JP3905318B2 - Cold-rolled steel sheet excellent in workability, hot-dip galvanized steel sheet using the steel sheet as a base material, and method for producing the same - Google Patents

Cold-rolled steel sheet excellent in workability, hot-dip galvanized steel sheet using the steel sheet as a base material, and method for producing the same Download PDF

Info

Publication number
JP3905318B2
JP3905318B2 JP2001029307A JP2001029307A JP3905318B2 JP 3905318 B2 JP3905318 B2 JP 3905318B2 JP 2001029307 A JP2001029307 A JP 2001029307A JP 2001029307 A JP2001029307 A JP 2001029307A JP 3905318 B2 JP3905318 B2 JP 3905318B2
Authority
JP
Japan
Prior art keywords
steel sheet
hot
cold
dip galvanized
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001029307A
Other languages
Japanese (ja)
Other versions
JP2002235145A (en
Inventor
周之 池田
浩一 槙井
宏 赤水
俊一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001029307A priority Critical patent/JP3905318B2/en
Publication of JP2002235145A publication Critical patent/JP2002235145A/en
Application granted granted Critical
Publication of JP3905318B2 publication Critical patent/JP3905318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
本発明は、加工性に優れた冷延焼鈍鋼板およびその鋼板を母材とする溶融亜鉛めっき鋼板(合金化溶融亜鉛めっき鋼板を含む。)並びにその製造方法に関する。
【0002】
【従来の技術】
自動車用、家電用鋼板等として、プレス加工性を備えた冷延鋼板やその鋼板を母材とする溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板(以下、特に区別することなく単に溶融亜鉛めっき鋼板という場合は、合金化溶融亜鉛めっき鋼板をも含むものとする。)が用いられている。溶融亜鉛めっきを施すのは、鋼板の耐食性を向上させるためであり、合金化処理を施すのは亜鉛めっき層の密着性を向上させるためである。
【0003】
前記冷延鋼板(製品としての冷延鋼板)は、熱延板を冷間加工した後、その鋼板(焼鈍前の冷延鋼板)に再結晶焼鈍を施したものであり、プレス加工性を確保するため、必須組織としてフェライトを有し、第2相としてパーライト、あるいは高強度化を目的として低温変態生成物(マルテンサイト、ベイナイト)を有する複合組織とされる。例えば、特開昭58−39770号公報には、フェライト+マルテンサイト+ベイナイトからなる3相組織の冷延鋼板が、また特開昭55−122821号公報にはフェライト+マルテンサイトからなる2相組織の冷延鋼板を母材とする溶融亜鉛めっき鋼板が記載されている。
【0004】
【発明が解決しようとする課題】
近年、製品形状の複雑化に伴い、ますます良好なプレス加工性、特に局部延性が要求されるようになっている。しかしながら、従来の冷延鋼板では、硬い第2相(パーライト、あるいはマルテンサイト、ベイナイト)が破壊の起点になるため、単一組織鋼板に比して局部延性に劣り、この特性を反映する強度−延性バランスが低いという問題がある。
【0005】
本発明はかかる問題に鑑みなされたもので、延性、特に強度−延性バランスに優れた冷延鋼板およびその鋼板を母材とする溶融亜鉛めっき鋼板並びにその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者は、フェライトを含む複合組織を有する冷延鋼板(焼鈍後の冷延鋼板)の延性について鋭意研究した結果、マトリックスであるフェライトを微細化することにより、結晶粒が隣接して形成される3重点の数が増え、その結果としてそこに生成する第2相が微細分散され、このため第2相が破壊の起点として作用し難くなり、局部延性が向上するとの知見を得て本発明を完成するに至った。
【0007】
すなわち、本発明の冷延鋼板は、mass%(以下、単に「%」と表示する。)
C :0.010〜0.06%
Si:0.5%以下、
Mn:0.5〜2.0%、
P :0.20%以下、
S :0.01%以下、
Al:0.005〜0.10%、
N :0.005%以下、
Cr:1.0%以下、
かつMn+1.3Cr:1.7〜2.3%
を含み、残部Fe及び不可避的不純物からなり、組織がフェライトと、マルテンサイトを含む第2相からなり、前記フェライトの平均粒径が相当円直径で2〜6μm とされ、組織中の第2相の割合が面積率で20%以下であり、かつ第2相に占めるマルテンサイトの割合が50%以上とされたものである。前記「Mn+1.3Cr」中の元素記号は各元素の含有量(%)を示す。
【0008】
上記冷延鋼板によると、同強度レベルの冷延鋼板に比して、フェライトの平均粒径が2〜6μm であるので、結晶粒の3重点が増え、そこに生成する第2相を微細化することができ、このため局部延性、強度−延性バランス(引張強さTS×伸びEl値)が向上し、プレス加工性に優れる。
【0009】
また、上記組成により、容易にTSを300〜500MPa程度とすることができ、また上記組織とすることにより、強度−延性バランスを17000程度以上とすると共に、降伏比YRを低く押さえることができ、プレス加工性をより向上させることができる。
【0010】
前記冷延鋼板を母材として、これに溶融亜鉛めっき層、合金化溶融亜鉛めっき層を形成することによって、プレス加工性のみならず、耐食性にも優れた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板が得られる。
【0011】
前記冷延鋼板は、前記成分の冷延鋼板(焼鈍前の冷延板)をフェライト+オーステナイトの2相共存温度域内の焼鈍温度まで、500〜700℃の温度範囲を10℃/sec以上の昇温速度の下で加熱して再結晶焼鈍した後、冷却することによって好適に製造することができる。
500〜700℃の温度範囲を10℃/sec以上の昇温速度で加熱することによって、この温度範囲におけるフェライトの加工組織の回復を抑制して、焼鈍温度においてフェライト結晶粒を加工組織から一気に再結晶させることができ、これによってフェライト結晶粒を2〜6μm 程度に微細化することができ、このため第2相の核生成の発生源となる結晶粒の3重点を多数形成することができ、第2相を微細化することができる。
【0012】
また、焼鈍温度から500℃までの温度域における冷却速度は、1〜10℃/secとするのがよい。これによって、組織中のフェライト以外の第2相(主として低温変態生成物)を20%以下とすることができるとともに、第2相中のマルテンサイト量を50%以上にすることができる。
【0013】
溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板を製造する場合には、連続焼鈍ラインにて前記昇温速度条件に従って2相共存域に加熱し、再結晶焼鈍を行えばよい。そして、焼鈍温度からめっき温度までの冷却速度を1〜10℃/secとして冷却し、溶融亜鉛めっきを施すのがよい。溶融亜鉛めっき後にさらに合金化処理を行う場合、合金化処理後の冷却速度は10℃/sec以上にするのがよい。
【0014】
【発明の実施の形態】
本発明に係る冷延鋼板の化学組成は以下のとおりであり、各成分の限定理由について説明する。
C :0.010〜0.06%、
Si:0.5%以下、
Mn:0.5〜2.0%、
P :0.20%以下、
S :0.01%以下、
Al:0.005〜0.10%、
N :0.005%以下、
Cr:1.0%以下、
かつMn+1.3Cr:1.7〜2.3%
を含み、残部がFeおよび不可避的不純物からなる。「Mn+1.3Cr」中の元素記号は各元素の含有%を示す。
【0015】
C:0.010〜0.06%
プレス加工性を向上させるにはC量は少ない程よいが、0.010%未満ではフェライト+オーステナイトの2相領域が狭くなり、オーステナイトからマルテンサイトが生成しにくくなる。一方0.06%を超えると強度が高くなり過ぎ、軟質鋼板としてのプレス成形性が劣化する。このため、本発明ではC量の下限を0.010%、好ましくは0.015%、より好ましくは0.020%とし、上限を0.06%、好ましくは0.04%とする。
【0016】
Si:0.5%以下
Siは固溶強化元素として鋼板の強度向上に寄与するが、その一方で延性を低下させる。また、過多に添加すると溶融亜鉛めっき付着性を著しく劣化させる。このため、本発明では上限を0.5%、好ましくは0.2%とする。
【0017】
Mn:0.5〜2.0%
Mnは焼入性向上元素であり、0.5%未満では焼入性が過少であり、マルテンサイトの生成が困難となる。また、熱間加工性も低下するようになる。一方、2.0%超ではめっき密着性が低下し、めっき不良が生じるようになる。このため、Mn量の下限を0.5%、好ましくは0.8%とし、一方上限を2.0%、好ましくは1.8%とする。
【0018】
P:0.20%以下
Pは安価な固溶強化元素であり、鋼を強化するには有用な元素であるが、本発明では延性の向上を重視するため、少ないほどよく、0.20%以下に止める。好ましくは0.10%以下とするのがよい。
【0019】
S:0.01%以下
SはS系析出物(主にMnS)を生成し、延性を劣化させるので、少ない程よく、本発明では0.01%以下、好ましくは0.006%以下に止める。
【0020】
Al:0.005〜0.10%
Alは主に脱酸剤として作用し、少なくとも0.005%添加する必要がある。しかし、過多に添加すると脱酸効果が飽和するだけでなく、アルミナ系介在物の生成により延性劣化、連鋳ノズル詰まりによる生産性の劣化等の問題を引き起こすので、上限を0.10%とする。
【0021】
N:0.005%以下
Nはその含有量が多いほど、Nを固定するのに要する窒化物形成元素添加量が増えて製造コスト高を招き、また延性を阻害するようになるので、本発明では少ないほどよく、N量の上限を0.005%、好ましくは0.003%とする。
【0022】
Cr:1.0%以下
Crは焼入性向上元素であり、Mnと同様の作用を有する。また、固溶強化能が小さく本発明のような低強度DP(Dual Phase)鋼に向くため、好ましくは0.3%以上含有させるのがよいが、1.0%超では Cr73が生成して延性が劣化するので、1.0%以下、好ましくは0.7%以下とするのがよい。
【0023】
Mn+1.3Cr:1.7〜2.3%
Mn+1.3Crは焼入性を表す指標であり、この値が1.7%未満では焼入性が不十分でマルテンサイト量が不足する。一方、2.3%超ではめっき性を悪化させ、めっき不良を誘発する。このため、Mn+1.3Crの下限を1.7%、好ましくは2.1%とし、一方上限を2.3%、好ましくは2.2%とする。
【0024】
本発明に係る冷延鋼板の組織は、フェライトと、マルテンサイトを含み、ベイナイトおよび/またはパーライトで形成された第2相からなる。前記成分系では、ベイナイトとパーライトの区別は付きにくく、これらは棒状あるいは球状の炭化物(主にセメンタイト)を含む組織として観察される。前記フェライトは、加工性確保のための必須組織であり、フェライトの平均粒径は2〜6μ m に制限される。2μ m 未満では粒径が微細過ぎて加工硬化指数が低下し、かえって延性が低下する。一方、6μ m 超では、粒径が粗過ぎて、第2相が析出する起点となる、隣接する結晶粒の粒界の3重点が少なくなり、第2相の微細分散化が難くなり、局部延性が劣化するようになる。このため、本発明では平均粒径の下限を2μ m 、好ましくは3μ m とし、その上限を6μ m 、好ましくは5μ m とする。
【0025】
組織中の前記第2相の割合は、面積%で20%以下、好ましくは15%以下、より好ましくは10%以下とするのがよい。20%超では、強度が高くなり、プレス成形性が低下するようになる。また、第2相に占めるマルテンサイトの割合は50%以上、好ましくは80%以上、より好ましくは85%以上とするのがよい。第2相中にベイナイトおよび/あるいはパーライトが50%超占めるようになると、フェライトに導入される可動転位密度が小さくなり降伏強度(降伏比)が上昇するため、延性が低下するようになるからである。
このように、強度の高いマルテンサイトを含む第2相を少なくし、さらに第2相中のマルテンサイト以外の組織量を抑制することで、マルテンサイトを含む複合組織ながら、500MPa 程度以下の低強度化を実現しつつ、17000MPa*%程度以上の優れた強度−延性バランスを得ることができる。
【0026】
上記本発明の冷延鋼板は、そのままでプレス加工用鋼板として利用することができるが、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板の母材としても好適に利用することができる。
【0027】
次に、本発明の冷延鋼板の製造方法について説明する。
本発明の冷延鋼板は、前記成分の鋼片を熱間圧延した後、冷間圧延し、所定の加熱条件の下で再結晶焼鈍をすることによって製造される。
【0028】
熱間圧延条件については特に制限されない。一般的には、鋼片加熱温度は1100〜1250℃程度とするのがよく、熱延仕上温度はAr3点以上とするのがよく、巻取温度はフェライト+パーライト、あるいはフェライト+ベイナイト組織が得られるように400〜700℃程度とするのがよい。巻取温度を600℃以上の高めにすると熱延鋼板は概ねフェライト+パーライト組織に、巻取温度を600未満にするとフェライト+ベイナイト組織になる。熱延後、酸洗し、冷延率を40%程度以上、好ましくは50%程度以上で冷間圧延を行えばよい。
【0029】
冷間圧延後の鋼板は、フェライト+オーステナイトの2相共存域(Ac1〜Ac3)内の焼鈍温度にて再結晶焼鈍される。再結晶焼鈍時間は、通常、連続焼鈍(めっき)ラインでは数秒から十数秒程度である。なお、Ac1、Ac3は、実測により求めることができるが、下記式(「鉄鋼材料」日本金属学会)により算出しても差し支えない。
Ac3=910−203(C)1/2+44.7(Si)
Ac1=723−10.7(Mn)+29.1(Si)+16.9(Cr)
【0030】
前記焼鈍温度への昇温段階において、図1に示すように、回復が進行しないように500〜700℃の温度域を10℃/sec以上の昇温速度HRで速やかに2相共存温度域に昇温することが必要である。10℃/sec未満では、オーステナイトが生成しないが、比較的高温の温度域を通過する際にフェライト結晶粒に冷間圧延によって導入された転位が回復し、再結晶焼鈍の際に結晶粒が成長してしまい、本発明の企図する平均粒径2〜6μm の微細フェライト粒が得られず、またフェライト粒界の3重点に析出する第2相を微細化することができないようになる。10℃/sec以上、好ましくは20℃/sec以上、より好ましくは50℃/sec以上の昇温速度で前記温度域を昇温することにより、回復がほとんど生じることなく、2相共存域に加熱されるため、平均粒径2〜6μm の微細なフェライト結晶粒の3重点にオーステナイトを微細に析出させることができる。
【0031】
なお、従来、2相共存域への昇温は、ラジアントチューブにより加熱されており、昇温速度は2〜6℃/sec程度である。もっとも、高速加熱が可能な直火炉を用いて加熱される場合があるが、600℃を超えると温度むらが著しく、鋼板が変形して通板が不可能となるので、通常、600℃以下の加熱に止められている。本発明では、誘導加熱(IH)炉、あるいは600℃以下を直火炉で加熱し、それ以上をIH炉で加熱することが推奨される。
【0032】
再結晶焼鈍後、500℃までの温度域での冷却速度CR1は1〜10℃/sec、好ましくは1〜3℃/secとするのがよい。1℃/sec未満では、パーライト変態が生じて、フェライト量、マルテンサイト量が不足し、強度−延性バランスが低下するようになる。一方、10℃/s超では、フェライトの生成に伴うオーステナイト中のC濃度の上昇によるベイナイト変態の遅延が期待することができず、第2相の量および第2相中のベイナイト量が増大し、延性が劣化するようになる。また、500℃までのCR1を問題にするのは、CR1の冷却終点が500℃以上ではパーライト変態によりパーライト量が増加するおそれがあるためである。かかる冷却条件により、フェライト以外の第2相を20面積%以下とし、第2相中のマルテンサイト量を50%以上にすることができる。なお、500℃未満の冷却速度CR2は、500℃からの冷却であり、冷却過程でパーライト変態が生じ難いため、特に制限されない。
【0033】
溶融亜鉛めっき鋼板を製造する場合、連続焼鈍めっきラインにて前記HRで昇温し、2相共存域内の焼鈍温度にて焼鈍処理を行い、再結晶焼鈍後、溶融亜鉛めっきを施し、必要に応じて合金化処理を行い、冷却すればよい。溶融亜鉛めっきは、めっき温度が通常400〜480℃程度の溶融亜鉛めっき浴に浸漬することによって行われる。
【0034】
図2に示すように、再結晶焼鈍後、溶融亜鉛めっきまでの冷却速度CR21は上記と同様、1〜10℃/sec、好ましくは1〜3℃/secとするのがよい。めっき後の冷却速度CR22は、めっき温度からの冷却となり、冷却過程でパーライト変態が生じ難いため、特に制限されない。
【0035】
また、溶融亜鉛めっき後、さらに合金化処理を行う場合、合金化処理後の冷却速度CR23は、少なくとも300℃程度までは10℃/sec以上、好ましくは30℃/sec以上とするのがよい。合金化処理の際に、オーステナイトが生成するため、10℃/sec未満の徐冷ではオーステナイトがパーライト、ベイナイトに変態し、第2相中のパーライト、ベイナイト量が増大し、延性が劣化するようになる。10℃/s以上の冷却速度を得るには、強制空冷、冷却ローラによる搬送、あるいはミスト冷却を行えばよい。CR23の上限は特に制限されないが、実際には冷却設備の冷却能力により自ずから上限が定まる。合金化処理は、溶融亜鉛めっき後、引き続いて500〜700℃程度、好ましくは550〜600℃程度の温度で、通常、数秒〜十数秒程度加熱保持することによって行われる。
【0036】
以下、実施例により本発明をさらに説明するが、本発明はかかる実施例によって限定的に解釈されるものではない。
【0037】
【実施例】
下記表1に示す化学成分の鋼を真空誘導溶解にて溶製し、その鋼片を1150℃にて加 熱し、仕上温度を850℃として熱間圧延を行い、560〜680℃にて巻取り、酸洗後、冷延率60%で冷間圧延を行い、厚さ1.2 mm の冷延鋼板を得た。得られた冷延鋼板から切り出したサンプルを赤外線イメージ炉を用いて、同表に示すHRで予熱温度(200℃程度)から800℃の焼鈍温度まで昇温し、同温度にて60秒間保持した後、4℃/secで冷却し、460℃のめっき浴に20秒間浸漬して溶融亜鉛めっき処理を施した。溶融亜鉛めっき後、試料No. 1〜15(溶融亜鉛めっき鋼板)については、サンプルをめっき浴から引き上げ、冷却(放冷)した。一方、試料No. 21〜35(合金化溶融亜鉛めっき鋼板)については、さらに550℃×15秒にて合金化処理を行い、その後ミスト冷却により30℃/secの冷却速度で冷却した。
【0038】
得られたサンプルからJIS5号試験片を採取し、JIS2241に定められた試験法による引張試験を行い、機械的性質(YS:降伏強度、YR:降伏比)を測定した。また、組織観察試料を採取し、めっき層を除去し、ナイタール腐食後、1000倍でSEM観察した組織を画像解析によりフェライト以外の第2相(M+BあるいはM+P、但しM:マルテンサイト、B:ベイナイト、P:パーライト)の面積率を測定した。次にレペラ腐食後、1000倍で光学顕微鏡観察した組織を画像解析してマルテンサイト量を測定した。これらの調査結果を表2および表3に併せて示す。
【0039】
【表1】

Figure 0003905318
【0040】
【表2】
Figure 0003905318
【0041】
【表3】
Figure 0003905318
【0042】
表2および表3より、焼鈍温度への昇温速度を60℃/secと十分速くした場合でも、C量が比較的多い鋼種Aを用いた試料No. 1,21では、引張強さが500MPaを超えているため、プレス加工性にやや難がある。また、Crが比較的多い鋼種G,Jを用いた試料No. 9,12,29,32では第2相中のマルテンサイト量が減少し、伸びもやや劣化している。また、Mn量が過多の鋼種Iを用いた試料No. 11,31ではめっき性が低下する傾向が見られた。一方、MnおよびCrの量が不足気味の鋼種Kを用いた試料No. 13,33では第2相中のマルテンサイト量が減少し、伸びが劣化している。一方、発明範囲内の成分の鋼種Cを用いたものでも焼鈍温度への加熱速度が遅い試料15,35では、フェライトの平均結晶粒径が大きくなり、第2相の微細分散化が不足するため、強度−延性バランスが劣化している。これらの対して、成分が発明範囲内の鋼種を用い、十分速い昇温速度で焼鈍温度に加熱した試料No. 2〜8,10,14,22〜28,30,34では17000以上の優れた強度−延性バランスが得られた。
【0043】
【発明の効果】
本発明の冷延鋼板によれば、特に所定の成分の下、フェライトの平均粒径を2〜6μm と微細化したので、これに伴ってフェライト結晶粒の3重点に生成する第2相を微細に分散することができ、同成分系の冷延鋼板であれば強度−延性バランスが向上し、局部延性の向上により優れたプレス加工性を得ることができる。さらに、強度の高いマルテンサイトを含む第2相を面積率で20%以下と少なくし、かつ第2相中のマルテンサイト以外の組織量を50%未満に抑制することで、マルテンサイトを含む複合組織ながら、500 MPa 程度以下の低強度化を実現しつつ、17000 MPa* %程度以上の優れた強度−延性バランスを得ることができる。また、本発明の製造方法によれば、特に焼鈍温度への加熱に際し、500〜700℃の温度範囲を昇温速度10℃/sec以上で昇温するので、2相共存域内の焼鈍温度まで加工組織の回復を抑制して昇温し、同焼鈍温度で再結晶させることができるので、フェライト結晶粒の粒径の粗大化を抑制して微細なフェライト結晶粒を有する冷延鋼板を容易に製造することができる。
【図面の簡単な説明】
【図1】 本発明にかかる冷延鋼板の製造方法を示す熱処理線図である。
【図2】 本発明にかかる溶融亜鉛めっき鋼板の製造方法を示す熱処理線図である。[0001]
[Technical field to which the invention belongs]
The present invention relates to a cold-rolled annealed steel sheet excellent in workability, a hot-dip galvanized steel sheet (including an alloyed hot-dip galvanized steel sheet) and a method for producing the same.
[0002]
[Prior art]
Cold rolled steel sheets with press workability, hot dip galvanized steel sheets, alloyed hot dip galvanized steel sheets (hereinafter referred to simply as hot dip galvanized steel sheets without particular distinction) In this case, it is assumed that an alloyed hot-dip galvanized steel sheet is also included. The hot dip galvanization is performed to improve the corrosion resistance of the steel sheet, and the alloying treatment is performed to improve the adhesion of the galvanized layer.
[0003]
The cold-rolled steel sheet (cold-rolled steel sheet as a product) is obtained by cold-working a hot-rolled sheet and then subjecting the steel sheet (cold-rolled steel sheet before annealing) to recrystallization annealing, thus ensuring press workability. Therefore, it is a composite structure having ferrite as an essential structure and pearlite as a second phase, or a low-temperature transformation product (martensite, bainite) for the purpose of increasing the strength. For example, JP-A-58-39770 discloses a cold-rolled steel sheet having a three-phase structure composed of ferrite + martensite + bainite, and JP-A-55-122821 discloses a two-phase structure composed of ferrite + martensite. A hot-dip galvanized steel sheet whose base material is a cold-rolled steel sheet is described.
[0004]
[Problems to be solved by the invention]
In recent years, with the complication of product shapes, more and more good press workability, particularly local ductility has been required. However, in the conventional cold-rolled steel sheet, since the hard second phase (pearlite, martensite, bainite) becomes the starting point of fracture, the local ductility is inferior to that of a single-structure steel sheet, and the strength that reflects this characteristic − There is a problem that the ductility balance is low.
[0005]
This invention is made | formed in view of this problem, and it aims at providing the cold-rolled steel plate excellent in ductility, especially the strength-ductility balance, the hot dip galvanized steel plate which uses the steel plate as a base material, and its manufacturing method.
[0006]
[Means for Solving the Problems]
As a result of diligent research on the ductility of a cold-rolled steel sheet having a composite structure containing ferrite (cold-rolled steel sheet after annealing), the present inventor has formed crystal grains adjacent to each other by refining the ferrite as a matrix. As a result, the second phase generated therein is finely dispersed, so that the second phase is difficult to act as a starting point of fracture, and the knowledge that the local ductility is improved is obtained. It came to complete.
[0007]
That is, the cold-rolled steel sheet of the present invention is mass% (hereinafter simply referred to as “%”) and C: 0.010 to 0.06%.
Si: 0.5% or less,
Mn: 0.5 to 2.0%
P: 0.20% or less,
S: 0.01% or less,
Al: 0.005 to 0.10%,
N: 0.005% or less,
Cr: 1.0% or less,
And Mn + 1.3Cr: 1.7-2.3%
And the balance Fe and inevitable impurities, the structure is composed of ferrite and a second phase including martensite, and the average particle diameter of the ferrite is 2 to 6 μm in terms of the equivalent circular diameter, and the second phase in the structure The area ratio is 20% or less, and the ratio of martensite in the second phase is 50% or more. The element symbol in the “Mn + 1.3Cr” indicates the content (%) of each element.
[0008]
According to the above cold-rolled steel sheet, as compared with the cold-rolled steel sheet of the same intensity level, the average particle size of the ferrite is a 2-6 [mu] m, more triple crystal grains, miniaturization of the second phase generated therein Therefore, local ductility and strength-ductility balance (tensile strength TS × elongation El value) are improved, and press workability is excellent.
[0009]
Also, with the above composition, TS can be easily set to about 300 to 500 MPa, and by using the above structure, the strength-ductility balance can be set to about 17000 or more, and the yield ratio YR can be kept low. Press workability can be further improved.
[0010]
Using the cold-rolled steel sheet as a base material, a hot-dip galvanized layer and an alloyed hot-dip galvanized layer are formed on the cold-rolled steel sheet, thereby providing not only press workability but also excellent corrosion resistance. A steel plate is obtained.
[0011]
The cold rolled steel sheet, cold-rolled steel sheet of the component (cold-rolled plate before annealing) to 2-phase coexisting temperature range of the annealing temperature of the ferrite + austenite, raising the temperature range of 500 to 700 ° C. over 10 ° C. / sec It can manufacture suitably by heating under a temperature rate and performing recrystallization annealing and then cooling.
By heating the temperature range of 500 to 700 ° C. at a temperature increase rate of 10 ° C./sec or more, recovery of the ferrite processed structure in this temperature range is suppressed, and the ferrite crystal grains are re-launched from the processed structure at the annealing temperature all at once. The ferrite crystal grains can be refined to about 2 to 6 μm, so that many triple points of the crystal grains that are the source of nucleation of the second phase can be formed. The second phase can be refined.
[0012]
The cooling rate in the temperature range from the annealing temperature to 500 ° C. is preferably set to 1 to 10 ° C. / sec. As a result, the second phase (mainly the low temperature transformation product) other than ferrite in the structure can be made 20% or less, and the martensite content in the second phase can be made 50% or more.
[0013]
When producing a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet, recrystallization annealing may be performed by heating in a two-phase coexistence region according to the temperature increase rate condition in a continuous annealing line. And it is good to cool the cooling rate from an annealing temperature to plating temperature as 1-10 degreeC / sec, and to perform hot dip galvanization. When the alloying treatment is further performed after the hot dip galvanizing, the cooling rate after the alloying treatment is preferably 10 ° C./sec or more.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The chemical composition of the cold-rolled steel sheet according to the present invention is as follows, and the reasons for limiting each component will be described.
C: 0.010 to 0.06%,
Si: 0.5% or less,
Mn: 0.5 to 2.0%
P: 0.20% or less,
S: 0.01% or less,
Al: 0.005 to 0.10%,
N: 0.005% or less,
Cr: 1.0% or less,
And Mn + 1.3Cr: 1.7-2.3%
The balance consists of Fe and inevitable impurities. The element symbol in “Mn + 1.3Cr” indicates the content percentage of each element.
[0015]
C: 0.010 to 0.06%
In order to improve the press workability, the smaller the amount of C, the better. However, if it is less than 0.010%, the two-phase region of ferrite + austenite becomes narrow, and martensite is hardly generated from austenite. On the other hand, if it exceeds 0.06%, the strength becomes too high, and the press formability as a soft steel plate deteriorates. Therefore, in the present invention, the lower limit of the C amount is 0.010%, preferably 0.015%, more preferably 0.020%, and the upper limit is 0.06%, preferably 0.04%.
[0016]
Si: 0.5% or less Si contributes to improving the strength of the steel sheet as a solid solution strengthening element, but reduces ductility. Moreover, when it adds excessively, hot-dip galvanization adhesiveness will deteriorate remarkably. Therefore, in the present invention, the upper limit is set to 0.5%, preferably 0.2%.
[0017]
Mn: 0.5 to 2.0%
Mn is an element that improves hardenability. If it is less than 0.5%, the hardenability is insufficient, and it becomes difficult to generate martensite. In addition, hot workability also decreases. On the other hand, if it exceeds 2.0%, the adhesion of the plating is lowered, resulting in poor plating. For this reason, the lower limit of the amount of Mn is 0.5%, preferably 0.8%, while the upper limit is 2.0%, preferably 1.8%.
[0018]
P: 0.20% or less P is an inexpensive solid solution strengthening element and is an element useful for strengthening steel. However, in the present invention, importance is placed on improving ductility. Stop below. Preferably it is 0.10% or less.
[0019]
S: 0.01% or less S produces S-based precipitates (mainly MnS) and deteriorates ductility. Therefore, the smaller the content, the better in the present invention, and 0.01% or less, preferably 0.006% or less.
[0020]
Al: 0.005-0.10%
Al mainly acts as a deoxidizer and should be added at least 0.005%. However, if it is added excessively, not only the deoxidation effect is saturated, but also the production of alumina inclusions causes problems such as ductility deterioration and productivity deterioration due to continuous nozzle clogging, so the upper limit is made 0.10% .
[0021]
N: 0.005% or less As the content of N increases, the amount of nitride-forming element added to fix N increases, resulting in an increase in production cost and impairing ductility. Then, the smaller the content, the better. The upper limit of the N amount is 0.005%, preferably 0.003%.
[0022]
Cr: 1.0% or less Cr is a hardenability improving element and has the same action as Mn. Further, since the facing low intensity DP (Dual Phase) steel, such as solid solution strengthening ability is small invention, preferably is better to be contained more than 0.3%, Cr 7 C 3 is 1.0 percent Since it forms and ductility deteriorates, it is good to set it as 1.0% or less, Preferably it is 0.7% or less.
[0023]
Mn + 1.3Cr: 1.7-2.3%
Mn + 1.3Cr is an index representing hardenability. When this value is less than 1.7%, hardenability is insufficient and the amount of martensite is insufficient. On the other hand, if it exceeds 2.3%, the plating property is deteriorated and a plating defect is induced. For this reason, the lower limit of Mn + 1.3Cr is 1.7%, preferably 2.1%, while the upper limit is 2.3%, preferably 2.2%.
[0024]
The structure of the cold-rolled steel sheet according to the present invention includes ferrite and martensite, and is composed of a second phase formed of bainite and / or pearlite . In the component system, it is difficult to distinguish between bainite and pearlite, and these are observed as a structure containing a rod-like or spherical carbide (mainly cementite). The ferrite is an essential tissue for processing ensuring an average particle size of the ferrite is limited to 2~6μ m. It reduces the work hardening coefficient past particle size fine is less than 2.mu. m, rather ductility decreases. On the other hand, the 6 [mu m greater, and the particle size is too coarse, as a starting point for the second phase is precipitated, triple point grain boundary of adjacent crystal grains is reduced, a fine dispersion of second phase becomes hard, local Ductility begins to deteriorate. Therefore, 2.mu. m, preferably the lower limit of the average particle diameter in the present invention as a 3.mu. m, the upper limit 6 [mu m, preferably to 5 [mu] m.
[0025]
Ratio of the second phase in the tissue, less than 20% by area%, preferably 15% or less, and more preferably from 10% or less. If it exceeds 20%, the strength becomes high and the press formability deteriorates. The proportion of martensite in the second phase is 50% or more, preferably 80% or more, more preferably 85% or more. When bainite and / or pearlite accounts for more than 50% in the second phase, the movable dislocation density introduced into the ferrite decreases, yield strength (yield ratio) increases, and ductility decreases. is there.
In this way, by reducing the amount of the second phase containing martensite with high strength and further suppressing the amount of the structure other than martensite in the second phase, the low strength of about 500 MPa or less despite the composite structure containing martensite. An excellent strength-ductility balance of about 17000 MPa *% or more can be obtained.
[0026]
Although the cold-rolled steel sheet of the present invention can be used as it is as a steel sheet for press working as it is, it can also be suitably used as a base material for hot-dip galvanized steel sheets and galvannealed steel sheets.
[0027]
Next, the manufacturing method of the cold rolled steel sheet of this invention is demonstrated.
The cold-rolled steel sheet of the present invention is manufactured by hot-rolling steel slabs having the above components, followed by cold-rolling and recrystallization annealing under predetermined heating conditions.
[0028]
There are no particular restrictions on the hot rolling conditions. In general, the billet heating temperature is preferably about 1100 to 1250 ° C., the hot rolling finishing temperature is preferably Ar 3 points or more, and the coiling temperature is ferrite + pearlite or ferrite + bainite structure. It is good to set it as about 400-700 degreeC so that it may be obtained. When the coiling temperature is raised to 600 ° C. or higher, the hot-rolled steel sheet generally has a ferrite + pearlite structure, and when the coiling temperature is less than 600, it has a ferrite + bainite structure. After hot rolling, pickling and cold rolling may be performed at a cold rolling rate of about 40% or more, preferably about 50% or more.
[0029]
The steel sheet after cold rolling is recrystallized and annealed at an annealing temperature within the two-phase coexistence region (Ac1 to Ac3) of ferrite and austenite. The recrystallization annealing time is usually about several seconds to several tens of seconds in a continuous annealing (plating) line. Ac1 and Ac3 can be obtained by actual measurement, but may be calculated by the following formula (“steel material”, Japan Institute of Metals).
Ac3 = 910−203 (C) 1/2 +44.7 (Si)
Ac1 = 723-10.7 (Mn) +29.1 (Si) +16.9 (Cr)
[0030]
In the temperature raising stage to the annealing temperature, as shown in FIG. 1, the temperature range of 500 to 700 ° C. is quickly changed to the two-phase coexisting temperature range at a temperature raising rate HR of 10 ° C./sec or more so that recovery does not proceed. It is necessary to raise the temperature. If it is less than 10 ° C / sec, austenite is not generated, but dislocations introduced by cold rolling are recovered in the ferrite grains when passing through a relatively high temperature range, and the grains grow during recrystallization annealing. As a result, fine ferrite grains having an average particle diameter of 2 to 6 μm intended by the present invention cannot be obtained, and the second phase precipitated at the triple point of the ferrite grain boundary cannot be refined. Heating to the two-phase coexistence region with almost no recovery by raising the temperature range at a rate of temperature increase of 10 ° C / sec or more, preferably 20 ° C / sec or more, more preferably 50 ° C / sec or more. Therefore, austenite can be finely precipitated at the three points of fine ferrite crystal grains having an average particle diameter of 2 to 6 μm.
[0031]
Conventionally, the temperature increase to the two-phase coexistence region is heated by a radiant tube, and the temperature increase rate is about 2 to 6 ° C./sec. Of course, it may be heated using a direct-fired furnace capable of high-speed heating, but if it exceeds 600 ° C., the temperature unevenness is remarkable, and the steel plate is deformed so that it cannot be passed through. Stopped by heating. In the present invention, it is recommended to heat an induction heating (IH) furnace or 600 ° C. or less in a direct-fired furnace, and further heat it in an IH furnace.
[0032]
After recrystallization annealing , the cooling rate CR1 in the temperature range up to 500 ° C. is 1 to 10 ° C./sec, preferably 1 to 3 ° C./sec. If it is less than 1 ° C./sec, pearlite transformation occurs, the ferrite content and martensite content become insufficient, and the strength-ductility balance decreases. On the other hand, if it exceeds 10 ° C./s, the delay of bainite transformation due to the increase of C concentration in austenite accompanying the formation of ferrite cannot be expected, and the amount of the second phase and the amount of bainite in the second phase increase. Ductility begins to deteriorate. The reason why CR1 up to 500 ° C. is a problem is that when the cooling end point of CR1 is 500 ° C. or more, the amount of pearlite may increase due to pearlite transformation. Under such cooling conditions, the second phase other than ferrite can be 20 area% or less, and the amount of martensite in the second phase can be 50% or more. The cooling rate CR2 below 500 ° C. is not particularly limited because it is cooling from 500 ° C. and pearlite transformation is unlikely to occur in the cooling process.
[0033]
When manufacturing hot dip galvanized steel sheets, the temperature is increased at the HR in the continuous annealing plating line, the annealing treatment is performed at the annealing temperature within the two-phase coexistence region, the hot dip galvanizing is performed after recrystallization annealing, and if necessary It is sufficient to perform alloying treatment and cool. Hot dip galvanization is performed by immersing in a hot dip galvanizing bath whose plating temperature is usually about 400 to 480 ° C.
[0034]
As shown in FIG. 2, after the recrystallization annealing, the cooling rate CR21 until hot dip galvanizing is 1 to 10 ° C./sec, preferably 1 to 3 ° C./sec, as described above. The cooling rate CR22 after plating is not particularly limited because it is cooling from the plating temperature and pearlite transformation is unlikely to occur during the cooling process.
[0035]
In the case of further alloying treatment after hot dip galvanization, the cooling rate CR23 after the alloying treatment is 10 ° C./sec or more, preferably 30 ° C./sec or more, at least up to about 300 ° C. Since austenite is generated during the alloying treatment, so that the austenite is transformed into pearlite and bainite by slow cooling at less than 10 ° C./sec, the amount of pearlite and bainite in the second phase increases, and the ductility deteriorates. Become. In order to obtain a cooling rate of 10 ° C./s or more, forced air cooling, conveyance by a cooling roller, or mist cooling may be performed. Although the upper limit of CR23 is not particularly limited, in practice, the upper limit is determined by the cooling capacity of the cooling facility. The alloying treatment is carried out after the hot dip galvanization by heating and holding at a temperature of about 500 to 700 ° C., preferably about 550 to 600 ° C., usually for a few seconds to a few dozen seconds.
[0036]
EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not interpreted limitedly by this Example.
[0037]
【Example】
The steel chemical compositions shown in Table 1 was melted by vacuum induction melting, the steel strip heated pressurized at 1150 ° C., subjected to hot rolling finishing temperature of 850 ° C., coiling at five hundred and sixty to six hundred and eighty ° C. After pickling, cold rolling was performed at a cold rolling rate of 60% to obtain a cold rolled steel sheet having a thickness of 1.2 mm . The sample cut out from the obtained cold-rolled steel sheet was heated from a preheating temperature (about 200 ° C.) to an annealing temperature of 800 ° C. with HR shown in the same table using an infrared image furnace, and held at the same temperature for 60 seconds. Thereafter, it was cooled at 4 ° C./sec and immersed in a plating bath at 460 ° C. for 20 seconds for hot dip galvanizing treatment. After hot dip galvanization, Sample Nos. 1 to 15 (hot dip galvanized steel sheets) were pulled out of the plating bath and cooled (cooled). On the other hand, Sample Nos. 21 to 35 (alloyed hot-dip galvanized steel sheets) were further alloyed at 550 ° C. for 15 seconds, and then cooled at a cooling rate of 30 ° C./sec by mist cooling.
[0038]
A JIS No. 5 test piece was collected from the obtained sample and subjected to a tensile test by a test method defined in JIS 2241 to measure mechanical properties (YS: yield strength, YR: yield ratio). Further, a sample of the structure observation was collected, the plating layer was removed, and after the nital corrosion, the structure observed by SEM at 1000 times was analyzed by image analysis in the second phase other than ferrite (M + B or M + P, where M: martensite, B: bainite). , P: pearlite) was measured. Next, after the repeller corrosion, the amount of martensite was measured by image analysis of the structure observed with an optical microscope at 1000 times. These survey results are shown in Table 2 and Table 3 together.
[0039]
[Table 1]
Figure 0003905318
[0040]
[Table 2]
Figure 0003905318
[0041]
[Table 3]
Figure 0003905318
[0042]
From Table 2 and Table 3, even when the rate of temperature increase to the annealing temperature is sufficiently high at 60 ° C./sec, sample Nos. 1 and 21 using steel type A having a relatively large amount of C have a tensile strength of 500 MPa. Therefore, there is some difficulty in press workability. In Sample Nos. 9, 12, 29, and 32 using steel types G and J having a relatively large amount of Cr, the amount of martensite in the second phase is reduced, and the elongation is slightly deteriorated. Moreover, in the sample Nos. 11 and 31 using the steel type I having an excessive amount of Mn, the tendency to decrease the plating property was observed. On the other hand, in Samples Nos. 13 and 33 using steel type K with insufficient amounts of Mn and Cr, the amount of martensite in the second phase is reduced and the elongation is deteriorated. On the other hand, in the samples 15 and 35 having a slow heating rate to the annealing temperature even in the case where the steel grade C having the components within the scope of the invention is used, the average crystal grain size of ferrite becomes large, and the fine dispersion of the second phase is insufficient. The strength-ductility balance has deteriorated. On the other hand, sample Nos. 2-8, 10, 14, 22-28, 30, and 34, which were heated to the annealing temperature at a sufficiently high rate of temperature rise using steel types whose components were within the scope of the invention , had an excellent value of 17,000 or more. A strength-ductility balance was obtained.
[0043]
【The invention's effect】
According to the cold-rolled steel sheet of the present invention, since the average grain size of ferrite is refined to 2 to 6 μm, particularly under a predetermined component , the second phase generated at the triple point of the ferrite crystal grains is fined accordingly. If it is a cold-rolled steel sheet of the same component type, the strength-ductility balance is improved, and excellent press workability can be obtained by improving the local ductility. Furthermore, the second phase containing martensite with high strength is reduced to 20% or less in area ratio, and the amount of structure other than martensite in the second phase is suppressed to less than 50%, so that the composite containing martensite is contained. It is possible to obtain an excellent strength-ductility balance of about 17000 MPa * % or more while realizing a low strength of about 500 MPa or less in the structure . Further, according to the production method of the present invention, particularly when heating to the annealing temperature, the temperature range of 500 to 700 ° C. is increased at a temperature increase rate of 10 ° C./sec or more, so the processing is performed up to the annealing temperature in the two-phase coexistence region. Suppresses the recovery of the structure, raises the temperature, and recrystallizes at the same annealing temperature, making it easy to manufacture cold-rolled steel sheets with fine ferrite crystal grains by suppressing the coarsening of the ferrite crystal grains can do.
[Brief description of the drawings]
FIG. 1 is a heat treatment diagram showing a method for producing a cold-rolled steel sheet according to the present invention.
FIG. 2 is a heat treatment diagram showing a method for producing a hot-dip galvanized steel sheet according to the present invention.

Claims (6)

mass%で
C :0.010〜0.06%
Si:0.5%以下、
Mn:0.5〜2.0%、
P :0.20%以下、
S :0.01%以下、
Al:0.005〜0.10%、
N :0.005%以下、
Cr:1.0%以下、
かつMn+1.3Cr:1.7〜2.3%
を含み、残部Fe及び不可避的不純物からなり、組織がフェライトと、マルテンサイトを含む第2相からなり、前記フェライトの平均粒径が相当円直径で2〜6μm であり、組織中の第2相の割合が面積率で20%以下であり、かつ第2相に占めるマルテンサイトの割合が50%以上である、加工性に優れた冷延鋼板。
mass% C: 0.010 to 0.06%
Si: 0.5% or less,
Mn: 0.5 to 2.0%
P: 0.20% or less,
S: 0.01% or less,
Al: 0.005 to 0.10%,
N: 0.005% or less,
Cr: 1.0% or less,
And Mn + 1.3Cr: 1.7-2.3%
, The balance Fe and inevitable impurities, the structure is composed of ferrite and a second phase including martensite, and the average particle diameter of the ferrite is 2 to 6 μm in equivalent circular diameter, and the second phase in the structure Is a cold-rolled steel sheet excellent in workability, in which the ratio of is an area ratio of 20% or less and the ratio of martensite in the second phase is 50% or more .
請求項1に記載した冷延鋼板を母材とし、その表面に溶融亜鉛めっき層が形成された溶融亜鉛めっき鋼板。A hot-dip galvanized steel sheet comprising the cold-rolled steel sheet according to claim 1 as a base material and a hot-dip galvanized layer formed on the surface thereof. 請求項1に記載した冷延鋼板を母材とし、その表面に合金化溶融亜鉛めっき層が形成された溶融亜鉛めっき鋼板。A hot-dip galvanized steel sheet comprising the cold-rolled steel sheet according to claim 1 as a base material and an alloyed hot-dip galvanized layer formed on the surface thereof. 請求項1に記載した化学成分を有する冷延鋼板をフェライト+オーステナイトの2相共存温度域内の焼鈍温度まで加熱して再結晶焼鈍した後、冷却する冷延鋼板の製造方法であって、
前記焼鈍温度への加熱の際に500〜700℃の温度範囲を10℃/sec以上の昇温速度で加熱し、
前記焼鈍温度から500℃までの温度域を1〜10℃/secの冷却速度で冷却する、加工性に優れた冷延鋼板の製造方法。
A method for producing a cold-rolled steel sheet, wherein the cold-rolled steel sheet having the chemical component according to claim 1 is heated to an annealing temperature within a two-phase coexisting temperature range of ferrite and austenite and recrystallized and then cooled.
During the heating to the annealing temperature, a temperature range of 500 to 700 ° C. is heated at a heating rate of 10 ° C./sec or more,
The manufacturing method of the cold-rolled steel plate excellent in workability which cools the temperature range from the said annealing temperature to 500 degreeC with the cooling rate of 1-10 degrees C / sec.
請求項1に記載した化学成分を有する冷延鋼板を連続焼鈍めっきラインにてフェライト+オーステナイトの2相共存温度域内の焼鈍温度まで加熱して再結晶焼鈍した後、溶融亜鉛めっきを施し、その後冷却する溶融亜鉛めっき鋼板の製造方法であって、
前記焼鈍温度への加熱の際に500〜700℃の温度範囲を10℃/sec以上の昇温速度で加熱し、
前記焼鈍温度からめっき温度までを1〜10℃/secの冷却速度で冷却する、加工性に優れた溶融亜鉛めっき鋼板の製造方法。
The cold-rolled steel sheet having the chemical component according to claim 1 is heated to an annealing temperature within a two-phase coexisting temperature range of ferrite and austenite in a continuous annealing plating line, and then subjected to recrystallization annealing, followed by hot dip galvanizing and then cooling. A method for producing a hot-dip galvanized steel sheet,
During the heating to the annealing temperature, a temperature range of 500 to 700 ° C. is heated at a heating rate of 10 ° C./sec or more,
The manufacturing method of the hot dip galvanized steel plate excellent in workability which cools from the said annealing temperature to plating temperature with the cooling rate of 1-10 degrees C / sec.
請求項1に記載した化学成分を有する冷延鋼板を連続焼鈍めっきラインにてフェライト+オーステナイトの2相共存温度域内の焼鈍温度まで加熱して再結晶焼鈍した後、溶融亜鉛めっきを施し、さらに合金化処理を施し、その後冷却する溶融亜鉛めっき鋼板の製造方法であって、
前記焼鈍温度への加熱の際に500〜700℃の温度範囲を10℃/sec以上の昇温速度で加熱し、
前記焼鈍温度からめっき温度までを1〜10℃/secの冷却速度で冷却し、
前記合金化処理を施した後、10℃/sec以上の冷却速度で冷却する、加工性に優れた溶融亜鉛めっき鋼板の製造方法。
The cold-rolled steel sheet having the chemical composition according to claim 1 is heated to an annealing temperature within a two-phase coexisting temperature range of ferrite and austenite in a continuous annealing plating line, and then subjected to recrystallization annealing, and then hot-dip galvanized, and further an alloy A method for producing a hot-dip galvanized steel sheet that is subjected to a heat treatment and then cooled,
During the heating to the annealing temperature, a temperature range of 500 to 700 ° C. is heated at a heating rate of 10 ° C./sec or more,
Cooling from the annealing temperature to the plating temperature at a cooling rate of 1 to 10 ° C./sec,
A method for producing a hot-dip galvanized steel sheet excellent in workability, which is cooled at a cooling rate of 10 ° C./sec or higher after the alloying treatment.
JP2001029307A 2001-02-06 2001-02-06 Cold-rolled steel sheet excellent in workability, hot-dip galvanized steel sheet using the steel sheet as a base material, and method for producing the same Expired - Fee Related JP3905318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001029307A JP3905318B2 (en) 2001-02-06 2001-02-06 Cold-rolled steel sheet excellent in workability, hot-dip galvanized steel sheet using the steel sheet as a base material, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001029307A JP3905318B2 (en) 2001-02-06 2001-02-06 Cold-rolled steel sheet excellent in workability, hot-dip galvanized steel sheet using the steel sheet as a base material, and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006316516A Division JP4662175B2 (en) 2006-11-24 2006-11-24 Hot-dip galvanized steel sheet based on cold-rolled steel sheet with excellent workability

Publications (2)

Publication Number Publication Date
JP2002235145A JP2002235145A (en) 2002-08-23
JP3905318B2 true JP3905318B2 (en) 2007-04-18

Family

ID=18893671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001029307A Expired - Fee Related JP3905318B2 (en) 2001-02-06 2001-02-06 Cold-rolled steel sheet excellent in workability, hot-dip galvanized steel sheet using the steel sheet as a base material, and method for producing the same

Country Status (1)

Country Link
JP (1) JP3905318B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679195B2 (en) * 2005-03-23 2011-04-27 日新製鋼株式会社 Low yield ratio high tension hot dip galvanized steel sheet manufacturing method
JP5157146B2 (en) * 2006-01-11 2013-03-06 Jfeスチール株式会社 Hot-dip galvanized steel sheet
JP2007077510A (en) * 2006-11-16 2007-03-29 Jfe Steel Kk High-strength high-ductility galvanized steel sheet excellent in aging resistance and its production method
JP5194878B2 (en) * 2007-04-13 2013-05-08 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same
JP5740847B2 (en) * 2009-06-26 2015-07-01 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR102403411B1 (en) 2018-01-26 2022-05-30 제이에프이 스틸 가부시키가이샤 High-ductility high-strength steel sheet and its manufacturing method

Also Published As

Publication number Publication date
JP2002235145A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
JP4662175B2 (en) Hot-dip galvanized steel sheet based on cold-rolled steel sheet with excellent workability
EP3309273B1 (en) Galvannealed steel sheet and method for manufacturing same
JP3750789B2 (en) Hot-dip galvanized steel sheet having excellent ductility and method for producing the same
JP5857909B2 (en) Steel sheet and manufacturing method thereof
JP4941619B2 (en) Cold rolled steel sheet and method for producing the same
WO2012053642A1 (en) Method for manufacturing hot stamped body having vertical wall, and hot stamped body having vertical wall
EP3447160A1 (en) Steel plate, plated steel plate, and production method therefor
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
JP6123957B1 (en) High strength steel plate and manufacturing method thereof
WO2013125399A1 (en) Cold-rolled steel sheet and manufacturing method for same
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP5862591B2 (en) High strength steel plate and manufacturing method thereof
TW201211268A (en) Cold rolled steel sheet having excellent shape fixability and method for manufacturing the same
JP6515281B2 (en) Cold rolled steel sheet and method of manufacturing the same
EP3447159B1 (en) Steel plate, plated steel plate, and production method therefor
JP4457681B2 (en) High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof
JP6769576B1 (en) High-strength galvanized steel sheet and its manufacturing method
EP3498876A1 (en) High-strength steel sheet, and production method therefor
CN108603265B (en) High-strength steel sheet for warm working and method for producing same
JP3907963B2 (en) Hot-dip galvanized steel sheet excellent in ductility and stretch formability and method for producing the same
JP6123958B1 (en) High strength steel plate and manufacturing method thereof
EP2740813A1 (en) Hot-dip galvanized steel sheet and production method therefor
JP3905318B2 (en) Cold-rolled steel sheet excellent in workability, hot-dip galvanized steel sheet using the steel sheet as a base material, and method for producing the same
CN108456832B (en) Ultra-high strength cold rolled steel sheet having excellent bending workability and method for manufacturing same
EP3868909A1 (en) Thin steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3905318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees