JPH0670247B2 - Method for producing high strength steel sheet with good formability - Google Patents

Method for producing high strength steel sheet with good formability

Info

Publication number
JPH0670247B2
JPH0670247B2 JP63249940A JP24994088A JPH0670247B2 JP H0670247 B2 JPH0670247 B2 JP H0670247B2 JP 63249940 A JP63249940 A JP 63249940A JP 24994088 A JP24994088 A JP 24994088A JP H0670247 B2 JPH0670247 B2 JP H0670247B2
Authority
JP
Japan
Prior art keywords
austenite
steel sheet
seconds
strength
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63249940A
Other languages
Japanese (ja)
Other versions
JPH02101117A (en
Inventor
康治 佐久間
理 松村
治 秋末
弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63249940A priority Critical patent/JPH0670247B2/en
Publication of JPH02101117A publication Critical patent/JPH02101117A/en
Publication of JPH0670247B2 publication Critical patent/JPH0670247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は成形性良好な高強度鋼板の製造方法に関するも
のである。
The present invention relates to a method for producing a high-strength steel sheet having good formability.

(従来の技術) 乗用車の走行性や快適性、完全性は近年かつてなかった
ほど著しい進歩を遂げた。これは搭載される電子制御部
品や安全保安部品の増加と車体投影面積の増加によると
ころが大であるが、その一方で車体総重量にほとんど変
化は見られない。これは主要な構成材料である自動車用
薄鋼板の高強度化によって重量増加が相殺されているた
めである。生活水準の向上を背景とした消費者の高級
化、高性能化指向は今後とも続くことと思われるが、同
時にオイルショックの経験に起因する鋭敏化したコスト
意識も根強く存在するためこの傾向は引き続き認められ
よう。したがって自動車用薄鋼板には80〜100kgf/mm2
超える強度が、所要形状を得るための厳しいプレス成形
性と同時に要求されることとなろう。
(Prior Art) The runnability, comfort, and integrity of passenger vehicles have made remarkable progress in recent years. This is largely due to an increase in electronic control parts and safety and security parts to be mounted and an increase in the projected area of the car body, but on the other hand, there is almost no change in the total weight of the car body. This is because the increase in weight is offset by the higher strength of the thin steel sheet for automobiles, which is the main constituent material. It is expected that consumers will continue to become more sophisticated and have higher performance due to the improvement of living standards, but at the same time, there is a keen awareness of costs due to the experience of the oil shock, and this trend continues. Be admitted. Therefore, strength exceeding 80 to 100 kgf / mm 2 will be required for thin steel sheets for automobiles at the same time as severe press formability for obtaining the required shape.

このような高強度と成形性の両立を図った薄鋼板として
は特公昭56−11741号公報等で提案されているフェライ
ト・マルテンサイト二相鋼いわゆるDual phase鋼が著名
である。これは軟質なフェライトに伸びを、硬質なマル
テンサイトに強度を分担させ、その両立を図って強度延
性バランスを改善した鋼であるが、それでも一つの指標
値とされる引張強度と全伸びの積は2000kgf/mm2・%程
度にすぎず、引張強度が100kgf/mm2を超すようになると
要求される形状にプレス成形することは極めて困難とな
る。さらに改善を図った鋼種としては変態誘起塑性(Tr
ansformation Induced Plastic-ity)の活用を意図して
残留オーステナイトを混在させた鋼が特開昭60−43430
号公報や特開昭61−157625号公報等で提案されている。
軟鋼板用の連続焼鈍設備を利用して製造でき、しかも比
較的単純な化学組成ながら10〜15%もの残留オーステナ
イトを含むこれらの鋼は100kgf/mm2の引張強度でも全伸
びが30%内外に達する他、方法によっては曲げ性や穴拡
げ性などもその強度レベルで従来得られている最良のク
ラスと同等になり、自動車用薄鋼板として今後広範な利
用が期待されている。
Ferrite / martensite dual-phase steel, so-called Dual phase steel, proposed in Japanese Patent Publication No. 56-11741 and the like is prominent as a thin steel sheet that achieves both high strength and formability. This is a steel in which the elongation is balanced by soft ferrite and the strength by hard martensite, and the balance between strength and ductility is improved to achieve both, but the product of tensile strength and total elongation, which is one index value, is still used. Is only about 2000 kgf / mm 2 ·%, and if the tensile strength exceeds 100 kgf / mm 2 , it becomes extremely difficult to press-form into the required shape. A further improved steel grade is transformation-induced plasticity (Tr
Japanese Patent Laid-Open No. 60-43430 discloses a steel containing mixed austenite for the purpose of utilizing the ansformation induced plasticity.
It is proposed in Japanese Laid-Open Patent Publication No. 61-157625.
These steels, which can be manufactured using continuous annealing equipment for mild steel sheets, and which have a relatively simple chemical composition and contain as much as 10 to 15% retained austenite, have a total elongation of 30% inside or outside even with a tensile strength of 100 kgf / mm 2. Depending on the method, the bendability and hole expandability will be equal to the best class that has been obtained so far in terms of strength level, and it is expected to be widely used as a thin steel sheet for automobiles in the future.

しかし、これまでに見出された方法で高強度と成形性の
最善の組み合わせを得るためには700℃近傍から400℃近
傍まで100℃/s前後以上の相当急速な冷却を行う必要が
ある。気水冷却と通称される方法によればこの程度の速
度で鋼板を冷却することは一般には可能であるが、前記
の各特許公開公報記載の発明で規定されるような化学成
分の鋼では目標温度からの僅かなずれで極めて硬く脆い
ものとなるためその取り扱いには細心の注意が必要とさ
れる。そのため実際の操業でこの種の鋼板を大量に製造
することは必ずしも容易ではなく、その優れた特質から
需要が多いにもかかわらず、それに応えることが困難で
あった。
However, in order to obtain the best combination of high strength and formability by the method found up to now, it is necessary to perform a fairly rapid cooling of about 100 ° C / s or more from around 700 ° C to around 400 ° C. Although it is generally possible to cool a steel sheet at this rate according to a method commonly called steam cooling, it is a target for steel having a chemical composition as defined in the invention described in each of the above patent publications. Careful handling is required because it becomes extremely hard and brittle with a slight deviation from the temperature. Therefore, it is not always easy to manufacture a large amount of this type of steel sheet in actual operation, and it has been difficult to meet the demand due to its excellent characteristics, although it is in great demand.

(発明が解決しようとする課題) 本発明は前記したような従来技術の有する課題を解決
し、温度制御を容易とする冷却速度で従来発明で最良と
されているのと同等の特性を有する鋼板の製造方法を提
供するものである。
(Problems to be Solved by the Invention) The present invention solves the problems of the prior art as described above, and has a cooling rate that facilitates temperature control, and a steel sheet having the same characteristics as those of the best prior art. The present invention provides a method for manufacturing the same.

(課題を解決するための手段) 本発明による高強度鋼板はフェライト、ベイナイト、残
留オーステナイトの混合組織からなることを特徴とし、
所要の強度を確保するために二相共存温度域で形成され
たオーステナイトをパーライト等に変態させることなく
ベイナイト変態温度域までもちきたす必要がある。この
臨界冷却速度はMnやCr等の合金元素量を増せば小さなも
のとなるが、同時にオーステナイトが安定化するのに要
する時間が著しく長くなるため連続ラインでの製造が困
難となる。また組織のバンド化が顕著になり、それに伴
う特性の劣化も生じる。一方、ごく僅かのBを添加した
場合には臨界冷却速度は大きく低下するもののオーステ
ナイト安定化に必要な時間はほとんど変わらない。した
がって、本発明者らはこれを有効に活用すれば比較的緩
やかで制御の容易な冷却速度でも連続ラインで安定して
製造できる可能性があることを見出し、本発明をなした
ものである。
(Means for Solving the Problems) The high-strength steel sheet according to the present invention is characterized by comprising a mixed structure of ferrite, bainite, and retained austenite,
In order to secure the required strength, it is necessary to bring austenite formed in the two-phase coexistence temperature range to the bainite transformation temperature range without transforming it into pearlite or the like. This critical cooling rate becomes smaller as the amount of alloying elements such as Mn and Cr increases, but at the same time, the time required for the austenite to stabilize becomes significantly long, making it difficult to manufacture in a continuous line. In addition, the banding of the structure becomes remarkable, and the characteristics are deteriorated accordingly. On the other hand, when a very small amount of B is added, the critical cooling rate is greatly reduced, but the time required for stabilizing austenite is almost unchanged. Therefore, the present inventors have found that if this is effectively utilized, it is possible to stably manufacture in a continuous line even at a cooling rate that is relatively slow and easily controlled, and the present invention has been made.

すなわち、本発明は重量%でC:0.12〜0.40%、Si:0.30
〜1.50%、Mn:1.50〜3.00%、B:0.0003〜0.0050%、so
l.Al:0.005〜0.100%と場合によってはさらにNi、Cu、C
o、Crのうちの1種または2種以上を合計1%以下含
み、残部Feおよび不可避的不純物からなり、熱間圧延終
了後600〜700℃の温度範囲内に1〜20時間おかれた鋼を
酸洗と圧延率35〜80%の冷延を行ってから、700〜850℃
の二相共存温度域に加熱し15秒〜5分保持後、1〜30℃
/secの速度で300〜450℃に冷却し、この温度域内で15秒
〜10分保定し、その後30秒以内に150℃以下まで冷却す
ることを特徴とする成形性良好な高強度鋼板の製造方法
を要旨とするものである。
That is, in the present invention, C: 0.12 to 0.40% by weight, Si: 0.30
~ 1.50%, Mn: 1.50 ~ 3.00%, B: 0.0003 ~ 0.0050%, so
l.Al: 0.005 to 0.100% and Ni, Cu, C depending on the case
Steel containing 1% or more of o and Cr in total of 1% or less, the balance Fe and unavoidable impurities, and placed in the temperature range of 600 to 700 ° C for 1 to 20 hours after completion of hot rolling. After pickling and cold rolling at a rolling rate of 35-80%, 700-850 ° C
After heating in the two-phase coexistence temperature range of 15 seconds to 5 minutes and then 1 to 30 ℃
Manufacture of high-strength steel sheets with good formability, characterized by cooling to 300 to 450 ° C at a speed of / sec, holding for 15 seconds to 10 minutes within this temperature range, and then cooling to 150 ° C or less within 30 seconds. The method is the gist.

(作用) 最初に本発明の対象とする鋼の成分範囲の限定理由につ
いて述べる。
(Operation) First, the reason for limiting the composition range of the steel targeted by the present invention will be described.

まず、Cはオーステナイト安定化元素であり、二相共存
温度域およびベイナイト変態温度域でフェライト中から
オーステナイト中に移動し、その安定度を増す。その結
果、室温まで冷却した時にも10〜25%が残留し、変態誘
起塑性による大きな伸びをもたらす。その添加量は良好
な溶接性やすぐれた衝撃特性を得るためには低いほうが
望ましいが、0.12%未満では明らかな伸びの向上がもた
らされるほどの残留オーステナイト量を確保することは
できない。一方0.40%を超すようになると残留オーステ
ナイトは多量に得られるものの加工誘発変態によりプレ
ス成形後に存在することとなるマルテンサイトの量も相
当なものとなるため衝撃特性の劣化が著しく、実用に耐
えない。
First, C is an austenite stabilizing element, which migrates from ferrite to austenite in the two-phase coexistence temperature range and bainite transformation temperature range to increase its stability. As a result, 10 to 25% remains even when cooled to room temperature, resulting in a large elongation due to transformation-induced plasticity. The addition amount is preferably low in order to obtain good weldability and excellent impact properties, but if it is less than 0.12%, it is not possible to secure the amount of retained austenite that causes a clear improvement in elongation. On the other hand, if it exceeds 0.40%, a large amount of retained austenite is obtained, but the amount of martensite that will be present after press forming due to work-induced transformation is also considerable, so the impact characteristics deteriorate significantly and it is not practical .

Siはセメンタイト中に固溶しないためその析出を抑制す
る作用を有し、300〜450℃で暫時保持する間に未変態オ
ーステナイト中に固溶限をはるかに越えるCの濃化を図
ることができる。しかし、本発明のC量の範囲ではSiが
0.30%未満ではこのような効果は明らかではなく、目的
を達成するためには0.70%以上の添加が好ましい。一
方、過剰に添加すると酸洗性を著しく悪化させるほどの
スケールを熱延時に生じることとなるし、またCを黒鉛
として析出させることもある。このため1.50%を超える
過剰な添加は避けなければならない。
Since Si does not form a solid solution in cementite, it has an action of suppressing its precipitation, and it is possible to achieve the concentration of C far exceeding the solid solubility limit in untransformed austenite while holding it at 300 to 450 ° C for a while. . However, in the C amount range of the present invention, Si is
If it is less than 0.30%, such an effect is not clear, and addition of 0.70% or more is preferable to achieve the purpose. On the other hand, if it is added in excess, a scale to the extent that the pickling property is significantly deteriorated is generated during hot rolling, and C may be precipitated as graphite. For this reason, excessive addition exceeding 1.50% must be avoided.

また、Mnはオーステナイト形成元素であると同時に二相
域からベイナイト変態域への冷却の際にオーステナイト
がパーライトへ分解するのを抑制する。このため容易に
制御できるような比較的緩慢な冷却でも二相域加熱時に
存在するオーステナイトをそのままの状態で450℃以下
まで持ち来す上でその添加が極めて有効である。その量
が1.50%未満ではその効果は認められない。しかし、3.
00%を超すようになるとこの目的は達せられるものの、
Cの濃化によるオーステナイトの安定化反応に極めて長
時間を要することとなり、連続ラインでの多量生産を事
実上不可能なものとする。また、バンド組織の形成によ
り特性を劣化させると同時にスポット溶接でナゲット内
破断を生じやすくするから避けなければならない。
Further, Mn is an austenite-forming element and, at the same time, suppresses the decomposition of austenite into pearlite during cooling from the two-phase region to the bainite transformation region. Therefore, even with relatively slow cooling that can be easily controlled, the addition of austenite that exists during heating in the two-phase region is extremely effective in bringing the austenite to 450 ° C or lower as it is. If the amount is less than 1.50%, the effect is not recognized. But 3.
This goal can be achieved if it exceeds 00%,
The stabilization reaction of austenite due to the concentration of C requires an extremely long time, which makes practically impossible a large-scale production in a continuous line. It must be avoided because the formation of a band structure deteriorates the properties and, at the same time, the spot welding easily causes fracture in the nugget.

Bは一般に焼入れ性を増す元素として知られるが、本発
明の熱処理サイクルで300〜450℃での保定条件にはほと
んど影響を与えない。したがって工業的な安定生産を行
う上で非常に有用な添加元素である。目的を達するため
には最低0.0003%の添加を必要とする。しかし、0.0050
%を超すと耳割れなどを生じ、熱延が困難となるので避
けなければならない。
B is generally known as an element that increases the hardenability, but has little effect on the retention conditions at 300 to 450 ° C. in the heat treatment cycle of the present invention. Therefore, it is a very useful additive element for industrial stable production. A minimum of 0.0003% addition is required to reach the goal. But 0.0050
If it exceeds%, ear cracking etc. occurs and hot rolling becomes difficult, so it must be avoided.

さらに、sol.Alは脱酸元素として、またAlNによる熱延
素材の細粒化、および一連の熱処理工程における結晶粒
の粗大化を抑制することで材質が改善されるため0.005
〜0.100%を添加する。その量が0.005%未満だと目的と
する効果が不十分であり、0.100%を超すと介在物によ
り靱性が劣化することがあるので避けなければならな
い。
Further, sol.Al is a deoxidizing element, and the material is improved by suppressing the grain refinement of the hot rolled material by AlN and the coarsening of the crystal grains in the series of heat treatment steps.
Add ~ 0.100%. If the amount is less than 0.005%, the desired effect is insufficient, and if it exceeds 0.100%, the toughness may deteriorate due to inclusions, so it must be avoided.

本発明の鋼は以上を基本成分とするが、これらの元素お
よびFe以外にP、S、Nその他の一般に鋼に対して不可
避的に混入する元素を含むものである。またオーステナ
イト形成元素のNi、CuやCoあるいは焼入性を増す元素で
あるCrを添加し、残留オーステナイト量を増すことは本
発明の目的を達成する上で好ましいことである。しか
し、過大に添加すると複雑な組成の化合物を微細に析出
し加工性を著しく劣化することがあるのでその量は合計
で1%以下に限定する。
The steel of the present invention has the above-mentioned basic components, but in addition to these elements and Fe, it also contains P, S, N and other elements that are generally unavoidably mixed with steel. Further, it is preferable to increase the amount of residual austenite by adding Ni, Cu or Co which is an austenite forming element or Cr which is an element which increases hardenability, in order to achieve the object of the present invention. However, if added excessively, a compound having a complicated composition may be finely precipitated and workability may be significantly deteriorated. Therefore, the total amount is limited to 1% or less.

次に工程上の限定理由を詳述する。Next, the reasons for limitation in the process will be described in detail.

本発明による鋼は熱間圧延終了後巻取し、そのままある
いは室温に冷却した後再加熱し600〜700℃の温度範囲内
に1〜20時間おかれる。これは冷延後一連の熱処理を経
たあとで残留オーステナイトを形成するコアとなる炭化
物の部分にMnを濃化し、その後のヒートサイクルに要求
される条件を緩和することを目的としている。この温度
が700℃よりも高いと炭化物が粗大化し、最終的に存在
する残留オーステナイト粒が大きなものとなるために加
工誘発変態を効果的なものとしにくくするので避ける必
要がある。また鋼中に置換型固溶元素として存在するMn
の拡散は遅く、600℃未満では工業的に実施し得る時間
内に目的を達成することはできず、実施するに値しな
い。この時間が1時間以内では適当とする合金元素濃化
が図れない。一方20時間を超すようではエネルギーコス
トが膨大となり経済的に引き合わないばかりか、炭化物
へのMn濃化が過大になりその安定性が増すため冷延後の
二相域加熱時にも未溶解で存在し最終的な目標を達し得
ないから避けなければならない。
The steel according to the present invention is wound after completion of hot rolling, and is then left as it is or cooled to room temperature and then reheated and placed in a temperature range of 600 to 700 ° C. for 1 to 20 hours. The purpose of this is to relax the conditions required for the subsequent heat cycle by concentrating Mn in the carbide portion that forms the core of retained austenite after a series of heat treatments after cold rolling. If this temperature is higher than 700 ° C., the carbides become coarse, and the retained austenite grains that finally exist become large, which makes it difficult to make the work-induced transformation effective, and therefore it is necessary to avoid it. In addition, Mn existing as a substitutional solid solution element in steel
The diffusion is slow, and if the temperature is lower than 600 ° C, the purpose cannot be achieved in a time that can be industrially carried out, and it is not worth doing. If this time is less than 1 hour, the alloy element cannot be concentrated properly. On the other hand, if it exceeds 20 hours, the energy cost will be huge and it will not be economically attractive, and since the Mn concentration in the carbide will become excessive and its stability will increase, it will not dissolve even when heating in the two-phase region after cold rolling. You must avoid it because you cannot reach your final goal.

このような履歴を経た熱延鋼板について本発明では酸洗
と圧延率35〜80%の冷延を行う。これは引き続いて行う
一連のサイクルからなる熱処理後に微細な残留オーステ
ナイトがフェライトとベイナイトの中に分散した組織を
得ることを目的とする。この圧延率が35%未満だと組織
の微細化が不十分であるため、本発明に規定した熱処理
を施しても十分な量の残留オーステナイトが得られず、
伸びをはじめとした特性の劣ったものしか得られない。
その効果は圧延率が増すと飽和する傾向にあり、80%を
超えた冷延を行うことは圧下に要する動力が莫大なもの
となるだけで効果が小さいため適当でない。
In the present invention, the hot-rolled steel sheet having such a history undergoes pickling and cold rolling at a rolling ratio of 35 to 80%. This aims at obtaining a structure in which fine retained austenite is dispersed in ferrite and bainite after heat treatment consisting of a series of subsequent cycles. If the rolling ratio is less than 35%, the micronization of the structure is insufficient, so that a sufficient amount of retained austenite cannot be obtained even when the heat treatment specified in the present invention is performed,
Only those with poor properties such as elongation can be obtained.
The effect tends to be saturated as the rolling rate increases, and cold rolling exceeding 80% is not suitable because the power required for rolling is enormous and the effect is small.

本発明の一連のサイクルからなる熱処理ではまず最初に
700〜850℃の二相共存温度域に加熱し15秒〜5分保持す
る。本発明の成分系を有する鋼板にこの加熱を行うと固
溶限以上の炭化物はほとんど消滅し、オーステナイトが
40〜80%存在し、フェライトが残余を占める組織状態が
現出される。拡散定数の大きいCはオーステナイト中に
濃化しフェライト中では希薄となるが、熱延後冷延まで
の間に先に規定した温度履歴を経ることによりMnについ
てもある程度の分配が達成される。このため引き続く一
連のサイクルを経た後では10〜25%の残留オーステナイ
トがフェライトとベイナイトの混在した中に微細に分散
した組織が得られ高強度にして成形性良好な鋼板とする
ことができる。
First of all, in the heat treatment consisting of a series of cycles of the present invention,
Heat in the two-phase coexistence temperature range of 700 to 850 ° C and hold for 15 seconds to 5 minutes. When this heating is performed on the steel sheet having the component system of the present invention, the carbides above the solid solution limit are almost extinguished, and austenite becomes
A structure state where 40 to 80% exists and ferrite accounts for the rest appears. C, which has a large diffusion constant, becomes concentrated in austenite and becomes rare in ferrite, but a certain amount of Mn distribution is achieved by passing through the temperature history specified above between hot rolling and cold rolling. Therefore, after a series of subsequent cycles, a structure in which 10 to 25% of retained austenite is finely dispersed in a mixture of ferrite and bainite can be obtained, and a steel sheet having high strength and good formability can be obtained.

加熱温度が700℃未満の時、連続ラインで実現すること
のできる時間内では炭化物が溶解せずオーステナイトの
存在量もごく僅かであり、また再結晶も不十分な状態で
あるため後に続く処理が本発明に規定されるものであっ
たとしても高強度にして成形性良好な鋼板とすることは
できない。一方、850℃を超える温度域に加熱すること
は多大なエネルギーを要し不経済であるばかりか表面性
状が劣化する等種々の好ましくない現象を生む。この温
度域での保持時間が15秒未満では未溶解炭化物が存在す
る可能性が大であり、望まれるだけの量のオーステナイ
トが形成されず強度と成形性の両立が図れない。一方、
5分を超えて保持すると結晶粒が粗大となる可能性があ
るばかりか、冷延前の温度履歴により得られた好ましい
合金元素の分布が解消され、より短時間での保持の時と
比較し強度延性バランスが悪くなる。
When the heating temperature is less than 700 ° C, the carbide does not dissolve within the time that can be realized in the continuous line, the austenite content is very small, and recrystallization is insufficient, so that the subsequent treatment is Even if it is defined in the present invention, it is not possible to obtain a steel sheet having high strength and good formability. On the other hand, heating to a temperature range exceeding 850 ° C. requires a large amount of energy, is uneconomical, and causes various undesirable phenomena such as deterioration of surface properties. If the holding time in this temperature range is less than 15 seconds, there is a high possibility that undissolved carbides will be present, and the desired amount of austenite will not be formed, making it impossible to achieve both strength and formability. on the other hand,
If it is held for more than 5 minutes, not only the crystal grains may become coarse, but also the distribution of the preferable alloying elements obtained by the temperature history before cold rolling is eliminated, and it is compared with the case of holding for a shorter time. The strength-ductility balance becomes poor.

本発明ではこの後、1〜30℃/secの速度で300〜450℃に
冷却する。これは二相域に加熱して生成させたオーステ
ナイトをパーライトに変態することなくベイナイト変態
域に持ち来し、引き続く処理により室温では残留オース
テナイトとベイナイトとして所定の特性を得ることを目
的とする。この冷却速度が1℃/sec未満ということは臨
界冷却速度以下であることを意味し、オーステナイトの
ほとんどがパーライト変態するため熱処理後にはベイナ
イトも残留オーステナイトもごく僅かの量となり強度も
低く成形性も良好ではない。逆に30℃/secを超えるよう
だと設定温度からのずれが生じやすく、しばしば目的と
した機械的性質とは大きく異なった特性をもたらすこと
があるので避けなければならない。この冷却が450℃よ
りも高い温度で終了するとその後の保持中に炭化物が急
速に生成しオーステナイト中のC濃度が急減するのでそ
の残留は認められなくなる。一方二相域で生成したまま
の状態ではオーステナイトのMs点を300℃未満に下げる
ほどにはC、Mnとも濃化していないため、そのまま300
℃未満に冷却すると多量のマルテンサイトを生じ、その
後に焼戻されたとしても強度は十分としても成形性は良
好と言える範囲にはなりえない。
In the present invention, after this, it is cooled to 300 to 450 ° C at a rate of 1 to 30 ° C / sec. The purpose of this is to bring austenite produced by heating in the two-phase region to the bainite transformation region without transforming it into pearlite, and to obtain predetermined properties as residual austenite and bainite at room temperature by subsequent treatment. This cooling rate of less than 1 ° C / sec means that it is below the critical cooling rate, and since most of the austenite undergoes pearlite transformation, bainite and retained austenite become very small amounts after heat treatment, resulting in low strength and low formability. Not good. On the other hand, if the temperature exceeds 30 ° C / sec, deviation from the set temperature is likely to occur, often resulting in properties greatly different from the intended mechanical properties, so it must be avoided. When this cooling is completed at a temperature higher than 450 ° C., carbides are rapidly formed during the subsequent holding and the C concentration in austenite is rapidly reduced, so that the residue is not recognized. On the other hand, in the state where it is generated in the two-phase region, C and Mn are not concentrated enough to lower the Ms point of austenite to less than 300 ° C.
If it is cooled to less than ℃, a large amount of martensite is produced, and even if it is tempered after that, the moldability cannot be said to be in a good range even if the strength is sufficient.

二相域での冷却終了後、本発明では300〜450℃に15秒〜
10分保定し、その後30秒以内に150℃以下まで冷却す
る。これはSiが含まれるためにオーステナイトからベイ
ナイトへの変態が二段階に分離することを活用し、炭化
物をほとんど含まないベイナイトとその部分から掃きだ
されたCが濃化しMn点が室温以下に低下した残留オース
テナイト、および二相域加熱中に清浄化が進んだ残存フ
ェライトの混在した組織を現出させ、高強度と良好な成
形性を両立させることにある。この保定温度が450℃よ
りも高いとその間に炭化物が急速に生成しオーステナイ
ト中のC濃度が急減するのでそれを残留することは不可
能となる。一方保定温度が300℃未満だと実質的にCの
拡散が困難となるため未変態オーステナイト中にCが濃
化せず、室温まで冷却した時に残留オーステナイトを得
ることができない。比較的小さな臨界冷却速度をもたら
すMn添加量にもかかわらずこの保定時間が連続ラインで
実行可能であるのはBを0.0003〜0.0050%含むためであ
るが、15秒未満の保定ではベイナイト変態の進行が不十
分なためCが十分に濃化していないオーステナイトは室
温までの冷却中にマルテンサイト変態し、得られる鋼板
は高強度ではあるものの成形性に乏しいものとなる。ま
た保定時間が10分を超すとベイナイト変態がさらに進
み、前段の反応でCの濃化したオーステナイトも炭化物
を析出してベイナイトに分解するため変態誘起塑性によ
り成形性を改善する残留オーステナイト量の不足をもた
らすこととなる。この後150℃以下まで冷却するのに30
秒を超える時間要した場合も同様であり、発明の目的を
達し得ない。
After completion of cooling in the two-phase region, in the present invention, at 300 to 450 ° C. for 15 seconds to
Hold for 10 minutes and then cool to below 150 ° C within 30 seconds. This utilizes the fact that the transformation from austenite to bainite is separated into two stages due to the inclusion of Si, and the bainite containing almost no carbide and the C swept out from that part are concentrated and the Mn point falls below room temperature. The purpose is to develop a structure in which the retained austenite and the residual ferrite that has been cleaned during heating in the two-phase region are mixed, and to achieve both high strength and good formability. If this holding temperature is higher than 450 ° C., carbides are rapidly formed during that period, and the C concentration in austenite decreases sharply, so that it becomes impossible to remain. On the other hand, if the holding temperature is less than 300 ° C., it becomes substantially difficult to diffuse C, so that C is not concentrated in the untransformed austenite and residual austenite cannot be obtained when cooled to room temperature. This retention time is feasible in a continuous line despite the amount of Mn addition that results in a relatively small critical cooling rate because it contains 0.0003 to 0.0050% of B, but the retention of bainite transformation is less than 15 seconds. However, austenite in which C is not sufficiently concentrated undergoes martensitic transformation during cooling to room temperature, and the resulting steel sheet has high strength but poor formability. If the retention time exceeds 10 minutes, the bainite transformation proceeds further, and the austenite enriched with C in the preceding reaction also precipitates carbides and decomposes into bainite, which improves the formability by transformation-induced plasticity. Will bring. After this, 30 to cool down below 150 ℃
The same is true when a time exceeding seconds is required, and the object of the invention cannot be achieved.

なお、以上に説明してきた工程における二相域での加熱
温度や二相域からの冷却が終了した後の保定温度、また
その間の冷却速度は規定の範囲内であれば一定である必
要はなく、その範囲内で変動したとしても最終製品の特
性をなんら劣化させはしないし向上する場合もある。
It should be noted that the heating temperature in the two-phase region and the holding temperature after the cooling from the two-phase region in the process described above, and the cooling rate during that period do not have to be constant as long as they are within the specified range. Even if it fluctuates within that range, the characteristics of the final product may not be deteriorated or improved in some cases.

(実施例) 第1表に成分を示す鋼を、熱間圧延終了後第2表に記載
する時間だけ600〜700℃においてから酸洗し、同表記載
の率の冷延と熱処理および0.8%の調質圧延を行った。
その後でJIS5号引張試験片を採取し、ゲージ長さ50mm、
引張速度10mm/minで常温引張試験を行ったところ同表に
記載するような引張強度と全伸びを得た。また、表層に
より板厚の1/4中心によったところでX線回折法で残留
オーステナイト量を求めたところ同表中の値が得られ
た。
(Example) Steels having the components shown in Table 1 were pickled from 600 to 700 ° C for the time shown in Table 2 after completion of hot rolling, and then cold rolled and heat treated at the rates shown in the table and 0.8%. Was temper-rolled.
After that, the JIS No. 5 tensile test piece was sampled and the gauge length was 50 mm,
When a room temperature tensile test was conducted at a tensile speed of 10 mm / min, the tensile strength and total elongation as shown in the same table were obtained. Further, when the amount of retained austenite was determined by the X-ray diffraction method when the surface layer was located at the center of 1/4 of the plate thickness, the values in the table were obtained.

本発明試料である試料No.2、4、5、8、11、14、17、
20、23、26、29、30はいずれも10〜25%の残留オーステ
ナイトを含み引張強度と全伸びの積が2500kgf/mm2・%
以上であることからわかるように高強度にして極めて良
好な成形性を兼備しており、しかも従来技術ではなしえ
なかった温度制御の容易な冷却速度でそれを実現でき
る。これに対し、本発明成分範囲外の鋼a、f、g、
h、iは最適と考え得る処理を施しても試料No.1、31〜
34にあるように、また本発明成分鋼であっても処理条件
に一つでも不適当なところが存在すると試料No.3、6、
7、9、10、12、13、15、16、18、19、21、22、24、2
5、27、28にあるように2500kgf/mm2・%未満の引張強度
と全伸びの積で示されるとおり強度もしくは成形性が劣
ったり、それらが満足のいくものであったとしても工程
上の困難をおして実行するほどのメリットがないものと
なる。
Sample Nos. 2, 4, 5, 8, 11, 14, 17, which are samples of the present invention,
20, 23, 26, 29, 30 all contain 10-25% residual austenite and the product of tensile strength and total elongation is 2500 kgf / mm 2 %
As can be seen from the above, it has high strength and extremely good moldability, and it can be realized at a cooling rate with which temperature control is easy, which has not been possible in the prior art. On the other hand, steels a, f, g which are out of the composition range of the present invention
h and i are sample No. 1, 31-
34, and even in the case of the composition steel of the present invention, if any one of the processing conditions is unsuitable, sample Nos. 3 and 6,
7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 2
As shown in 5, 27, 28, the strength or formability is poor as shown by the product of tensile strength of less than 2500 kgf / mm 2 ·% and total elongation, and even if they are satisfactory, the process It will not have the merit of doing it through difficulty.

(発明の効果) 以上の実施例からわかるように本発明によれば温度制御
を容易とする冷却速度で従来発明で最良とされているの
と同等の良好な成形性を有する高強度鋼板を得ることが
できる。このため実際の操業でもそれほどの困難なく大
量に製造することが可能となり、産業上極めて顕著な効
果が期待できる。
(Effects of the Invention) As can be seen from the above examples, according to the present invention, a high-strength steel sheet having a good formability equivalent to the best in the conventional invention at a cooling rate that facilitates temperature control is obtained. be able to. For this reason, it becomes possible to manufacture a large amount without much difficulty even in the actual operation, and a very remarkable industrial effect can be expected.

【図面の簡単な説明】[Brief description of drawings]

第1図は冷間圧延の後で鋼板に施す熱処理サイクルを示
す図である。
FIG. 1 is a diagram showing a heat treatment cycle applied to a steel sheet after cold rolling.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%でC:0.12〜0.40%、Si:0.30〜1.50
%、Mn:1.50〜3.00%、B:0.0003〜0.0050%、sol.Al:0.
005〜0.100%を含み、残部Feおよび不可避的不純物から
なり、熱間圧延終了後600〜700℃の温度範囲内に1〜20
時間おかれた鋼を酸洗と圧延率35〜80%の冷延を行って
から、700〜850℃の二相共存温度域に加熱し15秒〜5分
保持後、1〜30℃/secの速度で300〜450℃に冷却し、こ
の温度域内で15秒〜10分保定し、その後30秒以内に150
℃以下まで冷却することを特徴とする成形性良好な高強
度鋼板の製造方法。
1. C: 0.12 to 0.40% by weight%, Si: 0.30 to 1.50
%, Mn: 1.50 to 3.00%, B: 0.0003 to 0.0050%, sol.Al: 0.
005 to 0.100%, balance Fe and unavoidable impurities, and 1 to 20 within the temperature range of 600 to 700 ℃ after hot rolling.
After the pickled steel is pickled and cold rolled at a rolling rate of 35 to 80%, it is heated to a two-phase coexistence temperature range of 700 to 850 ° C and held for 15 seconds to 5 minutes, then 1 to 30 ° C / sec. Cool to 300-450 ℃ at a rate of 15 seconds to 10 minutes within this temperature range, then 150 seconds within 30 seconds.
A method for producing a high-strength steel sheet having good formability, which comprises cooling to ℃ or less.
【請求項2】Ni,Cu,Co,Crのうちの1種または2種以上
を重量%で合計1%以下添加することを特徴とする請求
項1記載の成形性良好な高強度鋼板の製造方法。
2. The production of a high-strength steel sheet with good formability according to claim 1, characterized in that one or more of Ni, Cu, Co and Cr are added in a total amount of 1% or less by weight. Method.
JP63249940A 1988-10-05 1988-10-05 Method for producing high strength steel sheet with good formability Expired - Fee Related JPH0670247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63249940A JPH0670247B2 (en) 1988-10-05 1988-10-05 Method for producing high strength steel sheet with good formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63249940A JPH0670247B2 (en) 1988-10-05 1988-10-05 Method for producing high strength steel sheet with good formability

Publications (2)

Publication Number Publication Date
JPH02101117A JPH02101117A (en) 1990-04-12
JPH0670247B2 true JPH0670247B2 (en) 1994-09-07

Family

ID=17200435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63249940A Expired - Fee Related JPH0670247B2 (en) 1988-10-05 1988-10-05 Method for producing high strength steel sheet with good formability

Country Status (1)

Country Link
JP (1) JPH0670247B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099251A1 (en) 2008-02-08 2009-08-13 Jfe Steel Corporation High-strength hot-dip zinc coated steel sheet excellent in workability and process for production thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020511A1 (en) 2010-08-12 2012-02-16 Jfeスチール株式会社 High-strength cold-rolled steel sheet having excellent workability and impact resistance, and method for manufacturing same
KR20220129615A (en) 2020-02-28 2022-09-23 제이에프이 스틸 가부시키가이샤 Steel plate, member and manufacturing method thereof
EP4079884A4 (en) 2020-02-28 2023-05-24 JFE Steel Corporation Steel sheet, member, and methods respectively for producing said steel sheet and said member
CN115151673B (en) 2020-02-28 2024-04-19 杰富意钢铁株式会社 Steel sheet, member, and method for producing same
CN113774274B (en) * 2021-08-05 2022-08-23 武汉钢铁有限公司 Low-cost well-formed battery case steel and production method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421811A (en) * 1977-07-20 1979-02-19 Matsushita Electric Ind Co Ltd Magnetic recorder-reproducer
JPS6043430A (en) * 1983-08-15 1985-03-08 Nippon Kokan Kk <Nkk> Production of composite structure steel sheet having high strength and high workability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421811A (en) * 1977-07-20 1979-02-19 Matsushita Electric Ind Co Ltd Magnetic recorder-reproducer
JPS6043430A (en) * 1983-08-15 1985-03-08 Nippon Kokan Kk <Nkk> Production of composite structure steel sheet having high strength and high workability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099251A1 (en) 2008-02-08 2009-08-13 Jfe Steel Corporation High-strength hot-dip zinc coated steel sheet excellent in workability and process for production thereof

Also Published As

Publication number Publication date
JPH02101117A (en) 1990-04-12

Similar Documents

Publication Publication Date Title
EP3707289B1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
JP3424619B2 (en) High tensile cold rolled steel sheet and method for producing the same
JP2601581B2 (en) Manufacturing method of high strength composite structure cold rolled steel sheet with excellent workability
CN113748219A (en) Cold-rolled martensitic steel and method for martensitic steel
US4159218A (en) Method for producing a dual-phase ferrite-martensite steel strip
US6673171B2 (en) Medium carbon steel sheet and strip having enhanced uniform elongation and method for production thereof
KR20200015817A (en) Low alloy third generation advanced high strength steel
CN113811624A (en) Cold-rolled martensitic steel and method for martensitic steel
US4609410A (en) Method for producing high-strength deep-drawable dual-phase steel sheets
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
EP3853387B1 (en) Cold rolled and coated steel sheet and a method of manufacturing thereof
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
JPH1060593A (en) High strength cold rolled steel sheet excellent in balance between strength and elongation-flanging formability, and its production
CN113840930A (en) Cold rolled and coated steel sheet and method for manufacturing the same
JPH01230715A (en) Manufacture of high strength cold rolled steel sheet having superior press formability
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JP4012475B2 (en) Machine structural steel excellent in cold workability and low decarburization and method for producing the same
JPH03215623A (en) Production of tough high strength steel
JPH0670247B2 (en) Method for producing high strength steel sheet with good formability
JP2003268489A (en) Steel plate for heat treatment and its production method
JP2001329340A (en) High strength steel sheet excellent in formability and its production method
JP2734842B2 (en) High workability hot-rolled high-strength steel sheet and its manufacturing method
JPH0645827B2 (en) Method for manufacturing high strength steel sheet with excellent workability
JPH0394017A (en) Production of high strength sheet metal excellent in local elongation
JPH0670246B2 (en) Method for manufacturing high strength steel plate with good workability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070907

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees