JPH02217425A - Production of high strength steel sheet having superior formability - Google Patents

Production of high strength steel sheet having superior formability

Info

Publication number
JPH02217425A
JPH02217425A JP3895789A JP3895789A JPH02217425A JP H02217425 A JPH02217425 A JP H02217425A JP 3895789 A JP3895789 A JP 3895789A JP 3895789 A JP3895789 A JP 3895789A JP H02217425 A JPH02217425 A JP H02217425A
Authority
JP
Japan
Prior art keywords
steel sheet
steel
cooling
austenite
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3895789A
Other languages
Japanese (ja)
Other versions
JPH0733551B2 (en
Inventor
Koji Sakuma
康治 佐久間
Osamu Akisue
秋末 治
Hiroshi Kato
弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1038957A priority Critical patent/JPH0733551B2/en
Publication of JPH02217425A publication Critical patent/JPH02217425A/en
Publication of JPH0733551B2 publication Critical patent/JPH0733551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To obtain a high strength steel sheet reduced in C content and excellent in formability by applying pickling and cold rolling to a steel containing specific amounts of Si, Mn, and Al, subjecting the resulting steel sheet to heating and cooling under respectively specified conditions, and further subjecting the above steel sheet to holding for a time defined according to steel components and then to cooling. CONSTITUTION:A steel having a composition consisting of, by weight, 0.07-0.12% C, 0.50-2.00% Si, 1.00-2.50% Mn, 0.005-0.100% solAl, and the balance Fe with inevitable impurities is pickled and cold-rolled at 30-85% draft. Subsequently, the resulting steel sheet is heated up to a temp. of the Ac1 point or above, 700-800 deg.C, held at the above temp. for 15sec-5min, and cooled down to 200-450 deg.C at 1-200 deg.C/sec cooling rate. Successively, at 300-450 deg.C, the above steel sheet is held at an average temp. T deg.C for a time (t)sec defined according to steel composition so that the value of X given by an equation is regulated to 6-7, which is then cooled down to <=150 deg.C within 60sec. If neccessary, one or more elements among Ni, Cr, Co, and Cu are added by <=1% in total to the above steel composition. This steel sheet has satisfactory weldability, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は優れた成形性を有する高強度鋼板の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a high-strength steel plate having excellent formability.

(従来の技術) 工程の簡略化はその連続化とともに近年における一般的
な技術動向である。この傾向は薄鋼板のプレス成形の分
野でも認められ一段一体成形化が進められており、これ
に対応できるような鋼板が求められている。薄鋼板の成
形性の良否は伸び、ランクフォードの塑性歪み比r値、
加工硬化指数n値や降伏強度等で判断されるが、複雑な
部品を−段一体成形するには伸びやn値の大きいことが
必要である。伸びやn値の大きい高強度鋼板としてはフ
ェライトとマルテンサイトの混合した組織からなるDu
al phase鋼板が一般的であり、特公昭56−1
8051号公報や特公昭59−45735号公報にある
ように50〜80kgf/−の引張強度で最大30〜3
5%程度の伸びが得られる。このDual phase
鋼板の伸びやn値を改善する方法としてこれまでに提唱
されている代表的な方法はフェライトの清浄度を上げる
とともにその比率を増すことおよびn値をあまり劣化さ
せずに強度を確保できる元素を添加することである。前
者の目的を達成するためには二相域焼鈍温度をA 、 
(直上に設定したり、特公昭57−45454号公報の
ように冷却を適当な温度までは緩慢なものとし、その後
を急冷する方法、また連続焼鈍前に適当な条件のバッチ
焼鈍を予め行なっておく方法があり、後者の目的を達成
する元素としてPやSiがあげられる。しかしこのよう
な方法を用いても50〜80kgf/−級の引張強度と
同時に0.25を超すようなn値を合わせ持たせた鋼板
の工業的な規模での製造例は報告されていない。すなわ
ち鋼板の強度が高くなると伸びやn値は相当な低下を来
すため、これまでに開発されてきた高強度鋼板では複雑
な形状に一段で成形することは不可能となる。このよう
にいわゆるDua Iphase t!Aでさえ成形性
に不満が残りコストパフォーマンスも優れないことは現
状でも限られた用途にしか適用されず、過時効帯を有す
る既存の一般的な連続焼鈍炉では理想的な特性を得にく
いこと等と合わせ考えるとそのままの状態では今後とも
発展を期待しにくい。
(Prior Art) Process simplification, along with process continuity, is a general technological trend in recent years. This trend is also recognized in the field of press forming of thin steel sheets, where single-stage integral forming is progressing, and steel sheets that can handle this are being sought. The quality of formability of a thin steel plate is determined by its elongation, Lankford's plastic strain ratio r value,
This is determined by the work hardening index n value, yield strength, etc., and in order to mold complex parts in one step, it is necessary to have a large elongation and n value. Du, which has a mixed structure of ferrite and martensite, is a high-strength steel sheet with large elongation and n-value.
Al phase steel plates are common, and
As stated in Publication No. 8051 and Japanese Patent Publication No. 59-45735, the maximum tensile strength is 30 to 3 with a tensile strength of 50 to 80 kgf/-.
An elongation of about 5% can be obtained. This dual phase
The typical methods that have been proposed so far to improve the elongation and n-value of steel sheets are increasing the cleanliness of ferrite and its ratio, and adding elements that can ensure strength without significantly deteriorating the n-value. It is to add. To achieve the former purpose, the two-phase region annealing temperature should be A,
(It is possible to set the temperature directly above the surface, to cool slowly to an appropriate temperature and then rapidly cool it as in Japanese Patent Publication No. 57-45454, or to carry out batch annealing under appropriate conditions before continuous annealing. P and Si can be cited as elements that achieve the latter purpose. However, even if such a method is used, it will not be possible to achieve a tensile strength of 50 to 80 kgf/- class and at the same time an n value exceeding 0.25. There have been no reports of an example of manufacturing a steel plate with this type of bonding on an industrial scale.In other words, as the strength of the steel plate increases, the elongation and n-value decrease considerably. Therefore, it is impossible to mold a complex shape in one step.Thus, even the so-called Dua Iphaset!A has poor moldability and is not good in cost performance, so it is currently only applicable for limited applications. Considering the fact that it is difficult to obtain ideal characteristics in existing general continuous annealing furnaces that have an over-aged zone, it is difficult to expect further development in the current state.

(発明が解決しようとする課題) 本発明は前記したような従来技術の有する課題を解決し
、50〜80kgf/−程度の引張強度と同時に35〜
45%を超す伸びと、0.25〜0.30以上のn値を
合わせ持つことで認められるような優れた成形性を有す
る高強度鋼板の製造方法を提供するものである。すなわ
ち従来知見を最大限活用するとともに残留オーステナイ
トの変態誘起塑性を相乗し、従来では考えられなかった
ような高強度と優れた成形性の両立を図ったものである
(Problems to be Solved by the Invention) The present invention solves the problems of the prior art as described above, and achieves a tensile strength of about 50 to 80 kgf/- and a tensile strength of about 35 to 35 kgf/-.
The present invention provides a method for producing a high-strength steel plate having excellent formability as evidenced by an elongation exceeding 45% and an n value of 0.25 to 0.30 or more. In other words, by making full use of conventional knowledge and synergizing the transformation-induced plasticity of retained austenite, we aim to achieve both high strength and excellent formability that were previously unimaginable.

変態誘起塑性が常識的な強度延性バランスの範囲を外れ
て高強度、高延性をもたらす機構であることは広く知ら
れている。これはたとえば5US301のような準安定
系のステンレス鋼では変形につれてオーステナイトがマ
ルテンサイトに変態するが、それと同時に大きな伸びを
示す現象である。この現象を有効に活用すれば「塑性と
加工」第16拳993〜1000頁にあるように80k
gf/−の引張強度で60%の大きな伸び、そして0.
70という極めて大きなn値が得られる。しかしこのよ
うな驚異的とも言える機械的性質は極めて限定された温
度範囲でしか示されず、実際の工業生産に適用するのは
困難である。またこの変態誘起塑性を積極的に活用した
鋼としてrTrans、^SM J第60巻252〜2
59頁でZackay等が提示したいわゆるTRIP!
li1があるが、高価な合金元素を大量に含むことと低
温での入圧下等の複雑な工程を経なければならないこと
のためにその用途は非常に限定されている。ところが近
年では、特開昭61−157625号公報記載の発明の
ように自動車用鋼板の如き廉価かつ多量生産が必須な用
途にもこの現象を応用することが試みられている。その
肝要とするところはSiの添加により炭化物の析出が抑
制され、Cが濃化した未変態オーステナイトの安定化が
進むことである。この先願発明に従えば一般的な連続焼
鈍炉を用いて、しかも高価な合金元素を添加せずに安定
的な大量生産が可能であり、その意義は極めて大きい。
It is widely known that transformation-induced plasticity is a mechanism that brings about high strength and high ductility beyond the range of common-sense strength-ductility balance. This is a phenomenon in which, for example, in a metastable stainless steel such as 5US301, austenite transforms into martensite as it deforms, but at the same time it exhibits large elongation. If this phenomenon is effectively utilized, the 80k
Large elongation of 60% with tensile strength of gf/- and 0.
An extremely large n value of 70 is obtained. However, such amazing mechanical properties are exhibited only in an extremely limited temperature range, making it difficult to apply them to actual industrial production. In addition, rTrans, ^SM J Vol. 60, 252-2, is a steel that actively utilizes this transformation-induced plasticity.
On page 59, the so-called TRIP! presented by Zackay et al.
There is li1, but its use is extremely limited because it contains a large amount of expensive alloying elements and requires complicated processes such as pressure injection at low temperatures. However, in recent years, attempts have been made to apply this phenomenon to applications such as steel plates for automobiles, which require inexpensive and mass production, as in the invention described in JP-A-61-157625. The important point is that the addition of Si suppresses the precipitation of carbides and stabilizes the untransformed austenite enriched with C. According to this prior invention, stable mass production is possible using a general continuous annealing furnace and without adding expensive alloying elements, which is extremely significant.

しかしこの先願発明においてはCの含有量が多く残留オ
ーステナイトの量が多大であるために引張強度が過大と
なり、またそれに伴う弊害も散見され広範な実用化には
達していない。
However, in this prior invention, the tensile strength is excessive due to the high content of C and the large amount of retained austenite, and the accompanying disadvantages have been observed here and there, so that it has not been put into widespread practical use.

(課題を解決するための手段) 本発明者らは比較的低いC含有量であってもSiの添加
と同時にフェライトの・清浄度とその量を増すようなプ
ロセス設計を行なうと、いわゆるDualphase鋼
ではかつて認められなかったような変態誘起塑性に寄与
するところが大である残留オーステナイトが得られるこ
とを見出した。これにより低歪域では主として多量に存
在する清浄なフェライトにより、また高歪域では残留オ
ーステナイトの変態誘起塑性により大きなn値が確保で
きることが明らかとなり本発明を行なった。
(Means for Solving the Problems) The present inventors have designed a process that increases the cleanliness and amount of ferrite at the same time as adding Si even when the C content is relatively low. It was discovered that retained austenite, which greatly contributes to transformation-induced plasticity, which had never been recognized before, could be obtained. As a result, it became clear that in the low strain range, a large n value can be secured mainly due to the abundant clean ferrite, and in the high strain range, due to the transformation-induced plasticity of retained austenite, which led us to carry out the present invention.

すなわち本発明は重量%でC: 0.07〜0.12%
、 Si : 0.50〜2.O0%、 Mn: 10
0〜2.50%、 sal、N : 0.005〜0.
100%及び必要に応じてNi、 Cr、 Co、 C
uのうちの1種または2種以上を合計1%以下含み、残
部Feおよび不可避的不純物からなる鋼に、酸洗と30
〜85%の冷間圧延を行なってから、A Cl変態点以
上の700〜800℃に加熱し15秒〜5分保持後、1
〜200℃/秒の速度で200〜450℃に冷却し、引
き続いて300〜450℃の範囲内で X=5500/(T+273)−jogt+0.27(
Si(χ)+Mn(χ))+10(C(X))2なる式
で与えられるXが6〜7となるように鋼の成分組成によ
って規定される時間を秒の間、平均温度T″Cに保持し
た後で60秒以内に150℃以下まで冷却することを特
徴とする優れた成形性を有する高強度鋼板の製造方法を
要旨とするものである。
That is, in the present invention, C: 0.07 to 0.12% by weight
, Si: 0.50-2. O0%, Mn: 10
0-2.50%, sal, N: 0.005-0.
100% and as necessary Ni, Cr, Co, C
A steel containing one or more of u in a total of 1% or less, with the remainder being Fe and unavoidable impurities, is pickled and
~85% cold rolling, then heated to 700 ~ 800 ° C above the ACl transformation point and held for 15 seconds ~ 5 minutes, 1
Cooling to 200-450°C at a rate of ~200°C/sec, followed by X=5500/(T+273)-jogt+0.27(
Si (χ) + Mn (χ)) + 10 (C (X)) The gist of the present invention is to provide a method for manufacturing a high-strength steel sheet having excellent formability, which comprises cooling the steel sheet to 150° C. or less within 60 seconds after maintaining the temperature at a temperature of 150° C. or less.

(作 用) 最初に本発明の対象とする鋼の成分範囲の限定理由につ
いて述べる。
(Function) First, the reason for limiting the range of components of steel that is the object of the present invention will be described.

まずCは鋼のオーステナイト域を拡大する元素であると
同時に鋼中での拡散が速いため、フェライトおよびオー
ステナイトが共存する時にはオーステナイト中に濃化し
てその安定度を増す。その結果、本発明で規定するよう
なサイクルの熱処理を行なえば室温に冷却した後でもオ
ーステナイトを残留させることができ、変態誘起塑性を
活用できる。Cの量は溶接性をはじめとする良好な実用
特性を確保する上から少ないほうが好ましいが、0.0
7%未満では変態誘起塑性を明らかに示すような適度の
安定性をもつ残留オーステナイトが得にくいため本発明
の目的を達成できない。反対に0.12%を超すようだ
と残留オーステナイトは得やすくなるものの目的とする
優れた成形性を50〜80kgf/−という引張強度レ
ベルで工業的に確保することは現状では難しく、また可
能であるとしても溶接性等を考え合わせた時には何らメ
リットかない。
First, C is an element that expands the austenite region of steel and at the same time diffuses quickly in steel, so when ferrite and austenite coexist, it concentrates in austenite and increases its stability. As a result, if heat treatment is performed in a cycle as specified in the present invention, austenite can remain even after cooling to room temperature, and transformation-induced plasticity can be utilized. It is preferable that the amount of C is small in order to ensure good practical properties such as weldability, but 0.0
If it is less than 7%, it is difficult to obtain retained austenite with appropriate stability that clearly exhibits transformation-induced plasticity, making it impossible to achieve the object of the present invention. On the other hand, if the content exceeds 0.12%, it is easier to obtain retained austenite, but it is currently difficult or impossible to industrially secure the desired excellent formability at a tensile strength level of 50 to 80 kgf/-. Even if there were, there would be no benefit when considering weldability etc.

Siはセメンタイト中に固溶しないためその析出を抑制
する作用を有すると同時に、Mn等とともに変態を遅滞
させる。したがって、300〜450℃で然るべき時間
保持することにより未変態オーステナイト中に固溶限を
はるかに越えたCを濃縮させ、残留オーステナイトの安
定性を適度なものとし変態誘起塑性による効果を大きな
ものとする。
Since Si does not form a solid solution in cementite, it has the effect of suppressing its precipitation, and at the same time, it retards transformation together with Mn and the like. Therefore, by holding the temperature at 300 to 450°C for a certain period of time, it is possible to concentrate C far beyond the solid solubility limit in untransformed austenite, moderate the stability of retained austenite, and increase the effect of transformation-induced plasticity. do.

このような効果は本発明のC憬および工程条件ではSi
の量が0.50%未満では認められない。しかし過剰に
添加すると酸洗性を著しく悪化させるほどのスケールが
熱延時に生じ、またCの黒鉛化を招くため、その量は2
.00%以下に限定する。なお、化成処理性を損なわな
いためにはその添加量は1.40%以下が好ましい。
Such an effect is obtained under the C conditions and process conditions of the present invention.
It is not acceptable if the amount is less than 0.50%. However, if added in excess, scale will occur during hot rolling that will significantly worsen pickling properties, and will also lead to graphitization of C, so the amount should be 2.
.. 00% or less. In addition, in order not to impair chemical conversion treatment properties, the amount added is preferably 1.40% or less.

またMnはオーステナイト形成元素であるばかりか、二
相域からベイナイト変態域へ冷却する過程でオーステナ
イトがパーライトに分解するのを抑制すると同時にベイ
ナイト変態自体をも遅滞させる。したがって前述したよ
うなSiの果たす効果と相補い、連続焼鈍で今日−船釣
に行なわれている冷却方法と過時効を目的とした400
“C付近での保持条件をとる場合でも変態誘起塑性をも
たらすような残留オーステナイトが混在した金属組織を
持ち来す。またその添加で組織が微細となる傾向にあり
、細粒強化が図れるばかりか残留オーステナイトの量お
よび安定度を高めることができ目的達成に有効である。
Moreover, Mn is not only an austenite-forming element, but also suppresses the decomposition of austenite into pearlite during the cooling process from the two-phase region to the bainite transformation region, and at the same time retards the bainite transformation itself. Therefore, by complementing the effect played by Si as mentioned above, continuous annealing is used for cooling methods used today in boat fishing and for over-aging purposes.
“Even when holding conditions around C are adopted, a metal structure containing residual austenite that brings about transformation-induced plasticity is brought about.Additionally, the addition of retained austenite tends to make the structure finer, and not only can fine-grain reinforcement be achieved. It can increase the amount and stability of retained austenite and is effective in achieving the objective.

以上のような効果はMn添加量カ月、00%未満では認
められない。しかし、2.50%を超すようになると熱
延条件を制御しても残留オーステナイトの安定度を室温
近傍で変態誘起塑性の効果を示す程度のものにするため
にはベイナイト変態域での保持を相当長時間とする必要
があり、避けなければならない。
The above effects are not observed when the amount of Mn added is less than 00%. However, when it exceeds 2.50%, even if the hot rolling conditions are controlled, it is necessary to maintain the retained austenite in the bainite transformation region in order to maintain the stability of the retained austenite to the extent that it exhibits the effect of transformation-induced plasticity near room temperature. It is necessary to take a considerable amount of time and should be avoided.

さらにsol、Nは脱酸元素として、またAZNによる
熱延素材の細粒化、および一連の熱処理工程における結
晶粒の粗大化を抑制することで材質が改善されるためo
、oos〜o、 ioo%を添加する。その量が0.0
05%未満だと目的とする効果が不十分であり、0.1
00%を超すと介在物により靭性が劣化することがある
ので避けなければならない。
In addition, sol and N act as deoxidizing elements, and improve the material quality by reducing the grain size of the hot-rolled material with AZN and suppressing the coarsening of crystal grains during a series of heat treatment steps.
, oos~o, ioo%. The amount is 0.0
If it is less than 0.05%, the desired effect is insufficient, and 0.1
If it exceeds 0.00%, the toughness may deteriorate due to inclusions, so it must be avoided.

本発明の鋼は以上を基本成分とするが、これらの元素お
よびFe以外にP、S、Nその他の一般に鋼に対して不
可避的に混入する元素を含むものである。またオーステ
ナイト形成元素のNt、 CuやCOあるいは焼入れ性
を増す元素であるCrを添加し、残留オーステナイト量
やその安定度を高めることは本発明の目的を達成する上
で好ましい、しかし、過大に添加すると複雑な組成の化
合物が析出して加工性を悪くしたり、また極めて安定な
炭化物が形成されCの果たすべき役割が阻害されること
があるのでその量は合計で1%以下に限定する。
The steel of the present invention has the above basic components, but in addition to these elements and Fe, it also contains P, S, N, and other elements that are generally unavoidably mixed in steel. In addition, it is preferable to increase the amount of retained austenite and its stability by adding Nt, Cu, and CO, which are austenite-forming elements, or Cr, which is an element that increases hardenability. If this happens, compounds with complex compositions may precipitate, impairing workability, or extremely stable carbides may be formed, inhibiting the role of C, so the total amount thereof is limited to 1% or less.

次に工程上の限定理由を詳述する。Next, the reasons for the limitations on the process will be explained in detail.

本発明による鋼板には酸洗と30〜85%の冷間圧延を
行なっている。その目的とするところはA (1変態点
以上に加熱した時にフェライトやパーライトの粒界三重
点を中心に微細なオーステナイト粒を形成させ、引き続
く一連のサイクルを終了した後では微細な残留オーステ
ナイトおよびベイナイトが清浄なフェライトマトリクス
の間に分散した金属組織を得ることにある。この金属組
織により高強度と優れた成形性の両立を図れるが、冷延
率が30%未満だと通常の速度で加熱した時には再結晶
後のフェライト粒が粗大となるため本発明に規定した熱
処理を行なってもオーステナイトを室温以下まで残留さ
せにくく、また残留させても変態誘起塑性の効果を得づ
らいので目的を達成できない。一方、80%を越えた冷
延を行なっても介在物が極端に展伸されるから局部伸び
の劣化を招くだけで何らメリットをもたらさない。
The steel plate according to the present invention has been pickled and cold rolled by 30-85%. The purpose is A (to form fine austenite grains around the grain boundary triple points of ferrite and pearlite when heated above the 1 transformation point, and after completing a series of subsequent cycles, fine residual austenite and bainite are formed). The purpose is to obtain a metal structure that is dispersed between a clean ferrite matrix.This metal structure allows for both high strength and excellent formability, but if the cold rolling rate is less than 30%, the metal structure is heated at a normal speed. Sometimes, the ferrite grains after recrystallization become coarse, so even if the heat treatment specified in the present invention is performed, it is difficult to allow austenite to remain below room temperature, and even if it remains, it is difficult to obtain the effect of transformation-induced plasticity, so the purpose cannot be achieved. On the other hand, even if cold rolling exceeds 80%, the inclusions are extremely elongated, which only causes deterioration of local elongation and does not bring any benefit.

本発明の一連のサイクルからなる熱処理では先ずAcl
変態点以上の700〜800℃に加熱し15秒〜5分保
持する。本発明の成分系を有する鋼板にこの加熱を行な
うと固溶限以上の炭化物はほとんど消滅し、共析組成近
くまでCが濃化しているオーステナイトが体積率で10
〜40%生成する。このオーステナイトは引き続く一連
のサイクルを経た後では残留オーステナイトおよびベイ
ナイトとなり、清浄なフェライトと共存して低歪域から
高歪域まで大きなn値をもたらす。加熱温度が700℃
未満だと、連続ラインで実現することのできる時間内で
は炭化物が完全に溶解しなかったり、さらには再結晶も
不十分な状態となることがあるため後に続く処理が本発
明に規定されるものであったとしても高強度にして優れ
た成形性を有する鋼板とはできない。また加熱する温度
域が800℃を超すことは必要なエネルギーが多大とな
るだけで、それに見合った効果が期待できないので避け
なければならない。この温度域に加熱保持する時間が1
5秒未満だと未溶解炭化物の存在する可能性が大きくオ
ーステナイトがほとんど生成していない場合がある。一
方、5分を超えるような長い時間保持しても投下エネル
ギーの増加に見合っただけの特性向上を図れないし、そ
もそも連続ラインでの経済的な多量生産という前提条件
に合致しない。
In the heat treatment consisting of a series of cycles of the present invention, first ACl
Heat to 700-800°C above the transformation point and hold for 15 seconds to 5 minutes. When this heating is applied to a steel sheet having the composition system of the present invention, most of the carbides exceeding the solid solubility limit disappear, and austenite with a concentration of C close to the eutectoid composition is formed at a volume fraction of 10.
~40% produced. After passing through a series of subsequent cycles, this austenite becomes retained austenite and bainite, which coexists with clean ferrite and provides a large n value from a low strain region to a high strain region. Heating temperature is 700℃
If it is less than that, the carbide may not be completely dissolved within the time that can be realized in a continuous line, and furthermore, recrystallization may be insufficient, so the subsequent treatment is as specified in the present invention. Even if it were, it would not be possible to produce a steel plate with high strength and excellent formability. Furthermore, heating in a temperature range exceeding 800° C. requires a large amount of energy, and no commensurate effect can be expected, so it must be avoided. The time to heat and maintain in this temperature range is 1
If the heating time is less than 5 seconds, there is a high possibility that undissolved carbides exist, and almost no austenite may be formed. On the other hand, even if it is held for a long time, such as over 5 minutes, it is not possible to improve the properties commensurate with the increase in input energy, and in the first place it does not meet the prerequisites for economical mass production on a continuous line.

本発明ではこの後1〜b 200〜450 ℃に冷却する。これはAcl変態点以
上の加熱により生成させたオーステナイトをそのままの
状態でベイナイト変態域に持ち来し、引き続く処理によ
り残留オーステナイトを清浄なフェライトと共存する組
織の中に得ることを目的とする。この冷却速度が1℃/
秒未満だとパーライトへの変態が始まり、Cはその中の
炭化物を形成するため変態誘起塑性に有効な残留オース
テナイトが確保できない。逆に200℃/秒を超えるよ
うな速度では鋼板全体を均一に設定した条件で冷却する
ことが難しいし、困難を排除してかかる冷却を行なった
としても突発的にフェライトが成長し、針状組織が形成
されやすくなるため強度のわりに成形性が劣るようにな
る。この冷却がそのまま200 ℃より低い温度まで進
むと加熱時に生成したオーステナイトのほとんどがマル
テンサイトに変態するため強度は高くなるもののその特
性は従来からのDual phase鋼と大差のないも
のとなり、伸びやn値が要求される水準に達しない。一
方、450℃を超えるような温度でこの冷却を終了する
ことは、その後の変態が急激に進行するため望まれる組
織状態で処理を終了することが困難となるので避ける必
要がある。なおこの冷却の前段と後段で速度を変更し、
550〜680℃までを1〜20℃/秒、それ以下を1
5〜200℃/秒の冷却とすることは前段の緩冷中に未
変態オーステナイトへ合金元素を濃化させ、より清浄な
フェライトを増すことになり、本発明の目的を達成する
上でより大きな効果をもたらすものである。
In the present invention, it is then cooled to 1-b 200-450°C. The purpose of this is to bring the austenite generated by heating above the ACl transformation point to the bainite transformation region as it is, and to obtain retained austenite in a structure coexisting with clean ferrite through subsequent processing. This cooling rate is 1℃/
If it is less than seconds, transformation to pearlite will begin, and C will form carbides therein, so retained austenite, which is effective for transformation-induced plasticity, cannot be secured. On the other hand, at speeds exceeding 200°C/sec, it is difficult to cool the entire steel plate under uniform conditions, and even if such cooling is done without difficulty, ferrite will suddenly grow and become acicular. Since a structure is easily formed, the formability becomes inferior in comparison to the strength. If this cooling continues to a temperature lower than 200 °C, most of the austenite generated during heating will transform into martensite, so although the strength will increase, its properties will not be much different from conventional dual phase steel, and the elongation and n The value does not reach the required level. On the other hand, it is necessary to avoid ending the cooling at a temperature exceeding 450° C., since the subsequent transformation will proceed rapidly and it will be difficult to finish the process with the desired structure. The speed at the front and rear stages of this cooling is changed,
1-20℃/sec up to 550-680℃, 1-20℃/sec below
Cooling at a rate of 5 to 200°C/second allows the alloying elements to become concentrated in the untransformed austenite during the previous stage of slow cooling, increasing the amount of cleaner ferrite, which is more effective in achieving the purpose of the present invention. It is something that brings about an effect.

この冷却に引き続き本発明では300〜450℃の範囲
内で、 X=5500/(T+273)−fogt+0.27(
Si(χ) +Mn (χ))+1.0(Cα))2な
る弐で与えられるXが6〜7となるように鋼の成分組成
によって規定される時間し秒の間、平均温度T℃に保持
した後で60秒以内に150℃以下まで冷却する。Si
を添加しているためにこの保持中には炭化物の析出は起
こらず、オーステナイトの一部がベイナイト状の組織に
変態するとともに未変態オーステナイトにはより一層の
Cが濃化してその安定度が増す。その結果未変態オース
テナイトのMs点は室温よりも著しく低い温度になり、
清浄なフェライトと共存することにより大きな伸びとn
値が実現する。この保持温度が450℃を超すと変態の
進行が象、速であるため相当な量の合金元素を添加しな
い限り望まれる組繊状態で処理を終えることが困難とな
るが、それは著しいコスト増加をもたらすため現実的で
はない、一方300℃未満の温度での保持はCの拡散が
極めて遅いものとなるため、連続ラインでの生産が実質
的に不可能なものとなるほどの保持時間を必要とし、行
なうことはできない。保持時間が短く、Xの値が7より
も大きいと残留オーステナイトが得られたとしてもCの
濃化が不足しているために変態誘起塑性としての寄与が
小さい。したがって目的とするような大きな伸びやn値
は示されず、従来のDual phaseliと大差な
い特性しか得られない。反対にXの値が6よりも小さく
、長時間の保持を行なった時にはオーステナイトのほと
んどがベイナイトに変態する。その結果得られる金属組
織はフェライトの粒界を中心にベイナイトが混在したも
のとなるため、その機械的性質はDual phase
鋼以下の何ら利点のないものとなる。この保持後150
℃以下までの冷却に60秒を超す時間を要した場合も同
様であり、発明の目的を達するには程遠い。
Following this cooling, in the present invention, X=5500/(T+273)-fogt+0.27(
Si (χ) + Mn (χ)) + 1.0 (Cα)) 2, so that X given by 2 becomes 6 to 7. After holding, the temperature is cooled to below 150°C within 60 seconds. Si
Because of the addition of carbon, carbide precipitation does not occur during this holding, and part of the austenite transforms into a bainite-like structure, and the untransformed austenite is further enriched with C, increasing its stability. . As a result, the Ms point of untransformed austenite becomes significantly lower than room temperature,
Large elongation and n due to coexistence with clean ferrite
Value is realized. If the holding temperature exceeds 450°C, the transformation progresses so rapidly that it becomes difficult to finish the process in the desired fiber state unless a considerable amount of alloying elements are added, but this results in a significant increase in cost. On the other hand, holding at a temperature below 300°C would result in extremely slow diffusion of C, requiring a long holding time that would make production in a continuous line virtually impossible. It cannot be done. If the holding time is short and the value of Therefore, the desired large elongation and n value are not exhibited, and only characteristics that are not significantly different from those of the conventional dual phaseli are obtained. On the other hand, when the value of The resulting metal structure is one in which bainite is mixed around the grain boundaries of ferrite, so its mechanical properties are dual phase.
It has no more advantages than steel. After this hold 150
The same is true if it takes more than 60 seconds to cool down to below .degree. C., which is far from achieving the purpose of the invention.

なお、以上に説明してきた工程において加熱保持する温
度や冷却終了後の保持温度、あるいはその間の冷却速度
は規定の範囲であれば一定である必要はなく、その範囲
内での変動ならば最終製品の特性に及ぼす影響は無視で
きるものである。
In addition, in the process explained above, the heating and holding temperature, the holding temperature after cooling, and the cooling rate during that period do not need to be constant as long as they are within a specified range, and if they fluctuate within that range, the final product will be affected. The effect on the properties of is negligible.

また、本発明の素材は通常の製鋼、鋳造、熱延工程を経
て製造されるのを原則とするが、薄手鋳造を行ない熱延
工程の一部または全部を省略して製造したものであって
も何ら問題はない。熱延も巻取温度が500〜750℃
程度であるのをはじめとし、通常に行なわれているのに
準じた条件で構わない。
Additionally, although the material of the present invention is, in principle, manufactured through normal steelmaking, casting, and hot rolling processes, it is manufactured by performing thin casting and omitting part or all of the hot rolling process. There is no problem either. The coiling temperature for hot rolling is 500 to 750℃.
Conditions similar to those normally practiced may be used.

(実施例) 第1表に成分を示す熱延鋼板を酸洗し第2表記載の圧延
率で冷間圧延した後、同表に記載した一連の条件で構成
される熱処理および0.6%の調質圧延を行なった。・
ここで表中に記載した保持する平均温度、時間と鋼の成
分で決定する値Xとは平均温度T″C101時間鋼の成
分組成によりX=5500/(T+273)−10gt
+0.27(Si(χ)+Mn(χ))+10(C(χ
))2なる式で与えられるXであり、この値が6〜7で
あることが本発明の要件である。その後でJIS5号引
張試験片を採取し、ゲージ長さ50mm、引張速度1f
)+ma/minの常温引張試験を行なうと同表に記載
したような引張強度と全伸びおよびn値が得られた。こ
こでn値は引張歪10%と20%の間でn乗硬化則が成
立すると仮定して算出したものである。
(Example) A hot-rolled steel sheet whose composition is shown in Table 1 is pickled and cold-rolled at the rolling rate shown in Table 2, followed by heat treatment consisting of a series of conditions shown in the table and 0.6% Temper rolling was carried out.・
Here, the value X determined by the average temperature, time and steel composition listed in the table is the average temperature T''C101 hours.
+0.27(Si(χ)+Mn(χ))+10(C(χ)
)) 2, and it is a requirement of the present invention that this value is 6 to 7. After that, a JIS No. 5 tensile test piece was taken, and the gauge length was 50 mm and the tensile speed was 1 f.
) + ma/min, the tensile strength, total elongation, and n value as shown in the same table were obtained. Here, the n value is calculated on the assumption that the n-th power hardening law holds between 10% and 20% of tensile strain.

本発明試料である試料Nα2.4.5,7.8゜10.
13.16.19〜21,23,26,27゜30.3
1.34.35は清浄なフェライトマトリクスの間に少
量の残留オーステナイトがベイナイトや一部ではマルテ
ンサイトとともに存在した金属組織を持ち、いずれも5
0〜80kgf/−級の引張強度で35〜45%を超す
伸びおよび0.25〜0.30以上のn値を合わせ持つ
こ′とから明らがなように優れた成形性を高強度と両立
させている。
Sample Nα2.4.5, 7.8°10.
13.16.19-21,23,26,27゜30.3
1.34.35 has a metal structure in which a small amount of residual austenite existed together with bainite and some martensite between the clean ferrite matrix, and both of them are 5
It has excellent formability and high strength, as is clear from its combination of tensile strength of 0 to 80 kgf/- class, elongation exceeding 35 to 45%, and n value of 0.25 to 0.30 or more. I am balancing both.

これに対し、本発明成分範囲外の鋼a、e、f。On the other hand, steels a, e, and f, which are outside the composition range of the present invention.

gは最適と考え得る熱処理を施しても試料Nal。g is the sample Nal even after the heat treatment that can be considered optimal.

37〜39のように、また本発明成分鋼であっても処理
条件の一つでも不適切な場合には試料阻3゜6.9,1
1.12,14,15,17,18゜22.24,25
,28.29,32,33.36のように強度が低かっ
たり、高過ぎたり、あるいは適当な強度レベルであった
としても伸びやn値が不足して成形性に問題があるなど
して従来技術が抱える課題を解決できない。
As shown in 37 to 39, even if the composition steel of the present invention is used, if one of the processing conditions is inappropriate, the sample blockage will be 3°6.9, 1.
1.12,14,15,17,18゜22.24,25
, 28. 29, 32, 33. 36, the strength is low or too high, or even if the strength is at an appropriate level, the elongation or n value is insufficient and there are problems with formability. Unable to solve problems faced by technology.

((1)表中−を付したのは本発明範囲からはずれてい
ることを示す。
((1) In the table, - indicates that it is out of the scope of the present invention.

(発明の効果) 以上の実施例から判るように本発明は従来よりも低いC
量のもとて残留オーステナイトを生成させることに成功
したので従来になく大きな伸びとn値を持った優れた成
形性を有する高強度鋼板が得られる。しかもこの鋼板を
製造するのに要するコストは同等強度レベルを有する従
来鋼板並み以下であり、溶接性など成形性以外に薄鋼板
に要求される特性も満足できる範囲にあるため、産業上
期待できる効果は極めて大きい。
(Effect of the invention) As can be seen from the above examples, the present invention has a lower C than the conventional one.
Since we have succeeded in generating retained austenite in a controlled amount, a high-strength steel plate with unprecedented formability and greater elongation and n-value can be obtained. Moreover, the cost required to manufacture this steel plate is less than that of conventional steel plates with the same strength level, and the properties required for thin steel plates in addition to formability such as weldability are within the range that satisfies the expected industrial effects. is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷間圧延の後で鋼板に施す熱処理サイクルを示
す図である。 第1図
FIG. 1 is a diagram showing a heat treatment cycle applied to a steel plate after cold rolling. Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)重量%でC:0.07〜0.12%、Si:0.
50〜2.00%、Mn:1.00〜2.50%、so
l、Al:0.005〜0.100%を含み、残部Fe
および不可避的不純物からなる鋼に、酸洗と30〜85
%の冷間圧延を行なってから、A_c_1変態点以上の
700〜800℃に加熱し15秒〜5分保持後、1〜2
00℃/秒の速度で200〜450℃に冷却し、引き続
いて300〜450℃の範囲内で X=5500/(T+273)−logt+0.27(
Si(%)+Mn(%))+10(C(%))なる式で
与えられるXが6〜7となるように鋼の成分組成によっ
て規定される時間t秒の間、平均温度T℃に保持した後
で60秒以内に150℃以下まで冷却することを特徴と
する優れた成形性を有する高強度鋼板の製造方法。
(1) C: 0.07-0.12%, Si: 0.
50-2.00%, Mn: 1.00-2.50%, so
l, Al: 0.005-0.100%, balance Fe
pickling and 30 to 85%
% cold rolling, then heated to 700-800°C above A_c_1 transformation point and held for 15 seconds to 5 minutes, then 1-2
Cooling to 200-450°C at a rate of 00°C/sec, followed by cooling in the range of 300-450°C with X=5500/(T+273)-logt+0.27(
Maintain the average temperature at T°C for a time t seconds defined by the steel composition so that X given by the formula Si (%) + Mn (%)) + 10 (C (%)) is 6 to 7. A method for producing a high-strength steel sheet having excellent formability, which comprises cooling the steel sheet to 150° C. or less within 60 seconds after heating.
(2)Ni、Cr、Co、Cuのうちの1種または2種
以上を重量%で合計1%以下添加することを特徴とする
請求項1記載の優れた成形性を有する高強度鋼板の製造
方法。
(2) Production of a high-strength steel sheet with excellent formability according to claim 1, characterized in that one or more of Ni, Cr, Co, and Cu is added in a total weight percentage of 1% or less. Method.
(3)A_c_1変態点以上の700〜800℃に加熱
し15秒〜5分保持後の冷却を、550〜680℃まで
を1〜20℃/秒、それ以下を15〜200℃/秒とす
ることを特徴とする請求項1または2記載の優れた成形
性を有する高強度鋼板の製造方法。
(3) A_c_1 Heating to 700 to 800°C above the transformation point and holding for 15 seconds to 5 minutes, then cooling at 1 to 20°C/second from 550 to 680°C, and 15 to 200°C/second below that. The method for producing a high-strength steel plate having excellent formability according to claim 1 or 2.
JP1038957A 1989-02-18 1989-02-18 Method for producing high strength steel sheet having excellent formability Expired - Lifetime JPH0733551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1038957A JPH0733551B2 (en) 1989-02-18 1989-02-18 Method for producing high strength steel sheet having excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1038957A JPH0733551B2 (en) 1989-02-18 1989-02-18 Method for producing high strength steel sheet having excellent formability

Publications (2)

Publication Number Publication Date
JPH02217425A true JPH02217425A (en) 1990-08-30
JPH0733551B2 JPH0733551B2 (en) 1995-04-12

Family

ID=12539666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1038957A Expired - Lifetime JPH0733551B2 (en) 1989-02-18 1989-02-18 Method for producing high strength steel sheet having excellent formability

Country Status (1)

Country Link
JP (1) JPH0733551B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333524A (en) * 1991-05-09 1992-11-20 Nippon Steel Corp Production of high strength dual-phase steel sheet having superior ductility
JPH06145788A (en) * 1992-11-02 1994-05-27 Nippon Steel Corp Production of high strength steel sheet excellent in press formbility
US6517955B1 (en) 1999-02-22 2003-02-11 Nippon Steel Corporation High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof
KR100748116B1 (en) * 2001-06-29 2007-08-10 주식회사 포스코 Annealing method for transformation Induced Plasticity of bainite
JP2009503267A (en) * 2005-08-04 2009-01-29 アルセロールミタル・フランス Method for producing high-strength steel sheet having excellent ductility and steel sheet produced thereby
US7736449B2 (en) 2003-01-15 2010-06-15 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing the same
KR20170122823A (en) 2015-03-31 2017-11-06 신닛테츠스미킨 카부시키카이샤 METHOD FOR PRODUCING THE SAME, AND HOT STAMP FORMED PRODUCT
KR20190007055A (en) 2016-09-21 2019-01-21 신닛테츠스미킨 카부시키카이샤 Steel plate
KR20190031533A (en) 2016-08-16 2019-03-26 신닛테츠스미킨 카부시키카이샤 The hot press-formed member
US10808291B2 (en) 2015-07-13 2020-10-20 Nippon Steel Corporation Steel sheet, hot-dip galvanized steel sheet, galvannealed steel sheet, and manufacturing methods therefor
US10822672B2 (en) 2015-07-13 2020-11-03 Nippon Steel Corporation Steel sheet, hot-dip galvanized steel sheet, galvanized steel sheet, and manufacturing methods therefor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333524A (en) * 1991-05-09 1992-11-20 Nippon Steel Corp Production of high strength dual-phase steel sheet having superior ductility
JPH06145788A (en) * 1992-11-02 1994-05-27 Nippon Steel Corp Production of high strength steel sheet excellent in press formbility
US6517955B1 (en) 1999-02-22 2003-02-11 Nippon Steel Corporation High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof
KR100748116B1 (en) * 2001-06-29 2007-08-10 주식회사 포스코 Annealing method for transformation Induced Plasticity of bainite
US7736449B2 (en) 2003-01-15 2010-06-15 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing the same
US9732404B2 (en) 2005-08-04 2017-08-15 Arcelormittal France Method of producing high-strength steel plates with excellent ductility and plates thus produced
JP2009503267A (en) * 2005-08-04 2009-01-29 アルセロールミタル・フランス Method for producing high-strength steel sheet having excellent ductility and steel sheet produced thereby
KR20170122823A (en) 2015-03-31 2017-11-06 신닛테츠스미킨 카부시키카이샤 METHOD FOR PRODUCING THE SAME, AND HOT STAMP FORMED PRODUCT
US10808291B2 (en) 2015-07-13 2020-10-20 Nippon Steel Corporation Steel sheet, hot-dip galvanized steel sheet, galvannealed steel sheet, and manufacturing methods therefor
US10822672B2 (en) 2015-07-13 2020-11-03 Nippon Steel Corporation Steel sheet, hot-dip galvanized steel sheet, galvanized steel sheet, and manufacturing methods therefor
KR20190031533A (en) 2016-08-16 2019-03-26 신닛테츠스미킨 카부시키카이샤 The hot press-formed member
US11028469B2 (en) 2016-08-16 2021-06-08 Nippon Steel Corporation Hot press-formed part
KR20190007055A (en) 2016-09-21 2019-01-21 신닛테츠스미킨 카부시키카이샤 Steel plate
US10787727B2 (en) 2016-09-21 2020-09-29 Nippon Steel Corporation Steel sheet

Also Published As

Publication number Publication date
JPH0733551B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
US4609410A (en) Method for producing high-strength deep-drawable dual-phase steel sheets
JPH02217425A (en) Production of high strength steel sheet having superior formability
JPH0474824A (en) Production of hot rolled steel plate excellent in baking hardenability and workability
JPS6156235A (en) Manufacture of high toughness nontemper steel
JPS63241120A (en) Manufacture of high ductility and high strength steel sheet having composite structure
JPH0645827B2 (en) Method for manufacturing high strength steel sheet with excellent workability
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
JPS6274051A (en) Thin cold rolled high tensile steel sheet having baking hardenability and its production
JPH0670247B2 (en) Method for producing high strength steel sheet with good formability
JPS589816B2 (en) Manufacturing method of non-thermal rolled steel bar
JPS62182224A (en) Production of high-strength steel sheet having excellent ductility
KR910003883B1 (en) Making process for high tension steel
KR960005222B1 (en) Making method of high nitrogen austenite stainless cold steel sheet
JPS62139821A (en) Production of high-ductility high-strength cold rolled steel sheet
JP2658706B2 (en) Manufacturing method of high strength and high ductility cold rolled steel sheet with excellent aging resistance
JPH03223420A (en) Production of high strength steel
JPH0452229A (en) Highly efficient production of cold rolled steel sheet extremely excellent in workability
JPS63179046A (en) High-strength sheet metal excellent in workability and season cracking resistance and its production
JPH0297620A (en) Production of high-strength steel sheet having excellent workability
JPH04173922A (en) Production of high strength steel for reinforcing bar having high yield elongation
JPS63195221A (en) Production of high-strength steel plate having high ductility
KR920000766B1 (en) Method of producing a high strength hot rolled steel sheet with an excellency toughness in low temperature
JPS63241115A (en) Manufacture of high strength cold rolled steel sheet having superior stretch flanging property
JPS5896819A (en) Production of low ni alloy steel plate having excellent low-temperature toughness
JPH02190442A (en) Case hardening steel for warm forging

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 14

EXPY Cancellation because of completion of term