JPH01168819A - Manufacture of steel plate with composite structure having high ductility and high strength - Google Patents

Manufacture of steel plate with composite structure having high ductility and high strength

Info

Publication number
JPH01168819A
JPH01168819A JP32727987A JP32727987A JPH01168819A JP H01168819 A JPH01168819 A JP H01168819A JP 32727987 A JP32727987 A JP 32727987A JP 32727987 A JP32727987 A JP 32727987A JP H01168819 A JPH01168819 A JP H01168819A
Authority
JP
Japan
Prior art keywords
strength
austenite
steel
range
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32727987A
Other languages
Japanese (ja)
Inventor
Toshiro Yamada
山田 利郎
Satoshi Tagashira
聡 田頭
Takayoshi Kamiyo
神余 隆義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP32727987A priority Critical patent/JPH01168819A/en
Publication of JPH01168819A publication Critical patent/JPH01168819A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si

Abstract

PURPOSE:To manufacture a steel plate excellent in weldability, combining high ductility with high strength, and having composite structure by applying controlled heating treatment and cooling to a steel stock having a specific composition containing C, Si, and Mn to incorporate specific residual amounts of austenite. CONSTITUTION:A steel stock which has a composition consisting of 0.05-0.25% C, 1.00-3.00% Si, 0.20-1.50% Mn, and the balance Fe with inevitable impurities and further containing, if necessary, 0.20-1.00% Ni is heated up to a temp. in the range of Ac1+30 deg.C-Ac3 and held for 30sec-15min. Subsequently, the steel stock is cooled down to a temp. in the range of 350-500 deg.C at 10-500 deg.C/sec cooling rate and held in the above temp. range for 30sec-30min. Then, the steel stock is cooled down to room temp., by which a composite structure containing ferrite and bainite as principal phases and further containing >=10% retained austenite is formed. By this method, the high-strength steel plate having low C content in the range capable of satisfying weldability, excellent in ductility, and having about 60-100kgf/mm<2> strength can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、延性の優れた高強度鋼板の製造方法に関し、
とくに残留オーステナイトを含む複合組織を有すること
により1強度60kgf/an”以上100kgf/m
m”未満で優れた延性を示す高強度鋼板の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a high-strength steel plate with excellent ductility.
In particular, by having a composite structure containing retained austenite, the single strength is 60 kgf/an'' or more and 100 kgf/m.
The present invention relates to a method for producing a high-strength steel plate that exhibits excellent ductility at a strength of less than 100 m.

(従来の技術) 近年、自動車用鋼板として延性の優れた高強度鋼板を要
望する声が強く、それに応えて種々の高強度鋼板が開発
されている。たとえば引張強さ(TS)が60kgf/
am”以上の高強度鋼板としては特公昭56−1174
1号で提示されているいわゆるDPM(Dual Ph
asem :フエライト+マルテンサイト2相組織11
Il)が開発されている。 DP錆の特徴は、降伏点が
ないこと、降伏比が低いこと、延性が他の固溶強化鋼や
析出強化鋼に比べ高いことで知られている。しかしなが
らこのDP鋼にしても伸び(El)はTS 60kgf
/as”級で約30%1丁S 100kgf/mu”級
では約15%であり、強度と延性のバランスを示すTS
XElの値が1800〜1500にしか過ぎず、さらに
高延性を要望されているのが現状である。
(Prior Art) In recent years, there has been a strong demand for high-strength steel sheets with excellent ductility as steel sheets for automobiles, and in response to this demand, various high-strength steel sheets have been developed. For example, the tensile strength (TS) is 60kgf/
As a high-strength steel plate with a strength of 56-1174
The so-called DPM (Dual Ph
asem: Ferrite + martensite two-phase structure 11
Il) has been developed. DP rust is known to have no yield point, low yield ratio, and high ductility compared to other solid solution strengthened steels and precipitation strengthened steels. However, even with this DP steel, the elongation (El) is TS 60kgf
/as" class is about 30% 1 piece S 100kgf/mu" class is about 15%, which shows the balance between strength and ductility.
Currently, the value of XEl is only 1800 to 1500, and even higher ductility is desired.

このような高強度鋼板の延性改善を図る手段として、残
留オーステナイトのTRIP (Transforma
tionInduced Plasticity :変
態誘起塑性)を利用した方法が特公昭節58−4224
6号に提示されている。この方法によればTSが100
kgf/mm”以上でElが30%以上を示し、TSX
Elの値が約3,000を超す高延性高強度鋼板の製造
が可能である。しかしながら該方法ではCが0.35〜
0.85と高いことから溶接性に劣るため、自動車用鋼
板としての適用性は狭いものであった。
As a means of improving the ductility of such high-strength steel sheets, retained austenite (TRIP)
A method using transformation-induced plasticity (transformation-induced plasticity) was published in 1986-4224.
It is presented in No. 6. According to this method, TS is 100
kgf/mm" or more, El shows 30% or more, TSX
It is possible to produce a highly ductile and high strength steel sheet with an El value of more than about 3,000. However, in this method, C is 0.35~
Since the weldability is as high as 0.85, its applicability as a steel plate for automobiles is limited.

(発明が解決しようとする問題点) 本発明は前述したような従来技術の問題点を解決し、溶
接性を満足できる範囲の低C含有量で。
(Problems to be Solved by the Invention) The present invention solves the problems of the prior art as described above, and has a low C content within a range that satisfies weldability.

なおかつTRIP効果を発揮するに充分な量の残留オー
ステナイトを含有する、延性の優れた60kgf/ m
m ”以上100kgf/mm2未満の強度を有する高
強度鋼板の製造方法を提供するものである。
Furthermore, it contains a sufficient amount of retained austenite to exhibit the TRIP effect, and has excellent ductility of 60 kgf/m.
The present invention provides a method for manufacturing a high-strength steel plate having a strength of not less than m'' and less than 100 kgf/mm2.

(問題点を解決するための手段) 本発明は残留オーステナイトのTRIP効果を利用する
ことで優れた延性を有する高強度低炭素鋼板を得ようと
するものであり、α+γ2相域に加熱して得られるオー
ステナイトのC濃度をベイナイト変態を利用してさらに
濃縮することにより高C濃度の残留オーステナイトとし
てフェライトとベイナイトと共存させることにより製造
できる。
(Means for Solving the Problems) The present invention aims to obtain a high-strength, low-carbon steel plate with excellent ductility by utilizing the TRIP effect of retained austenite. By further concentrating the C concentration of the austenite produced by using bainite transformation, residual austenite with a high C concentration can be produced by making it coexist with ferrite and bainite.

(発明の構成) すなわち、本発明は重量%で、C:0.05〜0.25
%、Si:1.OO〜3.00%、Mn:0.20〜1
.50%、必要ならばさらにNi : 0 、20〜1
.00% を含み残部Feおよび不可避的不純物からな
る鋼を、Ac工+30℃〜Ac、の温度域に加熱し30
sec〜15min保持した後、350〜500℃の温
度域まで冷却速度10〜500℃/secで冷却し、該
温度域で30sec〜30min保持した後、室温まで
冷却することによりフェライトとベイナイトを主相とし
、さらに10%以上の残留オーステナイトを含有するこ
とを特徴とする延性の優れた高強度鋼板の製造方法であ
る。
(Structure of the invention) That is, the present invention has C: 0.05 to 0.25 in weight%.
%, Si:1. OO~3.00%, Mn:0.20~1
.. 50%, additional Ni if necessary: 0, 20-1
.. 00%, the balance being Fe and unavoidable impurities, is heated to a temperature range of +30°C to Ac.
sec to 15 min, then cooled to a temperature range of 350 to 500°C at a cooling rate of 10 to 500°C/sec, held in this temperature range for 30 sec to 30 min, and cooled to room temperature to convert ferrite and bainite into main phases. and further contains 10% or more of retained austenite.

本発明方法は熱延材、冷延材を含めて適用される。好ま
しくは厚さ6ma+以下の板材に適用される。
The method of the present invention is applicable to both hot-rolled and cold-rolled materials. Preferably, it is applied to a plate material having a thickness of 6 ma+ or less.

本発明方法の素材となる鋼の成分範囲の限定理由につい
て述べる。
The reason for limiting the range of composition of steel that is the raw material for the method of the present invention will be described.

Cはオーステナイト中に濃化することにより残留オース
テナイトを安定化させる効果を有するとともに、鋼の強
度に寄与する重要な元素である。
C is an important element that has the effect of stabilizing retained austenite by concentrating in austenite, and also contributes to the strength of steel.

0.05%未満では強度を確保することが困難である上
、残留オーステナイトを10%以上含有させることが困
難である。一方、C含有量を増加させれば強度の確保は
容易であり、残留オーステナイトの確保も容易であるが
0.25%を越えて添加すると溶接性の劣化が著しい、
そこでC含有量の下限を0.03%、上限を0.25%
とした。
If it is less than 0.05%, it is difficult to ensure strength, and it is also difficult to contain 10% or more of retained austenite. On the other hand, if the C content is increased, it is easy to ensure strength and retained austenite, but if it is added in excess of 0.25%, weldability deteriorates significantly.
Therefore, the lower limit of C content was set at 0.03% and the upper limit was set at 0.25%.
And so.

Siはベイナイト変態において未変態オーステナイトへ
のCの濃化を促進するとともにフェライトとベイナイト
の強度に寄与する重要な元素である。
Si is an important element that promotes the concentration of C in untransformed austenite during bainite transformation and contributes to the strength of ferrite and bainite.

本発明のC含有量範囲では、 Si含有量が1.00%
未満ではその作用は十分ではない。一方、Si含有量が
3.00%を超えてもその効果は飽和するのみならず、
 Ac=変態の上昇を招いて製造性が著しく低下する。
In the C content range of the present invention, the Si content is 1.00%
If the amount is less than that, the effect is not sufficient. On the other hand, even if the Si content exceeds 3.00%, the effect not only becomes saturated;
Ac=Increase in transformation and significantly reduce manufacturability.

そこで、Si含有量の下限を1.00%、上限を3.0
0%とした。
Therefore, the lower limit of Si content was set to 1.00%, and the upper limit was set to 3.0%.
It was set to 0%.

Mnは一般にオーステナイト安定化元素でありAc工、
 Ac、変態点を低下させる効果を有する元素として知
られているが、本発明においてはAc1+ 30℃〜A
caの温度域が350〜500℃のベイナイト変態域へ
の冷却途中でオーステナイトのパーライト変態を抑止す
る目的で添加している。この目的のためには最低0.2
0%が必要である。一方、Mnはオーステナイト安定化
元素であるとともに炭化物形成元素でもあり、Cとの親
和力はFeよりも強い、 Mn含有量が1.50%を超
えるとベイナイトに含まれる炭化物量が多くなり、その
結果として残留オーステナイトへのCの濃化が抑制され
るので、 Mn含有量の上限を1.50%とした。
Mn is generally an austenite stabilizing element.
Ac is known as an element that has the effect of lowering the transformation point, but in the present invention, Ac1+ 30℃~A
It is added for the purpose of suppressing the pearlite transformation of austenite during cooling to the bainite transformation region where the temperature range of ca is 350 to 500°C. For this purpose a minimum of 0.2
0% is required. On the other hand, Mn is an austenite-stabilizing element and also a carbide-forming element, and has a stronger affinity with C than Fe. When the Mn content exceeds 1.50%, the amount of carbides contained in bainite increases, resulting in Since this suppresses the concentration of C in retained austenite, the upper limit of the Mn content was set at 1.50%.

Niはオーステナイト安定化元素であり、350〜50
0℃の温度域でのベイナイト変態において炭化物の形成
を抑制し、未変態オーステナイトへのCの濃化を促進す
ることにより、残留オーステナイトの安定化に効果のあ
る元素であるIINI含有量が0.2%未満ではその効
果は十分ではなく、一方、1.0%を超えてもその効果
は飽和するのみならず。
Ni is an austenite stabilizing element and has a content of 350 to 50
The IINI content, which is an element effective in stabilizing retained austenite, suppresses the formation of carbides during bainite transformation in the temperature range of 0°C and promotes the concentration of C in untransformed austenite. If it is less than 2%, the effect is not sufficient, while if it exceeds 1.0%, the effect not only becomes saturated.

いたずらに製造コストの上昇を招くのみである。This will only unnecessarily increase manufacturing costs.

本発明鋼板の化学成分組成は上記のC,Si、 Mn。The chemical composition of the steel sheet of the present invention is the above-mentioned C, Si, and Mn.

Ni以外はFaおよび不可避的不純物からなる。不可避
的不純物としては脱酸元素としてのAl:0.10%以
下の他にP、 S、 N、Cu、Cr、 Niなど一般
に鋼中に不可避的に混入する不純物が含まれる。
The elements other than Ni consist of Fa and inevitable impurities. In addition to Al as a deoxidizing element: 0.10% or less, unavoidable impurities include impurities that are generally unavoidably mixed into steel, such as P, S, N, Cu, Cr, and Ni.

次に製造工程上の限定理由について述べる。Next, we will discuss the reasons for limitations in the manufacturing process.

まず、aI板はAc、+30℃〜AC3の温度域Cr、
温度)に30sec〜15min(t1時間)加熱保持
される。この条件は、フェライト基質中にオーステナイ
トを生成させ、オーステナイトにCを濃化させるための
条件である。ここで生成されたオーステナイトは引き続
き行なわれるベイナイト変態域への急冷−保持により、
ベイナイトの生成に伴いさらに高C濃度のオーステナイ
トが生成されるのである。
First, the aI plate is Ac, +30℃~AC3 temperature range Cr,
temperature) for 30 seconds to 15 minutes (t1 time). These conditions are conditions for producing austenite in the ferrite matrix and enriching the austenite with C. The austenite produced here is then rapidly cooled and retained in the bainite transformation region,
Along with the production of bainite, austenite with an even higher C concentration is produced.

オーステナイトを生成させるためには、 Ac工以上の
加熱温度が必要であることは言うまでもないが、Ac1
+ 30℃未満の温度範囲では生成されるオーステナイ
トの量が少なく、目的とするTRIP効果を得るには不
足である。またAc、を超えて加熱するとオーステナイ
ト量が多くなり過ぎてオーステナイトのC濃度が低くな
ってしまう。
It goes without saying that in order to generate austenite, a heating temperature higher than that of Ac is required;
In a temperature range below +30°C, the amount of austenite produced is small and insufficient to obtain the desired TRIP effect. In addition, when heated above Ac, the amount of austenite becomes too large and the C concentration of austenite becomes low.

また保持時間が30sec未満であると炭化物の溶解が
不十分であり、最終的に十分な量の残留オーステナイト
を確保することが困難である。一方。
Further, if the holding time is less than 30 seconds, dissolution of carbides is insufficient, and it is difficult to finally secure a sufficient amount of retained austenite. on the other hand.

15minを超えて保持しても格別の効果を期待できる
訳ではなく、いたずらにエネルギーを浪費するのみであ
る。
Even if it is held for more than 15 minutes, no particular effect can be expected, and it will only waste energy unnecessarily.

次にAc1+ 30℃〜Ac、の温度域から350〜5
00℃のベイナイト変態域への冷却速度として10℃八
eへ〜500℃/5ee(V□速度)の範囲で急冷され
る。この急冷処理は600℃付近でのパーライト変態を
抑止する目的で行なうものであり1本発明鋼の成分範囲
では最低10℃/sec以上の冷却速度が必要である。
Next, from the temperature range of Ac1+ 30℃~Ac, 350~5
The cooling rate to the bainite transformation region of 00°C is rapidly cooled in the range of 10°C to 5ee to 500°C/5ee (V□ rate). This rapid cooling treatment is performed for the purpose of suppressing pearlite transformation at around 600°C, and within the composition range of the steel of the present invention, a cooling rate of at least 10°C/sec is required.

500℃/secを越える冷却速度としても何らさしつ
かえないが、現実に500℃/secを越える冷却は困
難であり、製造設備上のコストが上昇するのみであるの
で、上限を500℃7secとした。
Although there is no problem with cooling rates exceeding 500° C./sec, in reality cooling exceeding 500° C./sec is difficult and only increases the cost of manufacturing equipment, so the upper limit was set at 500° C. 7 seconds.

引き続いて350〜500℃の温度域(T2温度)に3
0sec〜30min (ti待時間保持される。この
温度域においてオーステナイトのベイナイト変態に伴い
、未変態オーステナイトへのCの濃縮が起きるのである
3 in the temperature range of 350-500℃ (T2 temperature)
A waiting time of 0 sec to 30 min (ti) is maintained. In this temperature range, C is concentrated into untransformed austenite as austenite transforms into bainite.

未変態オーステナイトへのCの濃縮はいわゆる上部ベイ
ナイトの場合に顕著であり、下部ベイナイトではその効
果は期待できない、350℃未満の温度域まで冷却し保
持すると、下部ベイナイトが生成するため未変態オース
テナイトへのCの濃縮は不足となるばかりでなく、マル
テンサイトの生成量が増加するため、鋼の強度は上昇す
るものの延性が著しく低下してしまう、500℃を越え
る温度域に保持するとベイナイトの変態速度が速いため
残留オーステナイト量の調整が困難となるばかりか、パ
ーライトの生成をも招き、目的とするフェライト+ベイ
ナイト+残留オーステナイトの組織を得ることが困難で
ある。
The concentration of C in untransformed austenite is remarkable in the case of so-called upper bainite, and this effect cannot be expected in lower bainite.When cooled to a temperature range below 350°C and held, lower bainite is generated, so it changes to untransformed austenite. Not only is the enrichment of C insufficient, but also the amount of martensite generated increases, so although the strength of the steel increases, the ductility decreases significantly.If the temperature is kept in a temperature range exceeding 500℃, the transformation rate of bainite decreases. Because of the rapid rate of change, it is not only difficult to adjust the amount of retained austenite, but also leads to the formation of pearlite, making it difficult to obtain the desired structure of ferrite + bainite + retained austenite.

350〜500℃の温度域で10%以上の残留オーステ
ナイトを生成するためには、保持時間は最低30sec
は必要である。保持時間が30sec未満の場合にはベ
イナイト変態の進行が不十分であり未変態オーステナイ
トのほとんどは引き続き行なわれる室温への冷却途中で
マルテンサイトに変態してしまい、鋼の強度は上昇する
ものの延性は著しく低下してしまう。
In order to generate 10% or more retained austenite in the temperature range of 350 to 500°C, the holding time must be at least 30 seconds.
is necessary. If the holding time is less than 30 seconds, the progress of bainite transformation is insufficient and most of the untransformed austenite transforms into martensite during subsequent cooling to room temperature, and although the strength of the steel increases, its ductility decreases. It will drop significantly.

保持時間が30minを越えるとベイナイト変態が進み
すぎ、残留オーステナイトをlO%以上得ることが困難
となる。
When the holding time exceeds 30 min, bainite transformation progresses too much, making it difficult to obtain retained austenite of 10% or more.

次に350〜500℃のベイナイト変態域から室温へは
5℃八へc以上の冷却速度(Va速度)で冷却すれば良
い、1℃八へe未満の徐冷を行なうとベイナイト変態が
さらに進行し、残留オーステナイト量の減少を招いてし
まう、この冷却は空冷でも水冷でも良く、冷却速度の上
限はとくに定めない。
Next, from the bainitic transformation region of 350 to 500°C to room temperature, it is sufficient to cool at a cooling rate (Va rate) of 5°C or higher.If slow cooling is performed at a rate of less than 1°C, the bainite transformation will progress further. However, this cooling, which causes a decrease in the amount of retained austenite, may be performed by air cooling or water cooling, and there is no particular upper limit to the cooling rate.

上記のようにして得ら九た網板はフェライト。The net plate obtained as described above is made of ferrite.

ベイナイト、残留オーステナイトの3相からなり。It consists of three phases: bainite and retained austenite.

残留オーステナイトを少くとも10%以上含む複合組織
鋼である。またマルテンサイトは最高10%までは含有
することを許容できる。
It is a composite structure steel containing at least 10% retained austenite. Further, it is permissible to contain martensite at a maximum of 10%.

(発明の具体的開示) 以下実施例により本発明の効果をさら1こ具体的に説明
する。
(Specific Disclosure of the Invention) The effects of the present invention will be explained in more detail with reference to Examples below.

実施例 第1表に示す化学成分の鋼を常法によって溶製鋳造し、
常法により熱延、冷延して得られる1、0m鵬厚の鋼板
を第2表の条件で熱処理し、これから、LIS S号引
張試験片を採取し、引張速度10i+m/+inで試験
を行ない、 TS、ElおよびTSXEIの値を調べた
Example Steel having the chemical composition shown in Table 1 was melted and cast by a conventional method,
A steel plate with a thickness of 1.0 m obtained by hot-rolling and cold-rolling by a conventional method was heat-treated under the conditions shown in Table 2, and from this, LISS No. S tensile test specimens were taken and tested at a tensile speed of 10 m/+ in. , TS, El and TSXEI values were investigated.

第3表に見られるように本発明モある試料N11l〜6
はいずれもTSが60kgf/++v+”〜90kgf
/mo+”級の高強度ながらElは25%以上と優れた
延性を示し、TSXEI値はいずれも2,000以上と
強度延性バランスに優れていることが明らかである。
As seen in Table 3, samples N11l to 6 according to the present invention
In both cases, the TS is 60kgf/++v+”~90kgf
/mo+'' grade, but exhibits excellent ductility with an El of 25% or more, and all TSXEI values are 2,000 or more, clearly showing an excellent strength-ductility balance.

これに対して試料Nα7〜23は本発明範囲外の例であ
る。まず、試料N117〜10は本発明の鋼成分範囲外
の鋼に本発明の熱処理条件により製造したもノテある。
On the other hand, samples Nα7 to Nα23 are examples outside the scope of the present invention. First, samples N117 to 10 were produced using steels outside the steel composition range of the present invention under the heat treatment conditions of the present invention.

試料&7,9.10はTS X El値がいずれも2,
000未満であり強度延性バランスに劣るといえる。試
料&8は丁Sが105に、f/■■3傘比較例 T、 : Ac、 + 30℃〜Ac、の焼鈍温度t□
:T、における保持時間 Vi: T、よりの冷却速度 T、 : 350〜500℃のベイナイト変態処理温度
b:Tzにおける保持時間 v2:その後の冷却速度 でElが28%であり、TSXEI値も2940と優れ
た強度延性バランスを示すが、ilFのC含有量は0.
35%と高く溶接性に劣る欠点を有している。
Samples &7 and 9.10 both have TS X El values of 2,
It can be said that the strength and ductility balance is poor. For sample &8, S is 105, f/■■3 umbrella comparative example T: Ac, +30℃~Ac, annealing temperature t□
: Holding time at T, Vi: Cooling rate T at T, : Bainite transformation treatment temperature of 350 to 500°C b: Holding time at Tz v2: At the subsequent cooling rate, El is 28%, and the TSXEI value is also 2940. However, the C content of ilF is 0.
It has a drawback of poor weldability, which is as high as 35%.

試料&11は本発明の範囲の組成の鋼に本発明の熱処理
条件と異なる熱処理を適用したものであるが、TSXE
l値は20qOに満たない。
Sample &11 is a steel having a composition within the range of the present invention and subjected to heat treatment different from the heat treatment conditions of the present invention, but TSXE
The l value is less than 20qO.

試料Na12〜23は本発明の鋼成分範囲内の鋼に本発
明の熱処理条件と異なる熱処理により製造したものであ
る。いずれも残留オーステナイト量は10%未満であり
、組織因子としてパーライトやマルテンサイトの混在を
生じるものもある。いずれもTS X El値は200
0未満であり、強度延性バランスは劣ることが明らかで
ある。
Samples Na12 to Na23 were produced by heat treating steel within the steel composition range of the present invention under heat treatment conditions different from those of the present invention. In all cases, the amount of retained austenite is less than 10%, and in some cases pearlite and martensite are mixed as a structural factor. In both cases, the TS X El value is 200.
It is clear that the strength-ductility balance is poor.

(発明の効果) 以上のように本発明によれば、TSが60kgf/mm
”以上100kgf/am”未満の範囲で、TS X 
El値が2000を超え強度延性バランスに優れた高強
度鋼板の製造が可能である。
(Effect of the invention) As described above, according to the present invention, the TS is 60 kgf/mm.
In the range of "more than 100 kgf/am", TS
It is possible to produce high-strength steel sheets with an El value exceeding 2000 and an excellent balance of strength and ductility.

(外1名)(1 other person)

Claims (2)

【特許請求の範囲】[Claims] (1)C:0.05〜0.25%、Si:1.00〜3
.00%、Mn:0.20〜1.50%を含み残部Fe
および不可避的不純物からなる鋼材を、Ac_1+30
℃〜Ac_3の温度域に加熱し30sec〜15min
保持した後、350〜500℃の温度域まで冷却速度1
0〜500℃/secで冷却し、該温度域で30sec
〜30min保持した後、室温まで冷却することにより
フェライトとベイナイトを主相としさらに10%以上の
残留オーステナイトを含有することを特徴とする延性の
優れた高強度鋼板の製造方法。
(1) C: 0.05-0.25%, Si: 1.00-3
.. 00%, Mn: 0.20-1.50%, balance Fe
Ac_1+30 steel material consisting of and unavoidable impurities
Heat to a temperature range of ℃~Ac_3 for 30sec~15min
After holding, cooling rate 1 to a temperature range of 350-500℃
Cool at 0 to 500°C/sec, and cool for 30sec in the temperature range
A method for producing a high-strength steel plate with excellent ductility, characterized in that the main phase is ferrite and bainite and further contains 10% or more of retained austenite by holding the plate for ~30 minutes and then cooling it to room temperature.
(2)C:0.05〜0.25%、Si:1.00〜3
.00%、Mn:0.20〜1.50%、Ni:0.2
0%〜1.00%を含み、残部Feおよび不可避的不純
物からなる鋼材を、Ac_1+30℃〜Ac_3の温度
域に加熱し30sec〜15min保持した後、350
〜500℃の温度域まで冷却速度10〜500℃/se
cで冷却し、該温度域で30sec〜30min保持し
た後、室温まで冷却することによりフェライトとベイナ
イトを主相としさらに10%以上の残留オーステナイト
を含有することを特徴とする延性の優れた高強度鋼板の
製造方法。
(2) C: 0.05-0.25%, Si: 1.00-3
.. 00%, Mn: 0.20-1.50%, Ni: 0.2
A steel material containing 0% to 1.00% and the balance consisting of Fe and unavoidable impurities is heated to a temperature range of Ac_1+30°C to Ac_3 and held for 30 seconds to 15 minutes, then heated to 350°C.
Cooling rate 10-500℃/se to temperature range of ~500℃
After cooling at temperature c and holding in the temperature range for 30 seconds to 30 minutes, cooling to room temperature produces a high strength product with excellent ductility characterized by having ferrite and bainite as the main phases and further containing 10% or more of retained austenite. Method of manufacturing steel plates.
JP32727987A 1987-12-25 1987-12-25 Manufacture of steel plate with composite structure having high ductility and high strength Pending JPH01168819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32727987A JPH01168819A (en) 1987-12-25 1987-12-25 Manufacture of steel plate with composite structure having high ductility and high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32727987A JPH01168819A (en) 1987-12-25 1987-12-25 Manufacture of steel plate with composite structure having high ductility and high strength

Publications (1)

Publication Number Publication Date
JPH01168819A true JPH01168819A (en) 1989-07-04

Family

ID=18197352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32727987A Pending JPH01168819A (en) 1987-12-25 1987-12-25 Manufacture of steel plate with composite structure having high ductility and high strength

Country Status (1)

Country Link
JP (1) JPH01168819A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341523A (en) * 1991-05-17 1992-11-27 Kobe Steel Ltd Production of hot rolled high strength steel plate excellent in ductility and workability
EP0586704A1 (en) * 1991-05-30 1994-03-16 Nippon Steel Corporation High-yield-ratio hot-rolled high-strength steel sheet excellent in formability or in both of formability and spot weldability, and production thereof
JP2003171736A (en) * 2001-02-28 2003-06-20 Kobe Steel Ltd High strength steel sheet having excellent workability, and production method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157625A (en) * 1984-12-29 1986-07-17 Nippon Steel Corp Manufacture of high-strength steel sheet
JPS624832A (en) * 1985-06-28 1987-01-10 Nippon Steel Corp Production of high-carbon steel strip having excellent ductility
JPS62164828A (en) * 1986-01-13 1987-07-21 Kobe Steel Ltd Production of high ductility high strength composite structure steel plate having excellent spot weldability
JPS62182224A (en) * 1986-02-05 1987-08-10 Nippon Steel Corp Production of high-strength steel sheet having excellent ductility
JPS62188729A (en) * 1986-02-13 1987-08-18 Nippon Steel Corp Manufacture of high strength steel superior in workability
JPS63241120A (en) * 1987-02-06 1988-10-06 Kobe Steel Ltd Manufacture of high ductility and high strength steel sheet having composite structure
JPS6479322A (en) * 1987-09-21 1989-03-24 Kobe Steel Ltd Production of composite structure high-strength cold rolled steel sheet having excellent bulging property and fatigue characteristic

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157625A (en) * 1984-12-29 1986-07-17 Nippon Steel Corp Manufacture of high-strength steel sheet
JPS624832A (en) * 1985-06-28 1987-01-10 Nippon Steel Corp Production of high-carbon steel strip having excellent ductility
JPS62164828A (en) * 1986-01-13 1987-07-21 Kobe Steel Ltd Production of high ductility high strength composite structure steel plate having excellent spot weldability
JPS62182224A (en) * 1986-02-05 1987-08-10 Nippon Steel Corp Production of high-strength steel sheet having excellent ductility
JPS62188729A (en) * 1986-02-13 1987-08-18 Nippon Steel Corp Manufacture of high strength steel superior in workability
JPS63241120A (en) * 1987-02-06 1988-10-06 Kobe Steel Ltd Manufacture of high ductility and high strength steel sheet having composite structure
JPS6479322A (en) * 1987-09-21 1989-03-24 Kobe Steel Ltd Production of composite structure high-strength cold rolled steel sheet having excellent bulging property and fatigue characteristic

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341523A (en) * 1991-05-17 1992-11-27 Kobe Steel Ltd Production of hot rolled high strength steel plate excellent in ductility and workability
EP0586704A1 (en) * 1991-05-30 1994-03-16 Nippon Steel Corporation High-yield-ratio hot-rolled high-strength steel sheet excellent in formability or in both of formability and spot weldability, and production thereof
EP0586704A4 (en) * 1991-05-30 1995-10-18 Nippon Steel Corp High-yield-ratio hot-rolled high-strength steel sheet excellent in formability or in both of formability and spot weldability, and production thereof
US5505796A (en) * 1991-05-30 1996-04-09 Nippon Steel Corporation High yield ratio-type, hot rolled high strength steel sheet excellent in formability or in both of formability and spot weldability, and production thereof
EP0881308A1 (en) * 1991-05-30 1998-12-02 Nippon Steel Corporation High yield ratio-type, hot rolled high strenght steel sheet excellent in formability or and spot weldability
JP2003171736A (en) * 2001-02-28 2003-06-20 Kobe Steel Ltd High strength steel sheet having excellent workability, and production method therefor

Similar Documents

Publication Publication Date Title
JPS61157625A (en) Manufacture of high-strength steel sheet
JPH0564215B2 (en)
PL185228B1 (en) Hot-rolled steel sheet and method of making same
US4609410A (en) Method for producing high-strength deep-drawable dual-phase steel sheets
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPH0426744A (en) Manufacture of hot-dip galvanized high tensile strength cold rolled steel sheet
JPH01168819A (en) Manufacture of steel plate with composite structure having high ductility and high strength
JP2727827B2 (en) High workability hot-rolled high-strength steel sheet and its manufacturing method
JPH0665645A (en) Production of high ductility hot rolled high tensile strength steel sheet
JPH0645827B2 (en) Method for manufacturing high strength steel sheet with excellent workability
JP2828755B2 (en) Manufacturing method of low yield ratio 80 ▲ kgff / ▲ mm ▼▼ 2 上 class steel sheet with excellent weldability
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JPS63312917A (en) Production of high-strength steel plate having excellent spring property and ductility
JPS59129725A (en) Production of hot rolled high tension steel sheet having excellent cold workability
JPH0670247B2 (en) Method for producing high strength steel sheet with good formability
JPS62182224A (en) Production of high-strength steel sheet having excellent ductility
JPH0317244A (en) High strength hot rolled steel plate high having excellent workability and weldability and its manufacture
JPS63118012A (en) Production of low yield ratio high tensile thick steel plate
JPH04110422A (en) Production of 70kgf/mm2 class steel plate having superior weldability and low yield ratio
JP2002256389A (en) High tensile strength hot rolled steel sheet and production method therefor
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
KR100554754B1 (en) Method for Manufacturing Cold-rolled Steel Sheets with Ultra High Strength
JPH04333526A (en) Hot rolled high tensile strength steel plate having high ductility and its production
JPH01159316A (en) Production of low yielding ratio high tensile steel having softened surface layer
JPH01159317A (en) Production of high-strength hot rolled steel sheet having excellent balance of strength and ductility