JP4679195B2 - Low yield ratio high tension hot dip galvanized steel sheet manufacturing method - Google Patents
Low yield ratio high tension hot dip galvanized steel sheet manufacturing method Download PDFInfo
- Publication number
- JP4679195B2 JP4679195B2 JP2005084618A JP2005084618A JP4679195B2 JP 4679195 B2 JP4679195 B2 JP 4679195B2 JP 2005084618 A JP2005084618 A JP 2005084618A JP 2005084618 A JP2005084618 A JP 2005084618A JP 4679195 B2 JP4679195 B2 JP 4679195B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- cooling
- mass
- low
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
本発明は、強度と延性のバランスに優れ、かつ低降伏比を呈する自動車用鋼板,建築用構造部材および家電製品向けの低降伏比高張力溶融亜鉛めっき鋼板の製造方法に関する。 The present invention relates to a method for producing a low yield ratio high-tensile hot-dip galvanized steel sheet for automobile steel sheets, building structural members, and home appliances that has an excellent balance between strength and ductility and exhibits a low yield ratio.
近年、地球環境保全の観点から燃費向上を目的として自動車の軽量化が検討されており、使用される部品の軽量化が図られている。これらの用途に用いられる鋼板には、薄肉化した際にも所望の強度を確保する観点から、高張力化が進められている。
ところで、自動車用鋼板の多くがプレス加工により成形されているため、これらの鋼板には優れたプレス成形性が求められている。優れたプレス成形性の指標となる材料特性としては、高いr値や低い表面摩擦抵抗も挙げられるが、高い延性が必要である。同時にプレス成形性を安定させるためには、鋼板の降伏応力を引張強さに比べてより低く、すなわち低降伏比化することが肝要とされている。一方、自動車部品では使用される部位により耐食性が求められる場合が多い。この場合には、溶融めっきの中でも電着塗装性に優れた合金化亜鉛めっき鋼板が使用されることが多い。
このように、自動車部品の軽量化を図る上では、延性に優れた高張力合金化亜鉛めっき鋼板が必要になっている。同時に安価に工業的に安定して製造できることも肝要である。
In recent years, weight reduction of automobiles has been studied for the purpose of improving fuel efficiency from the viewpoint of global environmental protection, and weight reduction of parts used has been attempted. Steel sheets used for these applications have been increased in tension from the viewpoint of ensuring a desired strength even when thinned.
By the way, since many of the steel plates for motor vehicles are shape | molded by press work, the outstanding press-formability is calculated | required by these steel plates. The material properties that serve as an indicator of excellent press formability include a high r value and a low surface friction resistance, but high ductility is required. At the same time, in order to stabilize the press formability, it is important to lower the yield stress of the steel sheet compared to the tensile strength, that is, to lower the yield ratio. On the other hand, in automobile parts, corrosion resistance is often required depending on the part used. In this case, an alloyed galvanized steel sheet having excellent electrodeposition coating properties is often used in hot dip coating.
Thus, in order to reduce the weight of automobile parts, a high-tensile alloyed galvanized steel sheet excellent in ductility is required. At the same time, it is also important that it can be manufactured inexpensively and industrially stably.
これらの技術的課題から、めっき素材としての高延性を示す高張力鋼板に着目した従来技術として残留オーステナイトを利用した技術が提案されている。
特許文献1では、C:0.30〜0.55%,Si:0.7〜2.0%,Mn:0.5〜2.5%を含有する鋼板をオーステナイト単相域に加熱後、650〜750℃に4〜15秒保持し、続いてその後の冷却過程の450〜650℃間で合計10〜50秒の保持を行うことにより、“マルテンサイトあるいはベイナイト中に体積%で10%以上のフェライトと残留オーステナイトを含む複合組織”を出現させて、“高延性を示す高張力鋼板”を得ることが提案されている。
From these technical problems, a technique using retained austenite has been proposed as a conventional technique focusing on a high-tensile steel sheet exhibiting high ductility as a plating material.
In Patent Document 1, a steel sheet containing C: 0.30 to 0.55%, Si: 0.7 to 2.0%, Mn: 0.5 to 2.5% is heated to an austenite single phase region, By holding at 650 to 750 ° C. for 4 to 15 seconds, and subsequently holding at 450 to 650 ° C. in the subsequent cooling process for a total of 10 to 50 seconds, “10% or more by volume in martensite or bainite” It has been proposed to obtain a “high-strength steel sheet exhibiting high ductility” by causing a “composite structure including ferrite and retained austenite” to appear.
また、特許文献2では、C:0.12〜0.55%,Si:0.4〜1.8%,Mn:0.2〜2.5%のほか、必要により適量のP,Ni,Cu,Cr,Ti,Nb,VおよびMoの1種以上を含む鋼板を“フェライト+オーステナイト単相域”に加熱した後、その冷却途中の500〜350℃の温度域で30秒〜30分間保持することにより、“フェライト+ベイナイト+残留オーステナイト複合組織”を出現させて、“高延性を示す高張力鋼板”を得ることが提案されている。
さらに、特許文献3には、炭化物生成の抑制と残留オーステナイトの安定化を図る元素としてSiを利用した、Si添加型の残留オーステナイト含有鋼板が提案されている。特許文献3では、さらにTi,Nbを添加し、その炭窒化物を形成させることにより耐衝撃性をより向上させることも示されている。
Further, Patent Document 3 proposes a Si-added type retained austenite-containing steel sheet that uses Si as an element for suppressing carbide formation and stabilizing retained austenite. Patent Document 3 also shows that the impact resistance is further improved by adding Ti and Nb to form carbonitrides thereof.
しかし特許文献1,2で提案されている技術は、残留オーステナイトによる変態誘起塑性(TRIP)を利用して高延性を得たものであり、残留オーステナイトを得るために焼鈍およびめっき工程での温度条件が、一般の合金化亜鉛めっき鋼板と異なり、特別の熱サイクルが必要になるため製造コストの増加を招いている。具体的には、焼鈍後の冷却工程においてベイナイト変態を進行させ、残留するオーステナイト中にCを濃化させる必要がある。また、これら残留オーステナイトを含む鋼板の延性は確かに高いが、用途によっては過大な延性となる場合もある。 However, the techniques proposed in Patent Documents 1 and 2 have obtained high ductility by using transformation-induced plasticity (TRIP) due to retained austenite, and temperature conditions in annealing and plating processes to obtain retained austenite. However, unlike a general alloyed galvanized steel sheet, a special heat cycle is required, resulting in an increase in manufacturing cost. Specifically, it is necessary to cause bainite transformation to proceed in the cooling step after annealing and to concentrate C in the remaining austenite. Moreover, although the ductility of the steel plate containing these retained austenites is certainly high, it may become excessive ductility depending on the use.
また、高強度化のためにFeよりも酸化されやすいSiやMnを多量に含ませているため、焼鈍時にSiやMnの酸化物が鋼板表面に生成しやすくなっている。これらの酸化物はめっきの付着性および合金速度を著しく低下させるといった弊害をもたらす。そこで、これらの改善のため、焼鈍雰囲気を制御する案も提案されているが、その効果は限定的であり、安定しためっきの付着性を確保するには不十分である。
一方、特許文献3のように、TiやNb添加に基づく炭窒化物の析出物を利用した高強度化では、降伏比が高くなる。このため、自動車鋼板の成形法として一般的に採用されているプレス成形を採用したときに形状凍結性に劣るといった問題点もある。
本発明は、このような問題を解消すべく案出されたものであり、安定して良好な強度−延性バランスを呈し、かつ低降伏比と優れためっき密着性を有する高張力溶融めっき鋼板を、通常の連続焼鈍−溶融めっき工程により得ることを目的とする。
Moreover, since Si and Mn which are more easily oxidized than Fe are contained for increasing the strength, Si and Mn oxides are easily generated on the steel sheet surface during annealing. These oxides cause adverse effects such as significantly reducing plating adhesion and alloy speed. Therefore, a proposal for controlling the annealing atmosphere has been proposed for these improvements, but the effect is limited, and it is insufficient to ensure stable adhesion of plating.
On the other hand, as in Patent Document 3, in the case of increasing the strength using a carbonitride precipitate based on the addition of Ti or Nb, the yield ratio increases. For this reason, there is also a problem that the shape freezing property is inferior when press forming generally adopted as a forming method of an automobile steel plate is adopted.
The present invention has been devised to solve such problems, and provides a high-tensile hot-dip galvanized steel sheet that stably exhibits a good strength-ductility balance and has a low yield ratio and excellent plating adhesion. It aims at obtaining by a normal continuous annealing-hot-dipping process.
本発明の低降伏比高張力溶融亜鉛めっき鋼板の製造方法は、その目的を達成するため、C:0.03〜0.18質量%,Si:0.1〜0.5質量%,Mn:1.0〜2.5質量%,P:0.03質量%以下,S:0.005質量%以下を含み、さらに必要に応じてCr:0.1〜0.5質量%およびMo:0.03〜0.3質量%の1種または2種を含み、残部Fe及び不可避的不純物からなる組成を有する鋼板に、Fe系めっき層を形成した後、フェライト+オーステナイト二相域にて焼鈍してフェライト相の体積率を20〜50%とした後に、一次冷却として平均冷却速度5〜20℃/秒で650〜500℃まで冷却し、引続き、二次冷却として亜鉛めっき浴温度まで平均冷却速度5℃/秒以下で冷却して冷却後のフェライト相の体積率を50〜70%とし、この後に溶融亜鉛めっきおよび合金化処理を施すことを特徴とする。 In order to achieve the object, the low yield ratio high-tensile hot-dip galvanized steel sheet according to the present invention has a C: 0.03 to 0.18 mass%, Si: 0.1 to 0.5 mass%, and Mn: 1.0 to 2.5 mass%, P: 0.03 mass% or less, S: 0.005 mass% or less, and if necessary, Cr: 0.1-0.5 mass% and Mo: 0 After forming an Fe-based plating layer on a steel sheet having a composition comprising the remaining Fe and unavoidable impurities including one or two of 0.03 to 0.3% by mass, annealing is performed in a ferrite + austenite two-phase region. After the volume fraction of the ferrite phase is adjusted to 20 to 50%, it is cooled to 650 to 500 ° C. at an average cooling rate of 5 to 20 ° C./second as primary cooling, and then continuously to the galvanizing bath temperature as secondary cooling. Cooling at 5 ° C./second or less, the volume fraction of ferrite phase after cooling is 50 to 70% And, wherein the performing molten zinc plating and alloying treatment after this.
Fe系めっき層の付着量は1〜6g/m2とし、焼鈍温度は700〜900℃の範囲とすることが好ましい。
上記条件で処理された鋼板に、溶融亜鉛めっきおよび合金化処理を施して室温まで冷却すると、その金属組織は、体積率で、フェライト相が60〜80%,低温変態相が10〜30%,パーライト相が10%以下の複合組織となっている。
The adhesion amount of the Fe-based plating layer is preferably 1 to 6 g / m 2 and the annealing temperature is preferably 700 to 900 ° C.
When the steel sheet treated under the above conditions is subjected to hot dip galvanization and alloying treatment and cooled to room temperature, the metal structure is in volume ratio, the ferrite phase is 60 to 80%, the low temperature transformation phase is 10 to 30%, It has a composite structure with a pearlite phase of 10% or less.
本発明では、Ti,Nb等の炭窒化物形成元素を用いず、主にCおよびSi,Mn添加による高強度化と、溶融亜鉛めっきおよび合金化処理後の組織をフェライト+低温変態相の複相組織にすることにより、低降伏比化と高延性化を達成することができている。しかも、通常の連続焼鈍−溶融めっきラインでの各段階での温度−冷却条件の厳密な制御により上記複相組織化が安定して達成できるため、強度と延性のバランスに優れ、かつ低降伏比を呈する高張力溶融亜鉛めっき鋼板を安価にかつ工業的に安定して製造することができる。 In the present invention, carbon nitride-forming elements such as Ti and Nb are not used, and the structure after mainly adding C, Si, and Mn, and the structure after hot dip galvanizing and alloying treatment are combined with a ferrite + low temperature transformation phase. By using a phase structure, a low yield ratio and a high ductility can be achieved. In addition, the above-described multi-phase structure can be stably achieved by strict control of temperature-cooling conditions at each stage in a normal continuous annealing-hot-dipping line, so that the balance between strength and ductility is excellent, and a low yield ratio is achieved. The high-tensile hot-dip galvanized steel sheet exhibiting the above can be manufactured at low cost and industrially stably.
本発明者等は、Ti,Nb等の炭窒化物形成元素を添加することなくSi,Mnを含有する鋼板を原材として用い、プレス成形性に優れ、しかも所要の強度を呈するように強度と延性のバランスが取れた高張力溶融めっき鋼板を、通常の連続焼鈍−溶融めっきラインで製造する手法について種々検討を重ねてきた。
その結果、各工程における処理温度および冷却速度を厳密に規制して各工程において適切な組織を作りこむことにより、通常の連続焼鈍−溶融めっきラインでも、溶融亜鉛めっきおよび合金化処理後の組織をフェライト+低温変態相の複相組織を得ることができ、低降伏比化と高延性化を両立させた高張力溶融亜鉛めっき鋼板を得ることができた。
The inventors have used steel sheets containing Si and Mn as raw materials without adding carbonitride-forming elements such as Ti and Nb as raw materials, and are excellent in press formability and yet have the required strength. Various studies have been made on techniques for producing a high-tensile hot-dip galvanized steel sheet having a good balance of ductility in a normal continuous annealing-hot dip plating line.
As a result, the processing temperature and cooling rate in each process are strictly regulated and an appropriate structure is created in each process, so that the structure after hot dip galvanizing and alloying treatment can be obtained even in a normal continuous annealing-hot-plating line. A multiphase structure of ferrite + low-temperature transformation phase could be obtained, and a high-tensile hot-dip galvanized steel sheet that achieved both low yield ratio and high ductility could be obtained.
本発明では、低降伏比化のためにTiやNb等の炭窒化物形成元素を使用せず、基本的にはCおよびSi,Mnによる高強度化を図っている。また、MnによりAr3変態点を低下させ、焼鈍後の冷却時のパーライト変態を抑制している。さらに、焼鈍後の一次冷却および二次冷却を通じてフェライト変態をより進行させ、めっき層の合金化時まで主にフェライト+オーステナイトの二相組織とし、めっき層の合金化後の冷却にて初めてオーステナイト相からマルテンサイト+ベイナイトの低温変態相を生じさせることにより、最終的に、フェライトと低温変態相からなる複相組織を有する、強度−延性バランスの優れた高張力鋼板が得られる。
以下に、その詳細を説明する。
In the present invention, in order to reduce the yield ratio, carbonitride-forming elements such as Ti and Nb are not used, and basically high strength is achieved with C, Si, and Mn. Moreover, Ar 3 transformation point is lowered by Mn, and pearlite transformation during cooling after annealing is suppressed. Furthermore, the ferrite transformation is further advanced through primary cooling and secondary cooling after annealing, and a two-phase structure of mainly ferrite and austenite is formed until the plating layer is alloyed. From the above, by generating a low temperature transformation phase of martensite + bainite, a high strength steel plate having a multiphase structure composed of ferrite and a low temperature transformation phase and having an excellent strength-ductility balance can be finally obtained.
The details will be described below.
本発明の低降伏比高張力溶融亜鉛めっき鋼板を製造するに当たっては、まず鋼の成分組成を次のように定める。
C:0.03〜0.18質量%
Cは、鋼の高強度化に有効な元素であり、二相域焼鈍時にオーステナイト中に濃化し、その後の冷却時に高強度化に有効な低温変態相の生成に寄与する。0.03質量%に満たないとそれらの効果は得られない。一方、0.18質量%を超えて含有させると、過度の高強度化による延性低下を招くばかりでなく、溶接性も劣化する。
In producing the low yield ratio high tension hot dip galvanized steel sheet of the present invention, first, the component composition of the steel is determined as follows.
C: 0.03 to 0.18% by mass
C is an element effective for increasing the strength of steel, and is concentrated in austenite during annealing in the two-phase region, and contributes to the generation of a low temperature transformation phase effective for increasing the strength during subsequent cooling. These effects cannot be obtained unless the content is less than 0.03 mass%. On the other hand, if the content exceeds 0.18% by mass, not only does ductility decrease due to excessive increase in strength, but also weldability deteriorates.
Si:0.1〜0.5質量%
Siは、固溶強化元素として高強度化に有効である。0.1質量%に満たないとその効果が発揮されない。一方、0.5質量%を超えた含有させると、焼鈍時に母材表層よりFeめっき層まで拡散して酸化物を形成することにより、合金化に必要な温度が上昇することになる。そして、オーステナイトがよりパーライトに変態し、めっき後のベイナイトおよびマルテンサイトの量が減少して、所要強度が得られなくなる。
Si: 0.1-0.5% by mass
Si is effective for increasing the strength as a solid solution strengthening element. The effect is not exhibited unless it is less than 0.1% by mass. On the other hand, when the content exceeds 0.5% by mass, the temperature necessary for alloying increases by diffusing from the surface layer of the base metal to the Fe plating layer during annealing to form an oxide. And austenite transforms to pearlite more, the amount of bainite and martensite after plating decreases, and the required strength cannot be obtained.
Mn:0.5〜2.5質量%
Mnは、固溶強化元素として高強度化に有効である。また、焼鈍後の一次冷却時のパーライト変態を抑制することにより、ベイナイトおよびマルテンサイトの生成を促進し、高強度化に寄与する。さらにAr3変態点を低下させ、一次および二次冷却にて強度低下の原因となるパーライト変態を抑制する作用を有する。0.5質量%に満たないとそれらの効果は発揮されない。一方、2.5質量%を超えて含有させると、強度が過度に上昇し、延性が低下して加工性を劣化させるばかりでなく、Siと同様にめっき密着性を低下させる。
Mn: 0.5 to 2.5% by mass
Mn is effective for increasing the strength as a solid solution strengthening element. Moreover, by suppressing the pearlite transformation during the primary cooling after annealing, the formation of bainite and martensite is promoted, which contributes to an increase in strength. Further, it has an action of lowering the Ar 3 transformation point and suppressing pearlite transformation that causes a decrease in strength in primary and secondary cooling. These effects are not exhibited unless the content is less than 0.5% by mass. On the other hand, if the content exceeds 2.5% by mass, the strength is excessively increased, ductility is lowered and workability is deteriorated, and the plating adhesion is lowered similarly to Si.
P:0.03質量%以下
Pは、安定な固溶強化元素として高強度化に寄与する。しかしながら、多量に含まれると粒界偏析が顕著になって、鋼板の靭性を著しく劣化させる。したがってPの上限は0.03質量%とする。
S:0.005質量%以下
Sは、主にMnSとして鋼板中に存在し、鋼板の延性を劣化させるので少ない方が好ましい。本発明では、S含有量の上限は0.005質量%とした。
P: 0.03 mass% or less P contributes to high strength as a stable solid solution strengthening element. However, when it is contained in a large amount, grain boundary segregation becomes prominent, and the toughness of the steel sheet is remarkably deteriorated. Therefore, the upper limit of P is 0.03 mass%.
S: 0.005 mass% or less S is preferably present in the steel sheet mainly as MnS, and is preferably less because it deteriorates the ductility of the steel sheet. In the present invention, the upper limit of the S content is 0.005% by mass.
また本発明では、一次および二次冷却にて強度低下の原因となるパーライト変態を抑制する作用を有するCrおよびMoの一種または二種を必要に応じて添加してもよい。Crの場合は0.1質量%の含有で、Moの場合は0.03質量%の含有でその作用が発揮される。しかし、いずれも多量に含有させると、靭性が低下する。したがって、添加する場合、Crは0.5質量%を、Moは0.3質量%を上限とする。
脱酸剤として添加したAlを除き、以上に説明した成分以外は、不純物である。
Moreover, in this invention, you may add 1 type or 2 types of Cr and Mo which have the effect | action which suppresses the pearlite transformation which causes a strength fall by primary and secondary cooling as needed. In the case of Cr, 0.1% by mass is contained, and in the case of Mo, 0.03% by mass is effective. However, if any of them is contained in a large amount, the toughness is lowered. Therefore, when Cr is added, the upper limit is 0.5% by mass for Cr and 0.3% by mass for Mo.
Except for Al added as a deoxidizer, the components other than those described above are impurities.
次に、各製造工程についてその役割と手段内容を詳しく説明する。
連続鋳造にてスラブとした後、熱間のまま熱間圧延を行うか、または一旦室温まで冷却したものを加熱した後に熱間圧延を行って熱延鋼板とする。熱間圧延は、均熱加熱温度や圧延温度等には制限はなく通常の条件で行えばよいが、冷間圧延時の負荷や酸洗性の観点から、熱間圧延後の捲取りは500〜650℃の温度とすることが好ましい。
巻取られた熱延コイルは、次いで、常法通りに酸洗した後冷間圧延に供される。冷間圧延条件も特に限定する必要はないが、冷間圧延時の通板性を考慮すると冷間圧延率は30%以上とすることが好ましい。
Next, the role and means of each manufacturing process will be described in detail.
After making it into a slab by continuous casting, hot rolling is performed while it is hot, or after being cooled to room temperature, hot rolling is performed to obtain a hot-rolled steel sheet. The hot rolling may be performed under normal conditions without any limitation on the soaking temperature, the rolling temperature, etc. From the viewpoint of the load during cold rolling and the pickling property, the rolling after hot rolling is 500 A temperature of ˜650 ° C. is preferable.
The wound hot rolled coil is then pickled as usual and then subjected to cold rolling. Although it is not necessary to specifically limit the cold rolling conditions, the cold rolling rate is preferably set to 30% or more in consideration of the sheet passability during the cold rolling.
冷延板にまずFe系のプレめっきを施し、その後に焼鈍を施す。
焼鈍前のFe系めっき
添加されているSiやMnの拡散によるめっき付着性および合金化速度の低下を安定的に防止するには、Fe系めっきを施した後に焼鈍加熱を行うことが有効である。Fe系めっきを施さない場合には合金化温度を高くせざるを得ず、合金化を促進させようとするとオーステナイトがパーライトに変態し、合金化以降の冷却工程で生成する低温変態相量が減少するため、所要の強度が発現しない。
Fe系めっきは付着量1〜6g/m2の範囲で形成することが好ましい。めっき付着量が1g/m2に満たないと、上記作用効果は発揮されない。Fe系めっき層を厚くしても上記作用は飽和し、製造コストの上昇を招く。したがってFe系めっき付着量の上限は、6g/m2とする。
なお、Fe系めっきの方法は限定しないが、電気めっき法を用いることが好ましい。
The cold-rolled sheet is first subjected to Fe-based pre-plating, and then annealed.
It is effective to perform annealing heating after applying Fe-based plating in order to stably prevent deterioration of plating adhesion and alloying speed due to diffusion of Si and Mn added with Fe-based plating before annealing. . If Fe-based plating is not applied, the alloying temperature must be increased, and if an attempt is made to promote alloying, austenite transforms into pearlite, and the amount of low-temperature transformation phase generated in the cooling process after alloying decreases. Therefore, the required strength does not appear.
It is preferable to form the Fe-based plating in the range of 1 to 6 g / m 2 of adhesion amount. If the plating adhesion amount is less than 1 g / m 2 , the above-mentioned effects are not exhibited. Even if the Fe-based plating layer is thickened, the above action is saturated, resulting in an increase in manufacturing cost. Therefore, the upper limit of the Fe-based plating adhesion amount is 6 g / m 2 .
The Fe plating method is not limited, but it is preferable to use an electroplating method.
焼鈍
この工程では冷延板の再結晶を目的とするが、複相組織化を達成させるためフェライト+オーステナイトの二相域で焼鈍を行う。この焼鈍時には冷延板の炭化物を核としてオーステナイトが形成する。C濃度の高いオーステナイトを形成させ、その後の冷却時に低温変態相を形成させることにより、強度と延性を併せ持つ複相組織を得ることができる。この際、オーステナイトの体積率は、後の冷却−めっき過程で生じる低温変態相の種類および量を通じてめっき鋼板の引張特性に大きな影響を及ぼす。したがって、単に焼鈍条件だけではなく、生成するオーステナイト体積率を調整することが肝要である。
Annealing In this process, the purpose is to recrystallize the cold-rolled sheet, but annealing is performed in a two-phase region of ferrite and austenite in order to achieve multiphase organization. During this annealing, austenite is formed with the carbide of the cold-rolled sheet as a nucleus. By forming austenite having a high C concentration and forming a low-temperature transformation phase during subsequent cooling, a multiphase structure having both strength and ductility can be obtained. At this time, the volume fraction of austenite has a great influence on the tensile properties of the plated steel sheet through the kind and amount of the low temperature transformation phase generated in the subsequent cooling-plating process. Therefore, it is important to adjust not only the annealing conditions but also the austenite volume ratio to be generated.
本発明では、700〜900℃の範囲で焼鈍を施して、オーステナイト相が50〜80%、すなわちフェライト相の体積率が20〜50%の二相組織を得る。めっき後に強度−延性のバランスのよい鋼板を得るには、軟質なフェライトと硬質な低温変態相の複相組織とする必要があり、このためには、焼鈍後の冷却時に各種変態相を生成するオーステナイトの体積率を所定の範囲にしておく必要がある。焼鈍後において、オーステナイト相が体積率で50〜80%の範囲にないと、その後、所望の強度を発現する体積率の低温変態相が得られない。 In the present invention, annealing is performed in the range of 700 to 900 ° C. to obtain a two-phase structure having an austenite phase of 50 to 80%, that is, a ferrite phase volume ratio of 20 to 50%. In order to obtain a steel sheet with a good balance between strength and ductility after plating, it is necessary to have a multiphase structure of soft ferrite and a hard low-temperature transformation phase. For this purpose, various transformation phases are generated during cooling after annealing. It is necessary to keep the volume ratio of austenite within a predetermined range. After annealing, if the austenite phase is not in the range of 50 to 80% by volume, then a low-temperature transformation phase having a volume ratio that expresses the desired strength cannot be obtained.
焼鈍温度が700℃に満たないと、未溶解炭素量が多量に残存し、オーステナイト量が低く、しかもオーステナイト中のC濃度も低くなるため、焼鈍後の冷却過程で生成する低温変態相の体積率が低下し、所望の強度が得られない。逆に、900℃を超えるほどに高い温度で焼鈍すると、オーステナイト体積率が過大となりすぎ、またC濃度も低下するため、焼鈍後の冷却過程にてパーライトが過大に生成し、低温変態相の体積率が低下して、所望の強度が得られない。 If the annealing temperature is less than 700 ° C., a large amount of undissolved carbon remains, the austenite amount is low, and the C concentration in the austenite is also low, so the volume ratio of the low-temperature transformation phase generated in the cooling process after annealing. Decreases and the desired strength cannot be obtained. Conversely, if annealing is performed at a high temperature exceeding 900 ° C., the austenite volume fraction becomes excessively large and the C concentration also decreases, so that pearlite is excessively generated in the cooling process after annealing, and the volume of the low-temperature transformation phase. The rate decreases and the desired strength cannot be obtained.
一次冷却
ここでは、連続焼鈍−めっき工程において、鋼板がめっき欲に浸漬されるまでを冷却帯とし、前部を一次冷却、後部を二次冷却と称することとする。
一次冷却過程では、フェライト変態を進行させ、オーステナイトの体積率を減少させてC濃度を増加させる。冷却速度および冷却停止温度を規制することにより、強度および延性確保の阻害要因であるパーライトの生成を抑制し、以降の冷却時に低温変態相を形成するオーステナイトを残留させる。
Primary cooling Here, in the continuous annealing-plating step, a period until the steel sheet is immersed in the plating desire is referred to as a cooling zone, the front part is referred to as primary cooling, and the rear part is referred to as secondary cooling.
In the primary cooling process, the ferrite transformation proceeds to decrease the volume fraction of austenite and increase the C concentration. By regulating the cooling rate and the cooling stop temperature, the formation of pearlite, which is an impediment to securing strength and ductility, is suppressed, and austenite that forms a low-temperature transformation phase is left during subsequent cooling.
一次冷却過程での冷却停止温度は、二相域焼鈍時に再結晶したフェライトの粒成長の進行に影響を与える要件である。650℃を超えるとフェライト核生成速度の低下によりフェライト体積率が低下する。逆に500℃よりも低いと、Feの拡散速度が低下するためにフェライト変態速度が低下し、加えて二次冷却にてベイナイトが生成しやすくなり、オーステナイト中へのC濃化が妨げられる。
一次冷却過程での冷却速度も同様にフェライト変態の進行を支配する。20℃/秒を超えるほどに速いとフェライト変態の進行が不十分となり、C濃度の低いオーステナイトが残留するため、硬質で強度に寄与する低温変態相の強度が低下する。また軟質なフェライトの体積率が低下するため延性も低下する。逆に、5℃/秒に満たないほどに遅いと、一次冷却停止温度までの冷却に長時間を要するため、製造コストの上昇を招く。
The cooling stop temperature in the primary cooling process is a requirement that affects the progress of grain growth of recrystallized ferrite during annealing in the two-phase region. If the temperature exceeds 650 ° C., the ferrite volume fraction decreases due to a decrease in the ferrite nucleation rate. On the other hand, if the temperature is lower than 500 ° C., the diffusion rate of Fe is lowered, and the ferrite transformation rate is lowered. In addition, bainite is easily generated by secondary cooling, and C concentration in austenite is prevented.
The cooling rate in the primary cooling process similarly dominates the progress of the ferrite transformation. If it is faster than 20 ° C./second, the progress of ferrite transformation becomes insufficient and austenite having a low C concentration remains, so that the strength of the low temperature transformation phase that is hard and contributes to strength is lowered. Further, since the volume fraction of soft ferrite is lowered, ductility is also lowered. On the other hand, if it is too slow at less than 5 ° C./second, it takes a long time to cool down to the primary cooling stop temperature, leading to an increase in manufacturing cost.
二次冷却
めっき浴温度まで冷却する二次冷却過程では、フェライト変態を進行させるとともにパーライト変態を抑止する必要がある。これを実現するには、前記したように鋼成分としてMnの添加によりAr3変態点を低下させた上で、冷却速度を一定以下に規制する必要がある。さらに、めっき浴に浸漬する温度まで冷却した際の組織、特にオーステナイト体積率を規制し、合金化後の冷却時に生成する低温変態相の体積率を調整することが重要となる。
In the secondary cooling process of cooling to the secondary cooling plating bath temperature, it is necessary to advance the ferrite transformation and suppress the pearlite transformation. In order to realize this, it is necessary to regulate the cooling rate below a certain level after lowering the Ar 3 transformation point by adding Mn as a steel component as described above. Furthermore, it is important to regulate the volume ratio of the low temperature transformation phase generated during cooling after alloying by regulating the structure, particularly the austenite volume ratio, when cooled to a temperature immersed in the plating bath.
二次冷却過程での冷却速度が5℃/秒を超えるほどに速いと、フェライト変態の進行が不十分となる。
めっき浴に浸漬する時点で、フェライトの体積率を50〜70%に、オーステナイトの体積率を30〜50%に調整しておく必要がある。めっき後の冷却過程で硬質な低温変態相を生成させるためには少なくとも30%の体積率のオーステナイトが必要である。フェライトの体積率が50%に満たないと、十分な延性は確保できない。
If the cooling rate in the secondary cooling process is so fast as to exceed 5 ° C./second, the progress of the ferrite transformation becomes insufficient.
When immersed in the plating bath, it is necessary to adjust the volume ratio of ferrite to 50 to 70% and the volume ratio of austenite to 30 to 50%. In order to generate a hard low temperature transformation phase in the cooling process after plating, austenite having a volume fraction of at least 30% is required. If the volume fraction of ferrite is less than 50%, sufficient ductility cannot be ensured.
溶融亜鉛めっきおよび合金化処理
所定割合の二相組織を有するように焼鈍・冷却された鋼板は、その後、通常の条件で溶融亜鉛めっきされ、同じく通常の条件で合金化処理される。合金化後の冷却速度についても特に制限する必要はなく、通常の冷却条件が採用される。
Fe系のプレめっき層の存在により、SiやMnの添加量が多くても合金化速度は通常と同様に速いため、通常の合金化条件、冷却条件を変更する必要はない。
Hot-dip galvanization and alloying treatment The steel sheet annealed and cooled to have a predetermined proportion of the two-phase structure is then hot-dip galvanized under normal conditions and alloyed under normal conditions. The cooling rate after alloying is not particularly limited, and normal cooling conditions are employed.
Due to the presence of the Fe-based pre-plated layer, the alloying speed is as fast as usual even if the amount of Si or Mn added is large, so there is no need to change the usual alloying conditions and cooling conditions.
最終組織
合金化後に残留しているオーステナイトは、通常の冷却速度でパーライト変態せずに低温変態相に変化する。
最終的な金属組織は、体積率で、フェライト相が60〜80%,マルテンサイトとベイナイトからなる低温変態相が10〜30%,パーライト相が10%以下の複合組織となっている。フェライト相が60%に満たないと降伏比が高くなり、80%を超えると必要な強度が得られない。またマルテンサイトとベイナイトからなる低温変態相が10%に満たないと必要な強度が確保できない。逆に30%を超えると延性の低下が著しくなる。さらに、パーライト相は、強度−延性のバランスを整える意味では少ないほど好ましく、10%以下とする。
このような最終的金属組織は、連続焼鈍−溶融亜鉛めっきラインでの各段階の温度管理、冷却速度管理を厳密に行い、各時点での素材鋼板の二相組織を正確に制御することにより達成することができる。
The austenite remaining after the final structure alloying is changed to a low temperature transformation phase without pearlite transformation at a normal cooling rate.
The final metal structure is a composite structure in which the ferrite phase is 60 to 80%, the low temperature transformation phase composed of martensite and bainite is 10 to 30%, and the pearlite phase is 10% or less. If the ferrite phase is less than 60%, the yield ratio increases, and if it exceeds 80%, the required strength cannot be obtained. Further, if the low temperature transformation phase composed of martensite and bainite is less than 10%, the required strength cannot be ensured. On the other hand, if it exceeds 30%, the ductility deteriorates remarkably. Further, the pearlite phase is preferably as small as possible in order to adjust the balance between strength and ductility, and is 10% or less.
Such a final metal structure is achieved by strictly controlling the temperature and cooling rate at each stage in the continuous annealing-hot dip galvanizing line, and accurately controlling the two-phase structure of the material steel sheet at each time point. can do.
実施例1;
表1に示す組成を有するスラブを、熱延仕上げ温度880℃,巻取り温度550℃の条件で、板厚3.6mmまで熱間圧延した後、板厚2.0mmまで冷間圧延した。
冷延板にめっき付着量3g/m2のFe系めっき層を電気めっき法で形成した後、800℃にて加熱焼鈍し、一次冷却として10℃/秒で550℃まで冷却し、引続き、3℃/秒で460℃まで冷却した。460℃まで冷却した焼鈍板を、460℃にセットした溶融亜鉛浴に浸漬し、引続き、460℃で合金化処理を行った。
Example 1;
A slab having the composition shown in Table 1 was hot-rolled to a plate thickness of 3.6 mm under conditions of a hot rolling finishing temperature of 880 ° C. and a winding temperature of 550 ° C., and then cold-rolled to a plate thickness of 2.0 mm.
After forming an Fe-based plating layer with a plating adhesion amount of 3 g / m 2 on a cold-rolled sheet, annealing was performed at 800 ° C., followed by cooling to 550 ° C. at 10 ° C./second as primary cooling, and then 3 Cooled to 460 ° C at 0 ° C / second. The annealed plate cooled to 460 ° C. was immersed in a molten zinc bath set at 460 ° C., and subsequently alloyed at 460 ° C.
得られた各溶融亜鉛めっき鋼板の引張特性を調査した。
引張特性は、圧延方向に直角に切り出したJIS Z2201に記載の5号試験片を用いて、JIS Z2241に準拠して調査した。
その結果を表2に示す。
The tensile characteristics of each obtained hot-dip galvanized steel sheet were investigated.
Tensile properties were investigated in accordance with JIS Z2241 using No. 5 test piece described in JIS Z2201 cut out at right angles to the rolling direction.
The results are shown in Table 2.
本発明例であるNo.1〜7では、引張強度が590MPa以上と高強度で、しかも降伏比が70%以下の低降伏比高張力を有している。
これに対して、比較例であるNo.8では、C量が少ないために引張強度が465MPaと低く、高強度が得られていない。またNo.9では、Mnが本発明範囲を超えて多量に添加されているために、全伸びが著しく低下しており、強度と延性のバランスが良くなかった。
No. which is an example of the present invention. In Nos. 1 to 7, the tensile strength is as high as 590 MPa or more, and the yield ratio is 70% or less and the low yield ratio is high.
On the other hand, No. which is a comparative example. In No. 8, since the amount of C is small, the tensile strength is as low as 465 MPa, and high strength is not obtained. No. In No. 9, since Mn was added in a large amount exceeding the range of the present invention, the total elongation was remarkably lowered, and the balance between strength and ductility was not good.
実施例2;
成分組成が本発明範囲内であるNo.1,4および6の鋼を用い、表3に示すように製造条件を種々変更して各種溶融亜鉛めっき鋼板を作製し、それぞれのめっき鋼板の引張特性を実施例1と同じ方法で調査した。
その結果を表4に示す。
Example 2;
The component composition is within the scope of the present invention. Various hot-dip galvanized steel sheets were prepared using steels 1, 4 and 6 with various production conditions changed as shown in Table 3, and the tensile properties of the respective plated steel sheets were investigated by the same method as in Example 1.
The results are shown in Table 4.
製造No.1は焼鈍温度が高すぎたために、オーステナイト体積率が過大になって冷却後のパーライトの体積率が大きくなりすぎ、引張強度が600MPa以下と低強度であった。製造No.4は焼鈍温度が低すぎたために、オーステナイト体積率が低く、冷却後に強度の向上に寄与する低温変態相が少なくなって、引張強度が600MPa以下と低強度であった。
製造No.5は一次冷却工程での冷却速度が速すぎたため、フェライト変態の進行が不十分で、C濃度の低い低温変態相が多く生成して全伸びが低く、強度と延性のバランスが悪かった。製造No.6は一次冷却工程の終了温度が高すぎたためにフェライト体積率が低くなり、冷却後にパーライトの体積率が高くなって全伸びが低く、強度と延性のバランスが悪かった。また、製造No.7は一次冷却工程の終了温度が低すぎたためにオーステナイトの体積率が高くなりすぎ、冷却後に低温変態相の体積率が高くなって全伸びが低く、強度と延性のバランスが悪かった。
Production No. Since the annealing temperature of No. 1 was too high, the volume ratio of austenite was excessive, the volume ratio of pearlite after cooling was too large, and the tensile strength was as low as 600 MPa or less. Production No. Since the annealing temperature of No. 4 was too low, the austenite volume fraction was low, the low-temperature transformation phase contributing to the improvement of strength after cooling was reduced, and the tensile strength was as low as 600 MPa or less.
Production No. In No. 5, since the cooling rate in the primary cooling step was too fast, the ferrite transformation was not sufficiently progressed, many low-temperature transformation phases with low C concentration were formed, the total elongation was low, and the balance between strength and ductility was poor. Production No. In No. 6, the final volume of the primary cooling process was too high, so the ferrite volume fraction was low, the pearlite volume fraction was high after cooling, the total elongation was low, and the balance between strength and ductility was poor. In addition, production No. In No. 7, since the end temperature of the primary cooling process was too low, the volume fraction of austenite was too high, the volume fraction of the low temperature transformation phase was high after cooling, the total elongation was low, and the balance between strength and ductility was poor.
製造No.11は二次冷却工程での冷却速度が速すぎたため、フェライト変態の進行が不十分で、C濃度の低い低温変態相が多く生成して全伸びが低く、強度と延性のバランスが悪かった。
これに対して、本発明範囲内で製造したものは、引張強度が600MPaを超え、全伸びも25%を超えて、優れた強度−延性のバランスを有していた。
Production No. No. 11 was too fast in the secondary cooling step, so that the ferrite transformation did not proceed sufficiently, many low-temperature transformation phases with low C concentration were formed, the total elongation was low, and the balance between strength and ductility was poor.
On the other hand, those manufactured within the scope of the present invention had an excellent balance between strength and ductility, with tensile strength exceeding 600 MPa and total elongation exceeding 25%.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005084618A JP4679195B2 (en) | 2005-03-23 | 2005-03-23 | Low yield ratio high tension hot dip galvanized steel sheet manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005084618A JP4679195B2 (en) | 2005-03-23 | 2005-03-23 | Low yield ratio high tension hot dip galvanized steel sheet manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006265620A JP2006265620A (en) | 2006-10-05 |
JP4679195B2 true JP4679195B2 (en) | 2011-04-27 |
Family
ID=37201889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005084618A Active JP4679195B2 (en) | 2005-03-23 | 2005-03-23 | Low yield ratio high tension hot dip galvanized steel sheet manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4679195B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4791992B2 (en) * | 2007-03-20 | 2011-10-12 | 日新製鋼株式会社 | Method for producing alloyed hot-dip galvanized steel sheet for spot welding |
JP5338873B2 (en) | 2011-08-05 | 2013-11-13 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability with a tensile strength of 440 MPa or more and its production method |
US20180112286A1 (en) * | 2015-05-12 | 2018-04-26 | Posco | Ultra-high strength hot-rolled steel sheet having excellent bending workability and method for manufacturing same |
CN112553555B (en) * | 2020-12-17 | 2023-04-07 | 新冶高科技集团有限公司 | Production method of fine spangle coating steel plate |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH046259A (en) * | 1990-04-25 | 1992-01-10 | Nippon Steel Corp | Galvannealed steel sheet excellent in workability and its production |
JPH04128321A (en) * | 1990-09-19 | 1992-04-28 | Kobe Steel Ltd | Production of galvanized high-strength steel sheet having excellent bending workability |
JPH05140653A (en) * | 1991-11-18 | 1993-06-08 | Nisshin Steel Co Ltd | Manufacture of low yield ratio cold rolled high tensile strength galvanized steel sheet excellent in pitting corrosion resistance |
JPH11193419A (en) * | 1997-12-29 | 1999-07-21 | Kobe Steel Ltd | Production of galvannealed high strength cold rolled steel sheet excellent in formability |
JP2000109964A (en) * | 1998-10-01 | 2000-04-18 | Sumitomo Metal Ind Ltd | Production of hot dip galvannealed and hot rolled steel sheet |
JP2002235145A (en) * | 2001-02-06 | 2002-08-23 | Kobe Steel Ltd | Cold rolled steel sheet having excellent workability, galvanized steel sheet using the steel sheet as base metal and production method therefor |
JP2003193188A (en) * | 2001-12-25 | 2003-07-09 | Jfe Steel Kk | High tensile strength galvannealed, cold rolled steel sheet having excellent stretch-flanging property and production method therefor |
JP2005220417A (en) * | 2004-02-06 | 2005-08-18 | Jfe Steel Kk | High strength hot dip galvanized steel sheet having excellent stretch flange formability, and its production method |
JP2006104532A (en) * | 2004-10-06 | 2006-04-20 | Nippon Steel Corp | High strength thin steel sheet having excellent elongation and hole expansibility and method for producing the same |
-
2005
- 2005-03-23 JP JP2005084618A patent/JP4679195B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH046259A (en) * | 1990-04-25 | 1992-01-10 | Nippon Steel Corp | Galvannealed steel sheet excellent in workability and its production |
JPH04128321A (en) * | 1990-09-19 | 1992-04-28 | Kobe Steel Ltd | Production of galvanized high-strength steel sheet having excellent bending workability |
JPH05140653A (en) * | 1991-11-18 | 1993-06-08 | Nisshin Steel Co Ltd | Manufacture of low yield ratio cold rolled high tensile strength galvanized steel sheet excellent in pitting corrosion resistance |
JPH11193419A (en) * | 1997-12-29 | 1999-07-21 | Kobe Steel Ltd | Production of galvannealed high strength cold rolled steel sheet excellent in formability |
JP2000109964A (en) * | 1998-10-01 | 2000-04-18 | Sumitomo Metal Ind Ltd | Production of hot dip galvannealed and hot rolled steel sheet |
JP2002235145A (en) * | 2001-02-06 | 2002-08-23 | Kobe Steel Ltd | Cold rolled steel sheet having excellent workability, galvanized steel sheet using the steel sheet as base metal and production method therefor |
JP2003193188A (en) * | 2001-12-25 | 2003-07-09 | Jfe Steel Kk | High tensile strength galvannealed, cold rolled steel sheet having excellent stretch-flanging property and production method therefor |
JP2005220417A (en) * | 2004-02-06 | 2005-08-18 | Jfe Steel Kk | High strength hot dip galvanized steel sheet having excellent stretch flange formability, and its production method |
JP2006104532A (en) * | 2004-10-06 | 2006-04-20 | Nippon Steel Corp | High strength thin steel sheet having excellent elongation and hole expansibility and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2006265620A (en) | 2006-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5532188B2 (en) | Manufacturing method of high-strength steel sheet with excellent workability | |
JP5493986B2 (en) | High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them | |
JP5765092B2 (en) | High yield ratio high-strength hot-dip galvanized steel sheet with excellent ductility and hole expansibility and method for producing the same | |
WO2018151322A1 (en) | High strength steel sheet | |
JP4998757B2 (en) | Manufacturing method of high strength steel sheet with excellent deep drawability | |
JP5245228B2 (en) | High-strength hot-dip galvanized steel sheet with excellent elongation and corrosion resistance and method for producing the same | |
JP4883216B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and spot weldability and method for producing the same | |
JP2002053933A (en) | Cold-rolled steel sheet or hot-rolled steel sheet having excellent hardenability in coating/baking and cold aging resistance, and its production method | |
JP2013076114A (en) | Hot-dip galvanized steel sheet having high yield ratio and method for manufacturing the same | |
JP2011153336A (en) | High strength cold rolled steel sheet having excellent formability, and method for producing the same | |
JP2018090895A (en) | Process for manufacturing hot-rolled steel plate, process for manufacturing cold-rolled full hard steel plate, and process for manufacturing heat-treated plate | |
WO2011090180A1 (en) | High-strength hot-dip galvanized steel sheet with excellent material stability and processability and process for producing same | |
JP5953693B2 (en) | High-strength hot-dip galvanized steel sheet with excellent plating adhesion and formability and its manufacturing method | |
CN100554479C (en) | The high tensile steel plate of excellent in workability | |
JP2012021225A (en) | High-strength cold-rolled steel sheet excellent in uniform elongation in direction of 45 degrees with respect to rolling direction, and method for manufacturing the same | |
JP2006283071A (en) | Method for producing galvannealed high strength steel sheet excellent in workability | |
JP5251207B2 (en) | High strength steel plate with excellent deep drawability and method for producing the same | |
WO2014178358A1 (en) | Galvanized steel sheet and production method therefor | |
JP5853884B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
JP5192704B2 (en) | High strength steel plate with excellent strength-elongation balance | |
JP4679195B2 (en) | Low yield ratio high tension hot dip galvanized steel sheet manufacturing method | |
JP4150277B2 (en) | High strength galvannealed steel sheet excellent in press formability and method for producing the same | |
JP4140962B2 (en) | Manufacturing method of low yield ratio type high strength galvannealed steel sheet | |
JP4544579B2 (en) | Manufacturing method of high strength molten Zn-Al-Mg alloy plated steel sheet | |
JP4436348B2 (en) | Hot-rolled steel sheet excellent in paint bake-hardening performance and room temperature aging resistance and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070313 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080319 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110201 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110201 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4679195 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140210 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |