JPH11193419A - Production of galvannealed high strength cold rolled steel sheet excellent in formability - Google Patents

Production of galvannealed high strength cold rolled steel sheet excellent in formability

Info

Publication number
JPH11193419A
JPH11193419A JP36931797A JP36931797A JPH11193419A JP H11193419 A JPH11193419 A JP H11193419A JP 36931797 A JP36931797 A JP 36931797A JP 36931797 A JP36931797 A JP 36931797A JP H11193419 A JPH11193419 A JP H11193419A
Authority
JP
Japan
Prior art keywords
steel sheet
hot
rolled steel
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36931797A
Other languages
Japanese (ja)
Inventor
Yukiaki Tamura
享昭 田村
Takafusa Iwai
隆房 岩井
Yoichiro Okano
洋一郎 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP36931797A priority Critical patent/JPH11193419A/en
Publication of JPH11193419A publication Critical patent/JPH11193419A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a galvannealed high strength cold rolled steel sheet capable of hot rolling in a temp. region where deformation can easily be done and also having low yield ratio and excellent formability. SOLUTION: In hot-rolling a steel having a composition consisting of, by mass, 0.10-0.25% C, <=0.50% Si, 1.0-3.0% Mn, <=0.010% S, <=0.10% Al, and the balance Fe with inevitable impurities, finish rolling is completed at a finishing temp. higher than the Ar3 point and coiling is performed at >700 deg.C coiling temp. The resultant hot rolled steel plate is acid-pickled and cold-rolled into steel sheet. Subsequently, the galvannealing is applied to the steel sheet by means of a continuous hot dip galvanizingline. At this time, the steel sheet is heated to a temp. between the Ac1 point and 850 deg.C for >=10 sec, cooled down to plating temp. at >=10 deg.C/sec average cooling rate, hot-dip-galvanized, and then subjected to alloying treatment at 450-600 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、加工性に優れる合
金化溶融亜鉛めっき高強度冷延鋼板の製造方法に関し、
詳しくは引張強度が490MPa 以上であって、しかもプ
レス成形品の形状凍結性および全伸び等に代表される成
形性に優れる合金化溶融亜鉛めっき高強度冷延鋼板の製
造方法に関する。
The present invention relates to a method for producing a galvannealed high-strength cold-rolled steel sheet having excellent workability,
More specifically, the present invention relates to a method for producing an alloyed hot-dip galvanized high-strength cold-rolled steel sheet having a tensile strength of 490 MPa or more and excellent in formability represented by shape freezing and total elongation of a press-formed product.

【0002】[0002]

【従来の技術】近年、自動車の安全および軽量化対策と
して高強度冷延鋼板が採用されると共に、自動車の寿命
延長のために冷延鋼板の防錆力の向上が強く望まれてい
る。特に最近においては自動車シャーシ補強部材用鋼板
についても引張強さが440MPa 以上要請されるに至っ
ている。このため成形性に優れる合金化溶融亜鉛めっき
高強度冷延鋼板の開発が求められている。
2. Description of the Related Art In recent years, high-strength cold-rolled steel sheets have been adopted as measures for safety and weight reduction of automobiles, and there has been a strong demand for improvement of rust-preventive force of cold-rolled steel sheets for extending the life of automobiles. In particular, recently, a steel plate for a vehicle chassis reinforcing member has been required to have a tensile strength of 440 MPa or more. For this reason, development of an alloyed hot-dip galvanized high-strength cold-rolled steel sheet having excellent formability has been demanded.

【0003】自動車に用いられる鋼板の大部分は、プレ
ス成形に使用されるため、成形時に割れやしわが発生し
ないことに加えて、プレス成形後の部品形状がスプリン
グバックによって変化しないような特性、即ち、形状凍
結性が要求され、一般的にこれらの特性は、降伏強度や
降伏比(降伏強度/引張強度)が低いはど優れているこ
とが知られている。
Most steel sheets used in automobiles are used for press forming, so that not only cracks and wrinkles do not occur at the time of forming, but also characteristics such that the shape of parts after press forming does not change due to springback. That is, shape freezing properties are required, and it is generally known that these properties are excellent although yield strength and yield ratio (yield strength / tensile strength) are low.

【0004】溶融亜鉛めっき鋼板の分野において、引張
強度が490MPa 以上の高強度鋼板を得るためには、従
来より知られている固溶強化のみでは困難であり、マル
テンサイトおよびベイナイトのような硬質相を含む複合
組織強化によることが必要となる。
In the field of hot-dip galvanized steel sheet, it is difficult to obtain a high-strength steel sheet having a tensile strength of 490 MPa or more only by solid-solution strengthening which has been conventionally known. It is necessary to strengthen the composite structure including

【0005】しかし複合組織であっても、高強度を得る
ために鋼板の組織中に占める硬質相の割合を高くする
と、降伏比が高くなるのみならず、全伸びや伸びフラン
ジ性を示す穴拡げ性等の成形性も極度に悪くなる。さら
にこのような複合組織鋼板は、めっきおよびその後の合
金化処理によってマルテンサイト組織が焼き戻されて引
張強度が低下し、目標とする高い引張強度を得ることが
出来ないという問題が生じる。
[0005] However, even in the case of a composite structure, when the ratio of the hard phase in the structure of the steel sheet is increased in order to obtain high strength, not only the yield ratio is increased, but also the hole expansion showing the total elongation and stretch flangeability. Moldability such as moldability also becomes extremely poor. Further, such a composite structure steel sheet has a problem that the martensitic structure is tempered by plating and a subsequent alloying treatment to lower the tensile strength, so that a target high tensile strength cannot be obtained.

【0006】かかる問題に対する技術として、特開平2
−290955号公報に開示されているように、C:
0.005〜0.25%を含む鋼をAr1点〜Ar3点の温
度範囲の仕上温度で熱間圧延を終了し、常法に従って7
00℃以下の温度にて巻き取り、その冷延鋼板に溶融亜
鉛めっきを施した後、めっき後の合金化温度を450〜
600℃とすることにより、低降伏比で、しかも成形性
も良好な合金化溶融亜鉛めっき高強度冷延鋼板が得られ
る。
As a technique for solving such a problem, Japanese Unexamined Patent Application Publication No.
As disclosed in JP-A-290955, C:
Hot rolling of steel containing 0.005 to 0.25% is completed at a finishing temperature in the temperature range of Ar 1 point to Ar 3 points, and 7
Winding at a temperature of 00 ° C. or less, hot-dip galvanizing the cold-rolled steel sheet, and setting the alloying temperature after plating to 450 to
By setting the temperature to 600 ° C., an alloyed hot-dip galvanized high-strength cold-rolled steel sheet having a low yield ratio and good formability can be obtained.

【0007】[0007]

【発明が解決しようとする課題】上記特開平2−290
955号公報に開示された製造方法により、高強度で、
低降伏比かつ成形性の良好な合金化溶融亜鉛めっき冷延
鋼板が得られるようになったが、かかる製造方法では、
仕上温度をオーステナイト・フェライト2相領域である
Ar1点〜Ar3点の範囲の温度にする必要があるため、熱
間圧延の際に変形抵抗が大きくなる。特に、本発明の対
象である高強度鋼板では、C、Mn等の添加元素量が多
いため、変形抵抗が過大となり、ワークロールの損耗が
著しく、目標板厚に圧延することが困難であったり、熱
延鋼板の板形状が悪化するという問題がある。
SUMMARY OF THE INVENTION The above-mentioned JP-A-2-290 is disclosed.
According to the manufacturing method disclosed in US Pat.
Although low yield ratio and good formability alloyed hot-dip galvanized cold-rolled steel sheets have been obtained, in such a manufacturing method,
Since the finishing temperature needs to be in the range of Ar 1 point to Ar 3 point, which is the austenite-ferrite two-phase region, deformation resistance increases during hot rolling. In particular, in the high-strength steel sheet which is the subject of the present invention, since the amount of additional elements such as C and Mn is large, the deformation resistance becomes excessive, the wear of the work roll is remarkable, and it is difficult to roll to the target thickness. However, there is a problem that the shape of the hot-rolled steel sheet is deteriorated.

【0008】本発明はかかる問題に鑑み、熱間圧延を変
形容易な温度領域で行うことができ、しかも低降伏比、
成形性の良好な合金化溶融亜鉛めっき高強度冷延鋼板を
製造することを目的とするものである。
[0008] In view of the above problems, the present invention can perform hot rolling in a temperature range where deformation is easy, and has a low yield ratio,
An object of the present invention is to produce an alloyed hot-dip galvanized high-strength cold-rolled steel sheet having good formability.

【0009】[0009]

【課題を解決するための手段】本発明者らは、従来、全
く着目されていない熱間圧延段階における巻取温度を7
00℃超とすることにより、仕上温度をAr3点超として
も、0.50以下の低降伏比と優れた成形性とを兼備し
た合金化溶融亜鉛めっき高強度冷延鋼板を得ることがで
きることを見い出して、本発明に至ったものである。
Means for Solving the Problems The present inventors have set the winding temperature in the hot rolling stage, which has not been noticed at all, to 7 ° C.
By setting the temperature to be higher than 00 ° C, it is possible to obtain an alloyed hot-dip galvanized high-strength cold-rolled steel sheet having both a low yield ratio of 0.50 or less and excellent formability even when the finishing temperature is higher than 3 points of Ar. The present invention has been found.

【0010】すなわち、本発明の合金化溶融亜鉛めっき
高強度冷延鋼板の製造方法は、mass%で、C :0.1
0〜0.25%、Si:0.50%以下、Mn:1.0
〜3.0%、S :0.010%以下、Al:0.10
%以下を含有し、残部Feおよび不可避的不純物よりな
る鋼を熱間圧延するに際して、仕上温度をAr3点超とし
て仕上圧延を終了し、巻取温度を700℃超として巻き
取った後、得られた熱延鋼板を酸洗、冷間圧延して薄鋼
板とし、次いで連続溶融亜鉛めっきラインによって合金
化溶融亜鉛めっきを施すに際して、前記薄鋼板をAc1
〜850℃の温度に10秒以上加熱した後、平均冷却速
度10℃/秒以上にてめっき温度まで冷却し、溶融亜鉛
めっきを施した後、450〜600℃の範囲の温度で合
金化処理を施すものである。
That is, the method for producing a galvannealed high-strength cold-rolled steel sheet according to the present invention is as follows.
0 to 0.25%, Si: 0.50% or less, Mn: 1.0
~ 3.0%, S: 0.010% or less, Al: 0.10
%, And when hot rolling is performed on steel comprising the balance of Fe and unavoidable impurities, the finish rolling is finished at a finishing temperature of more than three points, and the winding temperature is raised to over 700 ° C. The hot-rolled steel sheet obtained is pickled and cold-rolled into a thin steel sheet, and then subjected to alloying hot-dip galvanizing by a continuous hot-dip galvanizing line, the thin steel sheet is heated to a temperature of Ac 1 point to 850 ° C for 10 seconds or more. After heating, the steel sheet is cooled to a plating temperature at an average cooling rate of 10 ° C./sec or more, hot-dip galvanized, and then alloyed at a temperature in the range of 450 to 600 ° C.

【0011】まず、本発明において用いる鋼の化学成分
について説明する。 C:0.10〜0.25% Cは鋼板の引張強度を支配する重要な元素であって、主
としてマルテンサイトからなる硬質相を生成させ、高強
度化に寄与する。490MPa 以上の高強度複合組織鋼板
を得るためには0.10%以上の添加を必要とする。し
かし硬質相が過多となると、低降伏比の確保が困難とな
り、またスポット溶接性も低下するので、Cの上限を
0.25%とする。
First, the chemical components of steel used in the present invention will be described. C: 0.10 to 0.25% C is an important element that controls the tensile strength of the steel sheet, and generates a hard phase mainly composed of martensite, thereby contributing to high strength. To obtain a high-strength composite structure steel sheet of 490 MPa or more, addition of 0.10% or more is required. However, if the amount of the hard phase is excessive, it becomes difficult to secure a low yield ratio, and the spot weldability also decreases. Therefore, the upper limit of C is set to 0.25%.

【0012】Si:0.50%以下 Siはフェライト相中の固溶Cをオーステナイト相中に
排出する作用を有するため、硬質相の安定化を図ると共
に全伸びの向上および降伏比の低下作用を有する。しか
し、過多に添加するとめっき濡れ性を阻害するので、添
加量の上限を0.50%とする。
Si: 0.50% or less Since Si has the effect of discharging solid solution C in the ferrite phase into the austenite phase, it stabilizes the hard phase, improves the total elongation and lowers the yield ratio. Have. However, an excessive addition impairs the plating wettability, so the upper limit of the addition amount is set to 0.50%.

【0013】Mn:1.0〜3.0% Mnはオーステナイト相を安定化し、冷却過程において
硬質相の生成を容易にして低降伏比、高強度を得るため
に添加される。添加量が過少では硬質相を得ることが出
来ず、所要の高強度を得ることが出来ないので、下限を
1.0%とする。しかし過多に添加すると、オーステナ
イト相の割合が増加し、不安定となって硬質相が生成し
難くなるので、添加量の上限を3.0%とする。
Mn: 1.0 to 3.0% Mn is added to stabilize the austenite phase, facilitate the formation of a hard phase in the cooling process, and obtain a low yield ratio and high strength. If the addition amount is too small, a hard phase cannot be obtained and a required high strength cannot be obtained, so the lower limit is made 1.0%. However, if added excessively, the ratio of the austenite phase increases and becomes unstable, making it difficult to form a hard phase. Therefore, the upper limit of the addition amount is set to 3.0%.

【0014】S:0.010%以下 Sは非金属介在物を生成して成形性を阻害し、特に本発
明のような高強度鋼板ではその影響が顕著に現れやすい
ので、その量を0.010%以下に止める必要があり、
好ましくは0.005%以下とするのがよい。
S: not more than 0.010% S forms nonmetallic inclusions and impairs formability. In particular, in the case of a high-strength steel sheet as in the present invention, the effect is liable to appear remarkably. 010% or less,
Preferably, the content is 0.005% or less.

【0015】Al:0.10%以下 Alは鋼の脱酸のために添加されるが、過多に添加して
も効果が飽和するのみならず、鋼のコスト高を招き、ま
ためっき不良の原因となるので、添加量は0.10%以
下に止める。
Al: 0.10% or less Al is added for deoxidizing steel. However, excessive addition not only saturates the effect, but also increases the cost of the steel and causes poor plating. Therefore, the addition amount is limited to 0.10% or less.

【0016】本発明に用いる鋼は前記成分を基本成分と
し、残部Feおよび不可避的不純物からなるが、鋼特性
を向上させるために、下記P,Cr,CaおよびREM
(希土類元素)の内から1種以上を選択的に添加するこ
とができ、下記(1) 、(2) 、(3) の鋼組成とすることが
できる。 (1) 基本成分のほか、さらにP:0.10%以下。 (2) 基本成分または(1) の成分のほか、さらにCr:
1.0%以下。 (3) 基本成分、上記(1) 又は(2) の成分のほか、さらに
Ca,REM の1種または2種:合計で0.005%以
下。
The steel used in the present invention contains the above components as basic components and the balance is Fe and unavoidable impurities. To improve the steel properties, the following P, Cr, Ca and REM are used.
One or more of (rare earth elements) can be selectively added, and the following steel compositions (1), (2) and (3) can be obtained. (1) In addition to the basic components, P: 0.10% or less. (2) In addition to the basic component or the component of (1), Cr:
1.0% or less. (3) In addition to the basic component, the component (1) or (2), one or two of Ca and REM: 0.005% or less in total.

【0017】PはSiと同様の作用を有し、強度と成形
性のバランスを確保する作用を有し、好ましくは0.0
2%以上添加される。しかし0.10%を超えて過多に
添加すると、めっき不良やスポット溶接性を阻害するよ
うになる。
P has the same function as Si, and has the function of ensuring the balance between strength and formability.
2% or more is added. However, if it is added in excess of 0.10%, poor plating and spot weldability will be impaired.

【0018】CrはMnと同様の作用を有し、硬質相の
生成を容易にして、低降伏比、高強度を得やすくする。
しかし過多の添加は成形性を阻害するのみならず、Cr
は高価であって鋼コストを高くするので、上限を1.0
%とする。
Cr has the same action as Mn, and facilitates the formation of a hard phase, and facilitates obtaining a low yield ratio and high strength.
However, excessive addition not only impairs the formability, but also
Is expensive and increases steel costs, so the upper limit is 1.0
%.

【0019】Ca,REMは非金属介在物の形態制御を
介して成形性を向上させる。添加量は1種あるいは2種
の合計で0.005%以下でよい。
Ca and REM improve formability through morphological control of nonmetallic inclusions. The amount of addition may be 0.005% or less in total of one type or two types.

【0020】次に本発明の製造条件について説明する。
まず、上記の化学成分を有する鋼スラブを通常の造塊ま
たは連続鋳造によって得た後、熱間圧延を経てホットコ
イルにする。熱間圧延に際して、スラブの加熱温度は常
法に従えばよく、通常1100〜1250℃である。熱
間圧延における仕上温度はAr3点超とする。Ar3点以下
では、高強度鋼では熱間圧延の際の変形抵抗が過大とな
り、圧延荷重が増加し、ワークロールの損耗が激しくな
り、所期の板厚、板形状を得にくくなる。なお、仕上温
度がAr3点超の圧延では、熱延鋼板の組織はフェライト
+パーライトとなるが、パーライトを構成する炭化物は
後述の高温巻取りにより球状化するため、成形性を阻害
するおそれはない。
Next, the manufacturing conditions of the present invention will be described.
First, a steel slab having the above-mentioned chemical composition is obtained by ordinary ingot or continuous casting, and then hot-rolled through hot rolling. At the time of hot rolling, the heating temperature of the slab may be a conventional method, and is usually 1100 to 1250 ° C. The finishing temperature in hot rolling is more than three points of Ar. If the Ar is less than 3 points, high-strength steel will have excessive deformation resistance during hot rolling, increase the rolling load, intensify the wear of the work rolls, and it will be difficult to obtain the desired plate thickness and plate shape. In rolling at a finishing temperature of more than three points of Ar, the structure of the hot-rolled steel sheet is ferrite + pearlite. However, since the carbides constituting pearlite are spheroidized by high-temperature winding described below, there is a possibility that the formability may be impaired. Absent.

【0021】仕上圧延後の巻取温度は本発明において重
要な条件であり、700℃超とする。好ましくは730
℃以上とするのがよい。巻取温度を700℃超とするこ
とで、熱延鋼板の組織中の炭化物(パーライトを構成す
る層状Fe3C)が球状化し、しかもその炭化物にはMn等
が溶け込む。この炭化物は溶融亜鉛めっきラインでの均
熱時に核となってオーステナイトとなり、しかも溶け込
んだMn等により安定した(焼入性の高い)オーステナ
イトとなっている。このため、合金化熱処理後に、非常
に硬くかつ小さいマルテンサイトからなる硬質相に変態
し、フェライトとマルテンサイトを主体とする硬質相か
らなる組織(フェライト+マルテンサイトが95体積%
以上)となり、低降伏比が実現される。なお、巻取り温
度が700℃以下の場合は、Mn等の濃化が不十分であ
るため、均熱時に安定したマルテンサイトになり難く、
オーステナイトからパーライトやベイナイトが析出しや
すくなり、降伏比が高くなる。
The winding temperature after finish rolling is an important condition in the present invention, and is set to more than 700 ° C. Preferably 730
It is good to be more than ° C. When the winding temperature is higher than 700 ° C., carbides (layered Fe 3 C constituting pearlite) in the structure of the hot-rolled steel sheet become spherical, and Mn or the like dissolves in the carbides. This carbide becomes austenite as a nucleus during soaking in the hot-dip galvanizing line and becomes stable (high hardenability) austenite due to molten Mn and the like. For this reason, after the alloying heat treatment, it transforms into a hard phase composed of very hard and small martensite, and a structure composed of ferrite and a hard phase mainly composed of martensite (ferrite + martensite is 95% by volume).
Above), and a low yield ratio is realized. When the winding temperature is 700 ° C. or lower, the concentration of Mn or the like is insufficient, so that it becomes difficult to form stable martensite at the time of soaking.
Pearlite and bainite are easily precipitated from austenite, and the yield ratio is increased.

【0022】巻取り後、常法に従って酸洗し、冷間圧延
を施して薄鋼板を得る。次いで、この薄鋼板を溶融亜鉛
めっきラインにて、焼鈍、溶融亜鉛めっきおよび合金化
処理を施す。焼鈍は鋼板のAc1点〜850℃の温度にて
10秒以上加熱することが必要である。焼鈍加熱温度が
Ac1点よりも低いと、硬質相が生成せず、高強度を得る
ことが出来ない。他方、焼鈍加熱温度が850℃よりも
高いと、硬質相を多量に生成した組織となり、降伏比が
高くなり、成形性が劣化する。
After winding, pickling and cold rolling are performed according to a conventional method to obtain a thin steel sheet. Next, the thin steel sheet is subjected to annealing, hot-dip galvanizing, and alloying treatment in a hot-dip galvanizing line. For annealing, it is necessary to heat the steel sheet at a temperature of Ac 1 point to 850 ° C. for 10 seconds or more. If the annealing heating temperature is lower than the Ac 1 point, a hard phase is not generated, and high strength cannot be obtained. On the other hand, when the annealing heating temperature is higher than 850 ° C., a structure in which a large amount of a hard phase is formed is obtained, the yield ratio is increased, and the formability is deteriorated.

【0023】焼鈍から溶融亜鉛めっきまでの冷却は、冷
却中にオーステナイトがパーライトへ変態するのを抑制
するため、平均冷却速度にて10℃/秒以上とすること
が必要である。その際の冷却手段としては、等速冷却で
もよいし、あるいは冷却の途中で冷却速度を変更するも
のでもよい。
The cooling from annealing to hot-dip galvanizing requires an average cooling rate of 10 ° C./sec or more in order to suppress the transformation of austenite into pearlite during cooling. The cooling means at this time may be constant-speed cooling, or may change the cooling rate during the cooling.

【0024】溶融亜鉛めっき後の冷延鋼板は、引き続い
て450〜600℃の範囲の温度にて合金化処理が施さ
れる。この合金化温度が450℃よりも低いときは目的
とするFeとZnとの合金相が生成しにくい。他方、6
00℃よりも高いときは、硬質相が焼戻されて、低降伏
比や高強度を確保することが困難になる。かかる合金化
処理の後の冷却は、常法に従ってその速度が5℃/秒以
上であればよい。
The cold-rolled steel sheet after the hot-dip galvanizing is subsequently subjected to an alloying treatment at a temperature in the range of 450 to 600 ° C. When the alloying temperature is lower than 450 ° C., the desired alloy phase of Fe and Zn is not easily formed. On the other hand, 6
When the temperature is higher than 00 ° C., the hard phase is tempered, and it becomes difficult to secure a low yield ratio and high strength. Cooling after the alloying treatment may be performed at a rate of 5 ° C./sec or more according to a conventional method.

【0025】[0025]

【実施例】以下、実施例を挙げて本発明を説明するが、
本発明はこれら実施例により限定されるものではないこ
とは勿論である。
Hereinafter, the present invention will be described with reference to examples.
Of course, the present invention is not limited by these examples.

【0026】〔実施例A〕下記成分の鋼を溶製し、20
mm厚のスラブとした。このスラブを加熱温度1200℃
に加熱し、熱間圧延を行い、仕上温度870℃で仕上圧
延を終了後、巻き取りまでの平均冷却速度30℃/秒で
冷却し、巻取温度を500〜750℃として巻取り、
2.6mmの熱延鋼板を得た。 ・鋼成分(mass%、残部実質的にFe) C :0.15%、Si:0.05%、Mn:2.63
%、P :0.012%、S :0.006%、Al:
0.044%、
Example A A steel having the following components was melted and
The slab was mm thick. This slab is heated at 1200 ° C
After finishing the finish rolling at a finishing temperature of 870 ° C., cooling at an average cooling rate of 30 ° C./sec until winding, winding at a winding temperature of 500 to 750 ° C.,
A 2.6 mm hot rolled steel sheet was obtained. -Steel component (mass%, balance substantially Fe) C: 0.15%, Si: 0.05%, Mn: 2.63
%, P: 0.012%, S: 0.006%, Al:
0.044%,

【0027】次いで、この熱延鋼板を常法に従って酸
洗、冷間圧延して1.2mm厚とした後、760℃で30
秒間焼鈍し、溶融亜鉛めっき処理までの冷却速度を10
℃/秒、めっき温度を460℃として冷延鋼板の両面に
溶融亜鉛めっきを施した後、500℃にて合金化処理を
施した。
Next, the hot-rolled steel sheet is pickled and cold-rolled to a thickness of 1.2 mm according to a conventional method.
Annealing for 10 seconds, and the cooling rate until hot-dip galvanizing
After hot-dip galvanizing was performed on both surfaces of the cold-rolled steel sheet at a temperature of 460 ° C./sec and a plating temperature of 460 ° C., an alloying treatment was performed at 500 ° C.

【0028】このようにして得られた合金化溶融亜鉛め
っき冷延鋼板の降伏強度(YS)、引張強度(TS)、
伸び(El)、降伏比(YR)を調査した。これらの値
と熱延巻取温度との関係を図1に示す。図1より、巻取
温度を700℃超として巻取ることにより、高強度を維
持しながら、低降伏強度を実現し、その結果、降伏比が
0.5以下と低くなり、また伸びも向上することが認め
られる。
The yield strength (YS), tensile strength (TS), and so on of the alloyed hot-dip galvanized cold-rolled steel sheet thus obtained,
The elongation (El) and the yield ratio (YR) were investigated. FIG. 1 shows the relationship between these values and the hot-rolling winding temperature. From FIG. 1, it is possible to realize a low yield strength while maintaining a high strength by winding at a winding temperature exceeding 700 ° C., and as a result, the yield ratio is reduced to 0.5 or less and the elongation is improved. It is recognized that.

【0029】〔実施例B〕表1に示す化学成分を有する
鋼を溶製し、20mm厚のスラブとした。これを表2に示
す条件にて2.6mm厚の熱延鋼板とした。得られた鋼板
を酸洗し、冷間圧延して、1.2mm厚(圧下率54%)
の冷延鋼板を得た。これらの冷延鋼板について、表2に
示す連続めっき条件にて合金化溶融亜鉛めっき冷延鋼板
(両面めっき)を製造した。得られためっき鋼板につい
て引張特性、めっきむら性およびパウダリング性を調べ
た。めっきむら性は、めっき表面を目視にて判定した。
また、パウダリング性は試料鋼板をV字形に曲げ、屈曲
部を粘着テープで接着剥離して、テープ接着面における
めっきの付着状態を目視にて判定した。その結果を表3
に示す。表中、めっきむら性およびパウダリング性につ
いて、共に良好なものを○、いすれか一方が不良なもの
を×で示した。
[Example B] Steel having the chemical components shown in Table 1 was melted into a slab having a thickness of 20 mm. This was made into a hot-rolled steel sheet having a thickness of 2.6 mm under the conditions shown in Table 2. The obtained steel sheet is pickled and cold-rolled to a thickness of 1.2 mm (a reduction of 54%).
Was obtained. With respect to these cold-rolled steel sheets, galvannealed cold-rolled steel sheets (double-sided plating) were manufactured under the continuous plating conditions shown in Table 2. The tensile properties, uneven plating properties and powdering properties of the obtained plated steel sheets were examined. The plating unevenness was determined by visually observing the plating surface.
The powdering property was determined by bending a sample steel sheet into a V-shape, peeling off the bent portion with an adhesive tape, and visually checking the plating adhesion state on the tape adhesion surface. Table 3 shows the results.
Shown in In the table, with respect to the plating unevenness and powdering properties, も の indicates that both were good, and X indicates that one of them was poor.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】表3より、発明例の合金化溶融亜鉛めっき
冷延鋼板は、いずれも500MPa 以上の高強度であるに
もかかわらず、0.5以下の降伏比を有し、かつ20%
以上の優れた全伸びを示していることがわかる。なお、
組織はいずれもフェライトとマルテンサイトを主体と
し、一部べイナイト(数%以下)を含む複合組織であっ
た。
From Table 3, it can be seen that the alloyed hot-dip galvanized cold-rolled steel sheets of the invention examples have a yield ratio of 0.5 or less and 20% even though they have high strength of 500 MPa or more.
It can be seen that the above-described excellent total elongation is exhibited. In addition,
Each of the structures was a composite structure mainly composed of ferrite and martensite and partially containing bainite (several percent or less).

【0034】これに対して、化学成分が本発明で規定す
る範囲であっても、製造条件が本発明で規定する範囲外
の試料No. 2,4,5,7では、降伏比が総じて高く、
さらに全伸びが劣るものもある。また、製造条件が本発
明で規定する範囲にあっても、化学成分が本発明範囲外
の比較鋼F〜Iを用いた試料No. 10〜13では、降伏
比が総じて高く、降伏比の低いもの(No. 11)では全
伸びが低い。またNo.11〜13では表面性状が劣って
いる。
On the other hand, even in the case where the chemical components are within the range specified by the present invention, Sample Nos. 2, 4, 5, and 7 whose production conditions are out of the range specified by the present invention generally have a high yield ratio. ,
Some have even worse total elongation. Further, even if the manufacturing conditions are in the range specified in the present invention, in Sample Nos. 10 to 13 using the comparative steels F to I whose chemical components are out of the range of the present invention, the yield ratio is generally high and the yield ratio is low. In the case of No. 11 (No. 11), the total elongation is low. Further, in Nos. 11 to 13, the surface properties are inferior.

【0035】[0035]

【発明の効果】本発明によれば、特に熱間圧延において
仕上温度をAr3点超とし、巻取温度を700℃超とする
ことで、高強度熱延鋼板を変形抵抗の低い温度領域で容
易に圧延することができ、圧延設備の負担を軽減して低
降伏比、優れた成形性を有する引張強さ490MPa 以上
の合金化溶融亜鉛めっき冷延鋼板を容易に製造すること
ができる。しかも、本発明によれば、低温にて合金化処
理を行うことが出来るので、めっきむら、パウダリング
性等の表面性状の向上に加えて、エネルギー費用の低減
も可能である。
According to the present invention, particularly in hot rolling, by setting the finishing temperature to be more than three points of Ar and the winding temperature to be more than 700 ° C., the high-strength hot-rolled steel sheet can be heated in a temperature range where deformation resistance is low. Rolling can be easily performed, and the load on the rolling equipment can be reduced, and a galvannealed cold-rolled steel sheet having a tensile strength of 490 MPa or more having a low yield ratio and excellent formability can be easily manufactured. In addition, according to the present invention, since the alloying treatment can be performed at a low temperature, it is possible to reduce the energy cost in addition to improving the surface properties such as uneven plating and powdering properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例にかかる合金化溶融亜鉛めっき冷延鋼板
の降伏強度、引張強度、伸び、降伏比と巻取温度との関
係を示すグラフである。
FIG. 1 is a graph showing the relationship between yield strength, tensile strength, elongation, yield ratio and winding temperature of a galvannealed cold-rolled steel sheet according to an example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C23C 2/28 C23C 2/28 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C23C 2/28 C23C 2/28

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 mass%で、C :0.10〜0.25
%、Si:0.50%以下、Mn:1.0〜3.0%、
S :0.010%以下、Al:0.10%以下を含有
し、残部Feおよび不可避的不純物よりなる鋼を熱間圧
延するに際して、仕上温度をAr3点超として仕上圧延を
終了し、巻取温度を700℃超として巻き取った後、得
られた熱延鋼板を酸洗、冷間圧延して薄鋼板とし、 次いで連続溶融亜鉛めっきラインによって合金化溶融亜
鉛めっきを施すに際して、前記薄鋼板をAc1点〜850
℃の温度に10秒以上加熱した後、平均冷却速度10℃
/秒以上にてめっき温度まで冷却し、溶融亜鉛めっきを
施した後、450〜600℃の範囲の温度で合金化処理
を施す成形性に優れた合金化溶融亜鉛めっき高強度冷延
鋼板の製造方法。
1. C .: 0.10 to 0.25 in mass%
%, Si: 0.50% or less, Mn: 1.0 to 3.0%,
When hot rolling a steel containing S: 0.010% or less and Al: 0.10% or less, the balance being Fe and unavoidable impurities, the finish rolling is completed by setting the finishing temperature to more than three points of Ar. After winding at a temperature higher than 700 ° C., the obtained hot-rolled steel sheet is pickled and cold-rolled into a thin steel sheet. From Ac 1 point to 850
After heating to a temperature of 10 ° C for 10 seconds or more, the average cooling rate is 10 ° C
After cooling to the plating temperature at a rate of at least / sec and subjecting to hot-dip galvanizing, alloying is performed at a temperature in the range of 450 to 600 ° C. Production of alloyed hot-dip galvanized high-strength cold-rolled steel sheets with excellent formability Method.
【請求項2】 請求項1に記載した成分のほか、さらに
P:0.10%以下、Cr:1.0%以下の内から1種
または2種の元素を含有する請求項1に記載した成形性
に優れた合金化溶融亜鉛めっき高強度冷延鋼板の製造方
法。
2. The composition according to claim 1, further comprising at least one element selected from the group consisting of P: 0.10% or less and Cr: 1.0% or less, in addition to the components described in claim 1. A method for producing an alloyed hot-dip galvanized high-strength cold-rolled steel sheet with excellent formability.
【請求項3】 請求項1または2に記載した成分のほ
か、さらにCa、REMの1種または2種の元素を合計で
0.005%以下含有する請求項1または2に記載した
成形性に優れた合金化溶融亜鉛めっき高強度冷延鋼板の
製造方法。
3. The moldability according to claim 1 or 2, further comprising at least 0.005% in total of one or two elements of Ca and REM in addition to the components described in claim 1 or 2. Excellent alloying hot dip galvanized high strength cold rolled steel sheet manufacturing method.
JP36931797A 1997-12-29 1997-12-29 Production of galvannealed high strength cold rolled steel sheet excellent in formability Pending JPH11193419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36931797A JPH11193419A (en) 1997-12-29 1997-12-29 Production of galvannealed high strength cold rolled steel sheet excellent in formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36931797A JPH11193419A (en) 1997-12-29 1997-12-29 Production of galvannealed high strength cold rolled steel sheet excellent in formability

Publications (1)

Publication Number Publication Date
JPH11193419A true JPH11193419A (en) 1999-07-21

Family

ID=18494122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36931797A Pending JPH11193419A (en) 1997-12-29 1997-12-29 Production of galvannealed high strength cold rolled steel sheet excellent in formability

Country Status (1)

Country Link
JP (1) JPH11193419A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020045326A (en) * 2000-12-08 2002-06-19 이구택 Method of manufacturing hot-rolled galvanized iron with good workability
WO2004061137A1 (en) * 2002-12-26 2004-07-22 Nippon Steel Corporation Alloyed-molten-zinc-plated steel sheet with excellent processability and high strength and process for producing the same
JP2004218025A (en) * 2003-01-16 2004-08-05 Kobe Steel Ltd High strength steel sheet having excellent workability and shape fixability, and its production method
JP2006265620A (en) * 2005-03-23 2006-10-05 Nisshin Steel Co Ltd Method for producing low yield ratio high tensile strength hot dip galvanized steel sheet
US7118809B2 (en) 2004-05-06 2006-10-10 Kobe Steel, Ltd. High-strength hot-dip galvanized steel sheet with excellent spot weldability and stability of material properties

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020045326A (en) * 2000-12-08 2002-06-19 이구택 Method of manufacturing hot-rolled galvanized iron with good workability
WO2004061137A1 (en) * 2002-12-26 2004-07-22 Nippon Steel Corporation Alloyed-molten-zinc-plated steel sheet with excellent processability and high strength and process for producing the same
JP2004218025A (en) * 2003-01-16 2004-08-05 Kobe Steel Ltd High strength steel sheet having excellent workability and shape fixability, and its production method
US7118809B2 (en) 2004-05-06 2006-10-10 Kobe Steel, Ltd. High-strength hot-dip galvanized steel sheet with excellent spot weldability and stability of material properties
JP2006265620A (en) * 2005-03-23 2006-10-05 Nisshin Steel Co Ltd Method for producing low yield ratio high tensile strength hot dip galvanized steel sheet
JP4679195B2 (en) * 2005-03-23 2011-04-27 日新製鋼株式会社 Low yield ratio high tension hot dip galvanized steel sheet manufacturing method

Similar Documents

Publication Publication Date Title
US8747577B2 (en) High yield ratio and high-strength thin steel sheet superior in weldability and ductility, high-yield ratio high-strength hot-dip galvanized thin steel sheet, high-yield ratio high-strength hot-dip galvannealed thin steel sheet, and methods of production of same
TWI406966B (en) High tensile strength galvanized steel sheet excellent in workability and method for manufacturing the same
US20100273024A1 (en) Dual-phase steel, flat product made of a dual-phase steel of this type and processes for the production of a flat product
JP3459500B2 (en) High-strength galvannealed steel sheet excellent in formability and plating adhesion and method for producing the same
WO1994000615A1 (en) Cold-rolled steel plate having excellent baking hardenability, non-cold-ageing characteristics and moldability, and molten zinc-plated cold-rolled steel plate and method of manufacturing the same
EP2554687A1 (en) Method for producing high-strength steel plate having superior deep drawing characteristics
JP2003221623A (en) Method for manufacturing high-strength cold-rolled steel sheet and hot-dip galvanized high-strength steel sheet
JP3587126B2 (en) High tensile hot-dip galvanized steel sheet excellent in ductility and method for producing the same
JP2761095B2 (en) Method for producing high strength galvanized steel sheet with excellent bending workability
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP3473480B2 (en) Hot-dip galvanized steel sheet excellent in strength and ductility and method for producing the same
JP2862187B2 (en) Manufacturing method of hot-dip galvanized high-strength thin steel sheet with excellent hole expansion properties
JP2761096B2 (en) Manufacturing method of high ductility and high strength alloyed hot-dip galvanized steel sheet
JP2005206917A (en) Hot-rolled steel strip which is excellent in material stability and is used as high-strength material sheet for galvannealing, galvanized steel strip and its manufacturing method
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JPH11193419A (en) Production of galvannealed high strength cold rolled steel sheet excellent in formability
JP4826694B2 (en) Method for improving fatigue resistance of thin steel sheet
JP3358938B2 (en) High-strength hot-rolled steel sheet with excellent chemical conversion and workability
JP2563021B2 (en) Method for producing high-strength hot-rolled hot-dip galvannealed steel sheet with excellent stretch flangeability
JP3464611B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and corrosion resistance and method for producing the same
JP3587114B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP3967868B2 (en) High-strength hot-rolled steel sheet, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in formability, and manufacturing method thereof
JP3790092B2 (en) High-strength hot-dip galvanized steel sheet with excellent workability and plating properties, its manufacturing method, and automotive member manufactured using the steel sheet
JP2607950B2 (en) Method for producing high-strength cold-rolled steel sheet with alloyed molten zinc with excellent workability
JP2003089847A (en) Hot rolled steel sheet having excellent stretch flanging workability, galvanized steel sheet, and their production method