JPS63241120A - Manufacture of high ductility and high strength steel sheet having composite structure - Google Patents

Manufacture of high ductility and high strength steel sheet having composite structure

Info

Publication number
JPS63241120A
JPS63241120A JP2599387A JP2599387A JPS63241120A JP S63241120 A JPS63241120 A JP S63241120A JP 2599387 A JP2599387 A JP 2599387A JP 2599387 A JP2599387 A JP 2599387A JP S63241120 A JPS63241120 A JP S63241120A
Authority
JP
Japan
Prior art keywords
cooling
austenite
temperature
ferrite
composite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2599387A
Other languages
Japanese (ja)
Inventor
Ichiro Tsukatani
一郎 塚谷
Tadashi Kamei
亀井 忠
Shunichi Hashimoto
俊一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2599387A priority Critical patent/JPS63241120A/en
Publication of JPS63241120A publication Critical patent/JPS63241120A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a high ductility and high strength steel sheet having superior spot weldability and a composite structure by not rolling coiling a steel slab having a specified compsn. under specified conditions and by successively carrying out heating, slow cooling an rapid cooling to form the specified composite structure. CONSTITUTION:A steel slab consisting of, by weight, 0.12-0.25% C, 1.5-3.0% Si, 1.1-2.0% Mn, <0.005% S, 0.02-0.50% sol, Al and the balance Fe with inevitable impurities is hot rolled at the Ar2 transformation temp. or above coiled at <650 deg.C. Continuous annealing is then carried out by heating, holding at >=800 deg.C in the austenite+ferrite two-phase for >=4min and cooling followed by holding at 350-450 deg.C for 1-5min. The cooling is carried out by slow cooling from the holding temp. to 600-800 deg.C at <=30 deg.C/sec cooling rate and rapid cooling to 350-450 deg.C at >=30 deg.C/sec cooling rate of form a composite structure consisting of martensite, bainite, ferrite and retained austenite.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高延性高強度複合組織鋼板の製造法に係り、特
に引張強さが80kgf/m−2以上の高強度を有し、
しかも極めて優れた延性と点溶接性を有する複合組織鋼
板の製造法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing a highly ductile, high-strength, composite-structured steel sheet, particularly having a high tensile strength of 80 kgf/m-2 or more,
Moreover, the present invention relates to a method for producing a composite steel sheet having extremely excellent ductility and spot weldability.

(従来の技術及び解決しようとする問題点)自動車等の
構造材料として広く用いられている薄鋼板は加工性、溶
接性その他多用な特性を必要とするものであるが、近時
の燃費や安全性の追求に応えるために薄鋼板の高強度化
が強く要求されている。すなわち、この高強度化は引張
強さ60〜70kgf/m■2までを主体とするもので
あるが、更に引張強さTSがTS≧80 kg f /
mu”というような高強度の鋼板が要求されることも多
い。
(Conventional technology and problems to be solved) Thin steel sheets, which are widely used as structural materials for automobiles, require many properties such as workability and weldability. In response to the pursuit of improved performance, there is a strong demand for higher strength thin steel sheets. That is, this increase in strength is mainly based on a tensile strength of 60 to 70 kgf/m2, but furthermore, the tensile strength TS is TS≧80 kgf/m2.
High-strength steel plates such as "mu" are often required.

このようにTS=80〜140kgf/m■3級の加工
性の高い高強度鋼板としては、これまでにフェライトと
マルテンサイトの2相或いはベイナイトとマルテンサイ
トの2相からなる複合組織鋼板が開発されている。しか
し、近時における社会的ニーズの多様性の増大に対して
は、該複合組織鋼板も加工性などにおいて必ず°しも満
足し得るものではない、特に自動車用鋼板のように大量
生産品の素材としては、安価であることが必須条件であ
り、加えて、強度−延性バランス、溶接性及びその他の
諸性質問の釣合いも十分考慮されねばならない。
As described above, composite structure steel sheets consisting of two phases of ferrite and martensite or two phases of bainite and martensite have been developed as high-strength steel sheets with high workability of TS = 80 to 140 kgf/m ■ Class 3. ing. However, in response to the increasing diversity of social needs in recent years, composite steel sheets cannot always be satisfied in terms of workability, etc., especially as materials for mass-produced products such as steel sheets for automobiles. As such, low cost is an essential condition, and in addition, strength-ductility balance, weldability, and other property considerations must also be carefully considered.

以上のような観点から、最近、フェライト+残留オース
テナイト+マルテンサイト(一部ベーナイトを含む)か
らなる高加工性の高強度複合組織鋼板が開発されている
が(特開昭6O−43430)、強度−延性バランスの
向上に必須なオーステナイトの安定化のために多量のC
(≧3%)を含有している。このため、自動車用鋼板と
して必要な特性である点溶接性が良くないという問題点
がある。
From the above points of view, a high-strength composite steel sheet with high workability consisting of ferrite + retained austenite + martensite (including some bainite) has recently been developed (Japanese Patent Application Laid-Open No. 6O-43430), but the strength - Large amount of C to stabilize austenite, which is essential for improving ductility balance.
(≧3%). For this reason, there is a problem that spot weldability, which is a necessary property for automobile steel sheets, is poor.

本発明は、上記従来技術の問題点を解決するためになさ
れたものであって、引張強さが80kgfZ鵬鵬2以上
0高強度を有し、しかも極めて優れた延性のみならず点
溶接性も有する複合組織鋼板を経済的に製造できる方法
を提供することを目的とするものである。
The present invention was made in order to solve the problems of the prior art described above, and has a tensile strength of 80 kgfZPeng2 or more and a high strength, and has not only extremely excellent ductility but also spot weldability. The object of the present invention is to provide a method for economically producing a steel sheet having a composite structure.

(問題点を解決するための手段) 高強度で、しかも従来法による以上の高延性を有する複
合組織鋼板を得ようとすると、従来、たかだか数%しか
含有しなかった残留オーステナイト体積率を適正にコン
トロールする必要がある。
(Means for solving the problem) In order to obtain a composite steel sheet with high strength and ductility higher than that achieved by conventional methods, it is necessary to appropriately reduce the volume fraction of retained austenite, which conventionally contained only a few percent at most. need to be controlled.

これはオーステナイトの変態誘起塑性に伴う高n値化に
よるもので、期待する高延性を得るためには少なくとも
10%以上含有させる必要がある。
This is due to the high n value associated with the transformation-induced plasticity of austenite, and in order to obtain the expected high ductility, it is necessary to contain at least 10% or more.

この点、オーステナイト安定化元素としてその効果が最
も大きいと云われているものはCであるので、C量の増
加につれてオーステナイトが安定化し、特に恒温変態を
行った時にオーステナイト域、若しくはフェライト+オ
ーステナイトの2相域に再加熱後、適正な熱履歴を付与
するならば、極めて高延性の高強度鋼板が得られる。
In this regard, since C is said to have the greatest effect as an austenite stabilizing element, as the amount of C increases, austenite becomes more stable, and especially when constant temperature transformation is carried out, the austenite region or ferrite + austenite is formed. If an appropriate thermal history is given to the two-phase region after reheating, a high-strength steel plate with extremely high ductility can be obtained.

ところが、高C化は、前述の従来法の問題点として指摘
したように、自動車鋼板として必須な特性である点溶接
性を悪化させることになる。したがって、点溶接性を悪
化させないためには、C量を0.25%以下に規制する
必要がある。しかし。
However, as pointed out above as a problem with the conventional method, increasing the carbon content deteriorates the spot weldability, which is an essential property for automobile steel sheets. Therefore, in order not to deteriorate spot weldability, it is necessary to restrict the amount of C to 0.25% or less. but.

このようにC量を規制すると、前述のような安定な残留
オーステナイトが十分に得られないため、強度−延性バ
ランスが劣化することになる。
If the amount of C is regulated in this manner, stable retained austenite as described above cannot be obtained sufficiently, resulting in a deterioration of the strength-ductility balance.

そこで、本発明者等は、C量を低減することを前提とし
、成分組成面での規制によって点溶接性が良好な低C量
の鋼板において強度−延性バランスを向上し得る方策を
見い出すべく種々実験研究を重ねた結果、Si%Mn及
び5oQAQの同時規制により可能であることが判明し
た。すなわち、C量を0.25%以下にすると共に適正
な連続焼鈍を行うプロセスにおいて、Siを1.5〜3
.0%。
Therefore, on the premise of reducing the C content, the present inventors conducted various efforts to find ways to improve the strength-ductility balance in steel sheets with a low C content and good spot weldability by regulating the composition. As a result of repeated experimental research, it was found that this is possible by simultaneous regulation of Si%Mn and 5oQAQ. That is, in the process of reducing the C amount to 0.25% or less and performing appropriate continuous annealing, the Si content is reduced to 1.5 to 3%.
.. 0%.

Mn:1.1〜2.0%、go Q A Qを0.02
〜0.50%の範囲内にそれぞれ規制することにより、
安定な残留オーステナイトが十分に得られ1強度−延性
バランスが大幅に向上することが判明したものである*
 Si、 Mn、 A Qの規制による強度−延性バラ
ンスの向上の理由は、必ずしも明らかではないが、適正
な連続焼鈍の過程において、Cが優先的にオーステナイ
ト中に濃化し、残留オーステナイトを安定にしているた
めと考えられる。
Mn: 1.1-2.0%, go Q A Q 0.02
By regulating each within the range of ~0.50%,
It has been found that sufficient stable retained austenite can be obtained and the strength-ductility balance can be significantly improved*
The reason why the strength-ductility balance improves due to the regulation of Si, Mn, and AQ is not necessarily clear, but in the process of proper continuous annealing, C preferentially concentrates in austenite and stabilizes the retained austenite. This is thought to be due to the presence of

すなわち1本発明は、C:0.12〜0.25%。That is, in the present invention, C: 0.12 to 0.25%.

Si:1.5〜3.0%、Mn:1.1〜2.0%、S
く0.005%及び5o(IAQ:0.02〜0.50
%を含有し、更に必要に応じてP:0.02〜0.20
%、Cr:0.1〜0.5%、B:O,0005〜0.
01%及びTi:0.01〜0.05%のうちの1種又
は2種以上を含有し、残部がFe及び不可避的不純物か
らなる鋼スラブにつき、Ar、変態温度以上で熱間圧延
を終了し、650℃未満の温度で巻取り、次いでその後
の連続焼鈍において、800℃以上のオーステナイト+
フェライトの2相域に4分間以下保持した後、350〜
450℃の温度範囲に1〜5分間保持するために急冷す
るに際して、まず、30℃/sec以下の冷却速度で上
記保持温度から600〜800”Cまで徐冷し1次いで
30℃/see以上の冷却速度で350〜450℃の温
度まで急冷することにより、÷ルチンサイト、ベーナイ
ト、フェライト及び残留オーステナイトからなる複合組
織を得ることを特徴とする点溶接性の優れた高延性高強
度複合組織鋼板の製造法。
Si: 1.5-3.0%, Mn: 1.1-2.0%, S
0.005% and 5o (IAQ: 0.02-0.50
%, and if necessary P: 0.02 to 0.20
%, Cr: 0.1-0.5%, B: O, 0005-0.
For steel slabs containing one or more of Ti: 0.01% and Ti: 0.01 to 0.05%, with the remainder consisting of Fe and unavoidable impurities, hot rolling is completed above the Ar transformation temperature. The austenite +
After being held in the two-phase region of ferrite for 4 minutes or less, 350~
When rapidly cooling to hold in the temperature range of 450°C for 1 to 5 minutes, first, slowly cool from the above holding temperature to 600 to 800"C at a cooling rate of 30°C/sec or less, and then A high ductility high strength composite structure steel sheet with excellent spot weldability characterized by obtaining a composite structure consisting of rutinsite, bainite, ferrite and retained austenite by rapidly cooling to a temperature of 350 to 450°C at a cooling rate. Manufacturing method.

を要旨とするものである。The main points are as follows.

以下に本発明を実施例に基づいて詳細に説明する。The present invention will be explained in detail below based on examples.

まず本発明法の対象とする鋼の成分限定理由を説明する
。勿論、この成分限定は、後述のプロセス条件(熱延条
件及び連続焼鈍条件)の適正化と相俟ってなされるもの
である。
First, the reason for limiting the composition of steel targeted by the method of the present invention will be explained. Of course, this restriction of the components is made in conjunction with optimization of process conditions (hot rolling conditions and continuous annealing conditions), which will be described later.

C: Cは鋼の強化には不可欠な元素であり、また熱延条件及
び焼鈍条件を適正にコントロールしてオーステナイトを
安定化させ、熱処理後、オーステナイトを体積率で10
%以上残留させるためには、最低0.15%は必要であ
る。
C: C is an essential element for strengthening steel, and it stabilizes austenite by properly controlling hot rolling conditions and annealing conditions, and after heat treatment, it stabilizes austenite at a volume fraction of 10.
% or more, a minimum of 0.15% is required.

一方、C量を増加すれば、残留オーステナイト体積率が
増大して強度−延性バランスを向上させるが、0.25
%を超えると本発明の主たる目的である点溶接性が劣化
するので、上限値として0.25%を設定した。
On the other hand, increasing the amount of C increases the retained austenite volume fraction and improves the strength-ductility balance, but 0.25
%, the spot weldability, which is the main objective of the present invention, deteriorates, so 0.25% was set as the upper limit.

Si: Siはフェライト・フォーマ−元素であるため、それ自
体にはオーステナイトを安定化する働きはないが、フェ
ライト中オーステナイトの2相域保持中、若しくはオー
ステナイト域やフェライト中オーステナイトの2相域か
らの冷却中に生成するフェライトを純化するため、必然
的に未変態オーステナイトへのCの濃縮を促進する効果
を通じてオーステナイトの安定化に寄与する元素である
Si: Si is a ferrite former element, so it does not have the function of stabilizing austenite by itself, but it can be used to maintain the two-phase region of austenite in ferrite, or to stabilize the two-phase region of austenite in ferrite. In order to purify the ferrite produced during cooling, C is an element that contributes to the stabilization of austenite through the effect of promoting the concentration of C into untransformed austenite.

このように、SLの添加は強度及び延性の両特性の向上
に対して非常に有効であり、そのためには少なくとも1
.5%は必要であり、下限値を1.5%に設定した。一
方、Si量が増加すると溶製割れ、化成処理性の劣化等
の問題が生じるため、上限値を3.0%とした。
Thus, the addition of SL is very effective in improving both strength and ductility, and for this purpose it is necessary to add at least 1
.. 5% is necessary, and the lower limit was set at 1.5%. On the other hand, if the amount of Si increases, problems such as melting cracks and deterioration of chemical conversion treatment properties will occur, so the upper limit was set at 3.0%.

Mn: Mnはオーステナイト・フォーマ−元素として重要であ
り、良好な強度−延性バランスを得る観点から10%以
上の残留オーステナイト体積率を含有せしめるために最
低1.1%が必要である。一方、Mn量が増加すると、
連続焼鈍後の冷却過程においてマルテンサイト変態が起
こりやすくなり。
Mn: Mn is important as an austenite former element, and from the viewpoint of obtaining a good strength-ductility balance, a minimum content of 1.1% is required in order to contain a retained austenite volume fraction of 10% or more. On the other hand, when the amount of Mn increases,
Martensitic transformation tends to occur during the cooling process after continuous annealing.

最終的にマルテンサイトの体積率が増加して、強度の著
しい増加と延性の著しい劣化をもたらし、強度−延性バ
ランスの向上に対して障害となる。
Eventually, the volume fraction of martensite increases, resulting in a significant increase in strength and a significant deterioration in ductility, which becomes an obstacle to improving the strength-ductility balance.

したがって、Mn量の上限値はこの影響が現われない上
限として2.0%を設定した。
Therefore, the upper limit of the Mn content was set at 2.0% as the upper limit at which this effect does not appear.

5o12AQ: 5offAaは鋼の脱酸剤として有効なものであるが、
適当量添加することによって、強度−延性バランスをも
改善する。これは、AQ−t+siと同様フェライト・
フォーマ−元素であり、Siと同様の効果によるものと
考えられる。その上限値はこの効果が飽和する量から、
また下限値は脱酸の効果が期待できなくなる量から、0
.02〜0.50%の範囲に限定した。
5o12AQ: 5offAa is effective as a deoxidizing agent for steel, but
Adding an appropriate amount also improves the strength-ductility balance. This is a ferrite similar to AQ-t+si.
It is a former element and is thought to have the same effect as Si. The upper limit is the amount at which this effect is saturated,
In addition, the lower limit value is 0, from the amount at which the deoxidizing effect can no longer be expected.
.. It was limited to a range of 0.02 to 0.50%.

本発明では、以上の元素を必須成分とするが。In the present invention, the above elements are essential components.

必要に応じて以下の元素を含有せしめることができる。The following elements can be contained as necessary.

P : PはSiと同様、フェライト・フォーマ−元素であり、
未変態オーステナイトへのCの濃縮を促進する効果を通
じてオーステナイトを更に安定化することができる。し
たがって、P量は通常レベルであっても強度−延性バラ
ンス等の特性上、何等問題はないが、0.02%以上P
を含有せしめると、更に良好な強度−延性バランスが得
られる。
P: P is a ferrite former element like Si,
Austenite can be further stabilized through the effect of promoting concentration of C in untransformed austenite. Therefore, even if the amount of P is at a normal level, there will be no problem in terms of properties such as strength-ductility balance, but if the amount of P is 0.02% or more,
By containing , a better strength-ductility balance can be obtained.

しかし、0.2%を超えると、その効果が飽和するばか
りか、粒界偏析によって却って鋼を脆化させるので、0
.2%を上限とする。
However, if it exceeds 0.2%, the effect not only becomes saturated, but also causes the steel to become brittle due to grain boundary segregation.
.. The upper limit is 2%.

S: Sは加工性を劣化させるので、可及的に少ない方が望ま
しく、0.005%以下に規制する。
S: Since S deteriorates workability, it is desirable to have as little S as possible, and it is regulated to 0.005% or less.

Cr: Crは焼入性を向上させる元素であり、本発明における
所望の組織を得るうえで有利な元素である。すなわち、
Crtto、1%以上含有させると。
Cr: Cr is an element that improves hardenability and is an advantageous element in obtaining the desired structure in the present invention. That is,
When Crtto is contained in an amount of 1% or more.

生成するマルテンサイトの硬度を高め、少ないマルテン
サイト体積率で必要な強度が得られるため、延性を高め
るフェライト及びオーステナイト体積率を増加せしめる
ことが可能である。したがって、Cr量の下限値はその
効果を発揮させ得る量から限定され、0.1%以上とす
る。
Since the hardness of the martensite that is produced is increased and the necessary strength can be obtained with a small volume fraction of martensite, it is possible to increase the volume fraction of ferrite and austenite, which improve ductility. Therefore, the lower limit of the amount of Cr is limited based on the amount that can exhibit its effect, and is set to 0.1% or more.

一方、Cr量の増加によりマルテンサイトの体積率が増
加し、0.5%を超えて添加すると却って延性が劣化す
る。この理由から上限値を0.5%とする。
On the other hand, as the amount of Cr increases, the volume fraction of martensite increases, and if it is added in excess of 0.5%, the ductility deteriorates on the contrary. For this reason, the upper limit is set to 0.5%.

B及びTI= Bも焼入性を向上させる元素であり、Cr等の高価な元
素を添加しなくとも所望の組織を得るうえで有利な元素
である。Bはオーステナイト粒界の自由エネルギーを低
下させる働きをもっており、オーステナイトを変態しに
<<シて安定な残留オーステナイトを得るために有用で
ある。その下限値はその効果を発揮させ得る量から、ま
た上限値は経済的でなくなる量から規制され、B量は0
.0005〜0.01%とする。但し、Bがこのような
効果を発揮するのは固溶状態にあるときのみに限られる
B and TI= B is also an element that improves hardenability, and is an advantageous element in obtaining a desired structure without adding expensive elements such as Cr. B has the function of lowering the free energy of austenite grain boundaries, and is useful for transforming austenite and obtaining stable retained austenite. The lower limit value is regulated from the amount that can produce the effect, and the upper limit value is regulated from the amount that becomes uneconomical, and the amount of B is 0.
.. 0005 to 0.01%. However, B exerts this effect only when it is in a solid solution state.

ところが、BはNとの結合力が強く、極少量のNがあっ
てもBとNが結合し、所望のBの効果が得られない、そ
のため、BよりもNとの結合力の強いTiを加えて、T
1とNとを優先的に結合させることにより、Bの効果を
十分に発揮させることができるaTx量の下限値はその
効果を発揮させ得る量から、また上限値は経済的でなく
なる量から規制され、T1量は0.01〜0.05%に
限定する。
However, B has a strong bonding force with N, and even if there is a very small amount of N, B and N will bond and the desired effect of B cannot be obtained. Therefore, Ti, which has a stronger bonding force with N than B, Add T
By preferentially combining 1 and N, the lower limit of the amount of aTx that can fully exhibit the effect of B is regulated based on the amount that can exhibit that effect, and the upper limit is regulated from the amount that becomes uneconomical. The amount of T1 is limited to 0.01 to 0.05%.

以上の化学成分を有する複合組織鋼板においては、残留
オーステナイト体積率が同一であっても、加工変形に対
する安定度によって延性に差が生じると考えられるが、
本発明では1種々実験研究の結果から、特に (a)  熱延に際して、650℃未満の温度で巻き取
る、 (b)  連続焼鈍に際して、均熱後の冷却を特定の条
件で徐冷、急冷するように制御する。
In composite steel sheets having the above chemical components, even if the retained austenite volume fraction is the same, it is thought that differences in ductility will occur depending on the stability against processing deformation.
In the present invention, based on the results of various experimental studies, in particular (a) during hot rolling, winding is performed at a temperature of less than 650°C; (b) during continuous annealing, cooling after soaking is carried out gradually or rapidly under specific conditions. Control as follows.

ことにより、適当な安定度をもった残留オーステナイト
を多量に得ることができるものである。
This makes it possible to obtain a large amount of retained austenite with appropriate stability.

そのための具体的条件としては以下のとうりである。The specific conditions for this are as follows.

まず、熱延おいては、Ar、1変態温度以上で熱間圧延
を終了し、650℃未満の温度で巻き取る必要がある。
First, in hot rolling, it is necessary to finish hot rolling at Ar, 1 transformation temperature or higher, and to wind up at a temperature lower than 650°C.

連続焼鈍においては、800℃以上のオーステナイト中
フェライトの2相域に4分間以下加熱保持した後、まず
30℃/sec以下の冷却速度で上記保持温度から60
0〜800℃まで徐冷し、次いで30℃/sec以上の
冷却速度で350〜450℃の温度まで急冷し、この3
50〜450℃の温度範囲に1〜5分間保持する必要が
ある。
In continuous annealing, after heating and holding for 4 minutes or less in the two-phase region of ferrite in austenite at 800°C or higher, first 60°C from the above holding temperature at a cooling rate of 30°C/sec or less.
Slowly cool to 0 to 800°C, then rapidly cool to a temperature of 350 to 450°C at a cooling rate of 30°C/sec or more.
It is necessary to hold the temperature in the range of 50-450°C for 1-5 minutes.

このように熱延及び連続焼鈍の条件を規制することによ
り上記効果が得られる理由は、必ずしも明確ではないが
1次のように考えられる。
The reason why the above effects are obtained by regulating the hot rolling and continuous annealing conditions in this way is not necessarily clear, but it is thought to be as follows.

すなわち、上記(、)の規制により熱延鋼板中の炭化物
が分散されるため、連続焼鈍で800℃以上のフェライ
ト+オーステナイトの2相域に加熱された時に、この炭
化物を核として成長するオーステナイト粒が広く分布し
、最終的に残留オーステナイトも広く分布する。また、
上記(b)の規制により連続焼鈍過程での冷却中のフェ
ライト変態。
In other words, because the carbides in the hot-rolled steel sheet are dispersed due to the regulations in (,) above, austenite grains grow with these carbides as nuclei when heated to a two-phase region of ferrite + austenite at 800°C or higher during continuous annealing. is widely distributed, and finally retained austenite is also widely distributed. Also,
Due to the regulation (b) above, ferrite transformation occurs during cooling in the continuous annealing process.

ベーナイト変態が適正に制御される。しかも、これらの
効果は前記の如く化学成分を規制したときに最も大きい
Bainite metamorphosis is properly controlled. Moreover, these effects are greatest when the chemical components are regulated as described above.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

失態盤上 第1表に示す化学成分(wt%)を有する12種類の鋼
を溶製し、連続鋳造により鋳片を得た。供試鋼り、E、
F、1.J及びLは本発明の化学成分範囲を満足するも
のであり、他は比較鋼である。
Twelve types of steel having the chemical components (wt%) shown in Table 1 were melted and slabs were obtained by continuous casting. Test steel, E,
F.1. J and L satisfy the chemical composition range of the present invention, and the others are comparative steels.

なお、通常の造塊法により鋼塊を得てもよい。Note that the steel ingot may be obtained by a normal ingot-forming method.

次いで上記各鋼を熱延巻取温度520〜730℃で熱間
圧延し、更に冷間圧延により、板厚0.811mの供試
材とした1次に、後述の第2表のD2のプロセス条件(
本発明範囲内)で連続焼鈍した後にゲージ長さ50mm
のJISS号引張試験片を準備して引張試験を行った。
Next, each of the above-mentioned steels was hot-rolled at a hot-rolling temperature of 520 to 730°C, and further cold-rolled to obtain a test material with a thickness of 0.811 m.First, the process of D2 in Table 2 described below was performed. conditions(
Gauge length 50mm after continuous annealing (within the scope of the present invention)
A JISS No. tensile test piece was prepared and a tensile test was conducted.

また、組織の適否を判定するため、組織am並びにオー
ステナイトの体積分率を測定した。これらの結果は第1
表のとおりである。
In addition, in order to determine the suitability of the structure, the structure am and the volume fraction of austenite were measured. These results are the first
As shown in the table.

同表より、本発明鋼り、E、F、1.J及びLはTSが
90 kg f /**”以上と高強度であると共に、
TSxEQも2400以上と優れた強度−延性バランス
を有しているばかりでなく、点溶接後の十字引張強度が
比較鋼に比べて格段に優れていることがわかる。これに
反して、比較鋼B、Cは強度−延性バランスが良好であ
るが1点溶接性が良くなく、他の比較鋼も強度−延性バ
ランスと点溶接性の両者を同じに満足するものはない。
From the same table, steels of the present invention, E, F, 1. J and L have high strength with a TS of 90 kg f/**” or more,
It can be seen that TSxEQ not only has an excellent strength-ductility balance of 2400 or more, but also has a much better cross tensile strength after spot welding than the comparative steel. On the other hand, comparative steels B and C have a good strength-ductility balance but poor single-point weldability, and none of the other comparison steels have the same strength-ductility balance and spot weldability. do not have.

1産気主 本発明範囲内の化学成分を有する上記の供試鋼り、Fを
用い、第2表に示すような条件のもとで熱間圧延及び連
続焼鈍を行った。なお、供試鋼D2〜3.D5〜7.D
9〜10、F1〜3は本発明の範囲内のプロセス条件で
処理し、他は本発明範囲外のプロセス条件で処理したも
のである。なお、同表中のT、、C工、Tq、C2,T
、及びtはそれぞれ第1図に示す連続焼鈍サイクルの条
件を示しており、T□は焼鈍温度、T2は中間保持温度
、tは中間保持時間、C1はT工→T9の冷却速度、C
2はTq−)T、の冷却速度(但し、T□> T q 
> T s )である。
Using the above-mentioned test steel F having chemical components within the range of the present invention, hot rolling and continuous annealing were performed under the conditions shown in Table 2. In addition, test steel D2-3. D5-7. D
Samples Nos. 9 to 10 and F1 to 3 were processed under process conditions within the scope of the present invention, and the others were processed under process conditions outside the scope of the present invention. In addition, T in the same table, C engineering, Tq, C2, T
, and t respectively indicate the conditions of the continuous annealing cycle shown in FIG.
2 is the cooling rate of Tq−)T (where T□>T q
>Ts).

各供試鋼について、実施例1と同様に引張試験。Tensile tests were conducted on each steel sample in the same manner as in Example 1.

組織[5を実施すると共にオーステナイト体積分率を測
定した。それらの結果は第2表に示すとおりである。
Structure [5] was carried out and the austenite volume fraction was measured. The results are shown in Table 2.

同表より、本発明例の供試鋼D2〜3、D5〜7、D9
〜10.F1〜3は、いずれも1組織に体積分率で15
%以上のオーステナイトを含み、TSが90 kg f
 /mm”以上と高強度で、TSXEQも2300以上
と優れた強度−延性バランスを有していることがわかる
。また1本発明例の供試鋼F1〜3はso Q A Q
を0.29%含有しているが、so Q A nの添加
によってTSXEQの値が更に向上し、焼鈍温度T工の
違いによるTS XE Qへの影響も殆どみられない。
From the same table, test steels D2-3, D5-7, D9 of the invention examples
~10. F1-3 all have a volume fraction of 15 in one tissue.
Contains more than % austenite, TS is 90 kg f
It can be seen that the steels have a high strength of 2300 or more and a TSXEQ of 2300 or more, and have an excellent strength-ductility balance.In addition, the test steels F1 to 3 of the present invention example have a high strength of 2300 or more.
However, the value of TSXEQ is further improved by the addition of soQAn, and there is almost no effect on TSXEQ due to the difference in annealing temperature T.

これに対し、比較例の供試鋼D1、D4、D8、D11
〜14の如く本発明範囲外の条件で処理したものは、残
留オーステナイト1よが少なく、良好な機械的な性質は
得られていない。
In contrast, sample steels D1, D4, D8, and D11 of comparative examples
Samples 1 to 14 treated under conditions outside the scope of the present invention had less than 1 ounce of retained austenite, and good mechanical properties were not obtained.

【以下余白] (発明の効果) 以上詳述したように、本発明によれば、低C量のもとで
化学成分を規制し、且つ適正な条件で熱延及び連続焼鈍
を実施するので、優れた点溶接性を確保できることは勿
論のこと、 80kgf/mm2以上の高強度で高延性
であり、且つ優れた強度−延性バランスを有する複合組
織鋼板を製造することができ、特に自動車用鋼板の製造
に好適である。
[Blank below] (Effects of the invention) As detailed above, according to the present invention, the chemical components are regulated at a low C content, and hot rolling and continuous annealing are performed under appropriate conditions. Not only can it ensure excellent spot weldability, but it can also produce composite structure steel sheets that have high strength of 80 kgf/mm2 or more, high ductility, and an excellent strength-ductility balance, and are particularly suitable for automotive steel sheets. Suitable for manufacturing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における連続焼鈍のヒートサ
イクルの条件を示す図である。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚 第1図
FIG. 1 is a diagram showing heat cycle conditions for continuous annealing in an embodiment of the present invention. Patent applicant: Kobe Steel, Ltd. Patent attorney Hisashi Nakamura Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、C:0.12〜0.2
5%、Si:1.5〜3.0%、Mn:1.1〜2.0
%、S<0.005%及びsolAl:0.02〜0.
50%を含有し、残部が鉄及び不可避的不純物からなる
鋼スラブにつき、Ar_3変態温度以上で熱間圧延を終
了し、650℃未満の温度で巻取り、次いでその後の連
続焼鈍において、800℃以上のオーステナイト+フェ
ライトの2相域に4分間以下加熱保持した後、350〜
450℃の温度範囲に1〜5分間保持するために急冷す
るに際して、まず、30℃/sec以下の冷却速度で上
記保持温度から600〜800℃まで徐冷し、次いで3
0℃/sec以上の冷却速度で350〜450℃の温度
まで急冷することにより、マルテンサイト、ベーナイト
、フェライト及び残留オーステナイトからなる複合組織
を得ることを特徴とする点溶接性の優れた高延性高強度
複合組織鋼板の製造法。
(1) In weight% (the same applies hereinafter), C: 0.12 to 0.2
5%, Si: 1.5-3.0%, Mn: 1.1-2.0
%, S<0.005% and solAl: 0.02-0.
For steel slabs containing 50% iron and the remainder consisting of iron and unavoidable impurities, hot rolling is completed at Ar_3 transformation temperature or higher, coiling is performed at a temperature lower than 650°C, and then continuous annealing is performed at 800°C or higher. After heating and holding for 4 minutes or less in the two-phase region of austenite + ferrite, 350 ~
When rapidly cooling to hold in the temperature range of 450°C for 1 to 5 minutes, first slowly cool from the above holding temperature to 600 to 800°C at a cooling rate of 30°C/sec or less, then 3
High ductility with excellent spot weldability characterized by obtaining a composite structure consisting of martensite, bainite, ferrite and retained austenite by rapidly cooling to a temperature of 350 to 450 °C at a cooling rate of 0 °C / sec or more. Manufacturing method for high-strength composite structure steel plate.
(2)C:0.12〜0.25%、Si:1.5〜3.
0%、Mn:1.1〜2.0%、S<0.005%及び
solAl:0.02〜0.50%を含有し、更にP:
0.02〜0.20%、Cr:0.1〜0.5%、B:
0.0005〜0.01%及びTi:0.01〜0.0
5%のうちの1種又は2種以上を含有し、残部がFe及
び不可避的不純物からなる鋼スラブにつき、Ar_3変
態温度以上で熱間圧延を終了し、650℃未満の温度で
巻取り、次いでその後の連続焼鈍において、800℃以
上のオーステナイト+フェライトの2相域に4分間以下
加熱保持した後、350〜450℃の温度範囲に1〜5
分間保持するために急冷するに際して、まず、30℃/
sec以下の冷却速度で上記保持温度から600〜80
0℃まで徐冷し、次いで30℃/sec以上の冷却速度
で350〜450℃の温度まで急冷することにより、マ
ルテンサイト、ベーナイト、フェライト及び残留オース
テナイトからなる複合組織を得ることを特徴とする点溶
接性の優れた高延性高強度複合組織鋼板の製造法。
(2) C: 0.12-0.25%, Si: 1.5-3.
0%, Mn: 1.1-2.0%, S<0.005% and solAl: 0.02-0.50%, and further P:
0.02-0.20%, Cr: 0.1-0.5%, B:
0.0005-0.01% and Ti: 0.01-0.0
For steel slabs containing one or more of 5% and the remainder consisting of Fe and unavoidable impurities, hot rolling is completed above the Ar_3 transformation temperature, coiled at a temperature below 650°C, and then In the subsequent continuous annealing, after heating and holding in the two-phase region of austenite + ferrite at 800℃ or higher for 4 minutes or less,
When rapidly cooling to hold for a minute, first, 30℃/
600 to 80% from the above holding temperature at a cooling rate of sec or less
A composite structure consisting of martensite, bainite, ferrite, and retained austenite is obtained by slowly cooling to 0°C and then rapidly cooling to a temperature of 350 to 450°C at a cooling rate of 30°C/sec or more. A method for manufacturing high-ductility, high-strength, composite-structured steel sheets with excellent weldability.
JP2599387A 1987-02-06 1987-02-06 Manufacture of high ductility and high strength steel sheet having composite structure Pending JPS63241120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2599387A JPS63241120A (en) 1987-02-06 1987-02-06 Manufacture of high ductility and high strength steel sheet having composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2599387A JPS63241120A (en) 1987-02-06 1987-02-06 Manufacture of high ductility and high strength steel sheet having composite structure

Publications (1)

Publication Number Publication Date
JPS63241120A true JPS63241120A (en) 1988-10-06

Family

ID=12181239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2599387A Pending JPS63241120A (en) 1987-02-06 1987-02-06 Manufacture of high ductility and high strength steel sheet having composite structure

Country Status (1)

Country Link
JP (1) JPS63241120A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168819A (en) * 1987-12-25 1989-07-04 Nisshin Steel Co Ltd Manufacture of steel plate with composite structure having high ductility and high strength
JPH03180445A (en) * 1989-12-09 1991-08-06 Nippon Steel Corp Hot rolled high strength steel sheet excellent in workability and spot weldability and its manufacture
JPH04341523A (en) * 1991-05-17 1992-11-27 Kobe Steel Ltd Production of hot rolled high strength steel plate excellent in ductility and workability
WO1992021784A1 (en) * 1991-05-30 1992-12-10 Nippon Steel Corporation High-yield-ratio hot-rolled high-strength steel sheet excellent in formability or in both of formability and spot weldability, and production thereof
US6294031B1 (en) * 1997-09-05 2001-09-25 Topy Kogyo Kabushiki Kaisha Production method of a heat-treated steel member
JP2002256389A (en) * 2001-02-27 2002-09-11 Sumitomo Metal Ind Ltd High tensile strength hot rolled steel sheet and production method therefor
EP1808505A1 (en) * 2004-10-06 2007-07-18 Nippon Steel Corporation High strength thin steel plate excellent in elongation and bore expanding characteristics and method for production thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168819A (en) * 1987-12-25 1989-07-04 Nisshin Steel Co Ltd Manufacture of steel plate with composite structure having high ductility and high strength
JPH03180445A (en) * 1989-12-09 1991-08-06 Nippon Steel Corp Hot rolled high strength steel sheet excellent in workability and spot weldability and its manufacture
JPH04341523A (en) * 1991-05-17 1992-11-27 Kobe Steel Ltd Production of hot rolled high strength steel plate excellent in ductility and workability
WO1992021784A1 (en) * 1991-05-30 1992-12-10 Nippon Steel Corporation High-yield-ratio hot-rolled high-strength steel sheet excellent in formability or in both of formability and spot weldability, and production thereof
US5505796A (en) * 1991-05-30 1996-04-09 Nippon Steel Corporation High yield ratio-type, hot rolled high strength steel sheet excellent in formability or in both of formability and spot weldability, and production thereof
US6294031B1 (en) * 1997-09-05 2001-09-25 Topy Kogyo Kabushiki Kaisha Production method of a heat-treated steel member
JP2002256389A (en) * 2001-02-27 2002-09-11 Sumitomo Metal Ind Ltd High tensile strength hot rolled steel sheet and production method therefor
EP1808505A1 (en) * 2004-10-06 2007-07-18 Nippon Steel Corporation High strength thin steel plate excellent in elongation and bore expanding characteristics and method for production thereof
EP1808505A4 (en) * 2004-10-06 2012-04-25 Nippon Steel Corp High strength thin steel plate excellent in elongation and bore expanding characteristics and method for production thereof

Similar Documents

Publication Publication Date Title
JP2601581B2 (en) Manufacturing method of high strength composite structure cold rolled steel sheet with excellent workability
JP4772496B2 (en) High-strength cold-rolled thin steel sheet excellent in hole expansibility and manufacturing method thereof
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
WO2003106723A1 (en) High strength cold rolled steel plate and method for production thereof
JPH0949026A (en) Production of high strength hot rolled steel plate excellent in balance between strength and elongation and in stretch-flange formability
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JPH028349A (en) High tensile hot rolled steel strip having excellent cold workability and weldability and having &gt;=55kgf/mm2 tensile strength
JPH01184226A (en) Production of steel sheet having high-ductility high-strength multiple structure
JPH01272720A (en) Production of high ductility and high strength steel sheet with composite structure
JPS63241120A (en) Manufacture of high ductility and high strength steel sheet having composite structure
JPS6235461B2 (en)
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JPH02149646A (en) High strength hot rolled steel sheet having excellent workability and weldability
KR20220086172A (en) High strength cold-rolled steel sheet with excellent formability and mathod of manufacturing the same
JP3806958B2 (en) Manufacturing method of high-tensile hot-rolled steel sheet
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JPH0135052B2 (en)
JPS6119733A (en) Preparation of super 70kg grade high strength hot rolled steel plate excellent in elongation flange property
JPS62139821A (en) Production of high-ductility high-strength cold rolled steel sheet
JPH0555571B2 (en)
JPS63143223A (en) Manufacture of high tension cold rolled steel sheet
KR101009839B1 (en) Method for producing of steel sheet having high-strength and high-formability
WO2024002314A1 (en) 120-kg-grade ultrahigh-strength galvanized steel sheet and manufacturing method therefor
JPS624450B2 (en)