JPH0670246B2 - Method for manufacturing high strength steel plate with good workability - Google Patents

Method for manufacturing high strength steel plate with good workability

Info

Publication number
JPH0670246B2
JPH0670246B2 JP24993988A JP24993988A JPH0670246B2 JP H0670246 B2 JPH0670246 B2 JP H0670246B2 JP 24993988 A JP24993988 A JP 24993988A JP 24993988 A JP24993988 A JP 24993988A JP H0670246 B2 JPH0670246 B2 JP H0670246B2
Authority
JP
Japan
Prior art keywords
austenite
seconds
good workability
strength steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24993988A
Other languages
Japanese (ja)
Other versions
JPH0297620A (en
Inventor
康治 佐久間
理 松村
治 秋末
弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24993988A priority Critical patent/JPH0670246B2/en
Publication of JPH0297620A publication Critical patent/JPH0297620A/en
Publication of JPH0670246B2 publication Critical patent/JPH0670246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は加工性良好な高強度鋼板の製造方法に関するも
のである。
TECHNICAL FIELD The present invention relates to a method for producing a high-strength steel sheet having good workability.

(従来の技術) 乗用車の走行性や快適性、完全性は近年かってなかった
ほど著しい進歩を遂げた。これは搭載される電子制御部
品や安全保安部品の増加と車体投影面積の増加によると
ころが大であるが、その一方で車体総重量にほとんど変
化は見られない。これは主要な構成材料である自動車用
薄鋼板の高強度化によって重量増加が相殺されているた
めである。生活水準の向上を背景とした消費者の高級
化、高性能化指向は今後とも続くことと思われるが、同
時にオイルショックの経験に起因する鋭敏化したコスト
意識も根強く存在するためこの傾向は引き続き認められ
よう。したがって自動車用薄鋼板には60〜100kgf/mm2
超える引張強度を有しながら従来30〜40kgf/mm2級の強
度の鋼が有していたのと勝るとも劣らない優れたプレス
加工性を同時に持つことが要求されることとなろう。
(Prior Art) The running performance, comfort, and integrity of passenger cars have made remarkable progress as never before. This is largely due to an increase in electronic control parts and safety and security parts to be mounted and an increase in the projected area of the car body, but on the other hand, there is almost no change in the total weight of the car body. This is because the increase in weight is offset by the higher strength of the thin steel sheet for automobiles, which is the main constituent material. It is expected that consumers will continue to become more sophisticated and have higher performance due to the improvement of living standards, but at the same time, there is a keen awareness of costs due to the experience of the oil shock, and this trend continues. Be admitted. Therefore press workability in steel sheets for automobiles with excellent compares favorably with steel of the prior 30~40kgf / mm 2 class strength while having a tensile strength greater than 60~100kgf / mm 2 had a It would be required to have them at the same time.

このような高強度と加工性の両立を図った薄鋼板として
は特公昭56-11741号公報等で提案されているフェライト
・マルテンサイト二相鋼いわゆるDual phase鋼が著名
である。これは軟質なフェライトに伸びを、硬質なマル
テンサイトに強度を分担させ、その両立を図って強度延
性バランスを改善した鋼であるが、それでも一つの指標
値とされる引張強度と全伸びの積は2000kgf/mm2・%程
度にすぎず、従来の軟鋼板の場合と同様な形状にプレス
成形することは極めて困難となる。さらに改善を図った
鋼種としては変態誘起塑性(Transformation Induced P
lasticity)の活用を意図して残留オーステナイトを混
在させた鋼が特開昭60−43430号公報や特開昭61−15762
5号公報等で提案されている。軟鋼板用の連続焼鈍設備
を利用して製造でき、しかも比較的単純な化学組成なが
ら10〜15%もの残留オーステナイトを含むこれらの鋼は
たとえば100kgf/mm2の引張強度でも全伸びが30%内外に
達する他、曲げ性や穴拡げ性なども自動車用薄鋼板とし
て要求されるレベルを満足し今後広範な利用が期待され
ている。
Ferrite / martensite dual-phase steel, so-called Dual phase steel, proposed in Japanese Patent Publication No. 56-11741 and the like, is prominent as a thin steel sheet that achieves both high strength and workability. This is a steel in which the elongation is balanced by soft ferrite and the strength by hard martensite, and the balance between strength and ductility is improved to achieve both, but the product of tensile strength and total elongation, which is one index value, is still used. Is only about 2000 kgf / mm 2 ·%, which makes it extremely difficult to press-form into a shape similar to that of conventional mild steel sheets. A further improved steel type is the transformation-induced plasticity (Transformation Induced P
A steel mixed with retained austenite for the purpose of utilizing lasticity is disclosed in JP-A-60-43430 and JP-A-61-15762.
It is proposed in Japanese Patent No. 5, etc. These steels, which can be manufactured using continuous annealing equipment for mild steel sheets, and which have a relatively simple chemical composition and contain as much as 10 to 15% retained austenite, have a total elongation of 30% inside and outside even with a tensile strength of 100 kgf / mm 2 , for example. In addition, the bendability and hole expandability satisfy the level required for thin steel sheets for automobiles and are expected to be widely used in the future.

しかし、これまでに見出された方法で高強度と加工性の
最善の組み合わせを得るために10〜15%程度からさらに
それ以上の残留オーステナイトをフェライトおよびベイ
ナイトと共存させようとすると特開昭62-188729号公報
のように種々の工夫がなされているものの0.20%程度以
上の従来薄鋼板の範疇では一般に考えられていなかった
程のCを含有させる必要がある。このようにCの含有量
が多いとパーライトの比率が大きく冷間圧延で望ましい
圧延率をとることが難しく、連続熱処理ラインでの操業
上種々の困難をまねく。のみならず自動車の車体を組み
立てる際に多用されているスポット溶接で接合部に所要
の強度を付与できないため、従来にない高強度で極めて
良好な加工性をもつにもかかわらずこの種の鋼板を大量
に使用することを妨げていた。
However, in order to obtain the best combination of high strength and workability by the method found so far, it is attempted to make residual austenite of about 10 to 15% or more coexist with ferrite and bainite. Although various measures have been taken as in Japanese Patent No. 188729, it is necessary to contain C of 0.20% or more, which is not generally considered in the category of conventional thin steel sheets. As described above, when the content of C is large, the ratio of pearlite is large and it is difficult to obtain a desired rolling rate in cold rolling, which causes various difficulties in the operation in the continuous heat treatment line. Not only that, because the required strength cannot be added to the joint by spot welding, which is often used when assembling automobile bodies, this type of steel plate is used despite its unprecedented high strength and extremely good workability. It prevented us from using it in large quantities.

(発明が解決しようとする課題) 本発明は前記したような従来技術の有する課題を解決
し、より低いC含有量で残留オーステナイトがもたらす
従来発明と同等以上の良好な加工性を有する高強度鋼板
の製造方法を提供するものである。
(Problems to be Solved by the Invention) The present invention solves the problems of the prior art as described above, and a high-strength steel sheet having good workability equivalent to or better than that of the conventional invention brought about by retained austenite with a lower C content. The present invention provides a method for manufacturing the same.

(課題を解決するための手段) 本発明による高強度鋼板はフェライト、ベイナイト、残
留オーステナイトの混合組織からなることを特徴とし、
目的とする強度を確保するために所要量の残留オーステ
ナイトとベイナイトを、また良好な加工性を得るために
所要量の残留オーステナイトをフェライトと共存させる
必要がある。平衡状態図上でオーステナイト域を広げA1
変態点を下げる元素の量を増せば一般に残留オーステナ
イトは生成しやすくなり、その安定性を調節して変態誘
起塑性による伸びの向上を図ることができる。この種の
元素の代表的なものにNiがありSUS304をはじめとした準
安定オーステナイト系ステンレス鋼に添加されている。
また特公昭44-738号公報や特公昭46-13498号公報のよう
に4〜10%内外のNiを添加して極微細な残留オーステナ
イト粒をマトリクッス中に混在させ低温での靱性を改善
させた鋼がある。このように極めて有用な元素ながらク
ラーク数が0.008と小さいNiは高価であり、多量生産さ
れ安価なことが必須である自動車用薄鋼板にこれほどの
多量添加することはできない。経済性を著しくは損なわ
ない2〜4%のNiを添加した鋼の例にASTM規格のA203鋼
があるが、組織的には何ら特徴のないものであり低温で
の靱性は優れるとしても室温近傍での強度延性バランス
は陳腐である。しかし本発明者らはSiやMnの添加量を適
正化し、軟鋼板の連続焼鈍類似のヒートサイクルからな
る一連の熱処理を施すと相当量の残留オーステナイトが
混在した組織が得られることを見出した。しかもNiのみ
でオーステナイトの安定化を図ったものと異なりCやMn
等の元素による安定化も図られているためMs点とMd点と
の開きが大きく変態誘起塑性の活用が容易であることに
着目し本発明をなしたものである。
(Means for Solving the Problems) The high-strength steel sheet according to the present invention is characterized by comprising a mixed structure of ferrite, bainite, and retained austenite,
It is necessary to coexist a required amount of retained austenite and bainite in order to secure the desired strength, and a required amount of retained austenite and ferrite in order to obtain good workability. Expand the austenite range on the equilibrium diagram A 1
Generally, if the amount of the element that lowers the transformation point is increased, retained austenite is likely to be generated, and its stability can be adjusted to improve the elongation due to transformation-induced plasticity. Ni is a typical element of this kind and is added to metastable austenitic stainless steels such as SUS304.
Further, as in Japanese Patent Publication No. 44-738 and Japanese Patent Publication No. 46-13498, 4-10% of Ni was added inside and outside to improve the toughness at low temperature by mixing extremely fine retained austenite grains in the matrix. There is steel. As described above, Ni, which is a very useful element and has a small Clark number of 0.008, is expensive and cannot be added in such a large amount to thin steel sheets for automobiles, which is essential to be mass-produced and inexpensive. An example of a steel containing 2 to 4% of Ni that does not significantly impair economic efficiency is ASTM standard A203 steel, but it has no structural characteristics and has excellent toughness at low temperatures, but near room temperature. The strength-ductility balance at is obsolete. However, the present inventors have found that a structure in which a considerable amount of retained austenite is mixed can be obtained by optimizing the addition amounts of Si and Mn and performing a series of heat treatments including heat cycles similar to continuous annealing of mild steel sheets. Moreover, unlike the one which aimed at the stabilization of austenite only by Ni, C and Mn
The present invention has been made paying attention to the fact that the Ms point and the Md point have a large difference and the transformation-induced plasticity can be easily utilized because they are also stabilized by such elements as.

すなわち、本発明は重量%でC:0.07〜0.30%、Si:0.30
〜1.50%、Mn:0.20〜2.00%、Ni:1.00〜6.00%、sol.A
l:0.005〜0.100%及び必要に応じてCu,Co,Crのうちの1
種または2種以上を合計1%以下を含み、残部Feおよび
不可避的不純物からなる鋼を熱間圧延し酸洗と圧延率35
〜80%の冷延を行ってから、600〜800℃の二相共存温度
域に加熱し15秒〜5分保持後、1〜200℃/secの速度で2
50〜500℃に冷却し、この温度域内で5秒〜10分保定
し、その後30秒以内に150℃以下まで冷却することを特
徴とする加工性良好な高強度鋼板の製造方法を要旨とす
るものである。
That is, in the present invention, C: 0.07 to 0.30% and Si: 0.30% by weight.
~ 1.50%, Mn: 0.20 ~ 2.00%, Ni: 1.00 ~ 6.00%, sol.A
l: 0.005-0.100% and 1 of Cu, Co, Cr as required
Steel containing at least 1% of one or two or more and the balance Fe and unavoidable impurities is hot-rolled and pickled and rolled at a rolling ratio of 35
~ 80% cold rolling, then heating in the two-phase coexistence temperature range of 600 ~ 800 ℃, hold for 15 seconds ~ 5 minutes, then at the rate of 1 ~ 200 ℃ / sec.
The gist is a method for producing a high-strength steel sheet with good workability, which is characterized by cooling to 50 to 500 ° C, holding for 5 seconds to 10 minutes within this temperature range, and then cooling to 150 ° C or less within 30 seconds. It is a thing.

(作用) 最初に本発明の対象とする鋼の成分範囲の限定理由につ
いて述べる。
(Operation) First, the reason for limiting the composition range of the steel targeted by the present invention will be described.

まず、Cは最も低コストなオーステナイト安定化元素で
あり、二相共存温度域およびベイナイト変態温度域でフ
ェライト中からオーステナイト中に短時間で移動し、そ
の安定度を増す。その結果元素が鋼中で均一分布してい
る時にその化学組成で決まるMs点が室温よりかなり高い
温度であったとしてもMnやNiの分配がもたらす効果と相
乗し室温以下に冷却しても相当量のオーステナイトが残
存する。その結果、従来にない高強度と良好な加工性が
得られる。その添加量は溶接性や衝撃特性を優れたもの
とするには低い方が好ましいが0.07%未満では伸びの向
上が明らかとなるほどの残留オーステナイト量を確保す
ることはできない。一方0.30%を超すようになると残留
オーステナイトは多量に得られるものの加工誘発変態に
よりプレス成形後に存在することとなるマルテンサイト
の量も相当なものとなり諸特性の劣化が著しいし、スポ
ット溶接部で所要の強度を得ることができないため実用
に耐えない。
First, C is the lowest-cost austenite stabilizing element, and it moves from ferrite to austenite in a short time in the two-phase coexistence temperature range and bainite transformation temperature range to increase its stability. As a result, even if the Ms point determined by the chemical composition when the elements are uniformly distributed in the steel is much higher than room temperature, it synergizes with the effect of the distribution of Mn and Ni, and even if cooled to below room temperature The amount of austenite remains. As a result, unprecedented high strength and good workability can be obtained. The addition amount is preferably low in order to improve the weldability and impact properties, but if it is less than 0.07%, it is not possible to secure the amount of retained austenite enough to make the improvement of elongation apparent. On the other hand, when the content exceeds 0.30%, a large amount of retained austenite is obtained, but the amount of martensite that exists after press forming becomes considerable due to work-induced transformation, and the deterioration of various properties is significant, which is necessary for spot welding. It cannot be used for practical purposes because it cannot obtain the strength.

Siはセメンタイト中に固溶しないためその析出を抑制す
る作用を有し、250〜500℃で暫時保持する間に未変態オ
ーステナイト中に固溶限をはるかに越えるCを濃化さ
せ、その安定度を増す。しかし、本発明のC量の範囲で
はSiが0.30%未満ではこのような効果は明らかではな
く、目的を達成するためには0.70%以上が好ましい。一
方、過剰に添加すると酸洗性を著しく悪化させるほどの
スケールを熱延時に生じることとなるし、またCを黒鉛
として析出させることもある。このため1.50%超の過剰
な添加は避けなければならない。
Since Si does not form a solid solution in cementite, it has the effect of suppressing its precipitation. During the temporary holding at 250 to 500 ° C, Si is concentrated in the untransformed austenite far exceeding the solid solubility limit, and its stability is improved. Increase. However, in the C content range of the present invention, such an effect is not clear when Si is less than 0.30%, and 0.70% or more is preferable for achieving the purpose. On the other hand, if it is added in excess, a scale to the extent that the pickling property is significantly deteriorated is generated during hot rolling, and C may be precipitated as graphite. Therefore, excessive addition of more than 1.50% should be avoided.

Mnは二相域からベイナイト変態域への冷却の際にオース
テナイトがパーライトへ分解するのを抑制し、急冷を開
始した時点で存在するオーステナイトをそのままの状態
で500℃以下まで持ち来す上でその添加が極めて有効な
元素である。またNiとともにオーステナイト形成元素に
分類され、その安定に存在する温度域を広げ残留オース
テナイトの生成を容易にする。その量が0.20%未満だと
熱延時に熱間脆性を生じる可能性があり、また500℃ま
で冷却する途上でパーライトが大量に生じるので適当で
ない。しかし、2.00%を超すようになると先に述べたよ
うな目的は達せられるものの、Cの濃化によるオーステ
ナイトの安定化反応に極めて長時間を要することとな
り、連続ラインでの多量生産を事実上不可能なものとす
る。また、バンド組織の形成により特性を劣化させるこ
ともあるから避けなければならない。
Mn suppresses the decomposition of austenite into pearlite during the cooling from the two-phase region to the bainite transformation region, and brings the austenite existing at the time of starting the quenching to 500 ° C or less as it is. It is an extremely effective element to add. Further, it is classified as an austenite forming element together with Ni, and widens the temperature range in which it is stable and facilitates the formation of retained austenite. If the amount is less than 0.20%, hot brittleness may occur during hot rolling, and a large amount of pearlite is generated during cooling to 500 ° C, which is not suitable. However, if the content exceeds 2.00%, the above-mentioned object can be achieved, but the stabilization reaction of austenite due to the concentration of C requires an extremely long time, and it is practically impossible to produce a large amount in a continuous line. It should be possible. Further, the characteristics may be deteriorated due to the formation of the band structure, so that it must be avoided.

また、Niはオーステナイト形成元素であり鉄中に置換型
元素として固溶し、そのMs点を下げる。このため特開昭
62-188729号公報に示されるような従来の発明例よりそ
のC濃度が低くとも、室温以下に冷却した時にオーステ
ナイトをマルテンサイトに変態することなく残存させう
る。またセメンタイトには固溶しないためSi同様に250
〜500℃での保定中にCが炭化物として析出するのを抑
制しながらオーステナイトへの濃化を促進する。しか
し、その量が1.00%未満では添加の効果が認められな
い。また、6.00%を超すと本発明のヒートサイクルによ
れば熱処理完了後に残留オーステナイトの量が30%を超
し、オーステナイトが連結して存在しやすくなるため塑
性誘起変態が一度に起こり、目的とするような大きな伸
びが得られない。
Further, Ni is an austenite-forming element, which forms a solid solution in iron as a substitutional element, and lowers its Ms point. For this reason
Even if the C concentration is lower than that of the conventional invention example as disclosed in Japanese Patent Laid-Open No. 62-188729, austenite can remain without being transformed into martensite when cooled to room temperature or lower. Since it does not form a solid solution with cementite, it is 250 as with Si.
It promotes the enrichment into austenite while suppressing the precipitation of C as carbides during retention at ~ 500 ° C. However, if the amount is less than 1.00%, the effect of addition is not recognized. Further, if it exceeds 6.00%, according to the heat cycle of the present invention, the amount of retained austenite exceeds 30% after the heat treatment is completed, and austenite is likely to be present in a coupled state, so that plastic-induced transformation occurs at one time, and it is aimed. I can't get such a big growth.

さらに、sol.Alは脱酸元素として、またAlNによる熱延
素材の細粒化、および一連の熱処理工程における結晶粒
の粗大化を抑制することで材質が改善されるため0.005
〜0.100%を添加する。その量が0.005%未満だと目的と
する効果が不十分であり、0.100%を超すと介在物によ
り靱性が劣化することがあるので避けなければならな
い。
Further, sol.Al is a deoxidizing element, and the material is improved by suppressing the grain refinement of the hot rolled material by AlN and the coarsening of the crystal grains in the series of heat treatment steps.
Add ~ 0.100%. If the amount is less than 0.005%, the desired effect is insufficient, and if it exceeds 0.100%, the toughness may deteriorate due to inclusions, so it must be avoided.

本発明の鋼は以上を基本成分とするが、これらの元素お
よびFe以外にP、S、Nその他の一般に鋼に対して不可
避的に混入する元素を含むものである。またオーステナ
イト形成元素のCuやCo、焼入れ性を増す元素であるCr等
を添加し、残留オーステナイト量を増すことは本発明の
目的を達成する上で好ましいことである。しかし、過大
に添加すると複雑な組成の化合物を微細に析出し加工性
を著しく劣化することがあるのでその量は合計で1%以
下に限定する。
The steel of the present invention has the above-mentioned basic components, but in addition to these elements and Fe, it also contains P, S, N and other elements that are generally unavoidably mixed with steel. Further, it is preferable to increase the amount of retained austenite by adding Cu or Co, which is an austenite-forming element, or Cr, which is an element that increases hardenability, in order to achieve the object of the present invention. However, if added excessively, a compound having a complicated composition may be finely precipitated and workability may be significantly deteriorated. Therefore, the total amount is limited to 1% or less.

次に工程上の限定理由を詳述する。本発明では熱間圧延
した鋼板を酸洗し、圧延率35〜80%の冷延を行う。これ
は引き続いて行う一連のサイクルからなる熱処理後に微
細な残留オーステナイトがフェライトとベイナイトの中
に分散した組織を得ることを目的とする。この圧延率が
35%未満だと組織の微細化が不十分であるため、本発明
に規定した熱処理を施しても十分な量の残留オーステナ
イトが得られず、伸びをはじめとした特性の劣ったもの
しか得られない。その効果は圧延率が増すと飽和する傾
向にあり、80%を超えた冷延を行うことは圧延に要する
動力が莫大なものとなるだけで効果が小さいため適当で
ない。
Next, the reasons for limitation in the process will be described in detail. In the present invention, the hot rolled steel sheet is pickled and cold rolled at a rolling ratio of 35 to 80%. This aims at obtaining a structure in which fine retained austenite is dispersed in ferrite and bainite after heat treatment consisting of a series of subsequent cycles. This rolling rate
If it is less than 35%, the micronization of the structure is insufficient, so even if the heat treatment specified in the present invention is applied, a sufficient amount of retained austenite cannot be obtained, and only those having poor properties such as elongation are obtained. Absent. The effect tends to be saturated as the rolling rate increases, and cold rolling exceeding 80% is not suitable because the power required for rolling becomes enormous and the effect is small.

本発明の一連のサイクルからなる熱処理ではまず最初に
600〜800℃の二相共存温度域に加熱し15秒〜5分保持す
る。本発明の成分系を有する鋼板にこの加熱を行うと固
溶限以上の炭化物はほとんど消滅し、オーステナイトが
40〜80%存在し、フェライトが残余をしめる組織状態が
現出される。拡散定数の大きいCはオーステナイト中に
濃化しフェライト中では希薄となる。このため引き続く
一連のサイクルを経た後では8〜30%の残留オーステナ
イトがフェライトとベイナイトの混在した中に微細に分
散した組織が得られ高強度にして加工性良好な鋼板とす
ることができる。
First of all, in the heat treatment consisting of a series of cycles of the present invention,
Heat to the two-phase coexistence temperature range of 600 to 800 ° C and hold for 15 seconds to 5 minutes. When this heating is performed on the steel sheet having the component system of the present invention, the carbides above the solid solution limit are almost extinguished, and austenite becomes
A structure state where 40-80% is present and ferrite remains is revealed. C, which has a large diffusion constant, is concentrated in austenite and becomes rare in ferrite. Therefore, after a series of subsequent cycles, a structure in which retained austenite of 8 to 30% is finely dispersed in a mixture of ferrite and bainite can be obtained, and a steel sheet having high strength and good workability can be obtained.

加熱温度が600℃未満の時、連続ラインで実現すること
のできる時間内では炭化物が溶解せずオーステナイトの
存在量もごく僅かであり、また再結晶も不十分な状態で
あるため後に続く処理が本発明に規定されるものであっ
たとしても高強度にして加工性良好な鋼板とすることは
できない。一方、800℃を超える温度域に加熱すること
は多大なエネルギーを要し不経済であるばかりか表面性
状が劣化する等種々の好ましくない現象を生む。この温
度域での保持時間が15秒未満では未溶解炭化物が存在す
る可能性が大であり、望まれるだけの量のオーステナイ
トが形成されず強度と加工性の両立が図れない。一方、
5分を超えた保持は連続ラインで経済的な多量生産をす
るには適さないし、行ったとしても結晶粒粗大化等によ
り材質が劣化する可能性がある。
When the heating temperature is less than 600 ° C, the carbide does not dissolve within the time that can be realized in the continuous line, the austenite content is very small, and the recrystallization is insufficient, so that the subsequent treatment is not possible. Even if it is defined in the present invention, it is not possible to obtain a steel sheet having high strength and good workability. On the other hand, heating to a temperature range exceeding 800 ° C. requires a large amount of energy, is uneconomical, and causes various undesirable phenomena such as deterioration of surface properties. If the holding time in this temperature range is less than 15 seconds, there is a high possibility that undissolved carbides will be present, and the desired amount of austenite will not be formed, making it impossible to achieve both strength and workability. on the other hand,
Holding for more than 5 minutes is not suitable for economical mass production in a continuous line, and even if it is carried out, the material may be deteriorated due to coarsening of crystal grains.

本発明ではこの後1〜200℃/secの速度で250〜500℃に
冷却する。これは二相域に加熱して生成させたオーステ
ナイトをパーライトに変態することなくベイナイト変態
域に持ち来し、引き続く処理により室温では残留オース
テナイトとベイナイトとして所定の特性を得ることを目
的とする。この冷却速度が1℃/sec未満ということは臨
界冷却速度以下であることを意味し、オーステナイトの
ほとんどがパーライト変態するため熱処理後にはベイナ
イトも残留オーステナイトもごく僅かの量となり強度も
低く加工性も良好ではない。逆に200℃/secを超えるよ
うだと針状のフェライトが生成し強度延性バランスの劣
化をもたらす原因となる。また鋼板全体にわたって目標
とした温度で冷却を終了することが難しく、形状も工業
的な用途に耐えられないものとなることがある。この冷
却が500℃よりも高い温度で終了するとSiやNiを含んで
いてもその後の保持中に炭化物が急速に生成しオーステ
ナイト中のC濃度が急減するのでそれを室温まで残留す
ることが不可能となる。一方NiやMnのオーステナイト安
定化元素が添加されているとは言え、二相域で生成した
ままの状態ではMs点を250℃未満に下げるほどにオース
テナイト中にCが濃化していないため、そのまま250℃
未満に冷却すると多量のマルテンサイトを生じ、その後
に焼戻されたとしても強度は十分としても加工性は良好
と言える範囲にはなりえない。なお二相域での均熱終了
後550〜700℃までを1〜20℃/sec、それ以下を25〜200
℃/secで冷却し、上段での緩冷中にNiやMn等を残存する
オーステナイト中に濃化させながら清浄なフェライトを
成長させることは残留オーステナイト量の増加にもつな
がり加工性をさらに良好とする好ましい方法である。
In the present invention, this is followed by cooling to 250 to 500 ° C at a rate of 1 to 200 ° C / sec. The purpose of this is to bring austenite produced by heating in the two-phase region to the bainite transformation region without transforming it into pearlite, and to obtain predetermined properties as residual austenite and bainite at room temperature by subsequent treatment. This cooling rate of less than 1 ° C / sec means that it is below the critical cooling rate, and most of the austenite undergoes pearlite transformation, so that after the heat treatment, the amount of bainite and retained austenite is extremely small and the strength is low and the workability is also low. Not good. On the other hand, if it exceeds 200 ° C / sec, acicular ferrite is formed, which causes deterioration of the strength-ductility balance. Further, it is difficult to finish cooling at the target temperature over the entire steel sheet, and the shape may not be able to withstand industrial use. When this cooling is completed at a temperature higher than 500 ° C, even if Si and Ni are contained, carbide is rapidly generated during the subsequent holding and the C concentration in austenite sharply decreases, so that it cannot be left at room temperature. Becomes On the other hand, although the austenite stabilizing elements such as Ni and Mn are added, C is not concentrated in austenite to such an extent that the Ms point is lowered to less than 250 ° C. in the state where it is formed in the two-phase region, so it is as it is. 250 ° C
If cooled to less than a large amount, a large amount of martensite is produced, and even if it is tempered after that, the workability cannot be said to be in a range in which it can be said to be good even if the strength is sufficient. After soaking in the two-phase region, 1 to 20 ℃ / sec up to 550 to 700 ℃, 25 to 200 ℃ below
Cooling at ℃ / sec and growing clean ferrite while concentrating Ni, Mn, etc. in the remaining austenite during slow cooling in the upper stage leads to an increase in the amount of retained austenite and further improves workability. Is the preferred method.

この冷却終了後、本発明では250〜500℃に5秒〜10分保
定し、その後30秒以内に150以下まで冷却する。これは
本発明成分の鋼ではオーステナイトからベイナイトへの
変態が二段階に分離することを活用し、炭化物をほとん
ど含まないベイナイトとその部分から掃きだされたCが
濃化しNiやMn等による安定化と合わせてMs点が室温以下
に低下した残留オーステナイト、および二相域加熱中に
純化が進んだ残存フェライトや先の冷却中に成長した清
浄なフェライトの混在した組織を現出させ、高強度と良
好な加工性を両立させることにある。この保定温度が50
0℃よりも高いとその間に炭化物が急速に生成しオース
テナイト中のC濃度が急減するのでそれを残留すること
は不可能となる。一方保定温度が250℃未満だと実質的
にCの拡散が困難となるため未変態オーステナイト中に
Cが濃化せずMs点を室温以下に下げることができないた
め残留オーステナイトを得る上で有効なものとならな
い。この保定時間が5秒未満ではベイナイト変態の進行
が不十分なためCが十分に濃化していないオーステナイ
トは室温までの冷却中にマルテンサイト変態し、得られ
る鋼板は高強度ではあるものの加工性に乏しいものとな
る。また保定時間が10分を超すとベイナイト変態がさら
に進み、前段の反応でCの濃化したオーステナイトも炭
化物を析出してベイナイトに分解するため変態誘起塑性
により加工性を改善する残留オーステナイト量の不足を
もたらすこととなる。この後150℃以下まで冷却するの
に30秒を超える時間要した場合も同様であり、発明の目
的を達し得ない。
After completion of this cooling, in the present invention, the temperature is held at 250 to 500 ° C. for 5 seconds to 10 minutes, and then cooled to 150 or less within 30 seconds. This is because in the steel of the composition of the present invention, the transformation from austenite to bainite is separated into two stages, and bainite containing almost no carbide and C swept out from that portion are concentrated and stabilized by Ni, Mn, etc. In addition, the residual austenite whose Ms point has dropped below room temperature, the residual ferrite that has been purified during heating in the two-phase region, and the structure in which clean ferrite that has grown during the previous cooling are mixed are revealed, and high strength is achieved. It is to make good workability compatible. This holding temperature is 50
When the temperature is higher than 0 ° C, carbides are rapidly formed during that period, and the C concentration in austenite is rapidly reduced, so that it is impossible to remain. On the other hand, if the holding temperature is less than 250 ° C, it is substantially difficult to diffuse C, so that C is not concentrated in the untransformed austenite and the Ms point cannot be lowered to room temperature or lower, which is effective in obtaining retained austenite. It doesn't matter. If the holding time is less than 5 seconds, the progress of bainite transformation is insufficient, so austenite in which C is not sufficiently enriched undergoes martensite transformation during cooling to room temperature, and the resulting steel sheet has high strength but is difficult to work. It will be scarce. If the retention time exceeds 10 minutes, the bainite transformation proceeds further, and the austenite enriched with C in the previous reaction also precipitates carbides and decomposes into bainite, so the workability is improved by transformation-induced plasticity. Will bring. This is also the case when it takes more than 30 seconds to cool to 150 ° C. or lower, and the object of the invention cannot be achieved.

なお、以上に説明してきた工程における二相域での加熱
温度や二相域からの冷却が終了した後の保定温度、また
その間の冷却速度は規定の範囲内であれば一定である必
要はなく、その範囲内で変動したとしても最終製品の特
性をなんら劣化させはしないし向上する場合もある。
It should be noted that the heating temperature in the two-phase region and the holding temperature after the cooling from the two-phase region in the process described above, and the cooling rate during that period do not have to be constant as long as they are within the specified range. Even if it fluctuates within that range, the characteristics of the final product may not be deteriorated or improved in some cases.

(実施例) 第1表に成分を示す鋼を熱間圧延し酸洗した後、第2表
に記載するような条件の冷間圧延と一連のサイクルから
なる熱処理を行った。その後0.8%の調質圧延を施して
からJIS5号引張試験片を調製し、ゲージ長さ50mm、引張
速度10mm/minで常温引張試験を行ったところ同表に記載
するような引張強度と全伸びを得た。
(Example) Steels having the components shown in Table 1 were hot-rolled and pickled, and then cold-rolled under the conditions as shown in Table 2 and heat treatment consisting of a series of cycles was performed. Then, after subjecting to 0.8% temper rolling, a JIS No. 5 tensile test piece was prepared and subjected to a room temperature tensile test at a gauge length of 50 mm and a tensile speed of 10 mm / min. Got

本発明試料である試料No.2、4、5、7、8、11、14、
17、18、20、22、23、26、27、30、34はいずれも2500kg
f/mm2・%を超える引張強度と全伸びの積を有すること
から判断できるように高強度であると同時に良好な加工
性を有している。これに対し本発明成分範囲外の鋼a、
c、g、h、i、kは最適と考え得る処理を施しても試
料No.1、3、31〜33、35にあるように、また本発明成分
鋼であっても処理条件に一つでも不適切なところが存在
すると試料No.6、9、10、12、13、15、16、19、21、2
4、25、28、29にあるように引張強度か全伸びのいずれ
か、あるいは両方が劣るため2500kgf/mm2・%未満の引
張強度と全伸びの積しか得られず、加工性良好な高強度
鋼板とはなし得ない。
Sample Nos. 2, 4, 5, 7, 8, 11, 14, which are samples of the present invention,
17, 18, 20, 22, 23, 26, 27, 30, 34 are all 2500 kg
As it can be judged from the product of tensile strength and total elongation exceeding f / mm 2 ·%, it has high strength as well as good workability. On the other hand, steel a outside the composition range of the present invention,
c, g, h, i, and k are the same as in Sample Nos. 1, 3, 31 to 33, and 35 even if the treatment considered to be optimum is performed, and even in the case of the component steel of the present invention However, if there are inappropriate places, sample Nos. 6, 9, 10, 12, 13, 15, 16, 19, 21, 2
As shown in 4, 25, 28, 29, either tensile strength or total elongation is poor, or both are inferior, so only a product of tensile strength and total elongation of less than 2500 kgf / mm 2 It cannot be a strong steel plate.

(発明の効果) 以上の実施例から明らかなように本発明によれば5〜30
%の残留オーステナイトがフェライトおよびベイナイト
と共存することにより引張強度50〜140kgf/mm2の広い範
囲にわたり加工性良好な高強度鋼板を得ることができ
る。しかも従来発明よりもはるかに低いC含有量でこの
ような特性がえられるため、本発明の有する効果は産業
上極めて大きなものである。
(Effects of the Invention) As is clear from the above examples, according to the present invention,
% Of residual austenite coexists with ferrite and bainite, it is possible to obtain a high-strength steel sheet with good workability over a wide range of tensile strength of 50 to 140 kgf / mm 2 . Moreover, since such characteristics can be obtained with a much lower C content than in the conventional invention, the effect of the present invention is extremely great industrially.

【図面の簡単な説明】[Brief description of drawings]

第1図は冷間圧延の後で鋼板に施す熱処理サイクルを示
す図である。
FIG. 1 is a diagram showing a heat treatment cycle applied to a steel sheet after cold rolling.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 302 Z 38/52 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C22C 38/00 302 Z 38/52

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重量%でC:0.07〜0.30%、Si:0.30〜1.50
%、Mn:0.20〜2.00%、Ni:1.00〜6.00%、sol.Al:0.005
〜0.100%を含み、残部Feおよび不可避的不純物からな
る鋼を熱間圧延し酸洗と圧延率35〜80%の冷延を行って
から、600〜800℃の二相共存温度域に加熱し15秒〜5分
保持後、1〜200℃/secの速度で250〜500℃に冷却し、
この温度域内で5秒〜10分保定し、その後30秒以内に15
0℃以下まで冷却することを特徴とする加工性良好な高
強度鋼板の製造方法。
1. C: 0.07 to 0.30% by weight, Si: 0.30 to 1.50
%, Mn: 0.20 to 2.00%, Ni: 1.00 to 6.00%, sol.Al: 0.005
~ 0.100% and the balance Fe and unavoidable impurities are hot-rolled, pickled and cold-rolled at a rolling ratio of 35-80%, and then heated in the two-phase coexistence temperature range of 600-800 ° C. After holding for 15 seconds to 5 minutes, cool to 250 to 500 ° C at a rate of 1 to 200 ° C / sec,
Hold for 5 seconds to 10 minutes within this temperature range, then within 15 seconds for 15 seconds
A method for producing a high-strength steel sheet with good workability, which comprises cooling to 0 ° C or less.
【請求項2】Cu、Co、Crのうちの1種または2種以上を
重量%で合計1%以下添加することを特徴とする請求項
1記載の加工性良好な高強度鋼板の製造方法。
2. The method for producing a high-strength steel sheet with good workability according to claim 1, wherein one or more of Cu, Co and Cr are added in a total amount of 1% or less by weight.
【請求項3】二相共存温度域に加熱し15秒〜5分保持後
の冷却を、550〜700℃までを1〜20℃/sec、それ以下を
25〜200℃/secとすることを特徴とする請求項1または
2記載の加工性良好な高強度鋼板の製造方法。
3. Cooling after heating in the two-phase coexistence temperature range and holding for 15 seconds to 5 minutes, 1 to 20 ° C./sec up to 550 to 700 ° C., and below
25-200 degreeC / sec is set, The manufacturing method of the high strength steel plate with favorable workability of Claim 1 or 2 characterized by the above-mentioned.
JP24993988A 1988-10-05 1988-10-05 Method for manufacturing high strength steel plate with good workability Expired - Fee Related JPH0670246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24993988A JPH0670246B2 (en) 1988-10-05 1988-10-05 Method for manufacturing high strength steel plate with good workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24993988A JPH0670246B2 (en) 1988-10-05 1988-10-05 Method for manufacturing high strength steel plate with good workability

Publications (2)

Publication Number Publication Date
JPH0297620A JPH0297620A (en) 1990-04-10
JPH0670246B2 true JPH0670246B2 (en) 1994-09-07

Family

ID=17200420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24993988A Expired - Fee Related JPH0670246B2 (en) 1988-10-05 1988-10-05 Method for manufacturing high strength steel plate with good workability

Country Status (1)

Country Link
JP (1) JPH0670246B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099251A1 (en) 2008-02-08 2009-08-13 Jfe Steel Corporation High-strength hot-dip zinc coated steel sheet excellent in workability and process for production thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3840436B2 (en) 2002-07-12 2006-11-01 株式会社神戸製鋼所 High strength steel plate with excellent workability
JP4288364B2 (en) 2004-12-21 2009-07-01 株式会社神戸製鋼所 Composite structure cold-rolled steel sheet with excellent elongation and stretch flangeability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099251A1 (en) 2008-02-08 2009-08-13 Jfe Steel Corporation High-strength hot-dip zinc coated steel sheet excellent in workability and process for production thereof

Also Published As

Publication number Publication date
JPH0297620A (en) 1990-04-10

Similar Documents

Publication Publication Date Title
US5328528A (en) Process for manufacturing cold-rolled steel sheets with high-strength, and high-ductility and its named article
JP2601581B2 (en) Manufacturing method of high strength composite structure cold rolled steel sheet with excellent workability
WO1996017964A1 (en) Ultra-high strength steels and method thereof
JP3233743B2 (en) High strength hot rolled steel sheet with excellent stretch flangeability
US4398970A (en) Titanium and vanadium dual-phase steel and method of manufacture
US4426235A (en) Cold-rolled high strength steel plate with composite steel structure of high r-value and method for producing same
CA3180469A1 (en) 780 mpa-class cold-rolled and annealed dual-phase steel and manufacturing method therefor
JP3417878B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue properties and its manufacturing method
US4609410A (en) Method for producing high-strength deep-drawable dual-phase steel sheets
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JP2588421B2 (en) Method for producing ultra-high strength steel with excellent ductility
JPH05179345A (en) Production of compound structure steel plate having high workability and high strength
JPH1161272A (en) Manufacture of high carbon cold-rolled steel plate excellent in formability
JPH0670247B2 (en) Method for producing high strength steel sheet with good formability
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JP2821481B2 (en) Manufacturing method of high-strength thin steel sheet with excellent local elongation
JPH0670246B2 (en) Method for manufacturing high strength steel plate with good workability
JP2001329340A (en) High strength steel sheet excellent in formability and its production method
JP2734842B2 (en) High workability hot-rolled high-strength steel sheet and its manufacturing method
JPH0645827B2 (en) Method for manufacturing high strength steel sheet with excellent workability
JPH059576A (en) Production of non-heattreated bar steel excellent in toughness at low temperature
JPH0665645A (en) Production of high ductility hot rolled high tensile strength steel sheet
KR960005222B1 (en) Making method of high nitrogen austenite stainless cold steel sheet
KR100470652B1 (en) A method for manufacturing high strength cold rolled steel sheet with superior formability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070907

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees