JPH04173945A - Manufacture of high strength hot-dip galvanized steel sheet excellent in bendability - Google Patents

Manufacture of high strength hot-dip galvanized steel sheet excellent in bendability

Info

Publication number
JPH04173945A
JPH04173945A JP29915890A JP29915890A JPH04173945A JP H04173945 A JPH04173945 A JP H04173945A JP 29915890 A JP29915890 A JP 29915890A JP 29915890 A JP29915890 A JP 29915890A JP H04173945 A JPH04173945 A JP H04173945A
Authority
JP
Japan
Prior art keywords
hot
steel sheet
point
bainite
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29915890A
Other languages
Japanese (ja)
Other versions
JP2761095B2 (en
Inventor
Motoyuki Miyahara
宮原 征行
Fukuteru Tanaka
田中 福輝
Tetsuji Miyoshi
三好 鉄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29915890A priority Critical patent/JP2761095B2/en
Publication of JPH04173945A publication Critical patent/JPH04173945A/en
Application granted granted Critical
Publication of JP2761095B2 publication Critical patent/JP2761095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a high strength hot-dip galvanized steel sheet excellent in bendability by subjecting the cold rolled sheet of a low carbon steel to recrystallization annealing under specified temp. conditions and thereafter applying hot-dip galvanizing thereto. CONSTITUTION:The ingot of a low carbon steel having a compsn. contg., by weight, 0.06 to 0.2% C, <0.6% Si, 0.6 to 3.0% Mn, <0.1% P and 0.01 to 0.10% sol.Al, furthermore cong. at least one kind of 0.01 to 1.0% Mo and 0.1 to 1.5% Cr is subjected to hot rolling, pickling and cold rolling by ordinary methods to manufacture a cold rolled sheet. This cold rolled sheet is introduced into a continuous hot-dip galvanizing line and is subjected to recrystallization annealing in such a manner that it is held to (the Ac3 point -50) to 900 deg.C for >=10sec, is cooled from >=600 deg.C to the temp. range of the MS point to 480 deg.C at the cooling rate of the critical cooling rate CR ( deg.C/sec) or above expressed by the formula 1 and is held to the MS point to 480 deg.C for >=10sec. After that, it is hot-dip galvanized and, if required, is heated to the Ac1 point or below, and the galvanizing and Fe in the steel sheet are subjected to alloying treatment.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は曲げ加工性に優れた溶融亜鉛めっき高強度鋼板
の製造方法に関し、より詳しくは、引張強さ60〜12
0 kgf/ mm”級のベイナイト或いはベイナイト
十フェライトを主体とした溶融亜鉛めっき高強度鋼板の
製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing hot-dip galvanized high-strength steel sheets with excellent bending workability, and more specifically,
The present invention relates to a method for producing a hot-dip galvanized high-strength steel sheet mainly composed of 0 kgf/mm'' class bainite or bainite-decaferrite.

(従来の技術) 近年、自動車の安全性及び軽量化対策として加工性の優
れた高強度冷延鋼板が使用されるに至っている。また、
自動車の寿命向上のために冷延鋼板に防錆力の向上が強
く望まれている。最近においては、自動車バンパー、ド
アインパクトビーム等の60〜120 kgf/mm2
級の補強部材についても、スポット溶接性と塗装性に優
れた合金化溶融亜鉛めっき鋼板が要望されている。
(Prior Art) In recent years, high-strength cold-rolled steel sheets with excellent workability have come into use as a measure to improve safety and reduce weight of automobiles. Also,
In order to extend the lifespan of automobiles, it is strongly desired that cold-rolled steel sheets have improved anti-rust properties. Recently, 60 to 120 kgf/mm2 is used for automobile bumpers, door impact beams, etc.
There is also a demand for alloyed hot-dip galvanized steel sheets with excellent spot weldability and paintability for class reinforcement members.

従来、裸鋼板においては、変態組織強化法を用いること
によって高い強度−穴広げ率(λ)バランスを有する6
0kgf/mm2級以上の高強度薄鋼板が得られること
が知られている。例えば、本発明者らの提案による特開
昭63−241115号公報では、水焼入れタイプ連続
焼鈍法を用いて、再結晶加熱温度をAc工以上とし、強
制空冷後、所定の温度から200〜500℃の温度で過
時効処理して、フェライトと焼戻しマルテンサイトから
なる複合組織とし、高い強度−λバランスの高強度薄鋼
板が得られることを開示した。しかし、溶融亜鉛めっき
鋼板の場合には、再結晶焼鈍加熱後、水焼入れすること
が回置であるばかりでなく、Ms点よりも高い温度でめ
っき処理又は合金化処理されるため、焼戻しマルテンサ
イトを用いた高い強度−先バランスの高強度薄鋼板が得
られないという問題がある。
Conventionally, bare steel sheets have a high strength-hole expansion rate (λ) balance by using a transformation structure strengthening method6.
It is known that high-strength thin steel sheets of 0 kgf/mm2 class or higher can be obtained. For example, in Japanese Patent Application Laid-Open No. 63-241115 proposed by the present inventors, a water quenching type continuous annealing method is used, the recrystallization heating temperature is set to Ac or higher, and after forced air cooling, the It was disclosed that a high-strength thin steel sheet with a high strength-λ balance can be obtained by overaging at a temperature of °C to obtain a composite structure consisting of ferrite and tempered martensite. However, in the case of hot-dip galvanized steel sheets, not only is water quenching performed after recrystallization annealing heating, but also the plating or alloying treatment is performed at a temperature higher than the Ms point, so the tempered martensite There is a problem that a high-strength thin steel plate with a high strength-to-edge balance cannot be obtained using the above method.

一方、これまでに、例えば、特開昭55−50455号
公報には、2相域加熱を行い、700℃から溶融めっき
温度まで及び溶融めっき温度から300℃までの冷却速
度を制御することによって組織をフェライト+マルテン
サイトにし、冷間加工性及び時効硬化性の優れた溶融亜
鉛めっき鋼板とすることが提案されている。しかし、こ
の方法においては、引張強さ40〜70kgf/mm2
の材料を対象としており、引張強さ80kgf/mm2
以上ではフェライトが少なくなり、伸びの低下が大きく
なる。また、合金化処理を施すと、ベイナイト或いはパ
ーライトが生成し、目的とする材質を得ることができな
いという欠点がある。
On the other hand, so far, for example, Japanese Patent Application Laid-Open No. 55-50455 discloses that the structure is improved by performing two-phase region heating and controlling the cooling rate from 700°C to the hot-dip plating temperature and from the hot-dip plating temperature to 300°C. It has been proposed to make hot-dip galvanized steel sheets with ferrite + martensite and excellent cold workability and age hardenability. However, in this method, the tensile strength is 40 to 70 kgf/mm2.
The target material is tensile strength 80kgf/mm2.
Above that, the amount of ferrite decreases and the elongation decreases significantly. In addition, when alloying treatment is performed, bainite or pearlite is generated, making it impossible to obtain the desired material.

また、特開昭56−142821号公報には、Ac、点
〜900℃の加熱を行い、冷却速度を規制することによ
り、パーライト及びベイナイトの生成を抑制し、組織を
フェライト・マルテンサイト(一部残留オーステナイト
)の複合組織にすることで、加工性の優れた溶融亜鉛め
っき鋼板を製造する方法が提案されている。しかし、こ
の方法では、フェライトとマルテンサイトの硬さの差が
大きく、穴広げ率が低く、曲げ加工性が低い。特に引張
強さが70kgf/mm2以上ではマルテンサイト体積
率が大きくなり、穴広げ率は著しく低下するため、バン
パー等のチャンネル型成形で行われる厳しい曲げ加工で
は、加工性が不十分である。
In addition, Japanese Patent Application Laid-Open No. 56-142821 discloses that by heating Ac from a point to 900°C and regulating the cooling rate, the formation of pearlite and bainite is suppressed, and the structure is changed to ferrite and martensite (partly A method has been proposed for producing hot-dip galvanized steel sheets with excellent workability by creating a composite structure of retained austenite. However, in this method, the difference in hardness between ferrite and martensite is large, the hole expansion rate is low, and the bending workability is low. In particular, when the tensile strength is 70 kgf/mm2 or more, the martensite volume fraction increases and the hole expansion rate decreases significantly, resulting in insufficient workability in severe bending performed in channel molding of bumpers and the like.

以上のように、曲げ加工性の優れた溶融亜鉛めっき高強
度鋼板を製造するに際しては、高強度を得る点で有利な
複合組織強化が必要となるが、単に、化学成分、冷却速
度等に着目した方法で、曲げ加工性の優れた溶融亜鉛め
っき高強度鋼板を製造することは困難である。
As mentioned above, when manufacturing hot-dip galvanized high-strength steel sheets with excellent bending workability, it is necessary to strengthen the composite structure, which is advantageous in terms of obtaining high strength. It is difficult to produce a hot-dip galvanized high-strength steel sheet with excellent bending workability using this method.

本発明は、上記従来技術の問題点を解決して。The present invention solves the problems of the prior art described above.

複合組織化により高強度にし、且つ優れた曲げ加工性の
高強度溶融亜鉛めっき鋼板を製造する方法を提供するこ
とを目的とするものである。
The object of the present invention is to provide a method for manufacturing a high-strength galvanized steel sheet that has high strength through composite texture and has excellent bending workability.

(課題を解決するための手段) 本発明者らは、曲げ加工性の優れた溶融亜鉛めっき高強
度鋼板の製造における上記問題点を解決するために鋭意
研究を重ねた結果、連続溶融亜鉛めっきラインの再結晶
焼鈍加熱温度、この加熱温度からMs点点上1480℃
以下での冷却速度とその温度での保持時間を制御し、更
には合金化温度を制御することによって、組織をベイナ
イト或いはフェライト・ベイナイトを主体とした均一微
細なベイナイト・フェライト・マルテンサイトの複合組
織にし、曲げ加工性の優れた溶融亜鉛めっき高強度鋼板
が得られることを見い出して、本発明に至ったものであ
る。
(Means for Solving the Problems) As a result of extensive research in order to solve the above-mentioned problems in the production of hot-dip galvanized high-strength steel sheets with excellent bending workability, the present inventors have developed a continuous hot-dip galvanizing line. The recrystallization annealing heating temperature is 1480℃ above the Ms point from this heating temperature.
By controlling the cooling rate and holding time at that temperature, and further controlling the alloying temperature, the structure can be changed to bainite or a uniformly fine composite structure of bainite, ferrite, and martensite mainly composed of ferrite and bainite. The present invention was developed based on the discovery that a hot-dip galvanized high-strength steel sheet with excellent bending workability can be obtained.

すなわち、本発明は、C:0.06〜0.2%、Si:
0.6%以下、Mn:0.6−3.0%、P:0゜1%
以下及びsol.Al:0.01〜0.10%を含有し
、必要に応じて更にMo:0.01〜1.0%及びCr
: 0 、1〜1.5%の少なくとも1種を含有し、残
部が鉄及び不可避的不純物よりなる鋼を、通常の方法で
熱間圧延、酸洗、冷間圧延した後、連続亜鉛めっきライ
ンにて再純晶焼鈍する際に、その加熱温度をA c 3
点−50℃〜9o○℃の温度にて10秒以上保持し、6
00℃以上の温度からMs点以上480’C以下温度域
に lnCR=−1,18Mneq+3.37ここで、Mn
eq=Mn+1.52Mo+1.10Cr+0.10S
i+2.1P で示される臨界冷却速度cR(℃/s)以上の冷却速度
にて冷却した後、Ms点点上1480℃以下温度にて1
0秒以上保持した後、溶融亜鉛めっきを施すことによっ
て、ベイナイトを主体としたベイナイト・フェライト・
マルテンサイト複合組織鋼板を得ることを特徴とする曲
げ加工性の優れた高強度溶融亜鉛めっき鋼板の製造方法
を要旨とするものである。
That is, in the present invention, C: 0.06 to 0.2%, Si:
0.6% or less, Mn: 0.6-3.0%, P: 0°1%
Below and sol. Contains Al: 0.01 to 0.10%, and further contains Mo: 0.01 to 1.0% and Cr as necessary.
: After hot rolling, pickling, and cold rolling a steel containing at least one of 0 and 1 to 1.5%, with the remainder consisting of iron and unavoidable impurities, it is passed through a continuous galvanizing line. When re-crystallizing annealing at A c 3, the heating temperature is A c 3
Hold at a temperature of -50℃ to 9o○℃ for more than 10 seconds, and
From the temperature above 00℃ to the temperature range above 480'C below the Ms point, lnCR=-1,18Mneq+3.37 where, Mn
eq=Mn+1.52Mo+1.10Cr+0.10S
After cooling at a cooling rate equal to or higher than the critical cooling rate cR (℃/s) represented by i+2.1P, 1 at a temperature of 1480℃ or less above the Ms point.
After holding for more than 0 seconds, hot-dip galvanizing produces bainite, ferrite, and bainite-based materials.
The gist of this invention is a method for producing a high-strength galvanized steel sheet with excellent bending workability, which is characterized by obtaining a martensitic composite steel sheet.

また、他の本発明は、前記溶融亜鉛めっきを施した後、
合金化処理をAc1点以下で施すことによって、ベイナ
イトを主体としたベイナイト・フェライト・マルテンサ
イト複合組織鋼板にすることを特徴とするものである。
Further, in another aspect of the present invention, after applying the hot-dip galvanizing,
The steel sheet is characterized by performing alloying treatment at an Ac point of 1 or less to produce a steel sheet with a bainite-ferrite-martensitic composite structure mainly composed of bainite.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

(作用) まず1本発明における鋼の化学成分の限定理由について
説明する。
(Function) First, the reason for limiting the chemical composition of steel in the present invention will be explained.

C: Cは鋼板の強化に不可欠な元素であって、目的とする強
度の鋼板を得るには、少なくともo、06%添加する必
要がある。しかし、0.2%を超えると硬いマルテンサ
イトの体積率が高くなり、曲げ加工性が劣化するばかり
でなく、スポット溶接性も低下する。したがって、C量
は0.06〜0.2%の範囲とする。
C: C is an essential element for strengthening steel sheets, and in order to obtain steel sheets with the desired strength, it is necessary to add at least 0.06%. However, when it exceeds 0.2%, the volume fraction of hard martensite becomes high, which not only deteriorates bending workability but also deteriorates spot weldability. Therefore, the amount of C is set in the range of 0.06 to 0.2%.

Sj: Siはフェライト中の固溶Cをオーステナイト中へ排出
する効果を有するため、フェライトの延性を向上させる
ことができる。しかし、過多に添加するとめっき不良を
生じるので、0゜6%以下で添加する。
Sj: Since Si has the effect of discharging solid solution C in ferrite into austenite, it can improve the ductility of ferrite. However, adding too much will cause plating defects, so it should be added at 0.6% or less.

Mn: Mnはオーステナイト相を安定化し、冷却過程において
硬質相の生成を容易にし、高強度を得るために添加され
る。しかし、添加量が0.6%より少ないと、高強度を
達成するための十分な硬質相を得ることができない。ま
た、3.0%より過多に添加するとバンド組織が発達し
、曲げ加工性が劣化するばかりでなく、コスト高になる
。したがって、Mn量は0.6〜3.0%の範囲とする
Mn: Mn is added to stabilize the austenite phase, facilitate the formation of a hard phase during the cooling process, and obtain high strength. However, if the amount added is less than 0.6%, sufficient hard phase cannot be obtained to achieve high strength. Moreover, if it is added in excess of 3.0%, a band structure develops, which not only deteriorates bending workability but also increases cost. Therefore, the amount of Mn is set in the range of 0.6 to 3.0%.

P: Pは0.02%以上の添加によってSiと同様の作用を
有し、強度と伸びとのバランスを確保するために有効で
あるが、0.1%を超えて添加するとめっき不良等が発
生するので、0.1%以下で添加する。
P: P has the same effect as Si when added in an amount of 0.02% or more, and is effective in ensuring a balance between strength and elongation, but if added in an amount exceeding 0.1%, it may cause plating defects, etc. Therefore, it should be added at 0.1% or less.

sol、 A Q : AQは鋼の脱酸のために添加されるが、過多に添加して
も、効果が飽和するのみならず、めっき不良を招くので
、添加量はsol.Alで0.1%以下とする。
sol, AQ: AQ is added to deoxidize steel, but adding too much will not only saturate the effect but also cause poor plating, so the amount added should be limited to sol. The content of Al should be 0.1% or less.

上記元素を必須成分とするが、必要に応して、MO及び
Crの少なくとも1種を適量で含有してもよい。
The above elements are essential components, but if necessary, at least one of MO and Cr may be contained in an appropriate amount.

MO= Moはオーステナイト相を著しく安定化し、冷却過程に
おいて硬質相の生成を容易にし、高強度化する効果があ
る。しかし、0.01%より少ないと、高強度を達成す
るための硬質相を得ることができず、また1、0%を超
えて添加するとベイナイトが抑制され、マルテンサイト
がバンド状で多量に生成するため、曲げ加工性が劣化す
る。したがって、MO量は0.01〜1.0%の範囲と
する。
MO = Mo significantly stabilizes the austenite phase, facilitates the formation of a hard phase during the cooling process, and has the effect of increasing strength. However, if it is less than 0.01%, it will not be possible to obtain the hard phase needed to achieve high strength, and if it is added more than 1.0%, bainite will be suppressed and martensite will be formed in large amounts in bands. As a result, bending workability deteriorates. Therefore, the amount of MO is in the range of 0.01 to 1.0%.

Cr: CrはMn及びMOと同様な効果を有し、オーステナイ
ト相を安定化し、硬質相の生成を容易にして、高強度を
得る効果がある。この効果を得るには少なくとも0.1
%が必要であるが、1.5%を超えて添加すると伸びを
低下させるので、Cr量は0.1〜1.5%の範囲とす
る。
Cr: Cr has the same effect as Mn and MO, and has the effect of stabilizing the austenite phase, facilitating the formation of a hard phase, and obtaining high strength. To achieve this effect, at least 0.1
%, but if it is added in excess of 1.5%, the elongation will be reduced, so the amount of Cr is set in the range of 0.1 to 1.5%.

次に、本発明の方法における製造条件について説明する
。なお、第1図は本発明における連続亜鉛めっきライン
の熱履歴を示したものである。
Next, manufacturing conditions in the method of the present invention will be explained. Note that FIG. 1 shows the thermal history of the continuous galvanizing line in the present invention.

まず、上記の化学成分を有する鋼は、通常工程により製
鋼1分塊又は連続鋳造を経てスラブとした後、熱間圧延
を経て、ホットコイルにする。熱間圧延に際しては、そ
の条件は特に限定する必要はないが、均一微細なフェラ
イトとベイナイト等の複合組織の溶融亜鉛めっき高強度
鋼板を得るには、熱間圧延の巻取温度を低くし、均一な
フェライトとベイナイトの組織にした方が好ましい。
First, steel having the above-mentioned chemical composition is made into a slab through normal steel manufacturing steps or continuous casting, and then hot rolled into a hot coil. There is no need to particularly limit the conditions for hot rolling, but in order to obtain a hot-dip galvanized high-strength steel sheet with a uniform fine composite structure of ferrite and bainite, it is necessary to lower the coiling temperature during hot rolling. It is preferable to have a uniform structure of ferrite and bainite.

熱間圧延の後、常法に従って、酸洗し、冷間圧延を施し
て薄鋼板を得る。冷間加工率は30%以上が望ましい。
After hot rolling, a thin steel plate is obtained by pickling and cold rolling according to a conventional method. It is desirable that the cold working rate is 30% or more.

次いで、この薄鋼板を連続溶融亜鉛めっきラインに導い
て、再結晶焼鈍及び溶融亜鉛めっきを施し、必要な場合
は更に合金化処理を処す。
Next, this thin steel sheet is led to a continuous hot-dip galvanizing line, where it is subjected to recrystallization annealing and hot-dip galvanizing, and is further subjected to alloying treatment if necessary.

再結晶焼鈍は、その加熱温度をAc、点−50〜900
℃にし、10秒以上保持することが必要である。加熱温
度がAc3点−50’Cよりも低いと、オーステナイト
の体積率が小さくなり、そのC濃度が高くなるために安
定化し、ベイナイトの生成が抑制され、マルテンサイト
体積率が増加する。
For recrystallization annealing, the heating temperature is Ac, the point -50 to 900
It is necessary to bring the temperature to ℃ and hold it for 10 seconds or more. When the heating temperature is lower than the Ac3 point -50'C, the volume fraction of austenite decreases, and its C concentration increases, resulting in stabilization, suppressing the formation of bainite, and increasing the martensite volume fraction.

更に、フェライトは、再結晶粒が粗大化するので、曲げ
加工性は劣化する。
Furthermore, since the recrystallized grains of ferrite become coarse, the bending workability deteriorates.

次いで、上記加熱温度から溶融亜鉛めっき処理までの冷
却として、600℃以上の温度からMs点点上1480
℃以下温度域に Q nCR=−1,18Mneq+3.37ここで、M
neq=Mn+1.52Mo+1.10Cr+0.10
Si+2.1F’ で示される臨界冷却速度CR(”C/ s)以上にて冷
却した後、Ms点点上1480℃以下温度にて、10秒
以上保持した後、溶融亜鉛めっきを施す。
Next, as cooling from the above heating temperature to the hot dip galvanizing process, from a temperature of 600°C or higher to 1480°C above the Ms point
In the temperature range below ℃, Q nCR=-1,18Mneq+3.37, where, M
neq=Mn+1.52Mo+1.10Cr+0.10
After cooling at a critical cooling rate CR ("C/s)" indicated by Si+2.1 F', the temperature is maintained at 1480° C. or lower above the Ms point for 10 seconds or more, and then hot-dip galvanizing is applied.

冷却速度がCRよりも遅いと、パーライト変態が起こる
ため、目的とする強度及び曲げ加工性が得られない。
If the cooling rate is slower than CR, pearlite transformation will occur, making it impossible to obtain the desired strength and bending workability.

また、Ms点以上480 ’Cの温度で10秒以上保持
する過程については、Ms点未満にすると多量のオース
テナイトがマルテンサイトに変態するため1曲げ加工性
は低下する6一方、480℃を超える温度では、曲げ加
工性に有効な微細なベイナイトが得られない。また、保
持時間が10秒未満では、ベイナイトが十分に得られず
に、後工程でオーステナイトがマルテンサイトに変態す
るため、第2図に示すように、打抜き穴広げ率(λ)は
著しく低下し、優れた曲げ加工性が得られない。
In addition, regarding the process of holding at a temperature of 480'C above the Ms point for 10 seconds or more, when the temperature is below the Ms point, a large amount of austenite transforms into martensite, resulting in a decrease in bending workability6, while at temperatures above 480'C. In this case, fine bainite that is effective for bending workability cannot be obtained. In addition, if the holding time is less than 10 seconds, sufficient bainite will not be obtained and austenite will transform into martensite in the subsequent process, resulting in a marked decrease in the punched hole expansion rate (λ), as shown in Figure 2. , excellent bending workability cannot be obtained.

溶融亜鉛めっきを施すことによって、ベイナイトを主体
としたベイナイト・フェライト・マルテンサイト複合組
織が得られ、曲げ加工性の優れた高強度鋼板が得られる
By applying hot-dip galvanizing, a bainite-ferrite-martensitic composite structure consisting mainly of bainite is obtained, and a high-strength steel plate with excellent bending workability is obtained.

なお、溶融亜鉛めっきを施した後、A c 1点以下、
好ましくは500℃〜Acm点の温度にて合金化処理し
、冷却することによっても、ベイナイトを主体としたベ
イナイト・フェライト・マルテンサイト複合組織を得る
ことができ1曲げ加工性の優れた高強度鋼板が得られる
。これは、合金化処理温度がAc1点以下あるので、再
オーステナイト変態することなく、再結晶焼鈍後の冷却
によって得られたベイナイト主体の適正な組織が保持さ
れるためである。
In addition, after hot-dip galvanizing, A c 1 point or less,
A bainite-ferrite-martensitic composite structure mainly composed of bainite can be obtained by alloying at a temperature of preferably 500° C. to the Acm point and cooling. 1. A high-strength steel plate with excellent bending workability. is obtained. This is because since the alloying treatment temperature is below the Ac1 point, the appropriate bainite-based structure obtained by cooling after recrystallization annealing is maintained without re-austenite transformation.

次に本発明の一実施例を示す。Next, one embodiment of the present invention will be described.

(実施例) 第1表に示す化学成分を有する鋼を溶製し、20mm厚
のスラブにした。これを仕上温度850’C1巻取温度
560’Cで熱間圧延し、3.2mm厚の熱延鋼板とし
た。得られた鋼板を酸洗、冷間圧延して、1.2mm厚
(圧下率62.5%)の冷延鋼板を得た。
(Example) Steel having the chemical composition shown in Table 1 was melted and made into a 20 mm thick slab. This was hot rolled at a finishing temperature of 850'C and a coiling temperature of 560'C to obtain a 3.2 mm thick hot rolled steel plate. The obtained steel plate was pickled and cold rolled to obtain a cold rolled steel plate with a thickness of 1.2 mm (rolling ratio: 62.5%).

これらの冷延鋼板について、第1図及び第2表に示す条
件にて溶融亜鉛めっき或いは更に合金化処理を行った。
These cold-rolled steel sheets were subjected to hot-dip galvanizing or further alloying treatment under the conditions shown in FIG. 1 and Table 2.

得られた鋼板について引張特性及び曲げ特性を調査した
。曲げ特性は10φmm打抜き穴拡げ率で評価した。そ
の結果を第2表に併記する。
The tensile properties and bending properties of the obtained steel plate were investigated. The bending properties were evaluated based on the expansion ratio of a punched hole of 10φmm. The results are also listed in Table 2.

第2表より以下の如く考察される。The following considerations can be made from Table 2.

本発明材のNα1〜Nα2は80kgf/mm”近い高
強度で60%以上の高い打抜き穴広げ率(λ)を示すが
、比較材魔3及びNα9は、460℃での保持時間が5
秒と短いために、ベイナイトの生成量が少なく、硬質な
マルテンサイト組織が増えるため強度は高いが、穴広げ
率は本発明材よりも劣っている。
The materials of the present invention, Nα1 to Nα2, have a high strength of nearly 80 kgf/mm” and a high punching hole expansion rate (λ) of 60% or more, but the comparative materials Ma3 and Nα9 have a holding time of 5 at 460°C.
Due to the short time of seconds, the amount of bainite produced is small and the hard martensite structure increases, so the strength is high, but the hole expansion rate is inferior to the material of the present invention.

比較材Na 4は、再結晶焼鈍加熱温度が730℃と低
いためにオーステナイトの体積は小さく、C濃度が高い
ためにベイナイト変態せず、硬質なマルテンサイトを生
成する。このため、フェライトとの高度差が大きくなり
、結果として穴広げ率が低く、本発明材よりも劣ってい
る。
In the comparison material Na 4, the recrystallization annealing heating temperature is as low as 730° C., so the volume of austenite is small, and the C concentration is high, so the material does not undergo bainite transformation and produces hard martensite. For this reason, the difference in altitude from ferrite becomes large, and as a result, the hole expansion rate is low, which is inferior to the material of the present invention.

比較材&5は、急冷開始温度が500 ’Cと低いため
、フェライトの生成量が多くなり、オーステナイト中の
C濃度が高まり、安定化して、ベイナイトを生成しにく
くなる。このためにフェライトを主体とした硬質で粗い
マルテンサイトとの複合組織となるため、穴広げ率は低
い。
Comparative material &5 has a low quenching start temperature of 500'C, so the amount of ferrite produced increases, and the C concentration in austenite increases and becomes stable, making it difficult to produce bainite. This results in a composite structure consisting mainly of ferrite and hard, coarse martensite, resulting in a low hole expansion rate.

比較材Nα6は、保持温度が600℃と低いため、パー
ライトを生成し、その結果、十分な強度及び穴広げ率が
得られていない。
Since the comparative material Nα6 has a low holding temperature of 600° C., pearlite is produced, and as a result, sufficient strength and hole expansion rate are not obtained.

比較材NCL7は、保持温度が200℃とMs点以下の
ため、オーステナイトは殆どマルテンサイトに変態する
。したがって、高強度ではあるか、穴広げ率は本発明材
よりも劣っている。
In the comparative material NCL7, since the holding temperature is 200° C., which is below the Ms point, most of the austenite transforms into martensite. Therefore, although it has high strength, the hole expansion rate is inferior to the material of the present invention.

比較材Nα11〜尚14は、冷却速度がCRよりも遅い
ためにパーライト変態するため、高強度での優れた曲げ
加工性が得られない。
Comparative materials Nα11 to Nα14 undergo pearlite transformation because the cooling rate is slower than that of CR, and therefore excellent bending workability with high strength cannot be obtained.

本発明材Nci15は、合金化処理しない例であるが、
高強度で優れた曲げ加工性が得られている。
The present invention material Nci15 is an example without alloying treatment, but
High strength and excellent bending workability are obtained.

【以下余白] (発明の効果) 以上詳述したように、本発明の方法によれば。[Left below] (Effect of the invention) As detailed above, according to the method of the present invention.

再結晶焼鈍加熱温度からMs点点上1480℃以下温度
域への冷却を制御し、冷却過程、Ms点点上1480℃
以下温度域の保持時間、Acm以下で合金化処理を施す
ことにより、ベイナイトを主体としたベイナイト・フェ
ライト・マルテンサイト(一部残留オーステナイト)の
微細均一な組織にすることができる。しかも、低温にて
合金化処理を行うことができるので、めっきむら、パウ
ダリング性等、表面性状の向上に加えてエネルギー費用
の低減も可能である。
Control the cooling from the recrystallization annealing heating temperature to a temperature range below 1480°C above the Ms point, and during the cooling process, 1480°C above the Ms point.
By carrying out the alloying treatment in the following temperature range for a holding time of Acm or less, a fine and uniform structure of bainite, ferrite, and martensite (with some retained austenite) mainly composed of bainite can be obtained. Furthermore, since the alloying treatment can be performed at low temperatures, it is possible to improve surface properties such as plating unevenness and powdering properties, and also to reduce energy costs.

また、通常の溶融めっき鋼板の場合も、合金化処理鋼板
と同様であり、ベイナイトを主体とする微細均一な複合
組織を得ることができる。
Further, in the case of a normal hot-dip plated steel sheet, it is the same as that of an alloyed steel sheet, and a fine and uniform composite structure mainly composed of bainite can be obtained.

したがって、本発明によれば、60〜120kgf/a
m”級まで、曲げ加工性の優れた溶融亜鉛めっき高強度
鋼板の製造が可能である。
Therefore, according to the present invention, 60 to 120 kgf/a
It is possible to manufacture hot-dip galvanized high-strength steel sheets with excellent bending workability up to the m'' class.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、合金化溶融亜鉛めっき及び溶融亜鉛めっきの
熱履歴を示す図、 第2図は実施例で得られた合金化溶融亜鉛めっき鋼板の
460℃での保持時間(第1図参照)と打抜き穴広げ率
(λ)との関係を示す図である。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚
Figure 1 is a diagram showing the thermal history of alloyed hot-dip galvanizing and hot-dip galvanizing. Figure 2 is the holding time at 460°C of the alloyed hot-dip galvanized steel sheet obtained in the example (see Figure 1). It is a figure which shows the relationship between and a punched hole expansion rate ((lambda)). Patent applicant Hisashi Nakamura, patent attorney representing Kobe Steel, Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、C:0.06〜0.2
%、Si:0.6%以下、Mn:0.6〜3.0%、P
:0.1%以下及びsol.Al:0.01〜0.10
%を含有し、残部が鉄及び不可避的不純物よりなる鋼を
、通常の方法で熱間圧延、酸洗、冷間圧延した後、連続
亜鉛めっきラインにて再純晶焼鈍する際に、その加熱温
度をAc_3点−50℃〜900℃の温度にて10秒以
上保持し、600℃以上の温度からMs点以上480℃
以下の温度域にlnCR=−1.18Mneq+3.3
7 ここで、Mneq=Mn+1.52Mo+1.10Cr
+0.10Si+2.1P で示される臨界冷却速度CR(℃/s)以上の冷却速度
にて冷却した後、Ms点以上480℃以下の温度にて1
0秒以上保持した後、溶融亜鉛めっきを施すことによっ
て、ベイナイトを主体としたベイナイト・フェライト・
マルテンサイト複合組織鋼板を得ることを特徴とする曲
げ加工性の優れた高強度溶融亜鉛めっき鋼板の製造方法
(1) In weight% (the same applies hereinafter), C: 0.06 to 0.2
%, Si: 0.6% or less, Mn: 0.6 to 3.0%, P
: 0.1% or less and sol. Al: 0.01-0.10
%, with the remainder consisting of iron and unavoidable impurities, is hot-rolled, pickled, and cold-rolled in the usual manner, and then annealed for re-pure crystallization on a continuous galvanizing line. Hold the temperature at the Ac_3 point -50℃ to 900℃ for 10 seconds or more, and from the temperature of 600℃ or higher to the Ms point or higher of 480℃
lnCR=-1.18Mneq+3.3 in the following temperature range
7 Here, Mneq=Mn+1.52Mo+1.10Cr
After cooling at a cooling rate equal to or higher than the critical cooling rate CR (°C/s) expressed by +0.10Si+2.1P, 1
After holding for more than 0 seconds, hot-dip galvanizing produces bainite, ferrite, and bainite-based materials.
A method for producing a high-strength hot-dip galvanized steel sheet with excellent bending workability, which is characterized by obtaining a martensitic composite steel sheet.
(2)前記溶融亜鉛めっきを施した後、合金化処理をA
c_1点以下で施すことによって、ベイナイトを主体と
したベイナイト・フェライト・マルテンサイト複合組織
鋼板にすることを特徴とする曲げ加工性の優れた高強度
溶融亜鉛めっき鋼板の製造方法。
(2) After applying the hot-dip galvanizing, alloying treatment A
A method for producing a high-strength hot-dip galvanized steel sheet with excellent bending workability, characterized by forming a steel sheet with a bainite-ferrite-martensitic composite structure mainly composed of bainite by applying the galvanized steel sheet at a point of c_1 or less.
(3)前記鋼が更にMo:0.01〜1.0%及びCr
:0.1〜1.5%の少なくとも1種を含有しているも
のである請求項1又は2に記載の方法。
(3) The steel further includes Mo: 0.01 to 1.0% and Cr
The method according to claim 1 or 2, wherein the method contains at least one of: 0.1 to 1.5%.
JP29915890A 1990-11-05 1990-11-05 Method for producing high strength galvanized steel sheet with excellent bending workability Expired - Fee Related JP2761095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29915890A JP2761095B2 (en) 1990-11-05 1990-11-05 Method for producing high strength galvanized steel sheet with excellent bending workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29915890A JP2761095B2 (en) 1990-11-05 1990-11-05 Method for producing high strength galvanized steel sheet with excellent bending workability

Publications (2)

Publication Number Publication Date
JPH04173945A true JPH04173945A (en) 1992-06-22
JP2761095B2 JP2761095B2 (en) 1998-06-04

Family

ID=17868883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29915890A Expired - Fee Related JP2761095B2 (en) 1990-11-05 1990-11-05 Method for producing high strength galvanized steel sheet with excellent bending workability

Country Status (1)

Country Link
JP (1) JP2761095B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180919A (en) * 1997-09-11 1999-03-26 Sumitomo Metal Ind Ltd Manufacture of high tensile strength galvannealed steel sheet excellent in bendability
US6306527B1 (en) 1999-11-19 2001-10-23 Kabushiki Kaisha Kobe Seiko Sho Hot-dip galvanized steel sheet and process for production thereof
US6312536B1 (en) 1999-05-28 2001-11-06 Kabushiki Kaisha Kobe Seiko Sho Hot-dip galvanized steel sheet and production thereof
US6586117B2 (en) 2001-10-19 2003-07-01 Sumitomo Metal Industries, Ltd. Steel sheet having excellent workability and shape accuracy and a method for its manufacture
FR2844281A1 (en) * 2002-09-06 2004-03-12 Usinor VERY HIGH MECHANICAL STRENGTH STEEL AND METHOD FOR MANUFACTURING A SHEET OF SUCH A ZINC COATED STEEL OR A ZINC ALLOY
US6709535B2 (en) 2002-05-30 2004-03-23 Kobe Steel, Ltd. Superhigh-strength dual-phase steel sheet of excellent fatigue characteristic in a spot welded joint
WO2002101112A3 (en) * 2001-06-06 2004-10-14 Nippon Steel Corp High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
US6811624B2 (en) 2002-11-26 2004-11-02 United States Steel Corporation Method for production of dual phase sheet steel
US7311789B2 (en) 2002-11-26 2007-12-25 United States Steel Corporation Dual phase steel strip suitable for galvanizing
WO2011132763A1 (en) 2010-04-22 2011-10-27 Jfeスチール株式会社 High strength hot-dip galvanized steel sheet with superior workability and production method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60116765T2 (en) 2000-01-24 2006-11-02 Jfe Steel Corp. FIREPLATED STEEL PLATE AND METHOD OF MANUFACTURING THEREOF
JP5194811B2 (en) 2007-03-30 2013-05-08 Jfeスチール株式会社 High strength hot dip galvanized steel sheet
JP5119903B2 (en) 2007-12-20 2013-01-16 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180919A (en) * 1997-09-11 1999-03-26 Sumitomo Metal Ind Ltd Manufacture of high tensile strength galvannealed steel sheet excellent in bendability
US6312536B1 (en) 1999-05-28 2001-11-06 Kabushiki Kaisha Kobe Seiko Sho Hot-dip galvanized steel sheet and production thereof
US6306527B1 (en) 1999-11-19 2001-10-23 Kabushiki Kaisha Kobe Seiko Sho Hot-dip galvanized steel sheet and process for production thereof
US7267890B2 (en) 2001-06-06 2007-09-11 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance corrosion resistance ductility and plating adhesion after servere deformation and a method of producing the same
US7824509B2 (en) 2001-06-06 2010-11-02 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
WO2002101112A3 (en) * 2001-06-06 2004-10-14 Nippon Steel Corp High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
US8216397B2 (en) 2001-06-06 2012-07-10 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
US6982012B2 (en) 2001-10-19 2006-01-03 Sumitomo Metal Industries Ltd. Method of manufacturing steel sheet having excellent workability and shape accuracy
US6586117B2 (en) 2001-10-19 2003-07-01 Sumitomo Metal Industries, Ltd. Steel sheet having excellent workability and shape accuracy and a method for its manufacture
US6709535B2 (en) 2002-05-30 2004-03-23 Kobe Steel, Ltd. Superhigh-strength dual-phase steel sheet of excellent fatigue characteristic in a spot welded joint
WO2004022793A2 (en) * 2002-09-06 2004-03-18 Usinor Very high mechanical strength steel and method for making a sheet thereof coated with zinc or zinc alloy
WO2004022793A3 (en) * 2002-09-06 2004-05-06 Usinor Very high mechanical strength steel and method for making a sheet thereof coated with zinc or zinc alloy
FR2844281A1 (en) * 2002-09-06 2004-03-12 Usinor VERY HIGH MECHANICAL STRENGTH STEEL AND METHOD FOR MANUFACTURING A SHEET OF SUCH A ZINC COATED STEEL OR A ZINC ALLOY
US7976647B2 (en) 2002-09-06 2011-07-12 Usinor Very high mechanical strength steel and method for making a sheet thereof coated with zinc or zinc alloy
EP1601809A1 (en) * 2002-11-26 2005-12-07 UEC Technologies LLC Method for the production of dual phase sheet steel
EP1601809A4 (en) * 2002-11-26 2009-02-11 Uec Technologies Llc Method for the production of dual phase sheet steel
US7311789B2 (en) 2002-11-26 2007-12-25 United States Steel Corporation Dual phase steel strip suitable for galvanizing
US6811624B2 (en) 2002-11-26 2004-11-02 United States Steel Corporation Method for production of dual phase sheet steel
WO2011132763A1 (en) 2010-04-22 2011-10-27 Jfeスチール株式会社 High strength hot-dip galvanized steel sheet with superior workability and production method therefor

Also Published As

Publication number Publication date
JP2761095B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
WO2002012580A1 (en) Cold rolled steel sheet and hot rolled steel sheet excellent in bake hardenability and resistance to ordinary temperature aging and method for their production
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
US20090071574A1 (en) Cold rolled dual phase steel sheet having high formability and method of making the same
WO2005031024A1 (en) High-yield-ratio high-strength thin steel sheet and high-yield-ratio high-strength hot-dip galvanized thin steel sheet excelling in weldability and ductility as well as high-yield-ratio high-strength alloyed hot-dip galvanized thin steel sheet and process for producing the same
JP7239685B2 (en) Hot-rolled steel sheet with high hole expansion ratio and method for producing the same
JP2761095B2 (en) Method for producing high strength galvanized steel sheet with excellent bending workability
JP2004068051A (en) High strength hot-dip galvanized steel sheet and its manufacturing method
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP2862186B2 (en) Manufacturing method of hot-dip galvanized high-strength thin steel sheet with excellent elongation
JP3521851B2 (en) Manufacturing method of high tensile high ductility galvanized steel sheet
JP2862187B2 (en) Manufacturing method of hot-dip galvanized high-strength thin steel sheet with excellent hole expansion properties
CN113840930A (en) Cold rolled and coated steel sheet and method for manufacturing the same
JP2761096B2 (en) Manufacturing method of high ductility and high strength alloyed hot-dip galvanized steel sheet
JPH02194126A (en) Manufacture of steel sheet having baking hardenability
JP3911972B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet
JPS6047886B2 (en) Manufacturing method of high-strength thin steel plate for processing by continuous annealing
JPS6237322A (en) Production of low yield ratio cold rolled high tensile steel plate having excellent surface characteristic and bendability
JPH0135052B2 (en)
JP2003105491A (en) High strength steel sheet and galvanized steel sheet having excellent formability, and production method therefor
JPH11193419A (en) Production of galvannealed high strength cold rolled steel sheet excellent in formability
JP3376882B2 (en) Manufacturing method of high tensile alloyed hot-dip galvanized steel sheet with excellent bendability
JP2000119831A (en) High strength hot dip galvanized and hot rolled steel sheet excellent in formability and corrosion resistance
JPH0344423A (en) Manufacture of galvanized hot rolled steel sheet having excellent workability
JPS6046167B2 (en) Method for manufacturing high-strength cold-rolled steel sheets for deep scratching that are non-aging and have excellent paint-baking hardenability through continuous annealing
JPH08199288A (en) High strength steel sheet excellent in press formability and corrosion resistance and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees