JPS6047886B2 - Manufacturing method of high-strength thin steel plate for processing by continuous annealing - Google Patents

Manufacturing method of high-strength thin steel plate for processing by continuous annealing

Info

Publication number
JPS6047886B2
JPS6047886B2 JP2843381A JP2843381A JPS6047886B2 JP S6047886 B2 JPS6047886 B2 JP S6047886B2 JP 2843381 A JP2843381 A JP 2843381A JP 2843381 A JP2843381 A JP 2843381A JP S6047886 B2 JPS6047886 B2 JP S6047886B2
Authority
JP
Japan
Prior art keywords
strength
continuous annealing
cold
hot
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2843381A
Other languages
Japanese (ja)
Other versions
JPS57143435A (en
Inventor
延幸 高橋
嘉邦 古野
正明 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2843381A priority Critical patent/JPS6047886B2/en
Publication of JPS57143435A publication Critical patent/JPS57143435A/en
Publication of JPS6047886B2 publication Critical patent/JPS6047886B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 本発明は引張強さが40〜60キロ級を主体とする高強
度て降状比の低い加工用冷延鋼板、また表面処理用鋼板
として使用される加工用高強度薄鋼板の連続焼鈍による
製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides high-strength cold-rolled steel sheets with a tensile strength of 40 to 60 kg, which have a low yield ratio, and high-strength steel sheets for processing, which are used as surface-treated steel sheets. This invention relates to a manufacturing method using continuous annealing of thin steel sheets.

最近自動車用鋼板は乗員の安全保護や燃費低減を目的と
して、40〜60に9l−級高強度冷延鋼板の採用が急
速に進められている。中でも車体の寿命、耐久性を改善
するために、溶融亜鉛メッキ高強度表面処理鋼板を使用
する必要が高まつている。従来の高強度冷延鋼板や表面
処理鋼板は固溶強化法や析出強化法によつて高強度化を
はかつているが、必然的に降状点が高くなり、プレス成
形時にスプリングバック量が増し、形状凍結性が劣ると
共に面ひすみとよはれるしわ不良現象が発生する欠点が
ある。従来提案された高強度冷延鋼板の一例として、特
開昭54−83924号公報がある。
Recently, 9L-class high-strength cold-rolled steel sheets have been rapidly adopted for automobile steel sheets for the purpose of protecting the safety of passengers and reducing fuel consumption. In particular, there is an increasing need to use hot-dip galvanized high-strength surface-treated steel sheets to improve the lifespan and durability of vehicle bodies. Conventional high-strength cold-rolled steel sheets and surface-treated steel sheets achieve high strength through solid solution strengthening and precipitation strengthening methods, but this inevitably results in a higher descent point and an increased amount of springback during press forming. However, it has the disadvantage of poor shape fixability and the occurrence of wrinkle defects known as surface distortion. An example of a high-strength cold-rolled steel sheet that has been proposed in the past is JP-A-54-83924.

これはSiを高強度化のために0.7〜1.5%と比較
的多量含有させるとともに、Bを含有させて焼鈍後の冷
却速度を制御して高強度冷延鋼板を製造するのであるが
、この製造法で得られた冷延鋼板はその実施例に示され
ている如く降状点が50キロ以上と非常に高く、プレス
加工用鋼板として問題がある。このようなことから本発
明者らは、C−Mn系に適量のBを添加することによつ
て従来の高強度ノ鋼板に代る高強度でありながら、降状
点の低い高強度冷延鋼板が得られることをすでに確認し
、先に本発明者等は出願している。
This involves manufacturing high-strength cold-rolled steel sheets by containing a relatively large amount of Si (0.7 to 1.5%) to increase strength, and by including B to control the cooling rate after annealing. However, the cold-rolled steel sheet obtained by this manufacturing method has a very high descending point of 50 km or more, as shown in the examples, and is problematic as a steel sheet for press working. For these reasons, the present inventors have proposed that by adding an appropriate amount of B to the C-Mn system, a high-strength cold-rolled steel plate with a low descending point while having high strength as an alternative to conventional high-strength steel sheets. The present inventors have already confirmed that a steel plate can be obtained and have previously filed an application.

すなわちそれは、C−Mn系に適量のBを添加し、Bの
存在形態を固溶状態に制御し、該固溶B含有量を0.0
003〜0.0070%とし、α+γ域温度範囲で焼鈍
した冷延鋼板であつて、複合組織を呈し、低降状点で高
強度を示すことから従来の高強度冷延鋼板の欠点が著し
く改善できる。
That is, it involves adding an appropriate amount of B to the C-Mn system, controlling the existence form of B to a solid solution state, and reducing the solid solution B content to 0.0.
003 to 0.0070% and annealed in the α+γ temperature range, it exhibits a composite structure and exhibits high strength at a low depression point, which significantly improves the drawbacks of conventional high-strength cold rolled steel sheets. can.

前記のC−Mn一固溶B系では確かに冷却速度が10〜
15℃Isecの連続焼鈍方法によつても低降状点で引
張り強さが40〜50キロ級で、複合組織の高強度冷延
銅板が製造されるけれども、さらに高強度の50〜60
キロ級で低降状比の高強度冷延鋼板を安定して製造する
ことが難しいことがある。
In the above C-Mn solid solution B system, the cooling rate is certainly 10~
Even by continuous annealing at 15°C Isec, a high-strength cold-rolled copper plate with a composite structure with a low drop point and a tensile strength of 40 to 50 kg can be manufactured.
It is sometimes difficult to stably produce kilo-grade, high-strength cold-rolled steel sheets with a low drop-off ratio.

ことに連続焼鈍後の冷却速度が遅い場合にその傾向がみ
られる。また溶融亜鉛メッキ鋼板に適用したときには複
合組織化が多少難かしいという欠点を有している。特に
溶融亜鉛メッキ鋼板で複合組織化が難かしい理由につい
て述べると、溶融亜鉛メッキ銅板の製造は、ゼンジマー
法に代表されるライン内焼鈍方式の連続溶融亜鉛メッキ
ラインによるのが最も一般的であり、このライン内焼鈍
は、(イ)均熱時間が特に短かく、複合組織化に必要な
CやMnの濃縮に不利となり、(口)均熱後450℃前
後の溶融亜鉛メッキ開始温度までの冷却速度が、通常1
〜80C1secで非常に遅いため、オーステナイトが
フェライトとパーライトに変態してしまい、低降状比化
に必要なマルテンサイト組織が得にくい。
This tendency is especially seen when the cooling rate after continuous annealing is slow. Furthermore, when applied to hot-dip galvanized steel sheets, it has the disadvantage that it is somewhat difficult to form a composite structure. In particular, the reason why it is difficult to form a composite structure in hot-dip galvanized steel sheets is that hot-dip galvanized copper sheets are most commonly manufactured using a continuous hot-dip galvanizing line using an in-line annealing method, such as the Sendzimer method. This in-line annealing method (a) has a particularly short soaking time, which is disadvantageous for concentrating C and Mn necessary for forming a composite structure; The speed is usually 1
Since it is very slow at ~80C1 sec, austenite transforms into ferrite and pearlite, making it difficult to obtain the martensitic structure necessary for lowering the drop state ratio.

(ハ)約450℃で1叱2以内の溶融メッキ処理が施さ
れることにより、たとえ生成されたマルテンサイトも焼
戻されて、引張強度が低下し降状点が高くなり、降状比
が上昇し、降状点伸びも発生する。そこで本発明者らは
以上のような現状に鑑み、冷却速度の速い場合あるいは
遅い連続焼鈍や溶融亜鉛メッキライン等においても、容
易に複合組織化てき、低降状比て高強度鋼板が安定して
製造できる方法について検討した結果、C−Mn−B系
.成分において、B<!:.NとCとの3者間の相互作
用を考慮した成分調整を行い、熱間圧延条件と焼鈍条件
を組み合せることにより、その目的が達成できることを
明らかにした。
(c) By performing the hot-dip plating treatment at approximately 450°C within 1 to 2 degrees, even the generated martensite is tempered, the tensile strength decreases, the descent point becomes high, and the descent ratio increases. It rises, and elongation of the descent point also occurs. In view of the above-mentioned current situation, the inventors of the present invention have found that even when the cooling rate is fast or slow, continuous annealing or hot-dip galvanizing lines can easily form a complex structure, high-strength steel sheets are more stable than low-falling steel sheets. As a result of studying methods that can produce C-Mn-B based. In terms of ingredients, B<! :. It was clarified that this objective could be achieved by adjusting the components in consideration of the interaction between the three elements, N and C, and by combining hot rolling conditions and annealing conditions.

即ち本発明の要旨はC:0.02〜0.20%、Si:
0.8・%以下、Mn:0.8〜2.0%、酸可溶A1
(以下SOlNという):0.005〜0.060%、
B:B/Cが0.04以±で、かつB−0.7Nとして
0.0003%以上0.0050%以下、N:0.00
60%以下、残部が鉄および不可避的不純物からなる鋼
を熱間圧延に際し、Ar3点以上で仕上げ、ついで30
〜150′Clsecの冷却速度で冷却し、680℃以
下で捲取り、その後圧下率65%以上で冷間圧延し、続
いて720〜800℃で加秒〜5分間均熱後1℃Ise
c以上で冷却する連続焼鈍による加工用高強度薄鋼板の
製造法にある。
That is, the gist of the present invention is that C: 0.02 to 0.20%, Si:
0.8% or less, Mn: 0.8-2.0%, acid soluble A1
(hereinafter referred to as SOIN): 0.005 to 0.060%,
B: B/C is 0.04 or more, and B-0.7N is 0.0003% or more and 0.0050% or less, N: 0.00
When hot rolling steel consisting of 60% or less, the balance being iron and unavoidable impurities, it is finished at 3 or more points of Ar, and then 30%
Cooled at a cooling rate of ~150'Clsec, rolled at 680°C or less, then cold-rolled at a reduction rate of 65% or more, then heated at 720-800°C for ~5 minutes after soaking at 1°C Ise.
A method for producing a high-strength thin steel sheet for processing by continuous annealing in which the process is performed by cooling at a temperature of c or more.

以下本発明を詳細に説明する。The present invention will be explained in detail below.

Cはα+γの2相温度域からの冷却過程において、マル
テンサイト組織を得るためには0.02%以j上が必要
である。
C is required to be 0.02% or more in order to obtain a martensitic structure in the cooling process from the α+γ two-phase temperature range.

一方、多すぎると加工性が劣化すると共に溶接性が著し
く劣化するため0.20%を上限とする。好ましくは0
.04〜0.10%である。Siはフェライト中の固溶
Cを粒界へ排出させ、複合組織化に補助効果を示す好ま
しい元素であ・る。また高強度化のためにも有好な元素
であるから本発明では0.8%まで含まれる。0.8%
超では表面処理鋼板例えば溶融亜鉛メッキ鋼板に適用し
た場合はメッキ不良を起こすと共に、冷延鋼板を表面塗
装する場合にはカチオン電着により耐食性をl著しく向
上できるが、それでもSiが0.8%超になると耐食性
に問題が生じる。好ましくは0.6%以下がよい。Mn
はγ相を安定化し、冷延過程で複合組織化を容易にする
元素であり、本発明の目的を達成させるためには0.8
%以上が必要である。
On the other hand, if the content is too large, workability and weldability will deteriorate significantly, so the upper limit is set at 0.20%. Preferably 0
.. 04 to 0.10%. Si is a preferable element that causes the solid solution C in ferrite to be discharged to the grain boundaries and has an auxiliary effect on the formation of a composite structure. Further, since it is a favorable element for increasing strength, it is included up to 0.8% in the present invention. 0.8%
When applied to a surface-treated steel sheet, such as a hot-dip galvanized steel sheet, it causes plating defects, and when surface painting a cold-rolled steel sheet, corrosion resistance can be significantly improved by cationic electrodeposition, but the Si content is still 0.8%. If it becomes too thick, a problem will arise in corrosion resistance. Preferably it is 0.6% or less. Mn
is an element that stabilizes the γ phase and facilitates the formation of a composite structure during the cold rolling process.
% or more is required.

一方あまり多すぎると製鋼作業が困難となると共に、溶
接性が劣化すること、溶融亜鉛メッキ鋼板の場合にはメ
ッキ性を劣化させるため、Mnの上限を2.0%とする
。A1は後述するBの効果を十分に発揮させるために、
脱酸剤として必要な元素であり、酸可溶Nとして0.0
05%以上が必要てある。
On the other hand, if too much Mn is present, steel manufacturing operations become difficult and weldability deteriorates, and in the case of hot-dip galvanized steel sheets, plating performance deteriorates, so the upper limit of Mn is set at 2.0%. A1 is to fully demonstrate the effect of B, which will be described later.
It is an element necessary as a deoxidizing agent, and the acid-soluble N is 0.0
0.5% or more is required.

一方あまり多すぎても介在物起因の表面性状の劣化や加
工性の劣化をひきおこすため上限を0.060%とする
。Bは本発明において重要な元素である。Bは鋼中に存
在する形態として、窒化物、炭化物、酸化物および固溶
Bが考えられるが、本発明の目的である低降状比の複合
組織高強度冷延鋼板とするためには、上記のBの存在形
態のうち、固溶Bとして存在させておくことが重要であ
る。BはNとγ域温度で容易に反応し、B窒化物(BN
)の生成は避けられない。従つて固溶Bは、全B量から
Nと反応するB量を減じた量、すなわちB−0.7×N
で示される量で示され、本発明の目的を達成するにはB
−0.7×Nで0.0003%以上必要であり、一方あ
まり多すぎるとスラグの表面割れのおそれがあるためB
−0.7×Nの上限を0.0070%とする。Bを固溶
状態として制御するには、まず前述したように溶製時に
A1によつて鋼を十分に脱酸したあとにBを添加し、B
酸化物の生成を防ぐ必要がある。
On the other hand, too much content will cause deterioration of surface properties and deterioration of workability due to inclusions, so the upper limit is set at 0.060%. B is an important element in the present invention. The forms of B present in steel are considered to be nitrides, carbides, oxides, and solid solution B, but in order to obtain a composite structure high strength cold rolled steel sheet with a low drop ratio, which is the object of the present invention, Among the above-mentioned forms of existence of B, it is important to make it exist as solid solution B. B easily reacts with N in the γ region temperature, forming B nitride (BN
) is unavoidable. Therefore, the solid solution B is the amount obtained by subtracting the amount of B that reacts with N from the total amount of B, that is, B - 0.7 × N
In order to achieve the object of the present invention, B
-0.7×N is required to be 0.0003% or more; on the other hand, if it is too much, there is a risk of surface cracking of the slag, so B
The upper limit of −0.7×N is set to 0.0070%. In order to control B in a solid solution state, first, as mentioned above, B is added after sufficiently deoxidizing the steel with A1 during melting.
It is necessary to prevent the formation of oxides.

次にB炭化物の生成をできる限り抑制するためには、熱
間仕上圧延機入口の温度を950℃以上、好ましくは1
000℃以上とし、仕上出口温度を,Ar′3点以上と
し、捲取温度を680′C以下にするとよい。
Next, in order to suppress the formation of B carbides as much as possible, the temperature at the inlet of the hot finishing rolling mill should be set to 950°C or higher, preferably 1°C.
It is preferable to set the finishing temperature to 000°C or higher, the finishing outlet temperature to Ar'3 points or higher, and the winding temperature to 680'C or lower.

一方B炭化物の生成を皆無とすることは難しく、C含有
量が比較的多い場合にも固溶B量を確保し、低降状比て
複合組織を有する高強度銅板とするには、種々検討した
ところ、第1図に示す如く、B(5Cの相互作用からB
とCの重量パーセント比B/Cで0.04J:),上に
すればよいことを知見した。
On the other hand, it is difficult to completely eliminate the formation of B carbides, and various studies are needed to ensure the amount of solid solution B even when the C content is relatively high and to create a high-strength copper plate with a composite structure with a low precipitation ratio. As a result, as shown in Figure 1, from the interaction of B (5C)
It has been found that the weight percent ratio B/C of C and C can be increased to 0.04 J:).

B/Cが0.0似下になると降状比が大きくなるか、あ
るいは降状点伸びがみられ好ましくない。図中0印は降
状比〈0.6、かつ降状点伸び〈0.5%、×印は上記
範囲外を示す。なおこの第1図での試験材のベース成分
は、C:0.05〜0.18%、Mn:1.60〜1.
65%、N:0.0020〜0.0030%、B:0.
0020〜0.0080%であり、冷却後の連続焼鈍条
件は760′Cで90秒均熱し、5℃Isecで冷却し
た。
When B/C is below 0.0, the drop ratio becomes large or the drop point elongates, which is not preferable. In the figure, the mark 0 indicates the drop ratio <0.6 and the drop point elongation <0.5%, and the x mark indicates outside the above range. The base components of the test material in FIG. 1 are C: 0.05-0.18%, Mn: 1.60-1.
65%, N: 0.0020-0.0030%, B: 0.
The continuous annealing conditions after cooling were soaking at 760'C for 90 seconds and cooling at 5C Isec.

以上よりB!1B−0.7×Nとして0.0003%〜
0.0050%で、かつB/Cが0.04以上を満足さ
せることが本発明の目的を達成させるために必須の条件
である。
From the above, B! 0.0003% as 1B-0.7×N
Satisfying 0.0050% and B/C of 0.04 or more are essential conditions for achieving the object of the present invention.

Bは一般的に焼入れ性を向上させる形素として、これま
で適宜使用されてきた。
B has generally been used as a shape element to improve hardenability.

そして、その使用は、Bの総量を規定するといつた方法
でなされてきた。それに対し、本発明者らは、Bの本質
的作用効果を十分に発揮するには、Bの総量規制ではな
くて、B量をN量がC量とのバランスで考慮する必要性
、ならび熱延条件を特定範囲に規性する必要性を新たに
知見したものであり、従来の単なるBの添加とはその技
術内容が大きく相違する。
And, its use has been made in such a way as to define the total amount of B. In contrast, the present inventors have found that in order to fully demonstrate the essential effects of B, it is necessary to consider the amount of B based on the balance between the amount of N and the amount of C, rather than regulating the total amount of B, and the need to consider the amount of B based on the balance between the amount of N and the amount of C. This is a new discovery of the need to regulate the spreading conditions within a specific range, and the technical content is greatly different from the conventional simple addition of B.

NはBとの反応によつてBNを生成し、固溶Bの制御に
好ましくないため、上限を0.0060%とする。好ま
しくは0.0040%以下がよい。不可避的不純物とし
てのSはブレス加工性に好ましくなく、0.015%以
下がよい。一方、Pは固溶強化型元素として高強度化の
ために0.08%以下を含有させても本発明の効果は失
われないが、ブレス加工性の面から少ない方が好ましい
。上記元素以外にCr..MO等のマルテンサイトの生
成を容易にさせる元素を1種または2種以上0.2〜1
.0%添加することは有効である。
Since N generates BN by reaction with B, which is not preferable for controlling solid solution B, the upper limit is set to 0.0060%. Preferably it is 0.0040% or less. S as an unavoidable impurity is unfavorable for press workability, and is preferably 0.015% or less. On the other hand, the effect of the present invention is not lost even if P is contained as a solid solution strengthening element in an amount of 0.08% or less in order to increase strength, but from the viewpoint of press workability, a smaller amount is preferable. In addition to the above elements, Cr. .. One or more elements that facilitate the production of martensite such as MO 0.2 to 1
.. Adding 0% is effective.

また、伸び、フランジ性を向上させるためにCa..R
EM..Zr等の硫化物の形態を制御する元素の添加も
有効である。次に製造条件の限定理由を述べる。
In addition, in order to improve elongation and flangeability, Ca. .. R
E.M. .. Addition of an element such as Zr that controls the form of sulfide is also effective. Next, the reason for limiting the manufacturing conditions will be described.

上記の成分範囲内にある鋼は、電気炉、転炉等によつて
溶製され、造塊一分塊あるいは連続鋳造によりスラブと
される。
Steel within the above-mentioned composition range is melted in an electric furnace, converter, etc., and is made into a slab by ingot formation or continuous casting.

次に熱間圧延されるが、仕上出口温度はAr3点以上と
し、次いで30〜150℃1secの冷却速度で冷却し
、680℃以下の温度で捲取る。仕上温度がAr3点未
満であると複合組織が得難く、又熱間圧延後の冷却速度
が、余りにも遅くなると低降状比で高強度をもたらす複
合組織とならないので、下限を30℃1secとする。
一方冷却速度が速すぎると熱延板の組織がベイナイテイ
ツクな焼入組織とアシキユラーフエライトが形成され、
降状比が高くなり、延性を著るしく劣化させるので上限
を1500C1secとする。また捲取温度が680℃
を超えると、B炭化物が多量に生成されて本発明の目的
が達成できない。熱延コイルは次に酸洗後、冷間圧延さ
れるが、連続溶融亜鉛メッキラインのような遅い冷却速
度でも複合組織化させるためには、熱延時に生成された
炭化物等の析出物を冷延によつて微細に破砕し、焼鈍の
加熱時にCの再溶体化を促進させて、α十γ域温度での
Cの粒界への濃縮を容易にする必要がある。そのために
冷間圧下率は65%以上とする。冷間圧延した後、冷延
コイルは焼鈍温度が720〜850℃で20秒〜5分間
の均熱後、17C′Sec以上の冷却速度で連続焼鈍さ
れる。
Next, it is hot rolled, with a finish exit temperature of Ar 3 or higher, then cooled at a cooling rate of 30 to 150°C for 1 second, and rolled at a temperature of 680°C or lower. If the finishing temperature is less than 3 points Ar, it is difficult to obtain a composite structure, and if the cooling rate after hot rolling is too slow, a composite structure that provides high strength with a low drop ratio cannot be obtained, so the lower limit is set at 30°C for 1 sec. do.
On the other hand, if the cooling rate is too fast, a bainitic quenched structure and axial ferrite will be formed in the hot rolled sheet.
Since the descending ratio becomes high and the ductility is significantly deteriorated, the upper limit is set to 1500 C1 sec. Also, the winding temperature is 680℃
If it exceeds this amount, a large amount of B carbide will be produced, making it impossible to achieve the object of the present invention. The hot-rolled coil is then pickled and cold-rolled, but in order to form a composite structure even at a slow cooling rate such as in a continuous hot-dip galvanizing line, precipitates such as carbides generated during hot-rolling must be cooled. It is necessary to finely crush C by rolling and promote re-solution of C during heating during annealing to facilitate concentration of C at grain boundaries at temperatures in the α-10γ range. Therefore, the cold reduction rate is set to 65% or more. After cold rolling, the cold rolled coil is soaked at an annealing temperature of 720 to 850° C. for 20 seconds to 5 minutes, and then continuously annealed at a cooling rate of 17 C'Sec or more.

焼鈍温度が720℃”未満ではα+γの2相状態にする
ことができないため、下限を720℃とする。また、8
50℃を超えるとα相の体積率が減少し、組織は2相で
あつても降状点が上昇し、低降状比が得られない。均熱
時間は208未満ではα+γの2相組織の生成が不十分
であり、5分を超えるとγ相が粗大に生成され延性を劣
化させる。好ましい焼鈍範囲は730〜7800Cで6
0〜12囲2がよい。次に冷却速度であるが、これまで
に述べた成分および製造条件の限定範囲内であれば、1
℃1sec以上の冷却速度においてマルテンサイト組織
が得られる。
If the annealing temperature is less than 720°C, it is not possible to obtain a two-phase state of α + γ, so the lower limit is set at 720°C.
When the temperature exceeds 50° C., the volume fraction of the α phase decreases, and even if the structure has two phases, the drop point increases, making it impossible to obtain a low drop ratio. If the soaking time is less than 20 minutes, the formation of a two-phase structure of α+γ is insufficient, and if it exceeds 5 minutes, the γ phase is coarsely formed and the ductility deteriorates. The preferred annealing range is 730-7800C and 6
0-12 2 is good. Next, regarding the cooling rate, if it is within the limited range of the ingredients and manufacturing conditions mentioned above,
A martensitic structure is obtained at a cooling rate of 1 sec or more.

冷却速度が早いほど生成マルテンサイト量が増加し、高
強度が得られる。ところが、あまり急冷すぎるとマルテ
ンサイトが結晶粒界に沿つて多量に生成され、塑性変形
時に応力の集中源となり延性を劣化させる。強度と延性
のバランスを良好とするには、適正な冷却速度範囲があ
り、本発明鋼においては10〜5000C1secの冷
却速度が好ましい。次に本発明の実施例を示す。
The faster the cooling rate, the greater the amount of martensite produced and the higher the strength. However, if the material is cooled too quickly, a large amount of martensite is generated along grain boundaries, which becomes a stress concentration source during plastic deformation and deteriorates ductility. In order to achieve a good balance between strength and ductility, there is an appropriate cooling rate range, and for the steel of the present invention, a cooling rate of 10 to 5000 C1 sec is preferable. Next, examples of the present invention will be shown.

実施例1 第1表に示す成分の鋼を溶製し、同表に示す条件で熱延
一冷延一連続焼鈍を行つた。
Example 1 Steel having the components shown in Table 1 was melted and subjected to hot rolling, cold rolling, and continuous annealing under the conditions shown in Table 1.

焼鈍後の機械的性質を第2表に示す。The mechanical properties after annealing are shown in Table 2.

これより本発明の範囲内の成分及ひ後工程条件を満足す
るものは、高い引張強度を有しながらも降状点が低く、
降状比は0.6以下へなり、降状点、伸びの発生もなく
、加工性に優れた冷延鋼板である。実施例2第3表に示
す鋼成分および製造条件で作られた冷延鋼板を、室温か
ら600′Cまで2@)、600゜Cから770板cま
て25秒て加熱し、770゜Cから直ちに680゜Cま
で6叩冫(冷却速度1.5゜C1sec)、680゜C
から450゜Cまで208(11速C1sec)て冷却
し、4500cで6秒保定の後、450゜Cから250
゜Cまで空冷し、その後水詮斤するというゼンジミアタ
イプの亜鉛メッキラインの熱サイクルにシミユレートし
た焼鈍を施した。
From this, it can be seen that those that satisfy the ingredients and post-processing conditions within the scope of the present invention have high tensile strength but have a low descent point.
The descending ratio is 0.6 or less, and there is no occurrence of descending point or elongation, making it a cold-rolled steel sheet with excellent workability. Example 2 A cold-rolled steel plate made with the steel composition and manufacturing conditions shown in Table 3 was heated from room temperature to 600'C for 25 seconds, then heated to 770°C for 25 seconds. Immediately heat 6 times to 680°C (cooling rate 1.5°C 1 sec), 680°C
Cool from 450°C to 208°C (11 speed C1sec), maintain at 4500°C for 6 seconds,
Annealing was carried out to simulate the thermal cycle of a Sendzimir type galvanizing line, which involves air cooling to °C and then water rinsing.

得られた機械的性質を第4表に示す。本発明によつて製
造された鋼板BとCは上記のような極めて冷却速度の遅
い焼鈍サイクルでも降i状比が低く、降状点、伸びのな
い複合組織特有の特性を示している。
The mechanical properties obtained are shown in Table 4. Steel plates B and C manufactured according to the present invention have a low i-drop ratio even in the annealing cycle with extremely slow cooling rate as described above, and exhibit characteristics unique to a composite structure with no drop point or elongation.

以上説明したように、本発明の方法によれば例えば連続
溶融亜鉛メッキ設備のように、非常に冷却速度の遅い連
続焼鈍方法で、低降状比の複合組織高強度薄鋼板が比較
的低合金系の成分で安定して製造でき、その工業的意義
は大きい。
As explained above, according to the method of the present invention, in a continuous annealing method with a very slow cooling rate, such as in continuous hot-dip galvanizing equipment, a composite structure high-strength thin steel sheet with a low drop ratio can be produced with a relatively low alloy. It can be stably produced using the components of the system, and its industrial significance is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はC含有量とB含有量の関係においてB/Cが降
状比に及ぼす影響を示す図である。
FIG. 1 is a diagram showing the influence of B/C on the drop ratio in the relationship between C content and B content.

Claims (1)

【特許請求の範囲】 1 重量で、C:0.02〜0.20%、Si:0.8
%以下、 Mn:0.8〜2.0%、 酸可溶Al:0.005〜0.060%、B:B/Cが
0.04以上、かつB−0.7Nとして0.0003〜
0.0050%、N:0.0060%以下、 残部が鉄および不可避的不純物からなる鋼を、熱間圧延
にさいしAr_3点以上で仕上圧延を終了し、ついで3
0〜150℃/secの冷却速度で冷却し、680℃以
下で捲取り、圧下率65%以上で冷間圧延し、続いて7
20℃〜850℃で20秒〜5分間均熱した後、1℃/
sec以上で冷却することを特徴とする連続焼鈍による
加工用高強度薄鋼板の製造法。
[Claims] 1. C: 0.02 to 0.20%, Si: 0.8% by weight
% or less, Mn: 0.8 to 2.0%, acid-soluble Al: 0.005 to 0.060%, B: B/C is 0.04 or more, and 0.0003 to B-0.7N.
0.0050%, N: 0.0060% or less, the balance consisting of iron and unavoidable impurities, finish rolling at Ar_3 points or higher during hot rolling, and then
Cooling at a cooling rate of 0 to 150°C/sec, rolling at 680°C or less, cold rolling at a reduction rate of 65% or more, and then
After soaking at 20℃ to 850℃ for 20 seconds to 5 minutes, 1℃/
A method for producing a high-strength thin steel plate for processing by continuous annealing, characterized by cooling at a rate of sec or more.
JP2843381A 1981-03-02 1981-03-02 Manufacturing method of high-strength thin steel plate for processing by continuous annealing Expired JPS6047886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2843381A JPS6047886B2 (en) 1981-03-02 1981-03-02 Manufacturing method of high-strength thin steel plate for processing by continuous annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2843381A JPS6047886B2 (en) 1981-03-02 1981-03-02 Manufacturing method of high-strength thin steel plate for processing by continuous annealing

Publications (2)

Publication Number Publication Date
JPS57143435A JPS57143435A (en) 1982-09-04
JPS6047886B2 true JPS6047886B2 (en) 1985-10-24

Family

ID=12248524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2843381A Expired JPS6047886B2 (en) 1981-03-02 1981-03-02 Manufacturing method of high-strength thin steel plate for processing by continuous annealing

Country Status (1)

Country Link
JP (1) JPS6047886B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959860A (en) * 1982-09-28 1984-04-05 Nippon Steel Corp Free cutting steel and its production
JPS6077956A (en) * 1983-10-05 1985-05-02 Kawasaki Steel Corp High tensile strength cold-rolled steel plate having above 50kgf/mm2 strength with superior bending characteristic and stretch-flange formability and production of said steel plate
FR2845694B1 (en) * 2002-10-14 2005-12-30 Usinor METHOD FOR MANUFACTURING COOK-CURABLE STEEL SHEETS, STEEL SHEETS AND PIECES THUS OBTAINED
CA2850332C (en) 2011-09-30 2016-06-21 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet excellent in mechanical cutting property, and manufacturing method thereof
CN103773935A (en) * 2012-10-25 2014-05-07 吴雪 Process for rolling low yield ratio and high plasticity steel plate with thickness of 40 nm
CN103774050A (en) * 2012-10-25 2014-05-07 吴雪 High-ductility steel with low yield ratio
CN103774052A (en) * 2012-10-25 2014-05-07 吴雪 Method for preparing high-strength steel plate with thickness of 20 mm

Also Published As

Publication number Publication date
JPS57143435A (en) 1982-09-04

Similar Documents

Publication Publication Date Title
JP6208246B2 (en) High formability ultra-high strength hot-dip galvanized steel sheet and method for producing the same
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
RU2677444C2 (en) Steel sheet having very high mechanical properties of strength and ductility, manufacturing method and use of such sheets
JP5339005B1 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
US20090071574A1 (en) Cold rolled dual phase steel sheet having high formability and method of making the same
WO2002012580A1 (en) Cold rolled steel sheet and hot rolled steel sheet excellent in bake hardenability and resistance to ordinary temperature aging and method for their production
WO2014166323A1 (en) 700mpa high strength hot rolling q&amp;p steel and manufacturing method thereof
JP5846445B2 (en) Cold rolled steel sheet and method for producing the same
CN107326276B (en) A kind of 500~600MPa of tensile strength grades of hot rolling high-strength light dual phase steels and its manufacturing method
JP2004027249A (en) High tensile hot rolled steel sheet and method of producing the same
JPS6256209B2 (en)
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP2862186B2 (en) Manufacturing method of hot-dip galvanized high-strength thin steel sheet with excellent elongation
JPH04173945A (en) Manufacture of high strength hot-dip galvanized steel sheet excellent in bendability
JPS595649B2 (en) Method for manufacturing high-strength hot-dip galvanized steel sheet with excellent workability
JPS6047886B2 (en) Manufacturing method of high-strength thin steel plate for processing by continuous annealing
JP2007119842A (en) Method for producing high-strength galvanized steel sheet excellent in stretch-flanging property
JPH03294463A (en) Production of alloyed hot-galvanized steel sheet
JPS6237322A (en) Production of low yield ratio cold rolled high tensile steel plate having excellent surface characteristic and bendability
JPH0559970B2 (en)
JPH0344423A (en) Manufacture of galvanized hot rolled steel sheet having excellent workability
JPH0639676B2 (en) Method for producing high strength galvanized steel sheet
JPH05179402A (en) High strength hot-dip galvanized steel material excellent in stability of material as well as in workability and its production
JPS5831035A (en) Production of zinc hot dipped steel plate having excellent workability and baking hardenability