CA3180469A1 - 780 mpa-class cold-rolled and annealed dual-phase steel and manufacturing method therefor - Google Patents
780 mpa-class cold-rolled and annealed dual-phase steel and manufacturing method therefor Download PDFInfo
- Publication number
- CA3180469A1 CA3180469A1 CA3180469A CA3180469A CA3180469A1 CA 3180469 A1 CA3180469 A1 CA 3180469A1 CA 3180469 A CA3180469 A CA 3180469A CA 3180469 A CA3180469 A CA 3180469A CA 3180469 A1 CA3180469 A1 CA 3180469A1
- Authority
- CA
- Canada
- Prior art keywords
- cold
- rolled
- phase steel
- annealed dual
- dual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000885 Dual-phase steel Inorganic materials 0.000 title claims abstract description 74
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 238000000137 annealing Methods 0.000 claims abstract description 23
- 238000005452 bending Methods 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 17
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 17
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 13
- 238000005496 tempering Methods 0.000 claims abstract description 13
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 12
- 238000005097 cold rolling Methods 0.000 claims abstract description 12
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 12
- 229910052729 chemical element Inorganic materials 0.000 claims abstract description 11
- 238000005098 hot rolling Methods 0.000 claims abstract description 9
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 8
- 238000003723 Smelting Methods 0.000 claims abstract description 5
- 238000009749 continuous casting Methods 0.000 claims abstract description 5
- 239000011159 matrix material Substances 0.000 claims abstract description 4
- 238000001816 cooling Methods 0.000 claims description 29
- 238000005096 rolling process Methods 0.000 claims description 11
- 238000002791 soaking Methods 0.000 claims description 11
- 229910052717 sulfur Inorganic materials 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 230000009467 reduction Effects 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 229910000831 Steel Inorganic materials 0.000 description 59
- 239000010959 steel Substances 0.000 description 59
- 239000000203 mixture Substances 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000013461 design Methods 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 8
- 230000001627 detrimental effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910000742 Microalloyed steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C47/00—Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
- B21C47/02—Winding-up or coiling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0242—Flattening; Dressing; Flexing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0081—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Disclosed is a cold-rolled and annealed dual-phase steel having a tensile strength of greater than 780 MPa. A matrix structure thereof is fine and uniform martensite + ferrite. The cold-rolled and annealed dual-phase steel contains the following chemical elements in the following mass percentages: C: 0.1%-0.13%, Si: 0.4%-0.8%, Mn: 1.65%-1.9%, Al: 0.01%-0.05%, Nb: 0.01-0.03%, and Ti: 0.01-0.03%. Furthermore, the cold-rolled annealed dual-phase steel does not contain the elements Cr or Mo. In addition, also disclosed is a method for manufacturing the cold-rolled and annealed dual-phase steel, comprising smelting and continuous casting, hot rolling, cold rolling, annealing, tempering and flattening. The cold-rolled and annealed dual-phase steel of the present invention is not only economical, but also has the characteristics of high strength, excellent elongation and cold bending properties.
Description
Abstract Disclosed is a cold-rolled and annealed dual-phase steel having a tensile strength of greater than 780 MPa. A matrix structure thereof is fine and uniform martensite +
ferrite. The cold-rolled and annealed dual-phase steel contains the following chemical elements in the following mass percentages: C: 0.1%-0.13%, Si: 0.4%-0.8%, Mn: 1.65%-1.9%, Al: 0.01%-0.05%, Nb:
0.01-0.03%, and Ti: 0.01-0.03%. Furthermore, the cold-rolled annealed dual-phase steel does not contain the elements Cr or Mo. In addition, also disclosed is a method for manufacturing the cold-rolled and annealed dual-phase steel, comprising smelting and continuous casting, hot rolling, cold rolling, annealing, tempering and flattening. The cold-rolled and annealed dual-phase steel of the present invention is not only economical, but also has the characteristics of high strength, excellent elongation and cold bending properties.
MANUFACTURING METHOD THEREFOR
Technical Field The present disclosure relates to a metallic material and a method for manufacturing the same, particularly to a cold-rolled and annealed dual-phase steel and a method for manufacturing the same.
Background Art As the global energy crisis and environmental problems are becoming more and more severe, energy conservation and safety have become the main direction of the development of the automobile manufacturing industry. One of the measures for energy saving and emission reduction is to reduce vehicle weight. High-strength dual-phase steel has good mechanical properties and usability, and can be effectively used to produce vehicle structural parts.
Along with the development of ultra-high strength steel and current market changes, it is desirable that ultra-high strength steel is economical and has better performances. At present, 780 DP steel is still the mainstream steel in applications. It accounts for 60% of the total amount of DP
steel, and it is widely used for various types of structural members and safety members. Along with the ongoing trend of weight reduction and energy saving in the automobile industry, and the rapid advancement of the technical level of the steel makers around the globe, especially those in China, the main concerns in the development of dual-phase steel in the future must be low cost and high performances in combination.
Canadian Patent Application No. CA2526488 published on December 2, 2004 and entitled "A COLD-ROLLED STEEL SHEET HAVING A TENSILE STRENGTH OF 780 MPA OR
MORE, AN EXCELLENT LOCAL FORMABILITY AND A SUPPRESSED INCREASE IN
WELD HARDNESS" discloses a cold-rolled steel sheet having a chemical composition of: C:
0.05-0.09%; Si: 0.4-1.3%; Mn: 2.5-3.2%; optional Mo: 0.05-0.5% or Ni: 0.05-2%;
P:
0.001-0.05%; S<0.08*Ti-3.43*N+0.004; N<0.006%; Al: 0.005-0.10%; Ti: 0.001-0.045%;
optional Nb < 0.04% or B: 0.0002-0.0015%; optional Ca for treatment, with the balance of Fe and unavoidable impurities. It requires a bainite content of greater than 7%;
Pcm<0.3; hot rolling at a temperature equal to or higher than Ar3; coiling at 700 C or lower; cold rolling; annealing at a temperature of 700-900 C; and rapid cooling from a temperature of 550-700 C.
Finally, a high-strength steel having a minimum strength of 780 Mpa is obtained. The steel has the characteristics of strong local deformation ability and low hardness in the welding area. However, the high Mn content used in the design of this steel will inevitably result in a severe banded structure which will lead to nonuniform mechanical properties. In addition, while a high content of Mn is added, a relatively large amount of Si is added. This is detrimental to both the surface quality and welding performance of the steel.
United States Patent Publication No. US20050167007 published on August 4, 2005 discloses a method for manufacturing a high-strength steel sheet comprising the following chemical composition: 0.05-0.13% C, 0.5-2.5% Si, 0.5-3.5% Mn, 0.05-1% Cr, 0.05-0.6% Mo, <0.1% Al, <0.005% S, <0.01% N, <0.03% P, with addition of 0.005-0.05% Ti or 0.005-0.05%
Nb or 0.005-0.2% V. The steel is hot rolled at a temperature equal to or higher than Ar3, coiled at 450-700 C, annealed, quenched from 700-600 C by cooling at a cooling rate of 100 C/s, and then tempered at 180-450 C. Finally, a high-strength steel having a tensile strength of 780 Mpa and a hole expansion rate of higher than 50% is obtained. The main problem of this steel is that the total amount of alloy is too high and the Si content is high, which is detrimental to the weldability or phosphatability of the steel.
Chinese Patent Publication No. CN101363099A published on February 11, 2009 entitled "COLD-ROLLED DUAL-PHASE STEEL SHEET WITH TENSILE STRENGTH OF 1000 MPA
AND METHOD FOR PREPARING SAME" discloses an ultra-high-strength dual-phase steel comprising C: 0.14-0.21%, Si: 0.4-0.9%, Mn: 1.5-2.1%, P: <0.02%, S<0.01%, Nb:
0.001-0.05%, V: 0.001-0.02%. After hot rolling and cold rolling, it is held at 760-820 C, cooled at a cooling rate of 40-50 C/s, and overaged at 240-320 C for 180-300 s. The carbon equivalent is high in the design of this steel, and the steel is not characterized by balanced performances.
As it can be seen, although the 780 M pa dual-phase steels designed according to some of the existing patent technologies exhibit good formability, they have either high contents of C and Si, or high contents of alloy elements such as Cr, Ni, and Mo. This is detrimental to the weldability, surface quality or phosphatability of the steels, and the cost is also high.
In addition, for some steels with high Si contents, although the hole expansion rate is very high and the bendability is good, the yield ratio is high, and the stamping performance is degraded.
Summary One of the objects of the present disclosure is to provide an economical 780 MPa grade cold-rolled and annealed dual-phase steel. By reasonably designing the alloy elements and the manufacturing process for the cold-rolled and annealed dual-phase steel, the resulting steel plate has a strength of 780MPa grade with no addition of Mo and Cr, and a fine and uniform martensite + ferrite dual-phase structure is obtained to ensure excellent performances of elongation and cold
ferrite. The cold-rolled and annealed dual-phase steel contains the following chemical elements in the following mass percentages: C: 0.1%-0.13%, Si: 0.4%-0.8%, Mn: 1.65%-1.9%, Al: 0.01%-0.05%, Nb:
0.01-0.03%, and Ti: 0.01-0.03%. Furthermore, the cold-rolled annealed dual-phase steel does not contain the elements Cr or Mo. In addition, also disclosed is a method for manufacturing the cold-rolled and annealed dual-phase steel, comprising smelting and continuous casting, hot rolling, cold rolling, annealing, tempering and flattening. The cold-rolled and annealed dual-phase steel of the present invention is not only economical, but also has the characteristics of high strength, excellent elongation and cold bending properties.
MANUFACTURING METHOD THEREFOR
Technical Field The present disclosure relates to a metallic material and a method for manufacturing the same, particularly to a cold-rolled and annealed dual-phase steel and a method for manufacturing the same.
Background Art As the global energy crisis and environmental problems are becoming more and more severe, energy conservation and safety have become the main direction of the development of the automobile manufacturing industry. One of the measures for energy saving and emission reduction is to reduce vehicle weight. High-strength dual-phase steel has good mechanical properties and usability, and can be effectively used to produce vehicle structural parts.
Along with the development of ultra-high strength steel and current market changes, it is desirable that ultra-high strength steel is economical and has better performances. At present, 780 DP steel is still the mainstream steel in applications. It accounts for 60% of the total amount of DP
steel, and it is widely used for various types of structural members and safety members. Along with the ongoing trend of weight reduction and energy saving in the automobile industry, and the rapid advancement of the technical level of the steel makers around the globe, especially those in China, the main concerns in the development of dual-phase steel in the future must be low cost and high performances in combination.
Canadian Patent Application No. CA2526488 published on December 2, 2004 and entitled "A COLD-ROLLED STEEL SHEET HAVING A TENSILE STRENGTH OF 780 MPA OR
MORE, AN EXCELLENT LOCAL FORMABILITY AND A SUPPRESSED INCREASE IN
WELD HARDNESS" discloses a cold-rolled steel sheet having a chemical composition of: C:
0.05-0.09%; Si: 0.4-1.3%; Mn: 2.5-3.2%; optional Mo: 0.05-0.5% or Ni: 0.05-2%;
P:
0.001-0.05%; S<0.08*Ti-3.43*N+0.004; N<0.006%; Al: 0.005-0.10%; Ti: 0.001-0.045%;
optional Nb < 0.04% or B: 0.0002-0.0015%; optional Ca for treatment, with the balance of Fe and unavoidable impurities. It requires a bainite content of greater than 7%;
Pcm<0.3; hot rolling at a temperature equal to or higher than Ar3; coiling at 700 C or lower; cold rolling; annealing at a temperature of 700-900 C; and rapid cooling from a temperature of 550-700 C.
Finally, a high-strength steel having a minimum strength of 780 Mpa is obtained. The steel has the characteristics of strong local deformation ability and low hardness in the welding area. However, the high Mn content used in the design of this steel will inevitably result in a severe banded structure which will lead to nonuniform mechanical properties. In addition, while a high content of Mn is added, a relatively large amount of Si is added. This is detrimental to both the surface quality and welding performance of the steel.
United States Patent Publication No. US20050167007 published on August 4, 2005 discloses a method for manufacturing a high-strength steel sheet comprising the following chemical composition: 0.05-0.13% C, 0.5-2.5% Si, 0.5-3.5% Mn, 0.05-1% Cr, 0.05-0.6% Mo, <0.1% Al, <0.005% S, <0.01% N, <0.03% P, with addition of 0.005-0.05% Ti or 0.005-0.05%
Nb or 0.005-0.2% V. The steel is hot rolled at a temperature equal to or higher than Ar3, coiled at 450-700 C, annealed, quenched from 700-600 C by cooling at a cooling rate of 100 C/s, and then tempered at 180-450 C. Finally, a high-strength steel having a tensile strength of 780 Mpa and a hole expansion rate of higher than 50% is obtained. The main problem of this steel is that the total amount of alloy is too high and the Si content is high, which is detrimental to the weldability or phosphatability of the steel.
Chinese Patent Publication No. CN101363099A published on February 11, 2009 entitled "COLD-ROLLED DUAL-PHASE STEEL SHEET WITH TENSILE STRENGTH OF 1000 MPA
AND METHOD FOR PREPARING SAME" discloses an ultra-high-strength dual-phase steel comprising C: 0.14-0.21%, Si: 0.4-0.9%, Mn: 1.5-2.1%, P: <0.02%, S<0.01%, Nb:
0.001-0.05%, V: 0.001-0.02%. After hot rolling and cold rolling, it is held at 760-820 C, cooled at a cooling rate of 40-50 C/s, and overaged at 240-320 C for 180-300 s. The carbon equivalent is high in the design of this steel, and the steel is not characterized by balanced performances.
As it can be seen, although the 780 M pa dual-phase steels designed according to some of the existing patent technologies exhibit good formability, they have either high contents of C and Si, or high contents of alloy elements such as Cr, Ni, and Mo. This is detrimental to the weldability, surface quality or phosphatability of the steels, and the cost is also high.
In addition, for some steels with high Si contents, although the hole expansion rate is very high and the bendability is good, the yield ratio is high, and the stamping performance is degraded.
Summary One of the objects of the present disclosure is to provide an economical 780 MPa grade cold-rolled and annealed dual-phase steel. By reasonably designing the alloy elements and the manufacturing process for the cold-rolled and annealed dual-phase steel, the resulting steel plate has a strength of 780MPa grade with no addition of Mo and Cr, and a fine and uniform martensite + ferrite dual-phase structure is obtained to ensure excellent performances of elongation and cold
2 bending, so that the steel has good formability. The cold-rolled and annealed dual-phase steel has a yield strength of >420MPa; a tensile strength of >780MPa; an elongation at break with A50 gauge length of >18%; a 90-degree cold bending parameter Rit<1, where R
represents bending radius in mm, and t represents plate thickness in mm.
In order to achieve the above object, the present disclosure provides a 780MPa grade cold-rolled and annealed dual-phase steel having a matrix structure of fine and uniform martensite + ferrite, wherein the cold-rolled and annealed dual-phase steel comprises the following chemical elements in mass percentages, in addition to Fe:
C: 0.1%-0.13%, Si: 0.4%-0.8%, Mn: 1.65%-1.9%, Al: 0.01%-0.05%, Nb: 0.01-0.03%, Ti:
0.01-0.03%;
wherein the cold-rolled and annealed dual-phase steel is free of Cr and Mo elements.
Further, the cold-rolled and annealed dual-phase steel in the present disclosure comprises the following chemical elements in mass percentages:
C: 0.1%-0.13%, Si: 0.4%-0.8%, Mn: 1.65%-1.9%, Al: 0.01%-0.05%, Nb: 0.01-0.03%, Ti:
0.01-0.03%, and a balance of Fe and other unavoidable impurities.
In the cold-rolled and annealed dual-phase steel according to the present disclosure, a composition system with C and Mn as the dominant additive elements is designed for the composition of the cold-rolled and annealed dual-phase steel according to the present disclosure, so as to ensure that the cold-rolled and annealed dual-phase steel can reach a strength of 780 MPa grade. The absence of precious alloy elements such as Mo and Cr can effectively guarantee the economic efficiency. The addition of Nb and Ti in trace amounts can achieve the effect of inhibiting growth of austenite grains, and can effectively refine the grains.
In addition, due to the special design of the composition with no addition of Mo or Cr, the strength of the hot rolled coil is not too high, which can guarantee the processability in cold rolling. The principles for designing the various chemical elements are described as follows:
C: In the cold-rolled and annealed dual-phase steel according to the present disclosure, the addition of the C element can improve the strength of the steel and the hardness of martensite. If the mass percentage of C in the steel is lower than 0.1%, the strength of the steel plate will be affected, and it is detrimental to formation and stability of austenite. If the mass percentage of C
in the steel is higher than 0.13%, the hardness of martensitic will be too high, and the grain size will be large, which is detrimental to the formability of the steel plate. At the same time, an unduly high carbon equivalent is detrimental to welding in use. Therefore, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the mass percentage of C is controlled at 0.1%-0.13%.
represents bending radius in mm, and t represents plate thickness in mm.
In order to achieve the above object, the present disclosure provides a 780MPa grade cold-rolled and annealed dual-phase steel having a matrix structure of fine and uniform martensite + ferrite, wherein the cold-rolled and annealed dual-phase steel comprises the following chemical elements in mass percentages, in addition to Fe:
C: 0.1%-0.13%, Si: 0.4%-0.8%, Mn: 1.65%-1.9%, Al: 0.01%-0.05%, Nb: 0.01-0.03%, Ti:
0.01-0.03%;
wherein the cold-rolled and annealed dual-phase steel is free of Cr and Mo elements.
Further, the cold-rolled and annealed dual-phase steel in the present disclosure comprises the following chemical elements in mass percentages:
C: 0.1%-0.13%, Si: 0.4%-0.8%, Mn: 1.65%-1.9%, Al: 0.01%-0.05%, Nb: 0.01-0.03%, Ti:
0.01-0.03%, and a balance of Fe and other unavoidable impurities.
In the cold-rolled and annealed dual-phase steel according to the present disclosure, a composition system with C and Mn as the dominant additive elements is designed for the composition of the cold-rolled and annealed dual-phase steel according to the present disclosure, so as to ensure that the cold-rolled and annealed dual-phase steel can reach a strength of 780 MPa grade. The absence of precious alloy elements such as Mo and Cr can effectively guarantee the economic efficiency. The addition of Nb and Ti in trace amounts can achieve the effect of inhibiting growth of austenite grains, and can effectively refine the grains.
In addition, due to the special design of the composition with no addition of Mo or Cr, the strength of the hot rolled coil is not too high, which can guarantee the processability in cold rolling. The principles for designing the various chemical elements are described as follows:
C: In the cold-rolled and annealed dual-phase steel according to the present disclosure, the addition of the C element can improve the strength of the steel and the hardness of martensite. If the mass percentage of C in the steel is lower than 0.1%, the strength of the steel plate will be affected, and it is detrimental to formation and stability of austenite. If the mass percentage of C
in the steel is higher than 0.13%, the hardness of martensitic will be too high, and the grain size will be large, which is detrimental to the formability of the steel plate. At the same time, an unduly high carbon equivalent is detrimental to welding in use. Therefore, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the mass percentage of C is controlled at 0.1%-0.13%.
3 In some preferred embodiments, the mass percentage of C may be controlled at 0.11-0.125%.
Si: In the cold-rolled and annealed dual-phase steel according to the present disclosure, the addition of the Si element to the steel can improve hardenability. In addition, the solid dissolved Si in the steel may have an effect on the interaction of dislocations, thereby increasing the work hardening rate. This may increase the elongation of the dual-phase steel suitably, which is beneficial to obtain better formability. However, it should be noted that if the mass percentage of Si in the steel is too high, it will be detrimental to the control of the surface quality. Therefore, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the mass percentage of Si is controlled at 0.4%-0.8%.
In some preferred embodiments, the mass percentage of Si may be controlled at 0.5-0.7%.
Mn: In the cold-rolled and annealed dual-phase steel according to the present disclosure, the addition of the Mn element is beneficial to improve the hardenability of the steel, and can effectively improve the strength of the steel plate. However, it should be noted that when the mass percentage of Mn in the steel is lower than 1.65%, the strength of the steel plate will be insufficient; when the mass percentage of Mn in the steel is higher than 1.9%, the strength of the steel plate will be too high to reduce its formability. Therefore, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the mass percentage of Mn is controlled at 1.65%-1.9%.
In some preferred embodiments, the mass percentage of Mn may be controlled at 1.7-1.8%.
Al: In the cold-rolled and annealed dual-phase steel according to the present disclosure, the addition of Al may have the effect of removing oxygen and refining grains.
Therefore, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the mass percentage of Al is controlled at 0.01%-0.05%.
In some preferred embodiments, the mass percentage of Al may be controlled at 0.015-0.045%.
Nb: In the cold-rolled and annealed dual-phase steel according to the present disclosure, the Nb element is an important element for grain refinement. With the addition of a small amount of the strong carbide forming element Nb to the micro-alloy steel, a strain-induced precipitation phase can be formed in the controlled rolling process. The strain-induced precipitation phase can significantly reduce the recrystallization temperature of deformed austenite by means of the action of particle pinning and subgrain boundaries, provide nucleation particles, and thus have a significant effect of refining grains. In the process of austenization by continuous annealing, the soaked undissolved carbide and nitride particles will prevent coarsening of soaked austenite grains by the mechanism of pinning grain boundaries by particles, thereby refining the grains
Si: In the cold-rolled and annealed dual-phase steel according to the present disclosure, the addition of the Si element to the steel can improve hardenability. In addition, the solid dissolved Si in the steel may have an effect on the interaction of dislocations, thereby increasing the work hardening rate. This may increase the elongation of the dual-phase steel suitably, which is beneficial to obtain better formability. However, it should be noted that if the mass percentage of Si in the steel is too high, it will be detrimental to the control of the surface quality. Therefore, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the mass percentage of Si is controlled at 0.4%-0.8%.
In some preferred embodiments, the mass percentage of Si may be controlled at 0.5-0.7%.
Mn: In the cold-rolled and annealed dual-phase steel according to the present disclosure, the addition of the Mn element is beneficial to improve the hardenability of the steel, and can effectively improve the strength of the steel plate. However, it should be noted that when the mass percentage of Mn in the steel is lower than 1.65%, the strength of the steel plate will be insufficient; when the mass percentage of Mn in the steel is higher than 1.9%, the strength of the steel plate will be too high to reduce its formability. Therefore, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the mass percentage of Mn is controlled at 1.65%-1.9%.
In some preferred embodiments, the mass percentage of Mn may be controlled at 1.7-1.8%.
Al: In the cold-rolled and annealed dual-phase steel according to the present disclosure, the addition of Al may have the effect of removing oxygen and refining grains.
Therefore, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the mass percentage of Al is controlled at 0.01%-0.05%.
In some preferred embodiments, the mass percentage of Al may be controlled at 0.015-0.045%.
Nb: In the cold-rolled and annealed dual-phase steel according to the present disclosure, the Nb element is an important element for grain refinement. With the addition of a small amount of the strong carbide forming element Nb to the micro-alloy steel, a strain-induced precipitation phase can be formed in the controlled rolling process. The strain-induced precipitation phase can significantly reduce the recrystallization temperature of deformed austenite by means of the action of particle pinning and subgrain boundaries, provide nucleation particles, and thus have a significant effect of refining grains. In the process of austenization by continuous annealing, the soaked undissolved carbide and nitride particles will prevent coarsening of soaked austenite grains by the mechanism of pinning grain boundaries by particles, thereby refining the grains
4 effectively. Therefore, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the mass percentage of Nb is controlled at 0.01-0.03%.
In some preferred embodiments, the mass percentage of Nb may be controlled at 0.015-0.025%.
Ti: The strong carbide forming element Ti added to the cold-rolled and annealed dual-phase steel according to the present disclosure also exhibits a strong effect of inhibiting growth of austenite grains at high temperatures. At the same time, the addition of Ti helps to refine grains.
Therefore, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the mass percentage of Ti is controlled at 0.01-0.03%.
In some preferred embodiments, the mass percentage of Ti may be controlled at 0.015-0.025%.
In the above composition design, precious alloy elements such as Mo and Cr are not added to the cold-rolled and annealed dual-phase steel, so as to ensure economy. At the same time, in order to ensure obtainment of a tensile strength of 780MPa grade at a gas cooling rate of 40-100 C/s in normal continuous annealing, the amounts of the alloy elements C and Mn in the composition should be guaranteed to provide sufficient hardenability. Nevertheless, the upper limits of the contents of the alloy elements C and Mn need to be controlled so as to guarantee excellent welding performance and formability, and to prevent the strength from exceeding its upper limit.
Because the precipitation of Al nitrides and the precipitation of Nb, Ti carbonitrides are competitive in the steel production process, in view of the contents of Al and N in the composition system according to the present disclosure, the effect of refining grains can be achieved only when certain amounts of Nb and Ti to be added are guaranteed. Therefore, the mass percentage contents of Nb and Ti in the cold-rolled and annealed dual-phase steel may further satisfy the following formula: Nb%+Ti%x3>0.047%, preferably >0.06%. In the above formula, Nb and Ti each represent the mass percentage content of the corresponding element, that is, the value in front of the percent sign in the formula. In some embodiments, 0.047%<Nb%+Ti%x3<0.10%;
preferably, 0.06%<Nb%+Ti%x3<0.10%.
Further, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the mass percentage contents of the chemical elements satisfy at least one of the following:
C: 0.11%-0.125%, Si: 0.5%-0.7%, Mn: 1.7%-1.8%, Al: 0.015%-0.045%, Nb: 0.015-0.025%, Ti: 0.015-0.025%.
Further, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the unavoidable impurities include the P, S and N elements, and the contents thereof are controlled to be at least one of the following: P <0.015%, S<0.003%, N<0.005%.
In the above technical solution, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the P, N and S elements are all unavoidable impurity elements in the steel.
It's better to lower the contents of the P, N and S elements in the steel as far as possible. MnS
formed from S seriously affects the formability, and N tends to incur cracks or bubbles on the surface of the slab. Therefore, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the mass percentage of P is controlled at P<0.015%; the mass percentage of S
is controlled at S<0.003%; and the mass percentage of N is controlled at N
<0.005%.
Further, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the phase proportion (by volume) of martensite is >55%.
Further, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the grain diameter of martensite is not greater than 5 microns, and the grain diameter of ferrite is not greater than 5 microns.
Further, the performances of the cold-rolled and annealed dual-phase steel according to the present disclosure satisfy at least one of the following: yield strength>420 MPa, preferably>430 MPa; tensile strength>780 MPa, preferably>800 MPa; elongation at break with A50 gauge length 218%; a 90-degree cold bending parameter Rit<1, where R represents bending radius in mm, t represents plate thickness in mm.
Further, the performances of the cold-rolled and annealed dual-phase steel according to the present disclosure satisfy the following: yield strength2420 MPa, preferab1y2430 MPa; tensile strength>780 MPa, preferab1y2800 MPa; elongation at break with A50 gauge length 218%; 90 degree cold bending parameter Rit<1, where R represents bending radius in mm, t represents plate thickness in mm.
Further, the yield ratio of the cold-rolled and annealed dual-phase steel according to the present disclosure is 0.53-0.57.
Accordingly, another object of the present disclosure is to provide a method for manufacturing a cold-rolled and annealed dual-phase steel. The cold-rolled and annealed dual-phase steel made by the manufacturing method has the characteristics of high strength, excellent elongation and cold bending performance. It has a yield strength of 2420MPa; a tensile strength of >780MPa; an elongation at break with A50 gauge length of 218%; a 90-degree cold bending parameter Rit<1, where R represents bending radius in mm, and t represents plate thickness in mm.
To achieve the above object, the present disclosure proposes a method for manufacturing the above cold-rolled and annealed dual-phase steel, comprising steps of:
(1) Smelting and continuous casting;
(2) Hot rolling;
(3) Cold rolling;
(4) Annealing: annealing soaking temperature: 770-820 C; annealing time: 40-200 s;
cooling at a rate of 3-5 C/s to a starting temperature of rapid cooling;
rapid cooling at a rate of 30-80 C/s, wherein the starting temperature of rapid cooling is 650-730 C, and the rapid cooling is ended at a temperature of 200-270 C;
In some preferred embodiments, the mass percentage of Nb may be controlled at 0.015-0.025%.
Ti: The strong carbide forming element Ti added to the cold-rolled and annealed dual-phase steel according to the present disclosure also exhibits a strong effect of inhibiting growth of austenite grains at high temperatures. At the same time, the addition of Ti helps to refine grains.
Therefore, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the mass percentage of Ti is controlled at 0.01-0.03%.
In some preferred embodiments, the mass percentage of Ti may be controlled at 0.015-0.025%.
In the above composition design, precious alloy elements such as Mo and Cr are not added to the cold-rolled and annealed dual-phase steel, so as to ensure economy. At the same time, in order to ensure obtainment of a tensile strength of 780MPa grade at a gas cooling rate of 40-100 C/s in normal continuous annealing, the amounts of the alloy elements C and Mn in the composition should be guaranteed to provide sufficient hardenability. Nevertheless, the upper limits of the contents of the alloy elements C and Mn need to be controlled so as to guarantee excellent welding performance and formability, and to prevent the strength from exceeding its upper limit.
Because the precipitation of Al nitrides and the precipitation of Nb, Ti carbonitrides are competitive in the steel production process, in view of the contents of Al and N in the composition system according to the present disclosure, the effect of refining grains can be achieved only when certain amounts of Nb and Ti to be added are guaranteed. Therefore, the mass percentage contents of Nb and Ti in the cold-rolled and annealed dual-phase steel may further satisfy the following formula: Nb%+Ti%x3>0.047%, preferably >0.06%. In the above formula, Nb and Ti each represent the mass percentage content of the corresponding element, that is, the value in front of the percent sign in the formula. In some embodiments, 0.047%<Nb%+Ti%x3<0.10%;
preferably, 0.06%<Nb%+Ti%x3<0.10%.
Further, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the mass percentage contents of the chemical elements satisfy at least one of the following:
C: 0.11%-0.125%, Si: 0.5%-0.7%, Mn: 1.7%-1.8%, Al: 0.015%-0.045%, Nb: 0.015-0.025%, Ti: 0.015-0.025%.
Further, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the unavoidable impurities include the P, S and N elements, and the contents thereof are controlled to be at least one of the following: P <0.015%, S<0.003%, N<0.005%.
In the above technical solution, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the P, N and S elements are all unavoidable impurity elements in the steel.
It's better to lower the contents of the P, N and S elements in the steel as far as possible. MnS
formed from S seriously affects the formability, and N tends to incur cracks or bubbles on the surface of the slab. Therefore, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the mass percentage of P is controlled at P<0.015%; the mass percentage of S
is controlled at S<0.003%; and the mass percentage of N is controlled at N
<0.005%.
Further, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the phase proportion (by volume) of martensite is >55%.
Further, in the cold-rolled and annealed dual-phase steel according to the present disclosure, the grain diameter of martensite is not greater than 5 microns, and the grain diameter of ferrite is not greater than 5 microns.
Further, the performances of the cold-rolled and annealed dual-phase steel according to the present disclosure satisfy at least one of the following: yield strength>420 MPa, preferably>430 MPa; tensile strength>780 MPa, preferably>800 MPa; elongation at break with A50 gauge length 218%; a 90-degree cold bending parameter Rit<1, where R represents bending radius in mm, t represents plate thickness in mm.
Further, the performances of the cold-rolled and annealed dual-phase steel according to the present disclosure satisfy the following: yield strength2420 MPa, preferab1y2430 MPa; tensile strength>780 MPa, preferab1y2800 MPa; elongation at break with A50 gauge length 218%; 90 degree cold bending parameter Rit<1, where R represents bending radius in mm, t represents plate thickness in mm.
Further, the yield ratio of the cold-rolled and annealed dual-phase steel according to the present disclosure is 0.53-0.57.
Accordingly, another object of the present disclosure is to provide a method for manufacturing a cold-rolled and annealed dual-phase steel. The cold-rolled and annealed dual-phase steel made by the manufacturing method has the characteristics of high strength, excellent elongation and cold bending performance. It has a yield strength of 2420MPa; a tensile strength of >780MPa; an elongation at break with A50 gauge length of 218%; a 90-degree cold bending parameter Rit<1, where R represents bending radius in mm, and t represents plate thickness in mm.
To achieve the above object, the present disclosure proposes a method for manufacturing the above cold-rolled and annealed dual-phase steel, comprising steps of:
(1) Smelting and continuous casting;
(2) Hot rolling;
(3) Cold rolling;
(4) Annealing: annealing soaking temperature: 770-820 C; annealing time: 40-200 s;
cooling at a rate of 3-5 C/s to a starting temperature of rapid cooling;
rapid cooling at a rate of 30-80 C/s, wherein the starting temperature of rapid cooling is 650-730 C, and the rapid cooling is ended at a temperature of 200-270 C;
(5) Tempering;
(6) Temper rolling.
In the method for manufacturing the cold-rolled and annealed dual-phase steel according to the present disclosure, in step (4), the reason for controlling the annealing soaking temperature at 770-820 C is as follows: when the annealing soaking temperature is lower than 770 C, the steel having a strength of 780 MPa grade cannot be obtained; while if the annealing soaking temperature is higher than 820 C, the grain size will be large, which will greatly degrade the formability. Therefore, controlling the annealing soaking temperature at 770-820 C can ensure obtainment of both the tensile strength of 780MPa and the small grain size, so that the cold-rolled and annealed dual-phase steel has better formability.
In some preferred embodiments, the annealing soaking temperature may be controlled in the range of 790-810 C in order to obtain better implementation effects, i.e. to obtain a smaller grain size, moderate mechanical properties of the steel obtained, and better formability.
Further, in the manufacturing method according to the present disclosure, in step (2), the slab is first heated to 1160-1220 C, preferably 1165-1215 C; held for 0.6 hours or longer, preferably 0.6-1.5 hours; hot rolled at a temperature of 850-900 C; rapidly cooled at a rate of 30-80 C/s after the rolling; coiled with the coiling temperature being controlled at 500-600 C, preferably 520-600 C; and air cooled after the coiling.
Further, in the manufacturing method according to the present disclosure, in step (3), a cold rolling reduction rate is controlled at 50-70%.
Further, in the manufacturing method according to the present disclosure, in step (5), a tempering temperature is controlled at 200-270 C, and a tempering time is 100-400 s, preferably 150-400 s.
In the method for manufacturing the cold-rolled and annealed dual-phase steel according to the present disclosure, in step (4), the reason for controlling the annealing soaking temperature at 770-820 C is as follows: when the annealing soaking temperature is lower than 770 C, the steel having a strength of 780 MPa grade cannot be obtained; while if the annealing soaking temperature is higher than 820 C, the grain size will be large, which will greatly degrade the formability. Therefore, controlling the annealing soaking temperature at 770-820 C can ensure obtainment of both the tensile strength of 780MPa and the small grain size, so that the cold-rolled and annealed dual-phase steel has better formability.
In some preferred embodiments, the annealing soaking temperature may be controlled in the range of 790-810 C in order to obtain better implementation effects, i.e. to obtain a smaller grain size, moderate mechanical properties of the steel obtained, and better formability.
Further, in the manufacturing method according to the present disclosure, in step (2), the slab is first heated to 1160-1220 C, preferably 1165-1215 C; held for 0.6 hours or longer, preferably 0.6-1.5 hours; hot rolled at a temperature of 850-900 C; rapidly cooled at a rate of 30-80 C/s after the rolling; coiled with the coiling temperature being controlled at 500-600 C, preferably 520-600 C; and air cooled after the coiling.
Further, in the manufacturing method according to the present disclosure, in step (3), a cold rolling reduction rate is controlled at 50-70%.
Further, in the manufacturing method according to the present disclosure, in step (5), a tempering temperature is controlled at 200-270 C, and a tempering time is 100-400 s, preferably 150-400 s.
7 Further, in the manufacturing method according to the present disclosure, in step (6), a temper rolling reduction rate is controlled at <0.3%.
Further, in the manufacturing method according to the present disclosure, in step (4), the annealing soaking temperature is 790-810 C.
Compared with the prior art, the cold-rolled and annealed dual-phase steel and the manufacturing method therefor according to the present disclosure have the following advantages and beneficial effects:
The alloy chemical composition in the cold-rolled and annealed dual-phase steel is designed reasonably, so that a steel plate having a strength of more than 780M Pa grade and a martensite +
ferrite dual-phase structure is obtained without addition of Mo and Cr. The steel plate has a yield strength of >420MPa; a tensile strength of >780MPa; an elongation at break with A50 gauge length of 218%; a 90-degree cold bending parameter R/t<1, where R represents bending radius in mm, and t represents plate thickness in mm. While good economy is achieved, the steel plate has the characteristics of high strength, excellent elongation and cold bending performance.
Accordingly, by reasonably designing and controlling the specific process parameters in the manufacturing method according to the present disclosure, the cold-rolled and annealed dual-phase steel obtained by the manufacturing method according to the present disclosure not only has good economy, but also has the characteristics of high strength, excellent elongation and cold bending performance.
Description of the Drawing Figure 1 shows the structure of the cold-rolled and annealed dual-phase steel of Example 1.
Detailed Description The economical 780 MPa grade cold-rolled and annealed dual-phase steel and the method for manufacturing the same according to the disclosure will be further explained and illustrated with reference to the specific Examples. Nonetheless, the explanation and illustration are not intended to unduly limit the technical solution of the disclosure.
Examples 1-7 and Comparative Examples 1-14 Table 1 lists the mass percentages of various chemical elements in the steel grades corresponding to the cold-rolled and annealed dual-phase steels in Examples 1-7 and the steels in Comparative Examples 1-14.
Further, in the manufacturing method according to the present disclosure, in step (4), the annealing soaking temperature is 790-810 C.
Compared with the prior art, the cold-rolled and annealed dual-phase steel and the manufacturing method therefor according to the present disclosure have the following advantages and beneficial effects:
The alloy chemical composition in the cold-rolled and annealed dual-phase steel is designed reasonably, so that a steel plate having a strength of more than 780M Pa grade and a martensite +
ferrite dual-phase structure is obtained without addition of Mo and Cr. The steel plate has a yield strength of >420MPa; a tensile strength of >780MPa; an elongation at break with A50 gauge length of 218%; a 90-degree cold bending parameter R/t<1, where R represents bending radius in mm, and t represents plate thickness in mm. While good economy is achieved, the steel plate has the characteristics of high strength, excellent elongation and cold bending performance.
Accordingly, by reasonably designing and controlling the specific process parameters in the manufacturing method according to the present disclosure, the cold-rolled and annealed dual-phase steel obtained by the manufacturing method according to the present disclosure not only has good economy, but also has the characteristics of high strength, excellent elongation and cold bending performance.
Description of the Drawing Figure 1 shows the structure of the cold-rolled and annealed dual-phase steel of Example 1.
Detailed Description The economical 780 MPa grade cold-rolled and annealed dual-phase steel and the method for manufacturing the same according to the disclosure will be further explained and illustrated with reference to the specific Examples. Nonetheless, the explanation and illustration are not intended to unduly limit the technical solution of the disclosure.
Examples 1-7 and Comparative Examples 1-14 Table 1 lists the mass percentages of various chemical elements in the steel grades corresponding to the cold-rolled and annealed dual-phase steels in Examples 1-7 and the steels in Comparative Examples 1-14.
8 Table 1 (wt%, the balance is Fe and unavoidable impurities other than P, S and N) Steel Chemical elements grade C Si Mn Al P S N Nb Ti Nb%+Ti%x3 Ex. 1 A 0.103 0.45 1.74 0.012 0.014 0.0015 0.0035 0.012 0.021 0.075 Ex. 2 B 0.106 0.52 1.68 0.032 0.013 0.0016 0.0033 0.017 0.015 0.062 Ex. 3 C 0.110 0.55 1.85 0.022 0.009 0.0018 0.0045 0.015 0.026 0.093 Ex. 4 D 0.115 0.43 1.82 0.028 0.011 0.0020 0.0042 0.024 0.024 0.096 Ex. 5 E 0.118 0.61 1.69 0.018 0.012 0.0022 0.0038 0.029 0.023 0.098 Ex. 6 F 0.123 0.66 1.76 0.025 0.011 0.0024 0.0045 0.021 0.021 0.084 Ex. 7 G 0.129 0.72 1.80 0.045 0.009 0.0012 0.0027 0.0195 0.014 0.0615 Comp. Ex. 1 H 0.091 0.63 1.77 0.044 0.011 0.0022 0.0037 0.015 0.018 0.069 Comp. Ex. 2 I 0.138 0.64 1.81 0.047 0.009 0.0022 0.0033 0.018 0.022 0.084 Comp. Ex. 3 J 0.121 0.58 1.62 0.033 0.012 0.0015 0.0028 0.026 0.021 0.089 Comp. Ex. 4 K 0.124 0.63 1.99 0.038 0.013 0.0015 0.0035 0.026 0.019 0.083 Comp. Ex. 5 L 0.118 0.62 1.69 0.035 0.011 0.0017 0.0034 0.005 0.024 0.077 Comp. Ex. 6 M 0.117 0.57 1.72 0.026 0.008 0.0012 0.0029 0.020 0.004 0.032 Comp. Ex. 7-14 N 0.109 0.72 1.75 0.024 0.010 0.0014 0.0043 0.023 0.027 0.104 The cold-rolled and annealed dual-phase steels in Examples 1-7 according to the present disclosure and the steels in Comparative Examples 1-14 were all prepared by the following steps:
(1) Smelting and continuous casting: the required alloy components were obtained, and the contents of S and P were minimized;
(2) Hot rolling: a slab was first heated to 1160-1220 C which was held for 0.6 hours or more;
then hot-rolling at a temperature of 850-900 C was conducted; after the rolling, rapid cooling was conducted at a rate of 30-80 C/s; the coiling temperature was controlled at 500-600 C; air cooling was conducted after coiling;
(3) Cold rolling: the cold rolling reduction rate was controlled at 50-70%;
(4) Annealing: the annealing soaking temperature was controlled at 770-820 C, alternatively and preferably at 790-810 C; the annealing time was controlled at 40-200 s;
the temperature was decreased to a starting temperature of rapid cooling by cooling at a rate of 3-5 C/s; rapid cooling was conducted at a rate of 30-80 C/s, wherein the starting temperature of the rapid cooling was 650-730 C, and the rapid cooling was ended at a temperature of 200-270 C;
(5) Tempering: the tempering temperature was controlled at 200-270 C, and the tempering time was 100-400 s;
(1) Smelting and continuous casting: the required alloy components were obtained, and the contents of S and P were minimized;
(2) Hot rolling: a slab was first heated to 1160-1220 C which was held for 0.6 hours or more;
then hot-rolling at a temperature of 850-900 C was conducted; after the rolling, rapid cooling was conducted at a rate of 30-80 C/s; the coiling temperature was controlled at 500-600 C; air cooling was conducted after coiling;
(3) Cold rolling: the cold rolling reduction rate was controlled at 50-70%;
(4) Annealing: the annealing soaking temperature was controlled at 770-820 C, alternatively and preferably at 790-810 C; the annealing time was controlled at 40-200 s;
the temperature was decreased to a starting temperature of rapid cooling by cooling at a rate of 3-5 C/s; rapid cooling was conducted at a rate of 30-80 C/s, wherein the starting temperature of the rapid cooling was 650-730 C, and the rapid cooling was ended at a temperature of 200-270 C;
(5) Tempering: the tempering temperature was controlled at 200-270 C, and the tempering time was 100-400 s;
9 (6) Temper rolling: the temper rolling reduction rate was controlled at <0.3%.
It should be noted that the chemical compositions of the cold-rolled and annealed dual-phase steel in Examples 1-7 and the related process parameters all met the control requirements of the design specification according to the present disclosure. The chemical compositions of the steels in Comparative Examples 1-6 all included parameters that failed to meet the requirements of the design according to the present disclosure. Although the chemical composition of steel grade N in Comparative Examples 7-14 met the requirements of the design according to the present disclosure, the related process parameters all included parameters that failed to meet the requirements of the design according to the present disclosure.
Tables 2-1 and 2-2 list the specific process parameters for the cold-rolled and annealed dual-phase steels in Examples 1-7 and the steels in Comparative Examples 1-14.
Table 2-1 Step (2) Step (3) Finishing Steel Heating Holding Coiling Cold rolling No. hot rolling Cooling rate grade temperature time temperature reduction temperature ( C/s) ( C) (h) ( C) rate (%) ( C) Ex. 1 A 1210 0.75 855 32 585 Ex. 2 B 1205 0.65 870 30 525 Ex. 3 C 1195 1.2 890 47 545 Ex. 4 D 1187 1.5 886 54 575 Ex. 5 E 1169 0.8 864 68 590 Ex. 6 F 1211 1.1 895 74 588 Ex. 7 G 1191 0.9 885 44 600 Comp. Ex.
H 1187 0.7 875 50 548 Comp. Ex.
I 1175 1.1 850 62 566 Comp. Ex.
3 J 1200 0.95 890 68 535 Comp. Ex.
K 1213 1.3 900 76 505 Comp. Ex.
L 1178 1.4 895 46 586
It should be noted that the chemical compositions of the cold-rolled and annealed dual-phase steel in Examples 1-7 and the related process parameters all met the control requirements of the design specification according to the present disclosure. The chemical compositions of the steels in Comparative Examples 1-6 all included parameters that failed to meet the requirements of the design according to the present disclosure. Although the chemical composition of steel grade N in Comparative Examples 7-14 met the requirements of the design according to the present disclosure, the related process parameters all included parameters that failed to meet the requirements of the design according to the present disclosure.
Tables 2-1 and 2-2 list the specific process parameters for the cold-rolled and annealed dual-phase steels in Examples 1-7 and the steels in Comparative Examples 1-14.
Table 2-1 Step (2) Step (3) Finishing Steel Heating Holding Coiling Cold rolling No. hot rolling Cooling rate grade temperature time temperature reduction temperature ( C/s) ( C) (h) ( C) rate (%) ( C) Ex. 1 A 1210 0.75 855 32 585 Ex. 2 B 1205 0.65 870 30 525 Ex. 3 C 1195 1.2 890 47 545 Ex. 4 D 1187 1.5 886 54 575 Ex. 5 E 1169 0.8 864 68 590 Ex. 6 F 1211 1.1 895 74 588 Ex. 7 G 1191 0.9 885 44 600 Comp. Ex.
H 1187 0.7 875 50 548 Comp. Ex.
I 1175 1.1 850 62 566 Comp. Ex.
3 J 1200 0.95 890 68 535 Comp. Ex.
K 1213 1.3 900 76 505 Comp. Ex.
L 1178 1.4 895 46 586
10 Comp. Ex.
M 1194 0.8 890 38 533 48 Comp. Ex.
N 1153 1.6 866 55 Comp. Ex.
N 1237 1.5 885 60 Comp. Ex.
N 1195 1.4 886 70 Comp. Ex.
N 1186 0.9 895 75 Comp. Ex.
N 1209 1.1 858 49
M 1194 0.8 890 38 533 48 Comp. Ex.
N 1153 1.6 866 55 Comp. Ex.
N 1237 1.5 885 60 Comp. Ex.
N 1195 1.4 886 70 Comp. Ex.
N 1186 0.9 895 75 Comp. Ex.
N 1209 1.1 858 49
11 Comp. Ex.
N 1193 1.3 864 55
N 1193 1.3 864 55
12 Comp. Ex.
N 1169 1.5 877 62
N 1169 1.5 877 62
13 Comp. Ex.
N 1178 0.9 855 48
N 1178 0.9 855 48
14 Table 2-2 Step (4) Step (5) Step (6) Ending Temperin Annealing Starting Temper Annealing Cooling Rapid temperature g Temperin No. soaking temperature of rolling time rate cooling rate of rapid temperatu g time temperature rapid cooling reduction (s) ( C/s) ( C/s) cooling re (s) ( C) ( C) rate (%) ( C) ( C) Ex. 1 815 150 5 705 55 200 200 220 0.3 Ex. 2 785 90 4 715 44 250 250 300 0.2 Ex. 3 796 105 5 670 65 265 265 210 0.3 Ex. 4 784 180 3 720 70 270 270 250 0.2 Ex. 5 810 60 4 680 66 235 235 175 0.1 Ex. 6 808 175 5 725 58 240 240 205 0.2 Ex. 7 777 85 3 695 57 266 266 380 0.1 Comp. 790 150 3 675 48 216 216 330 0.1 Ex. 1 Comp.
205 0.3 Ex. 2 Comp.
190 0.1 Ex. 3 Comp.
210 0.3 Ex. 4 Comp.
250 0.2 Ex. 5 Comp.
120 0.1 Ex. 6 Comp.
300 0.3 Ex. 7 Comp.
125 0.3 Ex. 8 Comp.
175 0.2 Ex. 9 Comp.
205 0.1 Ex. 10 Comp.
380 0.1 Ex. 11 ¨
Comp.
280 0.3 Ex. 12 ¨
Comp.
300 0.2 Ex. 13 Comp.
280 0.1 Ex. 14 It should be noted that, as shown in Table 2-2, the ending temperature of rapid cooling and the tempering temperature in each Example and in each Comparative Example are the same. The reason is that, in the actual process operation, the tempering operation was performed right after the rapid cooling operation was ended.
A variety of performance tests were performed on the cold-rolled and annealed dual-phase steels in Examples 1-7 and the steels in Comparative Examples 1-14. The test results obtained are listed in Table 3. As to the performance test method, GB/T 13239-2006 Metallic Materials -Tensile Testing at Low Temperature was referred to. A standard sample was prepared, and subjected to static stretching on a tensile testing machine to obtain a corresponding stress-strain curve. After data processing, the parameters of yield strength, tensile strength and elongation at break were obtained finally.
Table 3 lists the performance test results for the cold-rolled and annealed dual-phase steels in Examples 1-7 and the steels in Comparative Examples 1-14.
Table 3 Elongation at break 900 bending radius Plate thickness Yield strength Tensile No. A50 R t R/t (MPa) strength (MPa) (%) (mm) (mm) Ex. 1 454 800 22.3 1.0 1.1 0.91 Ex. 2 435 812 21.5 1.0 1.1 0.91 Ex. 3 474 856 19.5 1.0 1.1 0.91 Ex. 4 449 832 20.5 1.0 1.2 0.83 Ex. 5 458 827 20.8 1.0 1.2 0.83 Ex. 6 476 872 19.7 1.0 1.2 0.83 Ex. 7 489 884 18.4 1.0 1.1 0.91 Comp. Ex. 1 386 768 25.2 1.0 1.2 0.83 Comp. Ex. 2 525 934 14.6 1.5 1.0 1.50 Comp. Ex. 3 393 777 24.3 1.0 1.0 1.00 Comp. Ex. 4 518 941 15.1 1.5 1.1 1.36 Comp. Ex. 5 404 835 19.6 1.0 1.0 1.00 Comp. Ex. 6 408 828 20.1 1.0 1.1 0.91 Comp. Ex. 7 383 765 24.7 1.0 1.1 0.91 Comp. Ex. 8 525 936 16.6 1.5 1.3 1.15 Comp. Ex. 9 543 952 15.8 1.5 1.0 1.50 Comp. Ex. 10 394 774 24.5 1.0 1.0 1.00 Comp. Ex. 11 390 772 24.5 1.0 1.0 1.00 Comp. Ex. 12 537 947 15.5 1.5 1.2 1.25 Comp. Ex. 13 534 942 15.3 1.5 1.1 1.36 Comp. Ex. 14 385 774 24.5 1.0 1.0 1.00 As it can be seen from Table 3, Examples 1-7 meeting the control requirements of the design specification according to the present disclosure have excellent performances, including yield strength>420 MPa; tensile strength>780 MPa; elongation at break with A50 gauge length >18%; a 90-degree cold bending parameter R/t<1 (R represents bending radius in mm, t represents plate thickness in mm). The various performances of the cold-rolled and annealed dual-phase steels of the various Examples are quite excellent. With no addition of precious alloy elements such as Mo and Cr, the steels achieve a tensile strength of greater than 780 MPa, and exhibit good elongation and superior cold bending performance.
It's to be noted that the prior art portions in the protection scope of the present disclosure are not limited to the examples set forth in the present application file. All the prior art contents not contradictory to the technical solution of the present disclosure, including but not limited to prior patent literature, prior publications, prior public uses and the like, may all be incorporated into the protection scope of the present disclosure. In addition, the ways in which the various technical features of the present disclosure are combined are not limited to the ways recited in the claims of the present disclosure or the ways described in the specific examples. All the technical features recited in the present disclosure may be combined or integrated freely in any manner, unless contradictions are resulted.
It should also be noted that the Examples set forth above are only specific examples according to the present disclosure. Obviously, the present disclosure is not limited to the above Examples. Similar variations or modifications made thereto can be directly derived or easily contemplated from the present disclosure by those skilled in the art. They all fall in the protection scope of the present disclosure.
205 0.3 Ex. 2 Comp.
190 0.1 Ex. 3 Comp.
210 0.3 Ex. 4 Comp.
250 0.2 Ex. 5 Comp.
120 0.1 Ex. 6 Comp.
300 0.3 Ex. 7 Comp.
125 0.3 Ex. 8 Comp.
175 0.2 Ex. 9 Comp.
205 0.1 Ex. 10 Comp.
380 0.1 Ex. 11 ¨
Comp.
280 0.3 Ex. 12 ¨
Comp.
300 0.2 Ex. 13 Comp.
280 0.1 Ex. 14 It should be noted that, as shown in Table 2-2, the ending temperature of rapid cooling and the tempering temperature in each Example and in each Comparative Example are the same. The reason is that, in the actual process operation, the tempering operation was performed right after the rapid cooling operation was ended.
A variety of performance tests were performed on the cold-rolled and annealed dual-phase steels in Examples 1-7 and the steels in Comparative Examples 1-14. The test results obtained are listed in Table 3. As to the performance test method, GB/T 13239-2006 Metallic Materials -Tensile Testing at Low Temperature was referred to. A standard sample was prepared, and subjected to static stretching on a tensile testing machine to obtain a corresponding stress-strain curve. After data processing, the parameters of yield strength, tensile strength and elongation at break were obtained finally.
Table 3 lists the performance test results for the cold-rolled and annealed dual-phase steels in Examples 1-7 and the steels in Comparative Examples 1-14.
Table 3 Elongation at break 900 bending radius Plate thickness Yield strength Tensile No. A50 R t R/t (MPa) strength (MPa) (%) (mm) (mm) Ex. 1 454 800 22.3 1.0 1.1 0.91 Ex. 2 435 812 21.5 1.0 1.1 0.91 Ex. 3 474 856 19.5 1.0 1.1 0.91 Ex. 4 449 832 20.5 1.0 1.2 0.83 Ex. 5 458 827 20.8 1.0 1.2 0.83 Ex. 6 476 872 19.7 1.0 1.2 0.83 Ex. 7 489 884 18.4 1.0 1.1 0.91 Comp. Ex. 1 386 768 25.2 1.0 1.2 0.83 Comp. Ex. 2 525 934 14.6 1.5 1.0 1.50 Comp. Ex. 3 393 777 24.3 1.0 1.0 1.00 Comp. Ex. 4 518 941 15.1 1.5 1.1 1.36 Comp. Ex. 5 404 835 19.6 1.0 1.0 1.00 Comp. Ex. 6 408 828 20.1 1.0 1.1 0.91 Comp. Ex. 7 383 765 24.7 1.0 1.1 0.91 Comp. Ex. 8 525 936 16.6 1.5 1.3 1.15 Comp. Ex. 9 543 952 15.8 1.5 1.0 1.50 Comp. Ex. 10 394 774 24.5 1.0 1.0 1.00 Comp. Ex. 11 390 772 24.5 1.0 1.0 1.00 Comp. Ex. 12 537 947 15.5 1.5 1.2 1.25 Comp. Ex. 13 534 942 15.3 1.5 1.1 1.36 Comp. Ex. 14 385 774 24.5 1.0 1.0 1.00 As it can be seen from Table 3, Examples 1-7 meeting the control requirements of the design specification according to the present disclosure have excellent performances, including yield strength>420 MPa; tensile strength>780 MPa; elongation at break with A50 gauge length >18%; a 90-degree cold bending parameter R/t<1 (R represents bending radius in mm, t represents plate thickness in mm). The various performances of the cold-rolled and annealed dual-phase steels of the various Examples are quite excellent. With no addition of precious alloy elements such as Mo and Cr, the steels achieve a tensile strength of greater than 780 MPa, and exhibit good elongation and superior cold bending performance.
It's to be noted that the prior art portions in the protection scope of the present disclosure are not limited to the examples set forth in the present application file. All the prior art contents not contradictory to the technical solution of the present disclosure, including but not limited to prior patent literature, prior publications, prior public uses and the like, may all be incorporated into the protection scope of the present disclosure. In addition, the ways in which the various technical features of the present disclosure are combined are not limited to the ways recited in the claims of the present disclosure or the ways described in the specific examples. All the technical features recited in the present disclosure may be combined or integrated freely in any manner, unless contradictions are resulted.
It should also be noted that the Examples set forth above are only specific examples according to the present disclosure. Obviously, the present disclosure is not limited to the above Examples. Similar variations or modifications made thereto can be directly derived or easily contemplated from the present disclosure by those skilled in the art. They all fall in the protection scope of the present disclosure.
Claims (15)
1. A cold-rolled and annealed dual-phase steel having a tensile strength of >
780MPa, wherein the cold-rolled and annealed dual-phase steel has a matrix structure of fine and uniform martensite + ferrite, wherein the cold-rolled and annealed dual-phase steel comprises the following chemical elements in mass percentages, in addition to Fe:
C: 0.1%-0.13%, Si: 0.4%-0.8%, Mn: 1.65%-1.9%, Al: 0.01%-0.05%, Nb: 0.01-0.03%, Ti:
0.01-0.03%;
wherein the cold-rolled and annealed dual-phase steel is free of Cr and Mo elements.
780MPa, wherein the cold-rolled and annealed dual-phase steel has a matrix structure of fine and uniform martensite + ferrite, wherein the cold-rolled and annealed dual-phase steel comprises the following chemical elements in mass percentages, in addition to Fe:
C: 0.1%-0.13%, Si: 0.4%-0.8%, Mn: 1.65%-1.9%, Al: 0.01%-0.05%, Nb: 0.01-0.03%, Ti:
0.01-0.03%;
wherein the cold-rolled and annealed dual-phase steel is free of Cr and Mo elements.
2. The cold-rolled and annealed dual-phase steel according to claim 1, wherein the chemical elements have the following mass percentages:
C: 0.1%-0.13%, Si: 0.4%-0.8%, Mn: 1.65%-1.9%, Al: 0.01%-0.05%, Nb: 0.01-0.03%, Ti:
0.01-0.03%, and a balance of Fe and other unavoidable impurities.
C: 0.1%-0.13%, Si: 0.4%-0.8%, Mn: 1.65%-1.9%, Al: 0.01%-0.05%, Nb: 0.01-0.03%, Ti:
0.01-0.03%, and a balance of Fe and other unavoidable impurities.
3. The cold-rolled and annealed dual-phase steel according to claim 1 or 2, wherein the chemical elements have mass percentage contents satisfying at least one of the following:
C: 0.11-0.125%, Si: 0.5%-0.7%, Mn: 1.7%-1.8%, Al: 0.015%4045%, Nb: 0.015-0.025%, Ti: 0.015-0.025%.
C: 0.11-0.125%, Si: 0.5%-0.7%, Mn: 1.7%-1.8%, Al: 0.015%4045%, Nb: 0.015-0.025%, Ti: 0.015-0.025%.
4. The cold-rolled and annealed dual-phase steel according to claim 2, wherein the unavoidable impurities include P, S and N elements, and contents thereof are controlled to be at least one of the following: P <0.015%, S<0.003%, N<0.005%.
5. The cold-rolled and annealed dual-phase steel according to any one of claims 1-3, wherein mass percentage contents of Nb and Ti further satisfy Nb%+Ti%x320.047%.
6. The cold-rolled and annealed dual-phase steel according to any one of claims 1-3, wherein the martensite has a phase proportion of >55%.
7. The cold-rolled and annealed dual-phase steel according to any one of claims 1-3, wherein the martensite has a grain diameter of not greater than 5 microns, and ferrite has a grain diameter of not greater than 5 microns.
8. The cold-rolled and annealed dual-phase steel according to any one of claims 1-3, wherein its performances satisfy at least one of the following: yield 5trength2420 MPa; tensile strength>780 M Pa; elongation at break with A50 gauge length 218%; 90 degree cold bending parameter R/t<1, where R represents bending radius in mm, t represents plate thickness in mm.
9. The cold-rolled and annealed dual-phase steel according to claim 5, wherein the mass percentage contents of Nb and Ti further satisfy 0.047%<Nb%+Ti%x3<0.10%.
10. A manufacturing method for the cold-rolled and annealed dual-phase steel according to any one of claims 1-9, wherein the method comprises steps of:
(1) Smelting and continuous casting;
(2) Hot rolling;
(3) Cold rolling;
(4) Annealing: annealing soaking temperature: 770-820 C; annealing time: 40-200 s;
cooling at a rate of 3-5 C/s to a starting temperature of rapid cooling;
rapid cooling at a rate of 30-80 C/s, wherein the starting temperature of rapid cooling is 650-730 C, and the rapid cooling is ended at a temperature of 200-270 C;
(5) Tempering;
(6) Temper rolling.
(1) Smelting and continuous casting;
(2) Hot rolling;
(3) Cold rolling;
(4) Annealing: annealing soaking temperature: 770-820 C; annealing time: 40-200 s;
cooling at a rate of 3-5 C/s to a starting temperature of rapid cooling;
rapid cooling at a rate of 30-80 C/s, wherein the starting temperature of rapid cooling is 650-730 C, and the rapid cooling is ended at a temperature of 200-270 C;
(5) Tempering;
(6) Temper rolling.
11. The manufacturing method according to claim 10, wherein in step (2), a slab is first heated to 1160-1220 C; held for 0.6 hours or longer; hot rolled at a temperature of 850-900 C;
rapidly cooled at a rate of 30-80 C/s after rolling; coiled with the coiling temperature being controlled at 500-600 C; and air cooled after the coiling.
rapidly cooled at a rate of 30-80 C/s after rolling; coiled with the coiling temperature being controlled at 500-600 C; and air cooled after the coiling.
12. The manufacturing method according to claim 10, wherein in step (3), a cold rolling reduction rate is controlled at 50-70%.
13. The manufacturing method according to claim 10, wherein in step (5), a tempering temperature is controlled at 200-270 C, and a tempering time is 100-400 s.
14. The manufacturing method according to claim 10, wherein in step (6), a temper rolling reduction rate is controlled at <0.3%.
15. The manufacturing method according to any one of claims 10-14, wherein in step (4), the annealing soaking temperature is 790-810 C.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010459214.0 | 2020-05-27 | ||
CN202010459214.0A CN113737086A (en) | 2020-05-27 | 2020-05-27 | Economical 780 MPa-grade cold-rolled annealed dual-phase steel and manufacturing method thereof |
PCT/CN2021/095808 WO2021238917A1 (en) | 2020-05-27 | 2021-05-25 | 780 mpa-class cold-rolled and annealed dual-phase steel and manufacturing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
CA3180469A1 true CA3180469A1 (en) | 2021-12-02 |
Family
ID=78722983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3180469A Pending CA3180469A1 (en) | 2020-05-27 | 2021-05-25 | 780 mpa-class cold-rolled and annealed dual-phase steel and manufacturing method therefor |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230203611A1 (en) |
EP (1) | EP4159885A4 (en) |
JP (1) | JP7524357B2 (en) |
CN (1) | CN113737086A (en) |
CA (1) | CA3180469A1 (en) |
WO (1) | WO2021238917A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114836606B (en) * | 2022-04-01 | 2023-05-26 | 山西太钢不锈钢股份有限公司 | Economical duplex stainless steel plate, method for improving strength of economical duplex stainless steel plate and application of economical duplex stainless steel plate |
CN117660830A (en) * | 2022-08-23 | 2024-03-08 | 宝山钢铁股份有限公司 | 100 kg-level cold-rolled low-alloy annealed dual-phase steel and manufacturing method thereof |
CN117660846A (en) * | 2022-08-23 | 2024-03-08 | 宝山钢铁股份有限公司 | 120 kg-level cold-rolled low-alloy annealed dual-phase steel and manufacturing method thereof |
CN117660831A (en) * | 2022-08-23 | 2024-03-08 | 宝山钢铁股份有限公司 | Dual-phase steel and manufacturing method thereof |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3478128B2 (en) * | 1998-06-12 | 2003-12-15 | Jfeスチール株式会社 | Method for producing composite structure type high tensile cold rolled steel sheet excellent in ductility and stretch flangeability |
EP1514951B1 (en) * | 2002-06-14 | 2010-11-24 | JFE Steel Corporation | High strength cold rolled steel plate and method for production thereof |
JP4235030B2 (en) | 2003-05-21 | 2009-03-04 | 新日本製鐵株式会社 | High-strength cold-rolled steel sheet and high-strength surface-treated steel sheet having excellent local formability and a tensile strength of 780 MPa or more with suppressed increase in hardness of the weld |
JP2005213640A (en) | 2004-02-02 | 2005-08-11 | Kobe Steel Ltd | High-strength cold rolled steel sheet excellent in ductility and stretch-flanging property and manufacturing method for the same |
JP4441417B2 (en) | 2005-02-14 | 2010-03-31 | 新日本製鐵株式会社 | High-tensile cold-rolled steel sheet with excellent formability and weldability and method for producing the same |
JP4815974B2 (en) | 2005-09-29 | 2011-11-16 | Jfeスチール株式会社 | Manufacturing method of high strength cold-rolled steel sheet with excellent rigidity |
JP4712882B2 (en) * | 2008-07-11 | 2011-06-29 | 株式会社神戸製鋼所 | High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability |
CN101363099A (en) | 2008-09-11 | 2009-02-11 | 北京科技大学 | Cold rolled dual-phase sheet steel with 1000MPa grade tensile strength and preparation method thereof |
WO2013073136A1 (en) * | 2011-11-15 | 2013-05-23 | Jfeスチール株式会社 | Thin steel sheet and process for producing same |
WO2016157258A1 (en) | 2015-03-27 | 2016-10-06 | Jfeスチール株式会社 | High-strength steel sheet and production method therefor |
JP6586776B2 (en) | 2015-05-26 | 2019-10-09 | 日本製鉄株式会社 | High strength steel plate with excellent formability and method for producing the same |
CN105420605A (en) * | 2015-11-30 | 2016-03-23 | 钢铁研究总院 | Ultralow-yield-ratio cold-rolled dual-phase steel and manufacturing method thereof |
US11230744B2 (en) * | 2016-03-31 | 2022-01-25 | Jfe Steel Corporation | Steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing steel sheet, and method for producing plated steel sheet |
CN105925905B (en) * | 2016-05-17 | 2018-07-06 | 武汉钢铁有限公司 | 780MPa grades of hot-rolled dual-phase steels of Nb-Ti systems and its production method |
CN109207841B (en) * | 2017-06-30 | 2021-06-15 | 宝山钢铁股份有限公司 | Low-cost high-formability 1180 MPa-grade cold-rolled annealed dual-phase steel plate and manufacturing method thereof |
KR102451383B1 (en) | 2018-03-30 | 2022-10-11 | 닛폰세이테츠 가부시키가이샤 | alloyed hot-dip galvanized steel |
CN109371317B (en) * | 2018-09-25 | 2021-03-02 | 邯郸钢铁集团有限责任公司 | 1000 MPa-grade ultra-fast cold-rolled dual-phase steel plate and preparation method thereof |
CN118308649A (en) | 2020-01-16 | 2024-07-09 | 日本制铁株式会社 | Hot-stamping forming body |
-
2020
- 2020-05-27 CN CN202010459214.0A patent/CN113737086A/en active Pending
-
2021
- 2021-05-25 CA CA3180469A patent/CA3180469A1/en active Pending
- 2021-05-25 US US17/927,875 patent/US20230203611A1/en active Pending
- 2021-05-25 EP EP21813104.3A patent/EP4159885A4/en active Pending
- 2021-05-25 WO PCT/CN2021/095808 patent/WO2021238917A1/en unknown
- 2021-05-25 JP JP2022572703A patent/JP7524357B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP7524357B2 (en) | 2024-07-29 |
US20230203611A1 (en) | 2023-06-29 |
EP4159885A4 (en) | 2024-04-24 |
JP2023527390A (en) | 2023-06-28 |
EP4159885A9 (en) | 2023-06-21 |
WO2021238917A1 (en) | 2021-12-02 |
CN113737086A (en) | 2021-12-03 |
EP4159885A1 (en) | 2023-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3889287B1 (en) | 980mpa grade cold-roll steel sheets with high hole expansion rate and higher percentage elongation and manufacturing method therefor | |
JP4956998B2 (en) | High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same | |
KR101917472B1 (en) | Tempered martensitic steel having low yield ratio and excellent uniform elongation property, and method for manufacturing the same | |
EP3653736B1 (en) | Hot-rolled steel strip and manufacturing method | |
US20230203611A1 (en) | 780 mpa-class cold-rolled and annealed dual-phase steel and manufacturing method therefor | |
US11339451B2 (en) | Low-cost and high-formability 1180 MPa grade cold-rolled annealed dual-phase steel plate and manufacturing method thereof | |
EP2880189B1 (en) | A process for producing hot-rolled steel strip and a steel strip produced therewith | |
CN113388773B (en) | 1.5GPa grade high-formability hydrogen-embrittlement-resistant ultrahigh-strength automobile steel and preparation method thereof | |
JP5363922B2 (en) | High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability | |
JP2013057114A (en) | Medium carbon steel plate having excellent workability and hardenability and method for producing the same | |
CN111074148A (en) | 800 MPa-level hot stamping axle housing steel and manufacturing method thereof | |
CN109207847B (en) | Low-carbon equivalent high-hole-expansion-rate 1180 MPa-grade cold-rolled steel plate and manufacturing method thereof | |
JP4457681B2 (en) | High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof | |
JP5302840B2 (en) | High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability | |
JP3899680B2 (en) | Paint bake-hardening type high-tensile steel sheet and manufacturing method thereof | |
KR20150046418A (en) | Steel having high strength and large ductility and method for manufacturing the same | |
EP4159887A9 (en) | Electro-galvanized super-strength dual-phase steel resistant to delayed cracking, and manufacturing method therefor | |
JP2002363685A (en) | Low yield ratio high strength cold rolled steel sheet | |
CN113403545A (en) | High-hole-expansibility DH1180MPa cold-rolled continuous-annealing steel plate and preparation method thereof | |
KR101153696B1 (en) | Steel Sheet having Excellent Yield Strength and Stretch Flange Ability and Manufacturing Method Thereof | |
KR100368241B1 (en) | A method for manufacturing hot rolled trip steels with excellent flange formability | |
KR101977502B1 (en) | Steel wire rod for cold heading having excellent deformation characteristics and tensile strength after cold heading and method of manufacturing the same | |
CN117660831A (en) | Dual-phase steel and manufacturing method thereof | |
JPS61106715A (en) | Manufacture of steel plate having superior carburizing property | |
CN115652207A (en) | 780 MPa-grade short-flow economical cold-rolled DH steel plate and production method thereof |