EP1514951B1 - High strength cold rolled steel plate and method for production thereof - Google Patents

High strength cold rolled steel plate and method for production thereof Download PDF

Info

Publication number
EP1514951B1
EP1514951B1 EP03736017A EP03736017A EP1514951B1 EP 1514951 B1 EP1514951 B1 EP 1514951B1 EP 03736017 A EP03736017 A EP 03736017A EP 03736017 A EP03736017 A EP 03736017A EP 1514951 B1 EP1514951 B1 EP 1514951B1
Authority
EP
European Patent Office
Prior art keywords
steel sheet
less
phase
rolled steel
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03736017A
Other languages
German (de)
French (fr)
Other versions
EP1514951A1 (en
EP1514951A4 (en
Inventor
Kohei c/o Intellectual. Prop. Dept. HASEGAWA
Hiroshi c/o Intellectual Prop. Dept. MATSUDA
Fusato c/o Intellectual Prop. Dept. KITANO
Kenji c/o Intellectual Prop. Dept. KAWAMURA
Hideyuki c/o Intellectual Prop. Dept. TSURUMARU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002173668A external-priority patent/JP4265152B2/en
Priority claimed from JP2002173669A external-priority patent/JP4265153B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to EP08159197A priority Critical patent/EP2017363A3/en
Publication of EP1514951A1 publication Critical patent/EP1514951A1/en
Publication of EP1514951A4 publication Critical patent/EP1514951A4/en
Application granted granted Critical
Publication of EP1514951B1 publication Critical patent/EP1514951B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling

Definitions

  • the present invention relates to a high strength cold-rolled steel sheet, favorable for use in a structural member of machine, particularly in a structural member of automobile, which has a tensile strength of 780MPa or more, and a manufacturing method thereof.
  • stress-flangeability means a property resisting to generation of cracks on a blank end face of steel sheet when it is press-formed and is evaluated, based on a hole-expanding ratio measured by means of hole-expanding test defined by the Japan Iron and Steel Federation Standard: JFST 1001-1996.
  • JP-B No. 7-59726 JP-A Nos. 2001-226741 , 10-60593 and 9-263838 , high strength cold-rolled steel sheets which have each aimed for improving stretch-flangeability by controlling structure through optimizing steel compositions and manufacturing conditions, and manufacturing methods thereof are disclosed. More specifically, for example, in JP-A No. 9-263838 , a cold-rolled steel sheet is slowly cooled from soaking temperature at the time of annealing to allow second phase to be uniformly dispersed in ferrite phase and, then, bainite phase is allowed to be uniformly dispersed in the ferrite phase as a main component by adjusting cooling rate and overaging temperature, thereby aiming for enhancing strength and improving stretch-flangeability.
  • JP-A No. 2001-355044 a high strength cold-rolled steel sheet in which ferrite phase is allowed to have higher strength and from 2% to 20% of residual austenite phase is formed in the ferrite phase to aim for simultaneously achieving strength enhancement and stretch-flangeability improvement is disclosed.
  • JP-A No. 11-350038 a method for producing a complex phase type high strength cold-rolled steel sheet which is excellent in ductility and stretch-flangeability and has a tensile strength of about 980MPa by controlling compositions and producing conditions is disclosed.
  • JP-A No. 9-41040 a method for manufacturing a high strength cold-rolled steel sheet which is excellent in stretch-flangeability by subjecting a cold-rolled steel sheet to annealing in an ⁇ + ⁇ region, cooling the resultant steel sheet by holding it in a temperature range of from 650°C to temperature to stop pearlite transformation for 10 seconds or more and, then, cooling the cooled steel sheet by holding it in a temperature range of from temperature to stop pearlite transformation to 450°C for 5 seconds or less is disclosed.
  • JP-B No. 58-55219 and Japanese Patent No. 2545316 a method for producing a high strength cold-rolled steel sheet by more strictly defining compositions and performing annealing under specified continuous annealing conditions is disclosed.
  • JP-B No. 7-68583 a method for manufacturing a dual phase type high strength cold-rolled steel sheet which is excellent in mechanical characteristics, spot-weldability and phosphatability by specifying content of C, Si, and Mn, reheating conditions before hot rolling, soaking conditions, atmosphere and the like in continuous annealing after cold rolling is disclosed.
  • JP-B No. 8-30212 a method for manufacturing a high strength cold-rolled steel sheet having high ductility and excellent bending property by allowing structure after hot rolling to be uniformly finer such that band structure is not generated therein and, then, allowing the resultant structure after continuous annealing to be that in which ferrite phase and martensite phase are uniformly distributed is disclosed.
  • JP-B No. 5-57332 a method for producing a high strength cold-rolled steel sheet which has a yield ratio of 0.65% or less and is excellent in both surface property and bending property by heating steel containing Si and a comparatively large amount of Mn to austenite single phase zone which is higher than Ac3 transformation temperature and, then, allowing complex phase structure comprising ferrite phase and second phase such as martensite phase to be formed in a cooling step is disclosed.
  • JP-B Nos. 1-35051 and 1-35052 a method for manufacturing a high strength cold-rolled steel sheet which is excellent in ductility by controlling heating temperature in continuous annealing, water-quenching start temperature, and overaging treatment temperature is disclosed.
  • JP-B Nos. 7-74412 and 3-68927 a method for producing a high strength cold-rolled steel sheet which is excellent in bending property, deep drawability, and resistance to seasoned crack by allowing condensation of C to be low to thereby set austenite phase to be 5% or less by means of performing annealing in a high temperature range after cold rolling is disclosed.
  • JP-B 7-59726 it is essential to perform overaging treatment at such a high temperature as 350°C or more and, in order to compensate decrease of tensile strength to be caused by such high temperature overaging treatment, a large amount of C which is a reinforcing element has been added (in steel Nos. 9, 10, and 13 according to the invention in Table 1, in order to have a tensile strength of 980MPa or more, 0.17% or more of C has been added.). For this reason, when the steel is spot-welded at the time of assembling an automobile, tenacity of spot-welded portion is deteriorated and, as a result, joint strength thereof is decreased. Further, since overaging treatment temperature is high, energy cost in production is increased, thereby deteriorating productivity.
  • a hole-expanding ratio is as low as 56% (steel 9 or more, hole-expanding ratio is as low as 56% (steel according to the invention in Table 1), thereby allowing stretch-flangeability to be insufficient.
  • JP-A No. 2001-226741 it is essential to perform austempering treatment after soaking in continuous annealing in order to generate bainite phase, but there is a problem in that consistent characteristics of steel sheet can not be obtained in this treatment.
  • JP-A No. 2001-355044 since residual austenite phase is allowed to exist, it is essential to generate bainite phase, thereby decreasing strength.
  • the tensile strength shown in an example is as low as from 600MPa to 800MPa, thereby being incapable of consistently obtaining a tensile strength of 780MPa or more.
  • JP-A Nos. 9-41040 and 9-263838 since structure comprises ferrite phase and pearlite phase, or ferrite phase and bainite phase, tensile strength is as low as from 400MPa to 700MPa.
  • JP-A No. 10-60593 JP-B Nos. 58-55219 and 7-68583 , and Japanese Patent No. 2545316 , tensile strength of from 400MPa to 700MPa can only be obtained.
  • JP 10-147838 discloses a cold-rolled steel sheet with a tensile strength lower than 780 MPa and a martensite content of 5 to 30%.
  • An object of the present invention is to provide a high strength cold-rolled steel sheet having an elongation of 18% or more, a hole-expanding ratio of 60% or more, and a tensile strength of 780MPa or more and a manufacturing method thereof
  • This obj ect can be achieved by a high strength cold-rolled steel sheet comprising the features of claim 1.
  • this high strength cold-rolled steel sheet can be realized by a method comprising the features of claim 2.
  • the present inventors have studied on a steel sheet which, even though an amount of C is reduced, has a tensile strength of 780MPa or more and, further, excellent ductility in which an elongation is 18% or more, and excellent stretch-flangeability in which a hole-expanding ratio is 60% or more, and found that the steel sheet can be realized by a steel sheet consisting essentially of, in terms of percentages by mass, 0.04 to 0.10% C, 0.5 to 1.5% Si, 1.8 to 3% Mn, 0.02% or less P, 0.01% or less S, 0.01 to 0.1% Sol. Al, 0.005% or less N, and the balance being iron and inevitable impurities and having a structure substantially comprising ferrite phase and martensite phase. Only components of 0.04 to 0.07 % are within the scope of the appending claims.
  • C is an important element for giving a great influence on tensile strength, and reinforcing martensite phase which is generated at quenching.
  • an amount of C is less than 0.04%, a tensile strength of 780MPa or more can not be obtained, while, when it is over 0.10%, stretch-flangeability and spot-weldability are remarkably deteriorated. Accordingly, the amount of C is set to be 0.04 to 0.10%. Further, in order to obtain a tensile strength of from 780MPa to less than 980MPa without deteriorating stretch-flangeability or spot-weldability, it is preferable to set the amount of C to be 0.04% to less than 0.070%.
  • Si is effective in enhancing ductility of dual phase type steel sheet comprising ferrite phase and martensite phase.
  • an amount of Si is less than 0.5%, effectiveness thereof becomes insufficient, while, when it is over 1.5%, a large amount of Si oxide is formed on a surface of steel sheet in a hot rolling step, thereby generating surface defects.
  • the amount of Si is set to be 0.5 to 1. 5%. Further, from the point of view of phosphatability, the amount of Si is desirably set to be 1.0% or less.
  • Mn is an important element for suppressing generation of ferrite phase in a cooling step of continuous annealing.
  • an amount of Mn is set to be 1.8 to 3%.
  • the amount of Mn is desirably set to be 2.0 to 2.5%.
  • Sol. Al Al is added for performing deoxidization of steel or precipitating N as AlN.
  • an amount of Sol. Al is less than 0.01%, the deoxidization or the precipitation of AlN is not sufficiently performed, while, when it is over 0.1%, effectiveness thereof is saturated, thereby inviting a cost increase. Accordingly, the amount of Sol. Al is set to be 0.01 to 0.1%.
  • N since N deteriorates formability of steel sheet, an amount of N is desirably as low as possible. However, when the amount thereof is reduced more than necessary, a refining cost is increased. Accordingly, the amount of N is set to be 0.005% or less such that it does not substantially deteriorate the formability.
  • Structure of steel sheet substantially comprises two phases of: ferrite phase and martensite phase. Besides these two phases, bainite phase in which iron is a main constitutional element or austenite phase may not deteriorate effectiveness of the present invention, so long as it is contained in an amount of less than 2% in terms of volume fraction. Further, compounds containing iron such as cementite may be contained in the ferrite phase, the martensite phase or an interface between ferrite and martensite phases. Still further, compounds such as AlN and MnS may not impair the effectiveness of the present invention, so long as each of the composition elements or impurity elements is within the scope of the invention.
  • volume fraction of martensite phase is 30 to 45%, in the range of from 780MPa to less than 980MPa of tensile strength, or when it is 45 to 60%, in the range of from 980MPa to 1180MPa of tensile strength, more excellent stretchflangeability can be obtained. Only a volume fraction of martensite phase from 30 to 45 % is within the scope of the appending claims
  • a tempering treatment can appropriately be performed on the martensite phase.
  • a slab having the aforementioned compositions is produced by continuous casting method or ingot making plus blooming method and, then, either after reheating or directly, the resultant slab is hot-rolled.
  • a final rolling temperature (finishing temperature) at hot rolling is desirably from Ar3 transformation temperature to 870 DEG C, in order to allow structure to be finer to thereby enhance ductility or stretch-flangeability.
  • the hot-rolled steel sheet is cooled and, then, coiled.
  • a coiling temperature is desirably 620 DEG C or less for the purpose of enhancing ductility or stretch-flangeability.
  • a cold-rolling reduction rate is desirably 55% or more for the purpose of enhancing ductility or stretch-flangeability by allowing structure to be finer.
  • the cold-rolled steel sheet is annealed under conditions as described below in a continuous annealing furnace.
  • a heating temperature is less than 750°C, a sufficient amount of austenite phase is not generated and, accordingly, high strength can not be aimed for, while, when it is over 870°C, transformation into austenite single phase occurs allowing structure to be coarse, thereby deteriorating ductility or stretch-flangeability. Further, when a heating time is less than 10 seconds, austenite phase is not sufficiently generated and, accordingly, high strength can not be aimed for.
  • a cooling rate at this time is desirably set to be 20°C/sec in the range of from 550°C to 750°C depending on compositions such that a volume fraction of austenite phase can be adjusted to be from 30% to 45% or from 45% to 60%, namely, a volume fraction of martensite phase can ultimately be adjusted to be from 30% to 45% or from 45% to 60%.
  • cooling terminal temperature is preferably set to be 100°C or less.
  • the resultant steel sheet may be held at the cooling terminal temperature for from 5 minutes to 20 minutes or subjected to tempering treatment at from 150°C to 390°C for from 5 minutes to 20 minutes.
  • tempering treatment By performing the tempering treatment, the martensite phase which has been generated at the rapid cooling is tempered, thereby enhancing ductility and stretch-flangeability.
  • a tempering temperature is less than 150°C, or a tempering time is less than 5 minutes, such effect as described above can not sufficiently be obtained.
  • the tempering temperature is over 390°C, or the tempering time is over 20 minutes, strength is remarkably decreased, thereby being sometimes incapable of obtaining a tensile strength of 780MPa or more.
  • the obtained steel sheet is subjected to temper rolling at a reduction rate of from 0.1% to 0.7% to thereby eliminate yield elongation completely.
  • the steel sheet according to the present invention can be electroplated, hot-dip galvanized or applied with solid lubricant.
  • Steel Nos. 1 to 10 having respective compositions as shown in Table 1 were each cast into slab.
  • the cast slab was reheated at 1250°C, hot-rolled at a finishing temperature of about 860°C, and slowly cooled at about 20°C/sec to produce a hot-rolled steel sheet having a thickness of 2.8mm by simulating coiling at 600°C for one hour.
  • the hot-rolled steel sheet was cold-rolled to produce a cold-rolled steel sheet having a thickness of 1.2 mm and, then, the cold-rolled steel sheet was subj ected to heating treatment which simulated continuous annealing.
  • the continuous annealing was performed under conditions that a temperature of the steel sheet was elevated at a heating rate of about 20°C/sec and, then, the steel sheet was soaked at 830°C for 300 seconds, slowly cooled down to 700°C at about 10°C/sec and, thereafter, rapidly cooled in jet-flowing water having a temperature of 20°C. A cooling rate of such rapid cooling was about 2000°C/sec. Finally, the steel sheet was subjected to tempering treatment at 300°C for 15 minutes, cooled and, then, subjected to temper rolling of 0.3% to produce steel sheet Nos. 1 to 10. Thereafter, in regard to the steel sheet Nos. 1 to 10, respective tensile characteristics and hole-expanding ratios ( ⁇ ) were measured.
  • JIS Z 2201 JIS No. 5 test piece was obtained along each of a rolling direction and a direction at a right angle thereto and subjected to a test in accordance with JIS Z 2241 to determine yield strength (YP), tensile strength (TS), and elongation (El).
  • each of steel sheet Nos. 2, 3, 9, and 10 which are examples according to the present invention satisfies the relations: TS ⁇ 780 MPa; El ⁇ 8%; and ⁇ 60%, and thus has high strength, and is excellent in ductility and stretch-flangeability.
  • steel sheet No. 1 is low in TS, due to small amount of C; steel sheet No. 5 is remarkably low in ⁇ , due to large amount of C and small amount of Mn; steel sheet No. 6 is low in ⁇ , due to small amount of Si; steel sheet No. 7 is low in TS and ⁇ , due to small amount of Mn; and steel sheet No. 8 is low in El, due to large amount of Mn.
  • Example 1 By using the slab of steel No. 2 as shown in Table 1, the steps up to cold rolling were performed under same conditions as in Example 1 and, then, continuous annealing and tempering treatment were performed under conditions as shown in Table 3. Finally, temper rolling of 0.3% was performed in the same manner as in Example 1 to produce steel sheet Nos. A to H. Thereafter, in regard to steel sheet Nos. A to H, the same tests as in Example 1 were conducted.
  • each of steel sheet Nos. A, E, G, and H which are examples according to the present invention satisfies the relations: TS ⁇ 780 MPa; El ⁇ 18%; and ⁇ 60%, and thus has high strength, and is excellent in ductility and stretch-flangeability.
  • each of steel sheet Nos. 1, 2, 3, 8, and 9 which are examples according to the present invention satisfies the relations: TS ⁇ 780 MPa; El ⁇ 18%; and ⁇ 60%, and thus has high strength, and is excellent in ductility and stretch-flangeability.
  • steel sheet No. 4 is low in El and ⁇ , due to large amount of C
  • steel sheet No. 5 is remarkably low in ⁇ , due to large amount of C and small amount of Mn
  • steel sheet No. 6 is low in ⁇ , due to small amount of Si
  • steel sheet No. 7 is low in El and ⁇ , due to large amount of Mn.
  • Table 5 Steel No. Chemical compositions (mass%) Remark C Si Mn P S Sol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

    TECHNICAL FIELD
  • The present invention relates to a high strength cold-rolled steel sheet, favorable for use in a structural member of machine, particularly in a structural member of automobile, which has a tensile strength of 780MPa or more, and a manufacturing method thereof.
  • BACKGROUND ART
  • From the point of view of achieving weight reduction of automobile for the purpose of reduction in fuel consumption and ensuring safety for occupants of automobile, application of a high strength cold-rolled steel sheet having a tensile strength of 780MPa or more to a structural member of automobile has been studied. However, since such a high strength cold-rolled steel sheet as described above is inferior in ductility and stretch-flangeability to a mild cold-rolled steel sheet, it is difficult to subject the high strength cold-rolled steel sheet to press-forming. The term "stretch-flangeability" as used herein means a property resisting to generation of cracks on a blank end face of steel sheet when it is press-formed and is evaluated, based on a hole-expanding ratio measured by means of hole-expanding test defined by the Japan Iron and Steel Federation Standard: JFST 1001-1996.
  • To date, various methods for improving stretch-flangeability of a high strength cold-rolled steel sheet have been disclosed as described below.
  • In JP-B No. 7-59726 , JP-A Nos. 2001-226741 , 10-60593 and 9-263838 , high strength cold-rolled steel sheets which have each aimed for improving stretch-flangeability by controlling structure through optimizing steel compositions and manufacturing conditions, and manufacturing methods thereof are disclosed. More specifically, for example, in JP-A No. 9-263838 , a cold-rolled steel sheet is slowly cooled from soaking temperature at the time of annealing to allow second phase to be uniformly dispersed in ferrite phase and, then, bainite phase is allowed to be uniformly dispersed in the ferrite phase as a main component by adjusting cooling rate and overaging temperature, thereby aiming for enhancing strength and improving stretch-flangeability.
  • In JP-A No. 2001-355044 , a high strength cold-rolled steel sheet in which ferrite phase is allowed to have higher strength and from 2% to 20% of residual austenite phase is formed in the ferrite phase to aim for simultaneously achieving strength enhancement and stretch-flangeability improvement is disclosed.
  • In JP-A No. 11-350038 , a method for producing a complex phase type high strength cold-rolled steel sheet which is excellent in ductility and stretch-flangeability and has a tensile strength of about 980MPa by controlling compositions and producing conditions is disclosed.
  • In JP-A No. 9-41040 , a method for manufacturing a high strength cold-rolled steel sheet which is excellent in stretch-flangeability by subjecting a cold-rolled steel sheet to annealing in an α + γ region, cooling the resultant steel sheet by holding it in a temperature range of from 650°C to temperature to stop pearlite transformation for 10 seconds or more and, then, cooling the cooled steel sheet by holding it in a temperature range of from temperature to stop pearlite transformation to 450°C for 5 seconds or less is disclosed.
  • Further, prior arts as described below in regard to a high strength cold-rolled steel sheet which, though not referring to stretch-flangeability, aims for enhancement of formability and the like are also disclosed.
  • In JP-B No. 58-55219 and Japanese Patent No. 2545316 , a method for producing a high strength cold-rolled steel sheet by more strictly defining compositions and performing annealing under specified continuous annealing conditions is disclosed.
  • In JP-B No. 7-68583 , a method for manufacturing a dual phase type high strength cold-rolled steel sheet which is excellent in mechanical characteristics, spot-weldability and phosphatability by specifying content of C, Si, and Mn, reheating conditions before hot rolling, soaking conditions, atmosphere and the like in continuous annealing after cold rolling is disclosed.
  • In JP-B No. 8-30212 , a method for manufacturing a high strength cold-rolled steel sheet having high ductility and excellent bending property by allowing structure after hot rolling to be uniformly finer such that band structure is not generated therein and, then, allowing the resultant structure after continuous annealing to be that in which ferrite phase and martensite phase are uniformly distributed is disclosed.
  • In JP-B No. 5-57332 , a method for producing a high strength cold-rolled steel sheet which has a yield ratio of 0.65% or less and is excellent in both surface property and bending property by heating steel containing Si and a comparatively large amount of Mn to austenite single phase zone which is higher than Ac3 transformation temperature and, then, allowing complex phase structure comprising ferrite phase and second phase such as martensite phase to be formed in a cooling step is disclosed.
  • In JP-B Nos. 1-35051 and 1-35052 , a method for manufacturing a high strength cold-rolled steel sheet which is excellent in ductility by controlling heating temperature in continuous annealing, water-quenching start temperature, and overaging treatment temperature is disclosed.
  • In JP-B Nos. 7-74412 and 3-68927 , a method for producing a high strength cold-rolled steel sheet which is excellent in bending property, deep drawability, and resistance to seasoned crack by allowing condensation of C to be low to thereby set austenite phase to be 5% or less by means of performing annealing in a high temperature range after cold rolling is disclosed.
  • However, such conventional prior arts as described above have problems as described below.
  • In JP-B 7-59726 , it is essential to perform overaging treatment at such a high temperature as 350°C or more and, in order to compensate decrease of tensile strength to be caused by such high temperature overaging treatment, a large amount of C which is a reinforcing element has been added (in steel Nos. 9, 10, and 13 according to the invention in Table 1, in order to have a tensile strength of 980MPa or more, 0.17% or more of C has been added.). For this reason, when the steel is spot-welded at the time of assembling an automobile, tenacity of spot-welded portion is deteriorated and, as a result, joint strength thereof is decreased. Further, since overaging treatment temperature is high, energy cost in production is increased, thereby deteriorating productivity. Still further, when the steel has a tensile strength of 980MPa or more, a hole-expanding ratio is as low as 56% (steel 9 or more, hole-expanding ratio is as low as 56% (steel according to the invention in Table 1), thereby allowing stretch-flangeability to be insufficient.
  • In JP-A No. 2001-226741 , it is essential to perform austempering treatment after soaking in continuous annealing in order to generate bainite phase, but there is a problem in that consistent characteristics of steel sheet can not be obtained in this treatment.
  • In JP-A No. 2001-355044 , since residual austenite phase is allowed to exist, it is essential to generate bainite phase, thereby decreasing strength. The tensile strength shown in an example is as low as from 600MPa to 800MPa, thereby being incapable of consistently obtaining a tensile strength of 780MPa or more. In order to enhance strength, it is necessary to add a large amount of C, Si, and Mn, thereby inviting deterioration of weldability and the like.
  • In JP-A No. 11-350038 , since an amount of C is as large as from 0.10% to 0.15%, thereby deteriorating stretch-flangeability or tenacity of spot-welded portion.
  • In JP-A Nos. 9-41040 and 9-263838 , since structure comprises ferrite phase and pearlite phase, or ferrite phase and bainite phase, tensile strength is as low as from 400MPa to 700MPa.
  • In JP-A No. 10-60593 , JP-B Nos. 58-55219 and 7-68583 , and Japanese Patent No. 2545316 , tensile strength of from 400MPa to 700MPa can only be obtained.
  • In JP-B Nos. 1-35051 , 1-35052 , 3-68927 , 8-30212 , 5-57332 and 7-74412 , consistent and excellent stretch-flangeability can not be obtained.
    JP 10-147838 discloses a cold-rolled steel sheet with a tensile strength lower than 780 MPa and a martensite content of 5 to 30%.
  • DISCLOSURE OF THE INVENTION
  • An object of the present invention is to provide a high strength cold-rolled steel sheet having an elongation of 18% or more, a hole-expanding ratio of 60% or more, and a tensile strength of 780MPa or more and a manufacturing method thereof
  • This obj ect can be achieved by a high strength cold-rolled steel sheet comprising the features of claim 1.
  • Further, this high strength cold-rolled steel sheet can be realized by a method comprising the features of claim 2.
  • EMBODIMENTS OF THE INVENTION
  • In a high strength cold-rolled steel sheet having a tensile strength of 780MPa or more, it is necessary to allow structure to substantially be a dual-phase structure of ferrite phase and martensite phase. For such necessity, as described above, it is necessary to increase an amount of C, thereby deteriorating stretch-flangeability, spot-weldability and, further, phosphatability.
  • The present inventors have studied on a steel sheet which, even though an amount of C is reduced, has a tensile strength of 780MPa or more and, further, excellent ductility in which an elongation is 18% or more, and excellent stretch-flangeability in which a hole-expanding ratio is 60% or more, and found that the steel sheet can be realized by a steel sheet consisting essentially of, in terms of percentages by mass, 0.04 to 0.10% C, 0.5 to 1.5% Si, 1.8 to 3% Mn, 0.02% or less P, 0.01% or less S, 0.01 to 0.1% Sol. Al, 0.005% or less N, and the balance being iron and inevitable impurities and having a structure substantially comprising ferrite phase and martensite phase. Only components of 0.04 to 0.07 % are within the scope of the appending claims.
  • Hereinafter, the present invention will be described in detail.
  • 1) Compositions
  • C: C is an important element for giving a great influence on tensile strength, and reinforcing martensite phase which is generated at quenching. When an amount of C is less than 0.04%, a tensile strength of 780MPa or more can not be obtained, while, when it is over 0.10%, stretch-flangeability and spot-weldability are remarkably deteriorated. Accordingly, the amount of C is set to be 0.04 to 0.10%. Further, in order to obtain a tensile strength of from 780MPa to less than 980MPa without deteriorating stretch-flangeability or spot-weldability, it is preferable to set the amount of C to be 0.04% to less than 0.070%.
  • Si: Si is effective in enhancing ductility of dual phase type steel sheet comprising ferrite phase and martensite phase. When an amount of Si is less than 0.5%, effectiveness thereof becomes insufficient, while, when it is over 1.5%, a large amount of Si oxide is formed on a surface of steel sheet in a hot rolling step, thereby generating surface defects. Accordingly, the amount of Si is set to be 0.5 to 1. 5%. Further, from the point of view of phosphatability, the amount of Si is desirably set to be 1.0% or less.
  • Mn: Mn is an important element for suppressing generation of ferrite phase in a cooling step of continuous annealing. When an amount of Mn is less than 1.8%, effectiveness thereof becomes insufficient, while, when it is over 3%, a slab crack is generated at the time of continuous casting. Accordingly, the amount of Mn is set to be 1.8 to 3%. Further, in order to consistently produce the steel sheet in a continuous annealing step, the amount of Mn is desirably set to be 2.0 to 2.5%.
  • P: when an amount of P is over 0.02%, spot-weldability is remarkably deteriorated and, accordingly, the amount of P is set to be 0.02% or less.
  • S: when an amount of S is over 0.01%, spot-weldability is remarkably deteriorated and, accordingly, the amount of S is set to be 0.01% or less.
  • Sol. Al: Al is added for performing deoxidization of steel or precipitating N as AlN. When an amount of Sol. Al is less than 0.01%, the deoxidization or the precipitation of AlN is not sufficiently performed, while, when it is over 0.1%, effectiveness thereof is saturated, thereby inviting a cost increase. Accordingly, the amount of Sol. Al is set to be 0.01 to 0.1%.
  • N: since N deteriorates formability of steel sheet, an amount of N is desirably as low as possible. However, when the amount thereof is reduced more than necessary, a refining cost is increased. Accordingly, the amount of N is set to be 0.005% or less such that it does not substantially deteriorate the formability.
  • Besides the aforementioned elements, when at least one element selected from 0.01 to 1.0% Cr, 0.01 to 0.5% Mo, 0.0001% to 0.0020% B, 0.001 to 0.05% Ti, 0.001 to 0.05% Nb, 0.001% to 0.05% V, and 0.001 to 0.05% Zr is allowed to be contained, there is an advantage in that structure adjustment at the time of continuous annealing is facilitated, or stretch-flangeability is enhanced by suppressing an occurrence in which a carbide or a nitride is formed in the steel sheet during casting or in a hot rolling step and, then, crystal grains come to be coarse. When a content of each element is less than the lower limit, the aforementioned effects are not sufficiently performed, while it is over the upper limit, the ductility is liable to be deteriorated.
  • 2) Structure
  • Structure of steel sheet substantially comprises two phases of: ferrite phase and martensite phase. Besides these two phases, bainite phase in which iron is a main constitutional element or austenite phase may not deteriorate effectiveness of the present invention, so long as it is contained in an amount of less than 2% in terms of volume fraction. Further, compounds containing iron such as cementite may be contained in the ferrite phase, the martensite phase or an interface between ferrite and martensite phases. Still further, compounds such as AlN and MnS may not impair the effectiveness of the present invention, so long as each of the composition elements or impurity elements is within the scope of the invention.
  • When a volume fraction of martensite phase is 30 to 45%, in the range of from 780MPa to less than 980MPa of tensile strength, or when it is 45 to 60%, in the range of from 980MPa to 1180MPa of tensile strength, more excellent stretchflangeability can be obtained. Only a volume fraction of martensite phase from 30 to 45 % is within the scope of the appending claims
  • Further, in the range in which desired strength can be achieved, a tempering treatment can appropriately be performed on the martensite phase.
  • 3) manufacturing method
  • Firstly, a slab having the aforementioned compositions is produced by continuous casting method or ingot making plus blooming method and, then, either after reheating or directly, the resultant slab is hot-rolled. A final rolling temperature (finishing temperature) at hot rolling is desirably from Ar3 transformation temperature to 870 DEG C, in order to allow structure to be finer to thereby enhance ductility or stretch-flangeability. The hot-rolled steel sheet is cooled and, then, coiled. A coiling temperature is desirably 620 DEG C or less for the purpose of enhancing ductility or stretch-flangeability.
  • Next, the resultant steel sheet is cold-rolled to be in a desired thickness. At this time, a cold-rolling reduction rate is desirably 55% or more for the purpose of enhancing ductility or stretch-flangeability by allowing structure to be finer.
  • Finally, the cold-rolled steel sheet is annealed under conditions as described below in a continuous annealing furnace.
  • i) Heating: from 750°C to 870°C for 10 seconds or more
  • When a heating temperature is less than 750°C, a sufficient amount of austenite phase is not generated and, accordingly, high strength can not be aimed for, while, when it is over 870°C, transformation into austenite single phase occurs allowing structure to be coarse, thereby deteriorating ductility or stretch-flangeability. Further, when a heating time is less than 10 seconds, austenite phase is not sufficiently generated and, accordingly, high strength can not be aimed for.
  • ii) Primary cooling (slow cooling); Cooling terminal temperature: from 550°C to 750°C
  • When a cooling terminal temperature is less than 550°C, a volume fraction of ferrite phase becomes unduly high, strength becomes insufficient, while, when it is over 750°C, not only ductility is deteriorated by subsequent rapid cooling, but also flatness of steel sheet is deteriorated. A cooling rate at this time is desirably set to be 20°C/sec in the range of from 550°C to 750°C depending on compositions such that a volume fraction of austenite phase can be adjusted to be from 30% to 45% or from 45% to 60%, namely, a volume fraction of martensite phase can ultimately be adjusted to be from 30% to 45% or from 45% to 60%.
  • iii) Secondary cooling (rapid cooling); Cooling rate: over 100°C/sec; Cooling terminal temperature: 300°C or less
  • When a cooling rate is 100°C/sec or less, quenching becomes insufficient and, accordingly, high strength can not be aimed for. In order to consistently aim for high strength, rapid cooling is desirably performed at a cooling rate of 500°C/sec or more. Further, when a cooling terminal temperature is over 300°C, either bainite phase is generated, or austenite phase remains, thereby deteriorating stretch-flangeability. In order to obtain consistent excellent stretch-flangeability, the cooling terminal temperature is preferably set to be 100°C or less.
  • After the rapid cooling, the resultant steel sheet may be held at the cooling terminal temperature for from 5 minutes to 20 minutes or subjected to tempering treatment at from 150°C to 390°C for from 5 minutes to 20 minutes. By performing the tempering treatment, the martensite phase which has been generated at the rapid cooling is tempered, thereby enhancing ductility and stretch-flangeability. Further, when a tempering temperature is less than 150°C, or a tempering time is less than 5 minutes, such effect as described above can not sufficiently be obtained. On the other hand, when the tempering temperature is over 390°C, or the tempering time is over 20 minutes, strength is remarkably decreased, thereby being sometimes incapable of obtaining a tensile strength of 780MPa or more.
  • Still further, it is preferable that the obtained steel sheet is subjected to temper rolling at a reduction rate of from 0.1% to 0.7% to thereby eliminate yield elongation completely.
  • Furthermore, the steel sheet according to the present invention can be electroplated, hot-dip galvanized or applied with solid lubricant.
  • Example 1
  • Steel Nos. 1 to 10 having respective compositions as shown in Table 1 were each cast into slab. The cast slab was reheated at 1250°C, hot-rolled at a finishing temperature of about 860°C, and slowly cooled at about 20°C/sec to produce a hot-rolled steel sheet having a thickness of 2.8mm by simulating coiling at 600°C for one hour. Next, the hot-rolled steel sheet was cold-rolled to produce a cold-rolled steel sheet having a thickness of 1.2 mm and, then, the cold-rolled steel sheet was subj ected to heating treatment which simulated continuous annealing. The continuous annealing was performed under conditions that a temperature of the steel sheet was elevated at a heating rate of about 20°C/sec and, then, the steel sheet was soaked at 830°C for 300 seconds, slowly cooled down to 700°C at about 10°C/sec and, thereafter, rapidly cooled in jet-flowing water having a temperature of 20°C. A cooling rate of such rapid cooling was about 2000°C/sec. Finally, the steel sheet was subjected to tempering treatment at 300°C for 15 minutes, cooled and, then, subjected to temper rolling of 0.3% to produce steel sheet Nos. 1 to 10. Thereafter, in regard to the steel sheet Nos. 1 to 10, respective tensile characteristics and hole-expanding ratios (λ) were measured.
  • In regard to the tensile characteristics, a JIS No. 5 test piece (JIS Z 2201) was obtained along each of a rolling direction and a direction at a right angle thereto and subjected to a test in accordance with JIS Z 2241 to determine yield strength (YP), tensile strength (TS), and elongation (El).
  • In regard to the hole-expanding ratio, a test was conducted in accordance with the evaluation method of stretch-flangeability defined by the Japan Iron and Steel Federation Standard (JFST 1001-1996), to determine the value thereof.
  • Values to be targeted according to the present invention are as follows:
    • TS≥780MPa; El≥18%; and λ≥60%.
  • The results are shown in Table 2.
  • It is found that each of steel sheet Nos. 2, 3, 9, and 10 which are examples according to the present invention satisfies the relations: TS≥780 MPa; El≥8%; and λ≥60%, and thus has high strength, and is excellent in ductility and stretch-flangeability.
  • On the other hand, as comparative examples, steel sheet No. 1 is low in TS, due to small amount of C; steel sheet No. 5 is remarkably low in λ, due to large amount of C and small amount of Mn; steel sheet No. 6 is low in λ, due to small amount of Si; steel sheet No. 7 is low in TS and λ, due to small amount of Mn; and steel sheet No. 8 is low in El, due to large amount of Mn. Table 1
    Steel No. Chemical compositions (mass%) Remark
    C Sl Mn P S Sol. Al N B Cr Mo Ti Nb V Zr
    1 0.032 1.1 2.3 0.012 0.004 0.030 0.003 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Comparative Example
    2 0.054 1.0 2.3 0.015 0.002 0.030 0.003 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Present invention
    3 0.065 1.4 2.1 0.010 0.003 0.030 0.003 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Present Invention
    4 0.081 0.8 2.0 0.006 0.001 0.030 0.003 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 not within the present invention
    5 0.112 0.9 1.3 0.008 0.007 0.030 0.003 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Comparative Example
    6 0.062 0.03 2.1 0.014 0.006 0.030 0.003 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Comparative Example
    7 0.068 0.9 1.5 0.012 0.003 0.030 0.003 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Comparative Example
    8 0.045 1.2 3.6 0.010 0.002 0.030 0.003 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Comparative Example
    9 0.058 0.9 1.9 0.010 0.001 0.030 0.003 0.0010 0.020 <0.001 <0.001 <0.001 <0.001 <0.001 Present Invention
    10 0045 0.8 2.0 0.010 0.003 0.030 0.003 <0.0001 <0.001 <0.001 0.02 0.02 <0.001 <0.001 Present Invention
    Table 2
    Steel sheet No. Steel No. Martensite volume fraction (%) Tensile properties Hole-expanding ratio λ (%) Remark
    YP (MPa) TS (MPa) El(%)
    1 1 33 408 680 27.9 85 Comparative Example
    2 2 42 498 830 22.9 88 Present Invention
    3 3 38 510 850 22.4 80 Present Invention
    4 4 35 630 1050 18.1 60 not within the present invention
    5 5 25 492 820 23.2 30 Comparative Example
    6 6 33 486 810 23.5 55 Comparative Example
    7 7 26 432 720 26.4 40 Comparative Example
    8 8 65 612 1020 13.2 85 Comparative Example
    9 9 44 516 860 22.1 83 Present Invention
    10 10 36 480 800 23.8 90 Present Invention
  • Example 2
  • By using the slab of steel No. 2 as shown in Table 1, the steps up to cold rolling were performed under same conditions as in Example 1 and, then, continuous annealing and tempering treatment were performed under conditions as shown in Table 3. Finally, temper rolling of 0.3% was performed in the same manner as in Example 1 to produce steel sheet Nos. A to H. Thereafter, in regard to steel sheet Nos. A to H, the same tests as in Example 1 were conducted.
  • The results are shown in Table 4.
  • It is found that each of steel sheet Nos. A, E, G, and H which are examples according to the present invention satisfies the relations: TS≥780 MPa; El≥18%; and λ≥60%, and thus has high strength, and is excellent in ductility and stretch-flangeability.
  • On the other hand, as comparative examples, steel sheet No. B is low in TS and λ, due to high heating temperature: this is considered to be caused by that structure having martensite phase as a main component has become coarse; steel sheet No. C is low in TS and λ, due to short heating time: this is considered to be caused by that a sufficient amount of austenite phase was not generated during heating and, after rapid cooling, a sufficient volume fraction of martensite phase was not obtained; steel sheet No. D is low in TS and λ, due to low slow cooling terminal temperature: this is considered to be caused by that ferrite phase was generated during the slow cooling and, after rapid cooling, a volume fraction of martensite phase was reduced; and steel sheet No. F is low in TS and λ, due to low rapid cooling speed and high rapid cooling terminal temperature. Table 3
    Steel sheet No. Steel No. Heating temperature (°C) Heating time (sec) Slow cooling rate (°C/sec) Slow cooling terminal temperature (°C) Rapid cooling rate (°C/sec) Rapid cooling terminal temperature (°C) Tempering temperature (°C) Tempering time (sec) Remark
    A 2 830 150 5.0 680 2000 40 - - Present Invention
    B 2 890 200 5.7 720 2000 40 - - Comparative Example
    C 2 830 5 4.7 690 2000 40 - - Comparative Example
    D 2 830 120 10.0 530 2000 40 - - Comparative Example
    E 2 830 300 6.0 650 300 200 - - Present Invention
    F 2 840 160 3.8 725 30 400 - - Comparative Example
    G 2 850 60 5.7 680 2000 40 200 15 Present Invention
    H 2 830 150 5.0 680 2000 40 300 15 Present Invention
    Table 4
    Steel sheet No. Martensite volume fraction (%) Tensile properties Hole-expanding ratio λ (%) Remark
    YP (MPa) TS (MPa) EI (%)
    A 39 492 820 23.2 83 Present Invention
    B 29 450 750 25.3 30 Comparative Example
    C 25 438 730 26.0 45 Comparative Example
    D 24 432 720 26.4 50 Comparative Example
    E 44 510 850 22.4 99 Present Invention
    F 20 390 650 29.2 55 Comparative Example
    G 39 516 880 22.1 85 Present Invention
    H 42 504 840 22.6 92 Present Invention
  • Example 3
  • Steel Nos. 1 to 9 having respective compositions as shown in Table 5 were each cast into slab. The cast slab was subjected, under the same conditions as in Example 1, to hot rolling, cold rolling, continuous annealing, and temper rolling to produce steel sheet Nos. 1 to 9. Thereafter, yield strength (YP), tensile strength (TS), elongation (El), and hole-expanding ratio (λ) were measured in the same manner as in Example 1.
  • The results are shown in Table 6.
  • It is found that each of steel sheet Nos. 1, 2, 3, 8, and 9 which are examples according to the present invention satisfies the relations: TS≥780 MPa; El≥18%; and λ≥60%, and thus has high strength, and is excellent in ductility and stretch-flangeability.
  • On the other hand, as comparative examples, steel sheet No. 4 is low in El and λ, due to large amount of C; steel sheet No. 5 is remarkably low in λ, due to large amount of C and small amount of Mn; steel sheet No. 6 is low in λ, due to small amount of Si; and steel sheet No. 7 is low in El and λ, due to large amount of Mn. Table 5
    Steel No. Chemical compositions (mass%) Remark
    C Si Mn P S Sol. Al N B Cr Mo Tl Nb V Zr
    1 0.065 1.1 2.3 0.012 0.004 0.030 0.003 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Present Invention
    2 0.073 1.0 2.3 0.015 0.002 0.030 0.003 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 not within the present invention
    3 0.095 1.4 2.1 0.010 0.003 0.030 0.003 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 not within the present invention
    4 0.112 0.8 2.0 0.006 0.001 0.030 0.003 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Comparative Example
    5 0.134 0.9 1.3 0.008 0.007 0.030 0.003 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Comparative Example
    6 0.081 0.03 2.1 0.014 0.006 0.030 0.003 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Comparative Example
    7 0.078 1.2 3.6 0.010 0.002 0.030 0.003 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Comparative Example
    8 0.083 0.9 1.9 0.010 0.001 0.030 0.003 0.0010 0.020 <0.001 <0.001 <0.001 <0.001 <0.001 not within the present invention
    9 0.088 0.8 2.0 0.010 0.003 0.030 0.003 <0.0001 <0.001 <0.001 0.02 0.02 <0.001 <0.001 not within the present invention
    Table 6
    Steel sheet No. Steel No. Martensite volume fraction (%) Tensile properties Hole-expanding ratio λ (%) Remark
    YP (MPa) TS (MPa) EI (%)
    1 1 50 696 870 21.8 61 Present Invention
    2 2 55 808 1010 18.8 70 not within the present invention
    3 3 51 816 1020 18.6 65 not within the present invention
    4 4 56 1000 1250 15.2 35 Comparative Example
    5 5 32 792 990 19.2 30 Comparative Example
    6 6 46 744 930 20.4 45 Comparative Example
    7 7 80 1024 1280 13.2 55 Comparative Example
    8 8 47 808 1010 18.8 73 not within the present invention
    9 9 53 800 1000 19.0 71 not within the present invention

Claims (2)

  1. A high strength cold-rolled steel sheet, consisting of, in terms of percentages by mass, 0.04 to 0.070% C, 0.5 to 1.5% Si, 1.8 to 3% Mn, 0.02% or less P, 0.01% or less S, 0.01 to 0.1% Sol. Al, 0.005% or less N, optionally further comprising at least one element selected from the group consisting of: in terms of percentages by mass, 0.01 to 1.0% Cr, 0.01 to 0.5% Mo, 0.0001 to 0.0020% B, 0.001 to 0.05% Ti, 0.001 to 0.05% Nb, 0.001 to 0.05% V, and 0.001 to 0.05% Zr and the balance being iron and inevitable impurities, having a structure substantially consisting of ferrite phase and martensite phase, and having a tensile strength of from 780 MPa to less than 980 MPa
    wherein a volume fraction of martensite phase is from 30% to 45%.
  2. A method for producing a high strength cold-rolled steel sheet, comprising the steps of:
    producing a steel sheet by hot rolling a steel slab consisting of compositions as set forth in any one of Claim 1, followed by cold rolling;
    heating the cold-rolled steel sheet at from 750°C to 870°C for 10 seconds or more;
    cooling the heated steel sheet down to from 550°C to 750°C;
    cooling the located steel sheet at a cooling rate of 20°C/sec. or less within the temperature range of from 550°C to 750°C so that a volume fraction of austenite phase is adjusted to be from 30% to 45%; and
    cooling the cooled steel sheet down to 300°C or less at a cooling rate of over 100°C/sec.
EP03736017A 2002-06-14 2003-06-04 High strength cold rolled steel plate and method for production thereof Expired - Fee Related EP1514951B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08159197A EP2017363A3 (en) 2002-06-14 2003-06-04 High strength cold-rolled steel sheet and method for manufacturing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002173668 2002-06-14
JP2002173668A JP4265152B2 (en) 2002-06-14 2002-06-14 High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP2002173669 2002-06-14
JP2002173669A JP4265153B2 (en) 2002-06-14 2002-06-14 High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
PCT/JP2003/007062 WO2003106723A1 (en) 2002-06-14 2003-06-04 High strength cold rolled steel plate and method for production thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP08159197A Division EP2017363A3 (en) 2002-06-14 2003-06-04 High strength cold-rolled steel sheet and method for manufacturing the same
EP08159197.6 Division-Into 2008-06-27

Publications (3)

Publication Number Publication Date
EP1514951A1 EP1514951A1 (en) 2005-03-16
EP1514951A4 EP1514951A4 (en) 2006-05-10
EP1514951B1 true EP1514951B1 (en) 2010-11-24

Family

ID=29738398

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03736017A Expired - Fee Related EP1514951B1 (en) 2002-06-14 2003-06-04 High strength cold rolled steel plate and method for production thereof
EP08159197A Withdrawn EP2017363A3 (en) 2002-06-14 2003-06-04 High strength cold-rolled steel sheet and method for manufacturing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08159197A Withdrawn EP2017363A3 (en) 2002-06-14 2003-06-04 High strength cold-rolled steel sheet and method for manufacturing the same

Country Status (4)

Country Link
US (1) US20040238082A1 (en)
EP (2) EP1514951B1 (en)
DE (1) DE60335106D1 (en)
WO (1) WO2003106723A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4530606B2 (en) * 2002-06-10 2010-08-25 Jfeスチール株式会社 Manufacturing method of ultra-high strength cold-rolled steel sheet with excellent spot weldability
US7959747B2 (en) * 2004-11-24 2011-06-14 Nucor Corporation Method of making cold rolled dual phase steel sheet
US8337643B2 (en) * 2004-11-24 2012-12-25 Nucor Corporation Hot rolled dual phase steel sheet
US7442268B2 (en) * 2004-11-24 2008-10-28 Nucor Corporation Method of manufacturing cold rolled dual-phase steel sheet
JP4461112B2 (en) * 2006-03-28 2010-05-12 株式会社神戸製鋼所 High strength steel plate with excellent workability
US7608155B2 (en) * 2006-09-27 2009-10-27 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
US11155902B2 (en) * 2006-09-27 2021-10-26 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
JP5586007B2 (en) * 2007-02-23 2014-09-10 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ Cold rolled and continuously annealed high strength steel strip and method for producing the steel
BRPI0818530A2 (en) 2007-10-10 2015-06-16 Nucor Corp Cold rolled steel of complex metallographic structure and method of fabricating a steel sheet of complex metallographic structure
EP2216422B1 (en) * 2007-11-22 2012-09-12 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet
RU2491149C2 (en) * 2008-03-19 2013-08-27 Ньюкор Корпорейшн Strip casting device with positioning of casting rolls
US20090236068A1 (en) 2008-03-19 2009-09-24 Nucor Corporation Strip casting apparatus for rapid set and change of casting rolls
US20090288798A1 (en) * 2008-05-23 2009-11-26 Nucor Corporation Method and apparatus for controlling temperature of thin cast strip
US8128762B2 (en) * 2008-08-12 2012-03-06 Kobe Steel, Ltd. High-strength steel sheet superior in formability
JP5394709B2 (en) 2008-11-28 2014-01-22 株式会社神戸製鋼所 Super high strength steel plate with excellent hydrogen embrittlement resistance and workability
JP5709151B2 (en) * 2009-03-10 2015-04-30 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
MX2012004650A (en) * 2010-01-13 2012-05-08 Nippon Steel Corp High-strength steel plate having excellent formability, and production method for same.
ES2718492T3 (en) * 2010-12-17 2019-07-02 Hot dipped galvanized steel sheet and manufacturing method
WO2013082171A1 (en) * 2011-11-28 2013-06-06 Arcelormittallnvestigacion Y Desarrollo S.L. High silicon bearing dual phase steels with improved ductility
WO2013089095A1 (en) * 2011-12-15 2013-06-20 株式会社神戸製鋼所 High-strength cold-rolled steel sheet having small variations in strength and ductility, and method for producing same
JP5860343B2 (en) * 2012-05-29 2016-02-16 株式会社神戸製鋼所 High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same
CN103060703B (en) 2013-01-22 2015-09-23 宝山钢铁股份有限公司 A kind of cold rolling diphasic strip steel of 780MPa level and manufacture method thereof
CA2935308C (en) 2014-01-06 2018-09-25 Nippon Steel & Sumitomo Metal Corporation Hot-formed member and manufacturing method of same
TWI491742B (en) * 2014-01-06 2015-07-11 Nippon Steel & Sumitomo Metal Corp Steel sheet and manufacturing method thereof
KR101821913B1 (en) 2014-01-06 2018-03-08 신닛테츠스미킨 카부시키카이샤 Steel material and process for producing same
JP5935843B2 (en) * 2014-08-08 2016-06-15 Jfeスチール株式会社 Cold-rolled steel sheet with excellent spot weldability and method for producing the same
CN113737086A (en) * 2020-05-27 2021-12-03 宝山钢铁股份有限公司 Economical 780 MPa-grade cold-rolled annealed dual-phase steel and manufacturing method thereof

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215046B2 (en) * 1972-06-22 1977-04-26
JPS5855219B2 (en) 1979-04-24 1983-12-08 日本鋼管株式会社 Manufacturing method of low yield ratio high strength cold rolled steel sheet
JPH0768583B2 (en) 1984-03-07 1995-07-26 住友金属工業株式会社 High-tensile cold-rolled steel sheet manufacturing method
JPS613843A (en) 1984-06-15 1986-01-09 Kobe Steel Ltd Manufacture of high ductility and high strength cold rolled steel sheet
JPS6237322A (en) 1985-08-12 1987-02-18 Nisshin Steel Co Ltd Production of low yield ratio cold rolled high tensile steel plate having excellent surface characteristic and bendability
JPS6299417A (en) 1985-10-24 1987-05-08 Kobe Steel Ltd Manufacture of high ductility and strength cold rolled steel sheet
JPS63145718A (en) 1986-07-05 1988-06-17 Nippon Steel Corp Production of ultra-high-strength cold rolled steel sheet having excellent workability
JPH0774412B2 (en) 1987-01-20 1995-08-09 新日本製鐵株式会社 High-strength thin steel sheet excellent in workability and resistance to placement cracking and method for producing the same
JPH0759726B2 (en) * 1987-05-25 1995-06-28 株式会社神戸製鋼所 Method for manufacturing high strength cold rolled steel sheet with excellent local ductility
JPH0830212B2 (en) 1990-08-08 1996-03-27 日本鋼管株式会社 Manufacturing method of ultra high strength cold rolled steel sheet with excellent workability
JPH04333524A (en) * 1991-05-09 1992-11-20 Nippon Steel Corp Production of high strength dual-phase steel sheet having superior ductility
JP2545316B2 (en) 1991-10-30 1996-10-16 新日本製鐵株式会社 Method for manufacturing high strength cold rolled steel sheet with excellent strength and ductility characteristics
DE4420932A1 (en) 1994-06-16 1996-01-11 Basf Ag Spinel catalyst to reduce nitrogen oxide content of exhaust gas
JP3370436B2 (en) * 1994-06-21 2003-01-27 川崎製鉄株式会社 Automotive steel sheet excellent in impact resistance and method of manufacturing the same
JPH0941040A (en) 1995-08-04 1997-02-10 Kobe Steel Ltd Production of high strength cold rolled steel sheet excellent in strength-flanging property
JPH09263838A (en) 1996-03-28 1997-10-07 Kobe Steel Ltd Production of high strength cold rolled steel sheet excellent in stretch-flange formability
JPH1060593A (en) 1996-06-10 1998-03-03 Kobe Steel Ltd High strength cold rolled steel sheet excellent in balance between strength and elongation-flanging formability, and its production
JP3370875B2 (en) * 1996-11-18 2003-01-27 株式会社神戸製鋼所 High strength steel sheet excellent in impact resistance and method for producing the same
JP3478128B2 (en) 1998-06-12 2003-12-15 Jfeスチール株式会社 Method for producing composite structure type high tensile cold rolled steel sheet excellent in ductility and stretch flangeability
JP3793350B2 (en) * 1998-06-29 2006-07-05 新日本製鐵株式会社 Dual-phase high-strength cold-rolled steel sheet with excellent dynamic deformation characteristics and manufacturing method thereof
ATE490349T1 (en) * 1999-09-29 2010-12-15 Jfe Steel Corp STEEL SHEET AND METHOD FOR THE PRODUCTION THEREOF
JP2001226741A (en) 2000-02-15 2001-08-21 Kawasaki Steel Corp High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
AU780588B2 (en) * 2000-04-07 2005-04-07 Jfe Steel Corporation Hot rolled steel plate, cold rolled steel plate and hot dip galvanized steel plate being excellent in strain aging hardening characteristics, and method for their production
KR100441414B1 (en) * 2000-04-21 2004-07-23 신닛뽄세이테쯔 카부시키카이샤 High fatigue strength steel sheet excellent in burring workability and method for producing the same
JP4414563B2 (en) 2000-06-12 2010-02-10 新日本製鐵株式会社 High-strength steel sheet excellent in formability and hole expansibility and method for producing the same
JP3729108B2 (en) * 2000-09-12 2005-12-21 Jfeスチール株式会社 Ultra-high tensile cold-rolled steel sheet and manufacturing method thereof
WO2002022904A1 (en) * 2000-09-12 2002-03-21 Nkk Corporation Super high tensile cold-rolled steel plate and method for production thereof
CA2387322C (en) * 2001-06-06 2008-09-30 Kawasaki Steel Corporation High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same
JP4530606B2 (en) * 2002-06-10 2010-08-25 Jfeスチール株式会社 Manufacturing method of ultra-high strength cold-rolled steel sheet with excellent spot weldability

Also Published As

Publication number Publication date
US20040238082A1 (en) 2004-12-02
EP1514951A1 (en) 2005-03-16
EP2017363A3 (en) 2009-08-05
WO2003106723A1 (en) 2003-12-24
DE60335106D1 (en) 2011-01-05
EP2017363A2 (en) 2009-01-21
EP1514951A4 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
EP1514951B1 (en) High strength cold rolled steel plate and method for production thereof
JP3857939B2 (en) High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate
EP1264911B1 (en) High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
KR101232972B1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
EP1642990B1 (en) High strength steel plate excellent in formability and method for production thereof
EP1512762B1 (en) Method for producing cold rolled steel plate of super high strength
US20090314395A1 (en) High strength thin-gauge steel sheet excellent in elongation and hole expandability and method of production of same
KR100711445B1 (en) A method for manu- facturing alloyed hot dip galvanized steel sheet for hot press forming having excellent plating adhesion and impact property, the method for manufacturing hot press parts made of it
KR100219891B1 (en) Steel sheet for automobiles having excellent impact resistance and method of same product
EP1325966B1 (en) Super-high strength cold-rolled steel sheet and method for production thereof
EP3853387B1 (en) Cold rolled and coated steel sheet and a method of manufacturing thereof
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP3247908B2 (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP3247907B2 (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP4333352B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in ductility and stretch flangeability
JP4492105B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flangeability
KR100782760B1 (en) Method for manufacturing cold-rolled steel sheet and galvanized steel sheet having yield ratio and high strength
KR20230056822A (en) Ultra-high strength steel sheet having excellent ductility and mathod of manufacturing the same
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
US20220282353A1 (en) High strength steel sheet, high strength member, and methods for manufacturing the same
KR101828699B1 (en) Cold-rolled steel sheet for car component and manufacturing method for the same
KR102557845B1 (en) Cold-rolled steel sheet and method of manufacturing the same
KR101149117B1 (en) Steel sheet having excellent low yield ratio property, and method for producing the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE SE

A4 Supplementary search report drawn up and despatched

Effective date: 20060323

17Q First examination report despatched

Effective date: 20061208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE SE

REF Corresponds to:

Ref document number: 60335106

Country of ref document: DE

Date of ref document: 20110105

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60335106

Country of ref document: DE

Effective date: 20110825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190521

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190611

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60335106

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200605

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG