신장플랜지성이 확보되지 않는다.That is, when the coiling temperature is lower than the reference value, the elongated flange property represented by workability and hole expandability is not secured due to the rapid increase in strength.
이하, 상술한 연신율과 신장플랜지성이 우수한 고장력 열연강판 및 그 제조방법을 발명예를 통해 비교예와 비교하여 설명하기로 한다. Hereinafter, the high-strength hot-rolled steel sheet excellent in elongation and extension flange described above and a method of manufacturing the same will be described by comparing the present invention with a comparative example.
표 1은 본 발명의 발명 예와 비교 예의 성분비를 나타낸 것이고, 표 2는 표 1의 발명 예와 비교 예에 의해 제조된 시편의 기계적 성질을 측정한 결과를 나타낸 것이다.Table 1 shows the component ratios of the inventive examples and comparative examples, Table 2 shows the results of measuring the mechanical properties of the specimen prepared by the inventive examples and comparative examples of Table 1.
[FDT: 열간압연 마무리 온도, CT:권취온도, TS(MPa):인장강도, YS(MPa):항복강도, EL(%):연신율, λ:홀 확장성(신장플랜지성)을 나타내는 지수][FDT: Hot Rolling Finish Temperature, CT: Winding Temperature, TS (MPa): Tensile Strength, YS (MPa): Yield Strength, EL (%): Elongation, λ: Hole Extensibility (Elongation Flange)]
표 2는 표 1의 조성을 가지는 강슬라브를 840~900℃에서 마무리 열간 압연을 한 다음 600~640℃로 냉각하여 권취한 강판의 시편을 채취하여 강도와 연신율 및 홀확장성 등을 측정한 것이다. Table 2 shows the strength, elongation, and hole expandability of steel slabs having the composition shown in Table 1, followed by finishing hot rolling at 840 to 900 ° C., followed by cooling to 600 to 640 ° C ..
발명예 1과 2는 니오븀(Nb)단독 첨가가 아닌 니오븀(Nb), 바나듐(V) 복합첨가 강으로 열간압연 중 재결정에 영향을 주는 니오븀의 함량을 줄이고 대신 바나듐의 함량을 증가시켰으며 권취 후 석출이 최대화되도록 권취온도를 600~640℃로 제어한 것이다. Inventive Examples 1 and 2 are niobium (Nb) and vanadium (V) composite additive steels which are not added with niobium (Nb) alone but instead reduce the content of niobium that affects recrystallization during hot rolling and instead increase the content of vanadium. Winding temperature is controlled to 600 ~ 640 ℃ to maximize precipitation.
표 2를 살펴보면, 비교예1을 기준으로 한 니오븀과 바나듐의 함량분포와, 권취온도의 제어에 따라 열연강판의 연신율 및 홀확장성, 그리고 강도특성이 구분됨을 확인할 수 있다. Looking at Table 2, it can be seen that the elongation, hole expandability, and strength characteristics of the hot rolled steel sheet are divided according to the content distribution of niobium and vanadium based on Comparative Example 1, and the control of the winding temperature.
즉, 비교예와 발명예를 동일한 조건으로 비교할 경우, 니오븀과 바나듐이 복합 첨가되고, 니오븀과 바나듐의 함량 비율이 1:3~5 범위로 함유되며 600~640℃의 권취 조건을 만족하는 조건에서 우수한 연신율과 홀확정성 및 인장강도가 확보됨을 확인할 수 있다. 이는 도 2의 권취온도에 따른 인장강도를 측정한 그래프를 통해서도 확인된다. That is, when comparing the comparative example and the invention example under the same conditions, niobium and vanadium are added in combination, the content ratio of niobium and vanadium is contained in the range of 1: 3-5, and satisfying the winding conditions of 600 ~ 640 ℃ It can be confirmed that excellent elongation, hole accuracy and tensile strength are secured. This is also confirmed through a graph measuring tensile strength according to the winding temperature of FIG. 2.
또한, 도 3의 조직사진에서도 비교예1의 경우 니오븀의 400ppm첨가에 따라 페라이트조직이 미세한조직이 형성되는데 반해 발명예2의 경우 니오븀의 함량을 저감하고 조직미세화에 영향이 적은 바나듐을 첨가하므로써 신장플랜지성에 효과적인 폴리고날페라이트와 펄라이트 및 강도향상에 효과적인 미세한 석출물로 이루어진 조직이 형성되었음을 알 수 있다. In addition, in the tissue photograph of FIG. 3, in the case of Comparative Example 1, the ferrite structure was formed in accordance with the addition of 400 ppm of niobium, whereas in the case of Inventive Example 2, the content of niobium was reduced and elongation was added by adding vanadium which has little effect on tissue micronization. It can be seen that a structure consisting of polygonal ferrite and pearlite effective for flangeability and fine precipitates effective in improving strength is formed.
이와 같은 본 발명의 기본적인 기술적 사상의 범주 내에서, 당업계의 통상의 지식을 가진 자에게 있어서는 다른 많은 변형이 가능함은 물론이고, 본 발명의 권리범위는 첨부한 특허청구 범위에 기초하여 해석되어야 할 것이다.Within the scope of the basic technical idea of the present invention, many other modifications are possible to those skilled in the art, and the scope of the present invention should be interpreted based on the appended claims. will be.
도 1은 열간 마무리 압연 후 권취온도에 따른 변태조직을 예측하는 냉각곡선도. 1 is a cooling curve predicting the transformation structure according to the coiling temperature after hot finishing rolling.
도 2는 본 발명에 의한 권취온도에 따른 인장강도를 측정한 그래프. Figure 2 is a graph measuring the tensile strength according to the coiling temperature according to the present invention.
도 3은 표 1의 비교예 1과 발명예2의 미세조직을 비교하여 나타낸 현미경 조직사진. Figure 3 is a microscopic histogram showing the microstructure of Comparative Example 1 and Inventive Example 2 of Table 1.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080095191A KR101109953B1 (en) | 2008-09-29 | 2008-09-29 | High strenth hot rolled steel sheet having excellent elongation-stretch flangeability property, and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080095191A KR101109953B1 (en) | 2008-09-29 | 2008-09-29 | High strenth hot rolled steel sheet having excellent elongation-stretch flangeability property, and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100035835A true KR20100035835A (en) | 2010-04-07 |
KR101109953B1 KR101109953B1 (en) | 2012-02-24 |
Family
ID=42213577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080095191A KR101109953B1 (en) | 2008-09-29 | 2008-09-29 | High strenth hot rolled steel sheet having excellent elongation-stretch flangeability property, and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101109953B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101033394B1 (en) * | 2011-01-04 | 2011-05-09 | 현대하이스코 주식회사 | 440mpa high strengh steel sheet and it's manufacturing method |
KR20160036992A (en) * | 2014-09-26 | 2016-04-05 | 현대제철 주식회사 | High strength hot-rolled steel sheet and method of manufacturing the same |
JP2019533082A (en) * | 2016-09-22 | 2019-11-14 | タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv | Method for producing hot-rolled high-strength steel with excellent stretch flangeability and edge fatigue performance |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3896075B2 (en) | 2002-12-16 | 2007-03-22 | 新日本製鐵株式会社 | Manufacturing method of high-strength hot-rolled steel sheet with excellent stretch flangeability |
JP4510488B2 (en) * | 2004-03-11 | 2010-07-21 | 新日本製鐵株式会社 | Hot-dip galvanized composite high-strength steel sheet excellent in formability and hole expansibility and method for producing the same |
JP4445365B2 (en) * | 2004-10-06 | 2010-04-07 | 新日本製鐵株式会社 | Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability |
JP4967360B2 (en) | 2006-02-08 | 2012-07-04 | 住友金属工業株式会社 | Plated steel sheet for hot pressing, method for manufacturing the same, and method for manufacturing hot press-formed members |
-
2008
- 2008-09-29 KR KR1020080095191A patent/KR101109953B1/en active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101033394B1 (en) * | 2011-01-04 | 2011-05-09 | 현대하이스코 주식회사 | 440mpa high strengh steel sheet and it's manufacturing method |
KR20160036992A (en) * | 2014-09-26 | 2016-04-05 | 현대제철 주식회사 | High strength hot-rolled steel sheet and method of manufacturing the same |
JP2019533082A (en) * | 2016-09-22 | 2019-11-14 | タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv | Method for producing hot-rolled high-strength steel with excellent stretch flangeability and edge fatigue performance |
Also Published As
Publication number | Publication date |
---|---|
KR101109953B1 (en) | 2012-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100711361B1 (en) | High strength hot rolled steel sheet containing high Mn with excellent formability, and method for manufacturing the same | |
KR101256523B1 (en) | Method for manufacturing low yield ratio type high strength hot rolled steel sheet and the steel sheet manufactured thereby | |
KR101225246B1 (en) | High strength cold-rolled dual phase steel sheet for automobile with excellent formability and method of manufacturing the cold-rolled multi phase steel sheet | |
KR20100001333A (en) | High strength hot rolled steel sheet having stretch flangeability and good weldability, and method for producing the same | |
KR101109953B1 (en) | High strenth hot rolled steel sheet having excellent elongation-stretch flangeability property, and method for manufacturing the same | |
KR101066691B1 (en) | Hot-rolled steel sheet having ultra-high strength and high burring workability, and method for producing the same | |
KR100957965B1 (en) | High Strength Hot Rolled Steel Sheet for Hot Forming with Reduced Cracking in Cooling and Coiling and Manufacturing Method Thereof | |
KR101543836B1 (en) | High strength hot rolled steel sheet having excellent impact resistance and formability and method for manufacturing the same | |
KR101130013B1 (en) | High strenth hot rolled steel sheet, and method for manufacturing the same | |
KR20120132834A (en) | High strength cold-rolled steel sheet and method of manufacturing the cold-rolled steel sheet | |
KR20090069880A (en) | High-strength hot rolled steel sheet having excellent stretch flangeability, ductility,and method for manufacturing the same | |
KR20100047001A (en) | Hot-rolled steel sheet having ultra-high strength, and method for producing the same | |
KR101159896B1 (en) | Ultra high strength steel having excellent formability and galvanizing property, and method for producing the same | |
KR101149117B1 (en) | Steel sheet having excellent low yield ratio property, and method for producing the same | |
KR101076082B1 (en) | Hot-rolled steel sheet having ultra-high strength, and method for producing the same | |
KR100723205B1 (en) | A ultra high strength hot-rolled steels for the automotive and manufacturing method | |
KR20200063372A (en) | Plated hot rolled steel sheet and method of manufacturing the same | |
KR20100047016A (en) | High tensile hot -rolled steel sheet having excellent stretch flanging formability, and method for producing the same | |
KR101406561B1 (en) | High strength hot rolled steel sheet having excellent impact toughness and method for manufacturing the same | |
KR20110076431A (en) | Hot rolled high strength steel sheet having excellent workability and method for manufacturing the same | |
KR102366001B1 (en) | High strength hot rolled steel and method of manufacturing the same | |
KR101129863B1 (en) | High strength steel having excellent formability and galvanizing property, and method for producing the same | |
KR20090068993A (en) | High-strength hot- dip galvanized steel sheet having excellent formability and galvanizing property, and method for producing the same | |
KR101149193B1 (en) | Steel sheet having excellent formability and galvanizing property, and method for producing the same | |
KR20090103619A (en) | High-strength steel sheet, and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
J201 | Request for trial against refusal decision | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20141230 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20161228 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20180108 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20190103 Year of fee payment: 8 |