JP3793350B2 - Dual-phase high-strength cold-rolled steel sheet with excellent dynamic deformation characteristics and manufacturing method thereof - Google Patents
Dual-phase high-strength cold-rolled steel sheet with excellent dynamic deformation characteristics and manufacturing method thereof Download PDFInfo
- Publication number
- JP3793350B2 JP3793350B2 JP18198198A JP18198198A JP3793350B2 JP 3793350 B2 JP3793350 B2 JP 3793350B2 JP 18198198 A JP18198198 A JP 18198198A JP 18198198 A JP18198198 A JP 18198198A JP 3793350 B2 JP3793350 B2 JP 3793350B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- deformation
- strength
- phase
- rolled steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、主として自動車の構造部材や補強材に使用することを目的とした優れた耐衝突安全性を有する動的変形特性に優れたデュアルフェーズ型自動車用高強度冷延鋼板とその製造方法に関するものである。
【0002】
【従来の技術】
自動車の燃費規制を背景とした車体軽量化を目的に、高強度鋼の適用が拡大してきたが、直近では自動車事故を想定した耐衝突安全性に関する法規制が国内外で急速に拡大・強化されつつあり、高強度鋼への期待が益々高まっている。例えば、乗用車の前面衝突においては、フロントサイドメンバと呼ばれる部材に高い衝撃吸収性能を持つ材料を適用すれば、この部材が圧潰することで衝撃エネルギーが吸収され、乗員にかかる衝撃を緩和することができる。
【0003】
しかし、従来の高強度鋼は成形性の向上を主眼として開発されたものであり、耐衝突安全性の観点では適用が疑問視されている。耐衝突安全性に優れた自動車用鋼板およびその製造方法に係わる従来技術としては、特開平7−18372号公報に開示されたように、耐衝突安全性の指標として鋼板の高歪速度下における降伏強さを高めることが開示されているが、部材は成形加工時および衝突変形時に歪を受けるため、耐衝撃性の指標としては降伏強さに加工硬化分を加味することが必要であり、前述のような従来技術では耐衝突安全性としては不十分である。
【0004】
また、自動車衝突時に各部位が受ける歪速度は103 (s-1)程度に達するため、材料の衝撃吸収能を考える場合、このような高歪速度域での動的変形特性の解明が必要でもある。そして、自動車の軽量化と衝突安全性向上を両立させることのできる、動的変形特性に優れた高強度鋼板が必要とされ、最近この点に関する報告がある。例えば、本発明者らは、CAMP-ISIJ Vol.9(1966) P.1112〜1115において、高強度薄鋼板の高速変形特性と衝撃エネルギー吸収能について報告し、その中で、103 (s-1)の高歪速度での動的強度は、10-3(s-1)の低歪速度での静的強度と比較して大きく上昇すること、鋼材の強度上昇によりクラッシュ時の吸収エネルギーが向上すること、材料の歪速度依存性は鋼の組織に依存すること、TRIP型の鋼(加工誘起変態型の鋼)およびデュアルフェーズ(以下DPという)型の鋼は優れた成形性と高い衝撃吸収能を兼ね備えることを述べている。また、このDP型の鋼に関し、本発明者らは先に特願平8−98000号および特願平8−109224号を出願し、その中で自動車軽量化および衝突安全性向上の双方を達成するのに適した静的強度に対し動的強度が高い高強度鋼板とその製造方法を提案している。
【0005】
【発明が解決しようとする課題】
上記のように、高強度鋼板について自動車衝突時の高歪速度における動的変形特性が解明されつつあるものの、衝撃エネルギー吸収のための自動車部材として、鋼板のどのような特性に注目し、どのような基準で材料選定をおこなえば良いかについては明らかにされていない。また、上記自動車部材は、鋼板に曲げやプレス等の成形を施して製造され、衝突時の衝撃は、これら加工された部材に対して加えられる。しかし、このような成形加工後における衝撃エネルギー吸収能を解明した、実部材としての動的変形特性に優れた高強度鋼板については、従来知られていない。
【0006】
更に、衝突安全用部材の成形に際しては、優れた形状凍結性、優れた張出し性(引張強さ×全伸び≧18,000)を兼ね備えることが望まれているが、優れた耐衝突安全性と優れた成形性を両立するものは見当たらないのが実情である。
【0007】
【課題を解決するための手段】
本発明は上述した問題を解決すべく提案されたもので、優れた耐衝突安全性を有する動的変形特性に優れたデュアルフェーズ型自動車用高強度冷延鋼板とその製造方法を提供するものである。
また、本発明は、フロントサイドメンバ等の成形加工された自動車部品に使用する高強度鋼板であって、衝突時の衝撃エネルギー吸収用として、適正な特性および基準に基づいて選定され、安全確保に確実に寄与することができる動的変形特性に優れたデュアルフェーズ型自動車用高強度冷延鋼板とその製造方法を提供するものである。
【0008】
更に、本発明は、衝突安全用部材の成形に適した優れた形状凍結性、優れた張出し性を兼ね備えた動的変形特性に優れたデュアルフェーズ型自動車用高強度冷延鋼板とその製造方法を提供するものである。
本発明は、上記目的を達成するためになされたもので、その具体的手段は以下に示す通りである。
【0009】
1)重量%で、C:0.02〜0.25%、MnとCrの1種または2種以上を合計で0.15〜3.5%、Si、Al、Pの1種または2種以上を合計で0.02〜4.0%、を含有し、残部がFe及び不可避的不純物からなり、最終的に得られる鋼板のミクロ組織において、主相がフェライトで第2相がマルテンサイトを体積分率(全体に対する体積分率を示す。以下同じ)で3〜50%を含むその他の低温生成相との複合組織からなる鋼板であり、前記鋼板を相当歪で5%成形加工後にマルテンサイトを体積分率で3〜50%を含み、相当歪にて0%超〜10%以下の予変形を加えた後、5×10-4〜5×10-3(s-1)の歪速度範囲で変形した時の準静的変形強度σsと、前記予変形を加えた後、5×102 〜5×103 (s-1)の歪速度範囲で変形した時の動的変形強度σdとの差(σd−σs)が60MPa以上を満足し、かつ歪5〜10%の加工硬化指数が0.13以上を満足することを特徴とする動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板、
2)重量%で、C:0.02〜0.25%、MnとCrの1種または2種以上を合計で0.15〜3.5%、Si、Al、Pの1種または2種以上を合計で0.02〜4.0%、を含有し、残部がFe及び不可避的不純物からなり、最終的に得られる鋼板のミクロ組織において、主相がフェライトで第2相がマルテンサイトを体積分率で3〜50%を含むその他の低温生成相との複合組織からなる鋼板であり、前記鋼板を相当歪で5%成形加工後にマルテンサイトを体積分率で3〜50%含み、相当歪にて0%超〜10%以下の予変形を加えた後、5×102 〜5×103 (s-1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における変形応力の平均値σdyn(MPa)が予変形を与える前の5×10-4〜5×10-3(s-1)の歪速度範囲で測定された静的な引張試験における最大応力:TS(MPa)によって表現される式:σdyn≧0.766×TS+250を満足し、かつ歪5〜10%の加工硬化指数が0.13以上を満足することを特徴とする動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板、
3)前記1)または2)において、降伏強度YS(0)と、相当歪にて5%の予変形を加え、或いは更に焼き付け硬化処理(BH処理)を行った後の引張試験における最大強度TS’(5)との比:YS(0)/TS’(5)≦0.7を満足し、更に前記降伏強度YS(0)×加工硬化指数≧70を満足することを特徴とする動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板、
4)前記1)、2)または3)の何れかにおいて、前記マルテンサイトの平均結晶粒径が5μm以下、および前記フェライトの平均結晶粒径が10μm以下を満足することを特徴とする動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板、
5)前記1)、2)、3)または4)の何れかにおいて、引張強度(MPa)×全伸び(%)≧18,000を満足することを特徴とする動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板、6)前記1)、2)、3)、4)または5)の何れかにおいて、調質圧延とテンションレベラーの一方または双方による予変形時の、塑性変形量(T)が下記式:
2.5{YS(0)/TS'(5) - 0.5}+ 15 ≧T≧ 2.5{YS(0)/TS'(5) - 0.5}+ 0.5
を満足することを特徴とする動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板、である。
【0010】
7)また、本発明による動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板は、前記1)〜6)において、素材成分として、重量%で、更に必要に応じてNi、Cu、Moの1種または2種以上を合計で3.5%以下、Nb、Ti、Vの1種または2種以上を合計で0.30%以下含有し、残部Feを主成分とすることを特徴とする動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板である。
【0011】
8)また、本発明による動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板は、前記1)〜7)における素材成分に、更にB≦0.01%、S≦0.01%、N≦0.02%の1種または2種以上を必要に応じて添加することを特徴とする動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板である。
9)また、本発明における動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板の製造方法としては、前記1)、7)又は8)記載の成分からなる連続鋳造スラブを、鋳造ままで熱延工程へ直送し、もしくは一旦冷却後に再度加熱した後、熱延し、熱延後巻取った熱延鋼板を酸洗後冷延し、連続焼鈍工程で焼鈍して最終的な製品とする際に、冷延後の鋼板をAc1 〜Ac3 の温度に加熱し、この温度範囲内で10秒以上保持する焼鈍を施した後、冷却するに際し、1〜10℃/秒の一次冷却速度で550〜720℃の範囲の二次冷却開始温度(Tq)まで冷却し、引き続いて10〜200℃/秒の二次冷却速度で、成分と焼鈍温度(To)で決まるTem以下200℃以上の二次冷却終了温度(Te)まで冷却し、Te−50℃以上400℃以下の温度範囲で20分以下の時間保持し、室温まで冷却することを特徴とする、前記1)〜8)の動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板の製造方法である。
【0013】
【発明の実施の形態】
自動車のフロントサイドメンバ等の衝撃吸収用部材は、鋼板に曲げ加工やプレス加工などを施して製造される。自動車衝突時の衝撃は、これら成形加工された部材に対して加えられるため、このような成形加工に相当する予変形後の状態で高い衝撃吸収能を有していることが必要である。しかし、現在までのところ、成形による変形応力の上昇と歪速度上昇による変形応力の上昇とを同時に考慮して、実部材としての衝撃吸収特性に優れた高強度鋼板を得る試みはなされていないことは前述した通りである。
【0014】
本発明者らは、前記目的を達成するために種々の実験と研究を重ねた結果、前述の成形加工された実部材において優れた衝撃吸収特性を有する高強度鋼板として、デュアルフェーズ(DP)組織を有する鋼板が最適であることを知見した。このデュアルフェーズ組織を有する鋼板は、変形速度上昇による変形抵抗増加を担うフェライト相を主相とし、硬質なマルテンサイト相を含む第2相との複合組織であり、動的変形特性に優れていることが判明した。すなわち、最終的に得られる鋼板のミクロ組織は、フェライト相を主相とし、硬質のマルテンサイト相を前記鋼板の相当歪で5%の成形加工後に体積分率で3〜50%含むその他の低温生成相との複合組織である場合に高い動的変形抵抗を示すことを見いだした。
【0015】
ここで、前記硬質のマルテンサイト相の体積分率:3〜50%について述べると、前記マルテンサイト相が3%未満では高強度鋼板を得ることができず、また動的変形強度の高い鋼板も得られないことからマルテンサイト相は体積分率で3%以上が必要である。また、このマルテンサイト相が50%を超えると変形速度上昇による変形抵抗増加を担うべきフェライト相の体積分率は低下し、静的変形強度に比して動的変形強度の優れた鋼板を得ることができなくなり、しかも成形性が阻害されるため、マルテンサイト相の体積分率は3〜50%とする必要性も見いだした。
【0016】
次に、本発明者らは、上記知見に基づき更に実験・研究を進めた結果、フロントサイドメンバ等の衝撃吸収用部材の成形加工に相当する予変形量は、部位によっては最大20%以上に達する場合もあるが、相当歪として0%〜10%の部位が大半であることも見いだし、この範囲の予変形の効果を把握することで、部材全体としての予変形後の挙動を推定することが可能であることも見いだした。従って、本発明においては、部材への加工時に与えられる予変形量として相当歪にして0%〜10%の変形を選択した。
【0017】
図1は、後述の実施例における表1の各鋼種について、衝突時における成形部材の吸収エネルギー(Eab)と素材強度(S)の関係を示したものである。素材強度Sは、通常の引張試験による引張強度(TS)である。部材吸収エネルギー(Eab)は、図2に示すような成形部材の長さ方向(矢印方向)に、質量400kgの重錘を速度15m/秒で衝突させ、その時の圧潰量100mmまでの吸収エネルギーである。なお、図2の成形部材は、厚さ2.0mmの鋼板をハット型部1に、同じ厚さ、同じ鋼種の鋼板2をスポット溶接により接合したものであり、ハット型部1のコーナー半径は2mmで、3はスポット溶接部である。
【0018】
図1から、部材吸収エネルギー(Eab)は、通常の引張試験にで得られる素材強度の高いものほど高くなる傾向が見られるが、バラツキの大きいことが分かる。そこで、図1に示す各素材について、相当歪にして0%超〜10%以下の予変形を加えた後、5×10-4〜5×10-3(s-1)の歪速度範囲で変形した時の準静的変形強度σsと、前記予変形を加えた後、5×102 〜5×103 (s-1)の歪速度範囲で変形した時の動的変形強度σdを測定した。その結果、(σd−σs)によって層別することができた。図1の各プロットの記号で、
○:0%超〜10%以下の何れの予変形量で(σd−σs)<60MPaとなるもの、
●:前記範囲全ての予変形量で60MPa≦(σd−σs)であり、かつ予変形量が5%の時、60MPa≦(σd−σs)<80MPaであるもの、
■:前記範囲全ての予変形量で60MPa≦(σd−σs)であり、かつ予変形量が5%の時、80MPa≦(σd−σs)<100MPaであるもの、
▲:前記範囲全ての予変形量で60MPa≦(σd−σs)であり、かつ予変形量が5%の時、100MPa≦(σd−σs)であるもの、
である。
【0019】
そして、相当歪にして0%超〜10%以下の範囲の全ての予変形量において60MPa≦(σd−σs)であるものは衝突時の部材吸収エネルギー(Eab)が、素材強度Sから予測される値以上であり、衝突時の衝撃吸収用部材として優れた動的変形特性を有する鋼板であった。前述の予測される値は、図1の曲線で示す値であり、Eab=0.062S0.8 で示される。従って、(σd−σs)は60MPa以上が必要である。
【0020】
次に、耐衝突安全性の向上には鋼の加工硬化指数を高めること、具体的には0.13以上、好ましくは0.16以上が基本的に重要であり、降伏強さと加工硬化指数を特定範囲に制御することにより、優れた耐衝突安全性を達成できること、成形性の向上にはマルテンサイトの体積分率と粒径を特定範囲に造り込むこと等の効果がある。
【0021】
図3は、部材の耐衝突安全性の指標となる動的エネルギー吸収量と、鋼板の加工硬化指数の関係を同一降伏強さクラスのものについて示すものである。鋼板の加工硬化指数の増大により部材の衝突安全性(動的エネルギー吸収量)が向上しており、部材の耐衝突安全性の指標として同一降伏強さクラスであれば鋼板の加工硬化指数が妥当であることを示している。更に、降伏強さが異なる場合には、図4に示すように、降伏強さ×加工硬化指数を部材の耐衝突安全性の指標とすることができる。ただし、部材が成形加工時に歪を受けることを考慮して、加工硬化指数は歪5%〜10%のn値で表現したが、動的エネルギー吸収量向上の観点からは、歪5%以下の加工硬化指数、歪10%以上の加工硬化指数も高いことが好ましい。
【0022】
なお、図3、図4における部材の動的エネルギー吸収量は次のようにして求めた。すなわち、鋼板を図5、図6に示す部品形状(コーナーR=5mm)に成形し、先端5.5mmの電極によりチリ発生電流の0.9倍の電流で35mmピッチでスポット溶接し、170℃×20分の焼付塗装処理を行った後、約150kgの落錘を約10mの高さから落下させ、部材を長手方向に圧壊し、その際の荷重変位線図の面積から変位=0〜150mmの変位仕事を算出して動的エネルギー吸収量とした。試験方法の模式図を図7に示す。図5において、4は天板、5は試験片、6はスポット溶接部である。図6において、7はハット型の試験片、8はスポット溶接部である。図7において、9は天板、10は試験片、11は落錘(150kg)、12は架台、13はショック/アブゾーバーである。また、鋼板の加工硬化指数、降伏強さは次のようにして求めた。鋼板をJIS−5号試験片(標点距離50mm、平行部幅25mm)に加工し、歪速度0.001(s-1)で引張試験し、降伏強さと加工硬化指数(歪5%〜10%のn値)を求めた。使用した鋼板は、板厚1.2mmで、鋼板組成はC:0.02〜0.25重量%、Mn、Crの1種または2種以上の合計が0.15〜3.5重量%、Si、Al、Pの1種または2種の合計量が0.02〜4.0重量%を含み、残部Feを主成分とするものである。
【0023】
図8は、本発明における衝突時の衝撃エネルギー吸収能の指標である、5×102 〜5×103 (s-1)の歪速度範囲で変形した時の3〜10%相当歪範囲における変形応力の平均値σdynと静的な素材強度(TS)、すなわち、この静的な素材強度(TS)は、5×10-4〜5×10-3(s-1)の歪速度範囲で測定された静的な引張試験における最大応力(TS:MPa)をいう、との関係を示したものである。
【0024】
フロントサイドメンバ等の衝撃吸収部材は、前述したようにハット型の断面形状を有しており、このような部材の高速での衝突圧潰時の変形を本発明者らが解析した結果、最大では40%以上の高い歪まで変形が進んでいるものの、吸収エネルギー全体の70%以上が高速の応力−歪線図の10%以下の歪範囲で吸収されていることを見いだした。従って、高速での衝突エネルギーの吸収能の指標として10%以下での高速変形時の動的変形抵抗を採用した。特に、歪量として3〜10%の範囲が最も重要であることから、高速引張り変形、5×102 〜5×103 (s-1)の歪速度範囲で変形した時の相当歪で3〜10%の範囲の平均応力:σdynを以て衝撃エネルギー吸収能の指標とした。
【0025】
この高速変形時の3〜10%の平均応力:σdynは、予変形や焼き付け処理が行われる前の鋼板の静的な引張強度{5×10-4〜5×10-3(s-1)の歪速度範囲で測定された静的な引張試験における最大応力(TS:MPa)}の上昇に伴って大きくなることが一般的である。従って、鋼板の静的な引張強度(これは静的な素材強度と同義的である。)を増加させることは部材の衝撃エネルギー吸収能の向上に直接寄与する。しかしながら、鋼板の強度が上昇すると部材への成形性が劣化し、必要な部材形状を得ることが困難になる。従って、同一の引張強度:TSで、高いσdynを持つ鋼板が望ましい。この関係から、0%超、10%以下の予変形を与えた後、5×102 〜5×103 (s-1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における変形応力の平均値:σdyn(MPa)が、予変形を与える前の5×10-4〜5×10-3(s-1)の歪速度範囲で測定された静的な引張試験における最大応力(TS:MPa)によって表現される式:σdyn≧0.766×TS+250(MPa)を満足する鋼板は、実部材としての衝撃吸収エネルギー吸収能が他の鋼板に比べて高く、部材の総重量を増加させることなく衝撃吸収エネルギー吸収能を向上させ、高い動的変形抵抗を有する高強度鋼板を提供できることを見いだした。
【0026】
また、詳細は未だ解明されていないが、初期転位密度、マルテンサイト相以外の低温生成相、主相であるフェライト相中の固溶元素量および炭化物、窒化物、炭窒化物の析出状態に依存する量であるYS(0)/TS’(5)が図9に示すように、0.7以下である場合に、優れた動的変形特性を有する鋼板が得られることが判明した。ここで、YS(0)は降伏強度、TS’(5)は相当歪にて5%の予変形を加え、或いは更に焼付け硬化処理(BH処理)を行った後の静的な引張試験における最大強度(TS’)である。更に、前記降伏強度:YS(0)×加工硬化指数が70以上を満足する場合に更に優れた動的変形特性を有する鋼板が得られることが判明した。
【0027】
また、通常、動的変形強度は静的変形強度の累乗の形で表されることが知られており、静的変形強度が高くなるにつれて、動的変形強度と静的変形強度の差は小さくなる。しかし、材料の高強度化による軽量化を考えた場合、動的変形強度と静的変形強度の差が小さくなると材料置換による衝撃吸収能の向上が大きくなることは期待できず、軽量化の達成が困難になる。この点に関しては、(σd−σs)値が、(σd−σs)≧4.1×σs0.8 −σsを満足する範囲であることが好ましい。
【0028】
次に、本発明における鋼板のミクロ組織について詳細に説明する。マルテンサイトは、前述したように、その体積分率を3〜50%とし、好ましくは3〜30%とする。マルテンサイトの平均結晶粒径は5μm以下とすることが好ましく、フェライトの平均結晶粒径は10μm以下とすることが好ましい。すなわち、マルテンサイトは硬質であり、主に周囲のフェライトに可動転位を発生させることにより降伏比の低減や加工硬化指数の向上に寄与するが、上記規制を満たすことにより鋼中に微細マルテンサイトを分散させることができ、その特性向上作用が鋼板全体に及ぶようになる。更に、鋼中に前述の微細マルテンサイトが分散することにより硬いマルテンサイトの悪影響である穴拡げ比の劣化や引張強さ×全伸びの劣化を回避することができる。また、加工硬化指数≧0.130、かつ引張強さ×全伸び≧18,000を確実に達成することができるため耐衝突安全性および成形性を向上させることができる。
【0029】
マルテンサイトの体積分率が3%未満では、降伏比が高くなると共に、成形後の部材が衝突変形を受けた際に優れた加工硬化能(加工硬化指数≧0.130)を発揮することができず、変形抵抗(荷重)が低いレベルに留まり変形仕事量が小さくなるため動的エネルギー吸収量が低く、耐衝撃安全性の向上が達成できない。一方、マルテンサイトの体積分率が50%超では、降伏比が高くなると共に加工硬化指数が低下し、更に引張強さ×全伸びや穴拡げ比の劣化が起こる。成形性の観点からはマルテンサイトの体積分率を30%以下とすることが好ましい。
【0030】
更に、フェライトを体積分率で好ましくは50%以上、より好ましくは70%以上含有させ、その平均結晶粒径(平均円相当径)を好ましくは10μm以下、より好ましくは5μm以下とし、マルテンサイトをフェライトに隣接させることが好ましい。これにより、マルテンサイトがフェライト地中に微細分散することを助長すると共に、上記特性向上効果が局所的な影響に留まらず鋼板全体に及ぶよう有効に作用し、マルテンサイトの悪影響を抑制するよう好ましく作用する。また、マルテンサイトやフェライト以外の残部組織はパーライト、ベイナイト、残留γ等の1種あるいは2種以上を組み合わせた混合組織としてもよいが、穴拡げ特性が要求される場合にはベイナイト主体とすることが好ましいが、残留γは成形加工によりマルテンサイトへ加工誘起変態するため、成形加工前に残留オーステナイトを含むことは好ましく少量(5%以下)でも効果を有することが実験の結果判明している。
【0031】
また、衝突安全性と成形性の観点からは、マルテンサイトとフェライトの粒径の比を0.6以下、硬さの比を1.5以上とすることが好ましい。
次に、本発明による動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板を得るための鋼板の化学成分の規制値とその制限理由を説明する。
本発明で使用される動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板は、素材成分として、重量%で、C:0.02〜0.25%、MnとCrの1種または2種以上を合計で0.15〜3.5%、Si、Al、Pの1種または2種以上を合計で0.02〜4.0%を含み更に必要に応じてNi、Cu、Moの1種または2種以上を合計で3.5%以下、Nb、Ti、Vの1種または2種以上を合計で0.30%以下を含有し、残部Feを主成分とする鋼板である。また、更に必要に応じてB≦0.01%、S≦0.01%、N≦0.02%の1種または2種以上を含む動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板である。これらの化学成分とその含有量(重量%)について詳述する。
【0032】
C:Cは鋼板の組織に強く影響を与える元素であり、その含有量が少なくなると目的とする量および強度のマルテンサイト相を得るのが困難になる。添加量が多くなると不必要な炭化物の析出を招き、歪速度上昇による変形抵抗増加を阻害したり、強度が高くなり過ぎたり、更に成形性および溶接性を劣化させることから0.02〜0.25重量%とする。
【0033】
Mn、Cr:MnとCrはオーステナイトを安定化してマルテンサイトを確保する作用があると共に強化元素でもあるため、その下限添加量は0.15重量%必要であり、一方、過度の添加は上記効果を飽和し、逆にフェライト変態抑制等の悪影響を生じるため上限添加量を3.5重量%とする。
Si、Al、P:Si、Alはマルテンサイトを生成させるために有用な元素であり、フェライトの生成を促進し、炭化物の生成を抑制することによりマルテンサイトを確保する作用があると共に固溶強化作用と脱酸作用を有する。また、PもAl、Siと同様にマルテンサイト生成促進と固溶強化の能力を有する。この観点からSi+Al+Pの下限添加量は0.02重量%以上とする必要がある。一方、過度の添加は上記効果を飽和し、逆に鋼を脆化させるため上限添加量は4.0重量%以下とする。特に、優れた表面性状が要求される場合には、Si添加量を0.1重量%以下とすることによりSiスケールを回避するが、逆に1.0重量%以上とすることによりSiスケールを全面に発生させて目立たなくすることが望ましい。また、優れた2次加工性、靱性、スポット溶接性、リサイクル性が要求される場合には、Pの含有量を0.05%以下、好ましくは0.02%以下とする。
【0034】
Ni、Cu、Mo:これらの元素は必要に応じて添加されるが、Mnと同様にオーステナイト安定化元素でもあり、鋼の焼き入れ性を高め、マルテンサイトの生成を容易にし、強度調整のために有効な元素でもある。溶接性や化成処理の観点からは、C、Si、Al、Mn量に制限がある場合に使用することができるが、これらの元素の添加量が合計で3.5重量%を超えると母相であるフェライト相の硬質化を招き、歪速度上昇による変形抵抗増加を阻害し、母相が硬化する他、鋼板コストの上昇を招くためこれら元素の添加量は3.50重量%以下とする。
【0035】
Nb、Ti、V:これらの元素は必要に応じて添加されるが、炭化物、窒化物、炭窒化物を形成し、鋼板の高強度化に有効な元素である。しかし、0.3重量%を超えて添加すると母相であるフェライト相中または粒界に多量の炭化物、窒化物もしくは炭窒化物として析出し、高速変形時に可動転位の放出源となり、歪速度上昇による変形抵抗増加を阻害する。また、母相の変形抵抗が必要以上に増加し、更に不必要にCを浪費し、コストの上昇を招くことから上限添加量を0.3重量%とする。
【0036】
B:Bはフェライトの生成を抑制することで鋼の焼入れ性を向上させることから高強度化に有効な元素であるが、その添加量が0.01重量%超では効果が飽和することから、B添加量の上限を0.01重量%とする。
S:Sは硫化物系介在物による成形性(特に穴拡げ性)、スポット溶接性の劣化の観点から0.01重量%以下、好ましくは0.003重量%以下とする。
次に、本発明における予変形の付与方法について説明する。予変形は、部材成形のための成形加工であってもよく、また成形加工以前の鋼板素材に与えられる調質圧延やテンションレベラーによる加工であってもよい。この場合、調質圧延、テンションレベラーの一方または双方とすることもできる。すなわち、調質圧延、テンションレベラー、調質圧延およびテンションレベラーのいずれの手段でもよい。更に、調質圧延やテンションレベラーにより加工された鋼板素材に成形加工を加えてもよい。前記調質圧延および/またはテンションレベラーで付与される予変形量、すなわち塑性変形量(T)は、初期転位密度により異なるが初期転位密度が大であれば前記Tの量が小さくてよい。また、固溶元素が少ない場合には導入された転位を固着できず、高い動的変形特性を確保できない。従って、前記塑性変形量(T)は、降伏強度:YS(0)と、相当歪にて5%の予変形を加え、或いは更に焼き付け硬化処理(BH処理)を行った後の静的な引張試験における最大強度TS’(5)との比、YS(0)/TS’(5)に応じて規定されることも分かった。すなわち、YS(0)/TS’(5)は、初期転位密度と5%の変形により導入された転位密度の和、および固溶元素量を示す指標となり、YS(0)/TS’(5)が小さいほど初期転位密度が高く、固溶元素が多いといえる。従って、YS(0)/TS’(5)を0.7以下とし、下記式:
2.5{YS(0)/TS'(5) - 0.5}+ 15 ≧T≧2.5 {YS(0)/TS'(5) - 0.5}+ 0.5
に従って付与されることが好ましく、前記Tの上限は衝撃吸収能、曲げ性などの成形性の観点から決定されたものである。
【0037】
次に、本発明による動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板の製造方法について説明する。
本発明による冷延鋼板は、熱延、巻き取り後の各工程を経た鋼板を、冷間圧延し、焼鈍に付される。この焼鈍は、図10に示すような焼鈍サイクルを有する連続焼鈍が最適であり、この連続焼鈍工程で焼鈍して最終的な製品とする際に、Ac1 〜Ac3 の温度範囲において、10秒以上保持することが必要である。Ac1 未満ではオーステナイトが生成しないため、その後、マルテンサイトを得る事ができず、Ac3 超では粗大なオーステナイトの単相組織となるため、その後、所望のマルテンサイトの占積率とその平均粒径を得る事ができない。また、10秒未満ではオーステナイトの生成量が不足するため、その後、所望のマルテンサイトを得る事ができない。なお、滞在時間の上限は設備の長大化、ミクロ組織の粗大化を避ける観点から、200秒以下が好ましい。上記焼鈍後の冷却については、平均冷却速度を5℃/秒以上とすることが必要である。5℃/秒未満では所望のマルテンサイト占積率が得られない。その上限は特に設けるものではないが、冷却時の温度制御性から、300℃/秒が好ましい。
【0038】
特に、本発明においては、図10に示す連続焼鈍サイクルで、冷延後の鋼板をAc1 〜Ac3 の温度Toに加熱し、冷却するに際し、冷却条件としては、1〜10℃/秒の一次冷却速度で550〜Toの範囲の二次冷却開始温度Tqまで冷却し、引き続いて10〜200℃/秒の二次冷却速度で、鋼材成分と焼鈍温度Toで決まる温度:Tem以下200℃以上の二次冷却終了温度Teまで冷却する方法である。これは、図10に示す連続焼鈍サイクルにおける急冷終点温度Teを成分と焼鈍温度Toとの関数として表し、ある限界値以下とする方法である。Teまで冷却した後、Te−50℃以上400℃以下の温度範囲で20分以下の時間保持し、室温まで冷却する。
【0039】
ここで、Temとは、急冷開始時点Tqで残留しているオーステナイトのマルテンサイト変態開始温度である。すなわち、Temは、オーステナイト中のC濃度の影響を除外した値(T1)とC濃度の影響を示す値(T2)の差:Tem=T1−T2である。ここで、T1とは、C以外の固溶元素濃度によって計算される温度であり、また、T2は鋼板の成分で決まるAc1 とAc3 および焼鈍温度Toによって決まるTqでの残留オーステナイト中のC濃度から計算される温度である。また、Ceq* は、前記焼鈍温度Toで残留しているオーステナイト中の炭素当量である。従って、T1は、T1=561−33×{Mn%+(Ni+Cr+Cu+Mo)/2}、
また、T2は、
Ac1 =723−10.7×Mn%−16.9×Ni%+29.1×Si%+16.9×Cr%、および、
Ac3 =910−203×(C%)1/2 −15.2×Ni%+44.7×Si%+104×V%+31.5×Mo%−30×Mn%−11×Cr%−20×Cu%+70×P%+40×A1%+400×Ti%、
と焼鈍温度Toにより表現され、
Ceq* =(Ac3 −Ac1 )×C/(To−Ac1 )+(Mn+Si/4+Ni/7+Cr+Cu+1.5Mo)/6が、
0.6超の場合には、T2=474×(Ac3 −Ac1 )×C/(To−Ac1 )、0.6以下の場合には、
T2=474×(Ac3 −Ac1 )×C/{3×(Ac3 −Ac1 )×C+〔(Mn+Si/4+Ni/7+Cr+Cu+1.5Mo)/2−0.85〕}×(To−Ac1 )}、により表現される。
【0040】
すなわち、TeがTem以上の場合には所望のマルテンサイトが得られない。また、Toaが400℃以上では冷却によって得られたマルテンサイトが分解し、良好な動的特性と成形性が得られなくなる。一方、ToaがTe−50℃未満の場合には、付加的な冷却設備が必要であったり、連続焼鈍炉の炉温と鋼板の温度差に起因した材質のバラツキが大きくなることから、この温度を下限とした。また、保持時間が20分を超える場合には設備が長大となることから、その上限を20分とした。
【0041】
以上述べたような鋼板組成と製造方法を採用することにより、鋼板のミクロ組織が、主相をフェライトとし、体積分率で3〜50%のマルテンサイトを含むその他の低温生成相との複合組織からなる鋼板であり、前記鋼板を相当歪で5%成形加工後にマルテンサイトを体積分率で3〜50%を含み、かつ相当歪みで0%超10%以下の予変形を与えた後、5×10-4〜5×10-3(1/s)の歪み速度範囲で変形した時の準静的変形強度(σs)と、前記予変形を与えた後の5×102 〜5×103 (1/s)の歪み速度範囲で測定された動的変形強度(σd)との差(σd−σs)が60MPa 以上を満足し、かつ歪み5〜10%の加工硬化指数が0.13以上を満足する高い動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板を得ることが可能になる。なお、本発明による鋼板は、焼鈍、調質圧延、電気めっき等を施して目的とする製品とすることも可能である。
【0042】
【実施例】
次に本発明を実施例に基づいて説明する。
<実施例1>
表1に示す22種類(鋼番1〜22)の鋼材を1050〜1250℃に加熱し、熱延後、冷却、巻取りを行い、更に酸洗後、表2に示した条件で冷延して冷延鋼板を製造した。その後、各鋼の成分からAc1 、Ac3 の各温度を求め、表2に示すような焼鈍条件で加熱、冷却、保持を行い、その後室温まで冷却した。本発明による成分条件と製造条件を満足する鋼板は、表3に示すようにマルテンサイト体積分率で3%以上50%以下含有するデュアルフェーズ組織を有していると共に、これら冷延鋼板の機械的性質は、表4に示すように、歪5〜10%の加工硬化指数が0.13以上、σd−σsが60MPa以上、σdyn≧0.766×TS+250という優れた耐衝撃安全性を示すと共に、成形性および溶接性をも兼ね備えていることが明らかである。
【0043】
【表1】
【0044】
【表2】
【0045】
【表3】
【0046】
【表4】
【0047】
ミクロ組織は以下の方法で評価した。
フェライト、ベイナイト、マルテンサイト及び残部組織の同定、存在位置の観察、及び平均結晶粒径(平均円相当径)と占積率の測定はナイタール試薬及び特開昭59−219473に開示された試薬により鋼板圧延方向断面を腐食した倍率1000倍の光学顕微鏡写真により行った。
【0048】
特性評価は以下の方法で実施した。
引張試験は JIS5号(標点距離50mm、平行部幅25mm)を用い歪速度0.001/sで実施し、引張強さ(TS)、降伏強さ(YS)、全伸び(T. El)、加工硬化指数(歪1%〜5%のn値)を求め、YS×加工硬化指数、TS×T. El を計算した。
スポット溶接性は鋼板板厚の平方根の5倍の先端径を有する電極によりチリ発生電流の0.9倍の電流で接合したスポット溶接試験片をたがねで破断させた時にいわゆる剥離破断を生じたら不適とした。
【0049】
【発明の効果】
上述したように、本発明は従来にない優れた耐衝突安全性および成形性を兼ね備えた自動車用高強度熱延鋼板および冷延鋼板を低コストで、しかも安定的に提供することが可能になり、高強度鋼板の使用用途および使用条件が格段に拡大されるものである。
【図面の簡単な説明】
【図1】本発明における衝突時の成形部材の吸収エネルギー(Eab)と素材強度(S)との関係を示す図。
【図2】図1における衝撃吸収エネルギー測定用の成形部材を示す斜視図。
【図3】鋼板の加工硬化指数と動的エネルギー吸収量との関係を示す図。
【図4】鋼板の降伏強さ×加工硬化指数と動的エネルギー吸収量との関係を示す図。
【図5】図3、図4に関わる衝撃圧壊試験方法に用いられる(ハットモデル)の概観図。
【図6】図5の試験片形状の断面図。
【図7】図3〜図6に関わる衝撃圧壊試験方法の模式図。
【図8】本発明における衝突時の衝撃エネルギー吸収能の指標である、5×102 〜5×103 (1/S)の歪速度で変形した時の3〜10%の相当歪範囲における変形応力の平均値σdyn−TSとTSとの関係を示す図。
【図9】本発明例および比較例の調質圧延による静動比の変化を示すグラフ。
【図10】本発明による連続焼鈍の焼鈍サイクルを示す模式図。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a dual-phase high strength cold-rolled steel sheet for automobiles having excellent dynamic deformation characteristics and excellent crash resistance safety intended for use mainly in automobile structural members and reinforcing materials, and a method for producing the same. Is.
[0002]
[Prior art]
The application of high-strength steel has been expanded for the purpose of reducing the weight of automobiles against the background of automobile fuel efficiency regulations, but recently, regulations regarding crashworthiness safety assuming automobile accidents have been rapidly expanded and strengthened in Japan and overseas. The expectations for high-strength steel are increasing. For example, in a frontal collision of a passenger car, if a material having a high impact absorption performance is applied to a member called a front side member, the impact energy is absorbed by the crushing of the member and the impact on the occupant can be reduced. it can.
[0003]
However, conventional high-strength steel has been developed mainly for improving formability, and its application has been questioned from the viewpoint of crashworthiness safety. As disclosed in Japanese Patent Application Laid-Open No. Hei 7-18372, the conventional steel plate for automobiles having excellent collision safety and a method for producing the same is disclosed as a yield resistance under high strain rate of the steel plate as an index of collision safety. Although it is disclosed that the strength is increased, since the member is distorted during the molding process and the impact deformation, it is necessary to add work hardening to the yield strength as an index of impact resistance. Such conventional techniques are not sufficient for crashworthiness safety.
[0004]
Also, the strain rate experienced by each part during a car crash is 10 Three (S -1 Therefore, when considering the shock absorbing ability of the material, it is necessary to elucidate the dynamic deformation characteristics in such a high strain rate region. And the high strength steel plate excellent in the dynamic deformation characteristic which can make the weight reduction and collision safety improvement of a motor vehicle compatible is needed, and there is a report regarding this point recently. For example, in the CAMP-ISIJ Vol.9 (1966) P.1112-1115, the present inventors have reported the high-speed deformation characteristics and impact energy absorption capacity of high-strength thin steel sheets. Three (S -1 ) Dynamic strength at high strain rate is 10 -3 (S -1 ) Significantly increases compared to the static strength at low strain rate, the energy absorption at the time of crash improves due to the strength increase of the steel material, the strain rate dependency of the material depends on the steel structure, TRIP It states that type steel (work-induced transformation type steel) and dual phase (DP) type steel have excellent formability and high shock absorption. In addition, regarding the DP type steel, the present inventors previously filed Japanese Patent Application No. 8-98000 and Japanese Patent Application No. 8-109224, in which both weight reduction of automobile and improvement of collision safety were achieved. We propose a high strength steel plate with high dynamic strength and its manufacturing method, which is suitable for static strength.
[0005]
[Problems to be solved by the invention]
As described above, dynamic deformation characteristics at high strain rate at the time of automobile collision are being elucidated for high-strength steel sheets, but what characteristics of steel sheets are focused on as automotive parts for absorbing impact energy and how It has not been clarified whether material selection should be made based on various standards. The automobile member is manufactured by bending or pressing a steel plate, and an impact at the time of a collision is applied to the processed member. However, a high-strength steel sheet excellent in dynamic deformation characteristics as an actual member that has clarified the impact energy absorption ability after such forming processing has not been known.
[0006]
Furthermore, when molding a collision safety member, it is desired to combine excellent shape freezing properties and excellent stretchability (tensile strength × total elongation ≧ 18,000). In fact, there is no one that has both excellent moldability.
[0007]
[Means for Solving the Problems]
The present invention has been proposed to solve the above-described problems, and provides a high-strength cold-rolled steel sheet for dual-phase automobiles having excellent crash resistance and excellent dynamic deformation characteristics, and a method for producing the same. is there.
In addition, the present invention is a high-strength steel plate used for molded automobile parts such as front side members, and is selected based on appropriate characteristics and standards for absorbing impact energy at the time of collision, to ensure safety. The present invention provides a dual phase type high strength cold-rolled steel sheet for automobiles that can contribute reliably and has excellent dynamic deformation characteristics and a method for producing the same.
[0008]
Furthermore, the present invention provides a high-strength cold-rolled steel sheet for dual phase type automobiles, which has excellent shape freezing properties suitable for forming a collision safety member and excellent dynamic deformation characteristics, and has a method for producing the same. It is to provide.
The present invention has been made to achieve the above object, and specific means thereof are as follows.
[0009]
1) % By weight: C: 0.02 to 0.25%, one or more of Mn and Cr in total 0.15 to 3.5%, one or more of Si, Al, and P 0.02 to 4.0% in total, and the balance consists of Fe and inevitable impurities, In the final microstructure of the steel sheet, the main phase is ferrite and the second phase is Martensite in volume fraction (indicating volume fraction relative to the whole; the same applies below) Complex structure with other low-temperature generation phase containing 3-50% Steel plate made of And said steel plate The After forming 5% with equivalent strain, martensite contains 3 to 50% in volume fraction, and after pre-deformation with more than 0% to 10% or less with equivalent strain, 5 × 10 -Four ~ 5x10 -3 (S -1 ) Quasi-static deformation strength σs when deformed in the strain rate range of 5) 2 ~ 5x10 Three (S -1 The difference (σd−σs) from the dynamic deformation strength σd when deformed in the strain rate range of) satisfies 60 MPa or more, and the work hardening index of 5 to 10% strain satisfies 0.13 or more. Dual phase type high strength cold-rolled steel sheet with excellent dynamic deformation characteristics,
2) % By weight: C: 0.02 to 0.25%, one or more of Mn and Cr in total 0.15 to 3.5%, one or more of Si, Al, and P 0.02 to 4.0% in total, and the balance consists of Fe and inevitable impurities, In the final microstructure of the steel sheet, the main phase is ferrite and the second phase is Martensite in volume fraction Complex structure with other low-temperature generation phase containing 3-50% Steel plate made of And said steel plate The After 5% molding with equivalent strain, martensite is included in volume fraction of 3 to 50%, and after pre-deformation of more than 0% to 10% or less with equivalent strain, 5 × 10 2 ~ 5x10 Three (S -1 ) Of the deformation stress in the equivalent strain range of 3 to 10% when deformed in the strain rate range of 5) before the pre-deformation. -Four ~ 5x10 -3 (S -1 ) The maximum stress in the static tensile test measured in the strain rate range: TS (MPa): σdyn ≧ 0.766 × TS + 250 is satisfied, and the work hardening index is 5 to 10% strain. Dual phase type high strength cold-rolled steel sheet with excellent dynamic deformation characteristics characterized by satisfying 0.13 or more,
3) In the above 1) or 2), the yield strength YS (0) and the maximum strength TS in the tensile test after adding 5% pre-deformation with the equivalent strain or further performing the bake hardening treatment (BH treatment). Dynamic ratio characterized by satisfying the ratio of '(5): YS (0) / TS' (5) ≦ 0.7 and further satisfying the yield strength YS (0) × work hardening index ≧ 70 Dual-phase high-strength cold-rolled steel sheet with excellent deformation characteristics,
4) The dynamic deformation according to any one of 1), 2), and 3), wherein the martensite has an average crystal grain size of 5 μm or less, and the ferrite has an average crystal grain size of 10 μm or less. Dual-phase high-strength cold-rolled steel sheet with excellent characteristics,
5) Dual excellent in dynamic deformation characteristics characterized by satisfying tensile strength (MPa) × total elongation (%) ≧ 18,000 in any of 1), 2), 3) and 4) above Phase-type high-strength cold-rolled steel sheet, 6) In the above 1), 2), 3), 4) or 5), the amount of plastic deformation during pre-deformation by temper rolling and / or tension leveler ( T) is the following formula:
2.5 {YS (0) / TS '(5) -0.5} + 15≥T≥2.5 {YS (0) / TS' (5) -0.5} +0.5
Is a dual-phase type high-strength cold-rolled steel sheet excellent in dynamic deformation characteristics, characterized by satisfying
[0010]
7) Moreover, the dual phase type high strength cold-rolled steel sheet having excellent dynamic deformation characteristics according to the present invention is the material component in the above 1) to 6) in weight%, and if necessary, Ni, Cu, Mo. 1 type or 2 types or more in total, 3.5% or less in total, 1 type or 2 types or more of Nb, Ti, and V in total containing 0.30% or less, and the remaining Fe as a main feature It is a dual phase type high-strength cold-rolled steel sheet with excellent dynamic deformation characteristics.
[0011]
8) In addition, the dual phase type high strength cold rolled steel sheet having excellent dynamic deformation characteristics according to the present invention includes B ≦ 0.01%, S ≦ 0.01% in addition to the material components in 1) to 7) above. A dual-phase high-strength cold-rolled steel sheet having excellent dynamic deformation characteristics, wherein one or more of N ≦ 0.02% are added as necessary.
9) Moreover, as a manufacturing method of the dual phase type high-strength cold-rolled steel sheet having excellent dynamic deformation characteristics in the present invention, a continuous cast slab composed of the components described in 1), 7) or 8) is used as cast. Directly sent to the hot-rolling process or once heated after cooling, then hot-rolled, hot-rolled steel sheet wound after hot-rolling is pickled and cold-rolled, and annealed in a continuous annealing process to obtain the final product When Steel sheet after cold rolling Ac 1 ~ Ac Three After heating to a temperature of 10 ° C. and annealing for 10 seconds or more within this temperature range, cooling In this case, it is cooled to a secondary cooling start temperature (Tq) in the range of 550 to 720 ° C. at a primary cooling rate of 1 to 10 ° C./second, followed by a secondary cooling rate of 10 to 200 ° C./second. Cool down to a temperature below Tem determined by the annealing temperature (To) to a secondary cooling end temperature (Te) of 200 ° C or higher, hold at a temperature range of Te-50 ° C to 400 ° C for 20 minutes or less, and cool to room temperature The method for producing a dual-phase high-strength cold-rolled steel sheet having excellent dynamic deformation characteristics as described in 1) to 8) above.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
A shock absorbing member such as a front side member of an automobile is manufactured by bending or pressing a steel plate. Since an impact at the time of automobile collision is applied to these molded members, it is necessary to have a high impact absorbing ability in a state after pre-deformation corresponding to such molding processing. However, until now, no attempt has been made to obtain a high-strength steel sheet with excellent shock absorption characteristics as an actual member, taking into account the increase in deformation stress due to forming and the increase in deformation stress due to an increase in strain rate. Is as described above.
[0014]
As a result of repeating various experiments and researches to achieve the above object, the present inventors have developed a dual-phase (DP) structure as a high-strength steel sheet having excellent shock absorption characteristics in the above-described actual processed member. It has been found that a steel sheet having a thickness is optimal. The steel sheet having this dual phase structure is a composite structure with a second phase including a hard martensite phase, which is mainly composed of a ferrite phase responsible for an increase in deformation resistance due to an increase in deformation speed, and has excellent dynamic deformation characteristics. It has been found. That is, the microstructure of the finally obtained steel sheet has a ferrite phase as a main phase and a hard martensite phase at other low temperatures containing 3 to 50% in volume fraction after forming 5% by the equivalent strain of the steel sheet. It has been found that it exhibits high dynamic deformation resistance when it is a composite structure with the generation phase.
[0015]
Here, the volume fraction of the hard martensite phase: 3 to 50% is described. If the martensite phase is less than 3%, a high-strength steel plate cannot be obtained, and a steel plate with high dynamic deformation strength is also available. Since it cannot be obtained, the martensite phase needs to have a volume fraction of 3% or more. In addition, when the martensite phase exceeds 50%, the volume fraction of the ferrite phase that should be responsible for increasing the deformation resistance due to the increase in the deformation rate is lowered, and a steel sheet having an excellent dynamic deformation strength compared to the static deformation strength is obtained. In addition, since the moldability is hindered, the volume fraction of the martensite phase has been found to be 3 to 50%.
[0016]
Next, as a result of further experiments and research based on the above knowledge, the present inventors have determined that the amount of pre-deformation corresponding to the forming process of the shock absorbing member such as the front side member is 20% or more depending on the part. In some cases, it is found that most of the equivalent strain is 0% to 10%. By grasping the effect of pre-deformation in this range, the behavior of the entire member after pre-deformation is estimated. I also found that this is possible. Therefore, in the present invention, a deformation of 0% to 10% was selected as the equivalent deformation as the amount of pre-deformation given when processing the member.
[0017]
FIG. 1 shows the relationship between the absorbed energy (Eab) and the material strength (S) of a molded member at the time of collision for each steel type in Table 1 in the examples described later. The material strength S is a tensile strength (TS) obtained by a normal tensile test. The member absorbed energy (Eab) is an absorbed energy up to a crushing amount of 100 mm when a weight of 400 kg is collided at a speed of 15 m / sec in the length direction (arrow direction) of the molded member as shown in FIG. is there. 2 is obtained by joining a steel plate having a thickness of 2.0 mm to a hat mold portion 1 and a steel plate 2 having the same thickness and the same steel type by spot welding. The corner radius of the hat mold portion 1 is as follows. 2 mm, 3 is a spot weld.
[0018]
From FIG. 1, it can be seen that the member absorbed energy (Eab) tends to increase as the material strength obtained by a normal tensile test increases, but the variation is large. Therefore, after each material shown in FIG. 1 is subjected to a pre-deformation of more than 0% to 10% or less as an equivalent strain, 5 × 10 -Four ~ 5x10 -3 (S -1 ) Quasi-static deformation strength σs when deformed in the strain rate range of 5) after adding the pre-deformation 2 ~ 5x10 Three (S -1 ), The dynamic deformation strength σd when deformed in the strain rate range was measured. As a result, it was possible to stratify by (σd−σs). The symbol of each plot in FIG.
○: (σd−σs) <60 MPa at any pre-deformation amount exceeding 0% to 10%,
●: 60 MPa ≦ (σd−σs) in the predeformation amount in the above range, and when the predeformation amount is 5%, 60 MPa ≦ (σd−σs) <80 MPa,
{Circle around (2)} 60 MPa ≦ (σd−σs) in the pre-deformation amount in the entire range, and 80 MPa ≦ (σd−σs) <100 MPa when the pre-deformation amount is 5%,
▲: 60 MPa ≦ (σd−σs) in the predeformation amount in the above range, and 100 MPa ≦ (σd−σs) when the predeformation amount is 5%,
It is.
[0019]
In the case of 60 MPa ≦ (σd−σs) in all the pre-deformation amounts in the range of more than 0% to 10% as equivalent strain, the member absorbed energy (Eab) at the time of collision is predicted from the material strength S. And a steel plate having excellent dynamic deformation characteristics as a member for absorbing shock at the time of collision. The aforementioned predicted value is the value shown by the curve in FIG. 1, and Eab = 0.062S 0.8 Indicated by Therefore, (σd−σs) needs to be 60 MPa or more.
[0020]
Next, it is fundamentally important to improve the work hardening index of steel to improve the collision safety, specifically 0.13 or more, preferably 0.16 or more. By controlling to a specific range, it is possible to achieve excellent collision safety, and to improve the formability, there are effects such as building the martensite volume fraction and particle size within a specific range.
[0021]
FIG. 3 shows the relationship between the amount of dynamic energy absorption, which is an index of the crashworthiness safety of members, and the work hardening index of steel sheets for the same yield strength class. Collision safety (dynamic energy absorption) of members has been improved by increasing the work hardening index of steel sheets. If the same yield strength class is used as an index of collision resistance safety of members, the work hardening index of steel sheets is appropriate. It is shown that. Further, when the yield strength is different, as shown in FIG. 4, the yield strength × work hardening index can be used as an index of the collision safety of the member. However, the work hardening index is expressed as an n value of 5% to 10% of strain in consideration of the fact that the member is subjected to strain during molding, but from the viewpoint of improving the dynamic energy absorption amount, the strain is 5% or less. It is preferable that the work hardening index and the work hardening index having a strain of 10% or more are also high.
[0022]
In addition, the dynamic energy absorption amount of the member in FIG. 3, FIG. 4 was calculated | required as follows. That is, the steel sheet was formed into the part shape shown in FIGS. 5 and 6 (corner R = 5 mm), and spot-welded at a pitch of 35 mm at a current 0.9 times the dust generation current with an electrode having a tip of 5.5 mm, and 170 ° C. After 20 minutes baking treatment, about 150 kg drop weight is dropped from a height of about 10 m, the member is crushed in the longitudinal direction, and the displacement from the area of the load displacement diagram at that time = 0-150 mm The displacement work was calculated as dynamic energy absorption. A schematic diagram of the test method is shown in FIG. In FIG. 5, 4 is a top plate, 5 is a test piece, and 6 is a spot weld. In FIG. 6, 7 is a hat-type test piece, and 8 is a spot weld. In FIG. 7, 9 is a top plate, 10 is a test piece, 11 is a falling weight (150 kg), 12 is a mount, and 13 is a shock / absorber. The work hardening index and yield strength of the steel sheet were determined as follows. The steel plate was processed into a JIS-5 test piece (mark distance: 50 mm, parallel part width: 25 mm), and strain rate of 0.001 (s -1 ) To obtain the yield strength and work hardening index (n value of 5% to 10% strain). The steel plate used had a plate thickness of 1.2 mm, the steel plate composition was C: 0.02 to 0.25% by weight, and the total of one or more of Mn and Cr was 0.15 to 3.5% by weight, The total amount of one or two of Si, Al, and P includes 0.02 to 4.0% by weight, and the balance is Fe.
[0023]
FIG. 8 is an index of impact energy absorption capacity at the time of collision in the present invention, 5 × 10. 2 ~ 5x10 Three (S -1 ) Deformation strain average value σdyn and static material strength (TS) in a strain range equivalent to 3 to 10% when deformed in the strain rate range of 5), that is, the static material strength (TS) is 5 × 10. -Four ~ 5x10 -3 (S -1 The maximum stress (TS: MPa) in the static tensile test measured in the strain rate range of) is shown.
[0024]
As described above, the shock absorbing member such as the front side member has a hat-shaped cross-sectional shape, and as a result of analysis by the inventors of the deformation at the time of collision crushing of such a member at high speed, Although deformation has progressed to a high strain of 40% or more, it has been found that 70% or more of the total absorbed energy is absorbed in a strain range of 10% or less of the high-speed stress-strain diagram. Therefore, dynamic deformation resistance during high-speed deformation at 10% or less was adopted as an index of the collision energy absorption capability at high speed. In particular, since the strain range of 3 to 10% is the most important, high-speed tensile deformation, 5 × 10 2 ~ 5x10 Three (S -1 The average stress in the range of 3 to 10%: σdyn was used as an index of the impact energy absorption capacity.
[0025]
The average stress of 3 to 10% at the time of high-speed deformation: σdyn is the static tensile strength of the steel plate before pre-deformation or baking treatment {5 × 10 -Four ~ 5x10 -3 (S -1 In general, the maximum stress (TS: MPa) in a static tensile test measured in the strain rate range of ()) increases with an increase. Therefore, increasing the static tensile strength of the steel sheet (which is synonymous with the static material strength) directly contributes to the improvement of the impact energy absorption capacity of the member. However, when the strength of the steel plate increases, the formability of the member deteriorates and it becomes difficult to obtain a necessary member shape. Therefore, steel plates having the same tensile strength: TS and high σdyn are desirable. From this relationship, after pre-deformation of more than 0% and 10% or less, 5 × 10 2 ~ 5x10 Three (S -1 ) Of the deformation stress in the equivalent strain range of 3 to 10% when deformed in the strain rate range of 5) before the pre-deformation is applied. -Four ~ 5x10 -3 (S -1 The steel sheet satisfying the formula: σdyn ≧ 0.766 × TS + 250 (MPa) expressed by the maximum stress (TS: MPa) in the static tensile test measured in the strain rate range of It has been found that the energy absorption capacity is higher than that of other steel sheets, and the impact absorption energy absorption capacity can be improved without increasing the total weight of the member, and a high strength steel sheet having high dynamic deformation resistance can be provided.
[0026]
Although details are not yet clarified, it depends on the initial dislocation density, the low-temperature phase other than the martensite phase, the amount of solid solution elements in the ferrite phase, which is the main phase, and the precipitation state of carbides, nitrides, and carbonitrides. As shown in FIG. 9, it was found that a steel sheet having excellent dynamic deformation characteristics can be obtained when YS (0) / TS ′ (5), which is the amount to be processed, is 0.7 or less. Here, YS (0) is the yield strength, and TS '(5) is the maximum in the static tensile test after 5% pre-deformation is applied at the equivalent strain or after further bake hardening treatment (BH treatment). Strength (TS ′). Furthermore, it was found that when the yield strength: YS (0) × work hardening index satisfies 70 or more, a steel sheet having further excellent dynamic deformation characteristics can be obtained.
[0027]
In addition, it is generally known that the dynamic deformation strength is expressed in the form of a power of the static deformation strength. As the static deformation strength increases, the difference between the dynamic deformation strength and the static deformation strength decreases. Become. However, when considering weight reduction by increasing the strength of the material, if the difference between the dynamic deformation strength and the static deformation strength is reduced, it cannot be expected that the impact absorption capacity will be improved by replacing the material. Becomes difficult. In this regard, the (σd−σs) value is (σd−σs) ≧ 4.1 × σs. 0.8 A range satisfying −σs is preferable.
[0028]
Next, the microstructure of the steel sheet in the present invention will be described in detail. As described above, martensite has a volume fraction of 3 to 50%, preferably 3 to 30%. The average crystal grain size of martensite is preferably 5 μm or less, and the average crystal grain size of ferrite is preferably 10 μm or less. In other words, martensite is hard and contributes to the reduction of the yield ratio and the improvement of the work hardening index by generating movable dislocations mainly in the surrounding ferrite, but by satisfying the above regulations, fine martensite is added to the steel. It is possible to disperse, and the property improving action reaches the entire steel sheet. Furthermore, when the fine martensite is dispersed in the steel, it is possible to avoid the deterioration of the hole expansion ratio and the deterioration of tensile strength × total elongation, which are adverse effects of hard martensite. In addition, since the work hardening index ≧ 0.130 and the tensile strength × total elongation ≧ 18,000 can be reliably achieved, collision safety and moldability can be improved.
[0029]
When the volume fraction of martensite is less than 3%, the yield ratio becomes high, and excellent work hardening ability (work hardening index ≧ 0.130) is exhibited when the molded member is subjected to impact deformation. In this case, the deformation resistance (load) remains at a low level and the deformation work amount becomes small, so that the dynamic energy absorption amount is low and the improvement in impact resistance safety cannot be achieved. On the other hand, when the volume fraction of martensite exceeds 50%, the yield ratio increases and the work hardening index decreases, and further, the tensile strength × total elongation and the hole expansion ratio deteriorate. From the viewpoint of formability, the martensite volume fraction is preferably 30% or less.
[0030]
Further, ferrite is preferably contained in a volume fraction of preferably 50% or more, more preferably 70% or more, and its average crystal grain size (average equivalent circle diameter) is preferably 10 μm or less, more preferably 5 μm or less, and martensite is contained. Adjacent to the ferrite is preferred. This facilitates the fine dispersion of martensite in the ferrite ground, and the above-mentioned property improvement effect is effective not only for local effects but also for the entire steel sheet, and preferably for suppressing the adverse effects of martensite. Works. In addition, the remaining structure other than martensite and ferrite may be one or a combination of two or more of pearlite, bainite, residual γ, etc., but if hole expansion characteristics are required, it should be mainly bainite. However, since the residual γ undergoes a processing-induced transformation to martensite by molding, it has been found from experiments that it is preferable to include residual austenite before molding, even if a small amount (5% or less) is effective.
[0031]
Moreover, from the viewpoint of collision safety and formability, it is preferable that the ratio of the martensite to ferrite particle size is 0.6 or less and the hardness ratio is 1.5 or more.
Next, the regulation value of the chemical component of the steel sheet for obtaining the dual phase type high-strength cold-rolled steel sheet having excellent dynamic deformation characteristics according to the present invention and the reason for the restriction will be described.
The dual phase type high-strength cold-rolled steel sheet having excellent dynamic deformation characteristics used in the present invention is C: 0.02 to 0.25% as a material component, and one or two of Mn and Cr. Contains 0.15 to 3.5% in total of one or more species, 0.02 to 4.0% in total of one or more of Si, Al, and P, and further contains Ni, Cu, and Mo as necessary. It is a steel plate containing one or two or more types in total of 3.5% or less, Nb, Ti or V containing one or more types in total of 0.30% or less and the balance being Fe. Further, if necessary, dual phase type high strength cold rolling excellent in dynamic deformation characteristics including one or more of B ≦ 0.01%, S ≦ 0.01%, N ≦ 0.02%. It is a steel plate. These chemical components and their contents (% by weight) will be described in detail.
[0032]
C: C is an element that strongly affects the structure of the steel sheet. When the content of C is reduced, it becomes difficult to obtain a martensite phase having a desired amount and strength. Increasing the amount causes unnecessary carbide precipitation, which hinders an increase in deformation resistance due to an increase in strain rate, increases strength excessively, and further deteriorates formability and weldability. 25% by weight.
[0033]
Mn, Cr: Mn and Cr have the effect of stabilizing austenite to ensure martensite and are also strengthening elements, so the lower limit addition amount is required to be 0.15% by weight, while excessive addition is the above effect Is added and the upper limit addition amount is set to 3.5% by weight.
Si, Al, P: Si and Al are elements that are useful for generating martensite, promote the formation of ferrite, and have the effect of securing martensite by suppressing the formation of carbides and strengthen the solid solution. Has action and deoxidation action. P, like Al and Si, has the ability to promote martensite formation and strengthen solid solution. From this viewpoint, the lower limit addition amount of Si + Al + P needs to be 0.02% by weight or more. On the other hand, excessive addition saturates the above effect and conversely embrittles the steel, so the upper limit addition amount is 4.0% by weight or less. In particular, when excellent surface properties are required, the Si scale is avoided by setting the Si addition amount to 0.1 wt% or less, but conversely, the Si scale is set to 1.0 wt% or more. It is desirable to generate it on the entire surface and make it inconspicuous. In addition, when excellent secondary workability, toughness, spot weldability, and recyclability are required, the P content is 0.05% or less, preferably 0.02% or less.
[0034]
Ni, Cu, Mo: These elements are added as necessary, but they are also austenite stabilizing elements as well as Mn, for enhancing the hardenability of steel, facilitating the formation of martensite, and for adjusting the strength. It is also an effective element. From the viewpoint of weldability and chemical conversion treatment, it can be used when the amount of C, Si, Al, Mn is limited, but if the total amount of these elements exceeds 3.5 wt%, the parent phase In this case, the ferrite phase is hardened, an increase in deformation resistance due to an increase in strain rate is inhibited, the matrix phase is hardened, and the steel sheet cost is increased. Therefore, the amount of these elements added is set to 3.50% by weight or less.
[0035]
Nb, Ti, V: Although these elements are added as necessary, they form carbides, nitrides, carbonitrides and are effective elements for increasing the strength of steel sheets. However, if added over 0.3% by weight, it precipitates as a large amount of carbide, nitride or carbonitride in the ferrite phase or grain boundary as the parent phase, and becomes a source of moving dislocations during high-speed deformation, increasing the strain rate. Inhibits deformation resistance increase due to. Further, since the deformation resistance of the matrix increases more than necessary, C is unnecessarily wasted and the cost is increased, the upper limit addition amount is set to 0.3% by weight.
[0036]
B: B is an element effective for increasing the strength because it improves the hardenability of the steel by suppressing the formation of ferrite, but the effect is saturated when the added amount exceeds 0.01% by weight. The upper limit of the B addition amount is 0.01% by weight.
S: S is 0.01% by weight or less, preferably 0.003% by weight or less from the viewpoint of deterioration of formability (especially hole expandability) and spot weldability due to sulfide inclusions.
Next, the predeformation imparting method in the present invention will be described. The pre-deformation may be a forming process for forming a member, or may be a temper rolling or a tension leveler applied to a steel plate material before the forming process. In this case, one or both of temper rolling and tension leveler can be used. That is, any means of temper rolling, tension leveler, temper rolling and tension leveler may be used. Furthermore, you may add a shaping | molding process to the steel plate raw material processed by temper rolling or a tension leveler. The amount of predeformation imparted by the temper rolling and / or tension leveler, that is, the amount of plastic deformation (T) varies depending on the initial dislocation density, but the amount of T may be small if the initial dislocation density is large. Moreover, when there are few solid solution elements, the introduced dislocation cannot be fixed and high dynamic deformation characteristics cannot be secured. Therefore, the amount of plastic deformation (T) is the static strength after yield strength: YS (0) and pre-deformation of 5% at an equivalent strain or after further baking and hardening treatment (BH treatment). It was also found that the ratio was defined according to the ratio YS (0) / TS ′ (5) to the maximum strength TS ′ (5) in the test. That is, YS (0) / TS ′ (5) serves as an index indicating the sum of the initial dislocation density and the dislocation density introduced by the deformation of 5% and the amount of the solid solution element. YS (0) / TS ′ (5 ) Is smaller, the initial dislocation density is higher and it can be said that there are more solid solution elements. Therefore, YS (0) / TS ′ (5) is set to 0.7 or less, and the following formula:
2.5 {YS (0) / TS '(5) -0.5} + 15 ≧ T ≧ 2.5 {YS (0) / TS ′ (5) -0.5} +0.5
The upper limit of the T is determined from the viewpoint of moldability such as impact absorption ability and bendability.
[0037]
Next, the manufacturing method of the dual phase type high strength cold-rolled steel sheet having excellent dynamic deformation characteristics according to the present invention will be described.
The cold-rolled steel sheet according to the present invention is cold-rolled and subjected to annealing after undergoing the respective steps after hot rolling and winding. As for this annealing, continuous annealing having an annealing cycle as shown in FIG. 10 is optimal, and when annealing is performed in this continuous annealing step to obtain a final product, Ac. 1 ~ Ac Three In this temperature range, it is necessary to hold for 10 seconds or more. Ac 1 If it is less than that, austenite is not generated, so that martensite cannot be obtained thereafter. Ac Three If it is super, it becomes a coarse austenite single phase structure, so that it is not possible to obtain the desired martensite space factor and its average particle size. In addition, if it is less than 10 seconds, the amount of austenite produced is insufficient, and thereafter desired martensite cannot be obtained. The upper limit of the staying time is preferably 200 seconds or less from the viewpoint of avoiding the lengthening of the equipment and the coarsening of the microstructure. About the cooling after the said annealing, it is necessary to make an average cooling rate into 5 degrees C / sec or more. If it is less than 5 ° C./second, a desired martensite space factor cannot be obtained. The upper limit is not particularly provided, but 300 ° C./second is preferable from the viewpoint of temperature controllability during cooling.
[0038]
In particular, in the present invention, the steel sheet after cold rolling in the continuous annealing cycle shown in FIG. 1 ~ Ac Three When cooling to the temperature To and cooling, the cooling conditions are as follows: cooling to a secondary cooling start temperature Tq in the range of 550 to To at a primary cooling rate of 1 to 10 ° C./second, followed by 10 to 200 ° C. / Secondary cooling rate in seconds, temperature determined by steel components and annealing temperature To: Tem or less 200 ℃ or higher This is a method of cooling to the secondary cooling end temperature Te. This is a method in which the quenching end point temperature Te in the continuous annealing cycle shown in FIG. 10 is expressed as a function of the component and the annealing temperature To, and is not more than a certain limit value. After cooling to Te, the temperature is maintained within a temperature range of Te-50 ° C. or more and 400 ° C. or less for 20 minutes or less, and then cooled to room temperature.
[0039]
Here, Tem is the martensitic transformation start temperature of austenite remaining at the rapid cooling start time Tq. That is, Tem is the difference between the value (T1) excluding the influence of the C concentration in austenite and the value (T2) indicating the influence of the C concentration: Tem = T1−T2. Here, T1 is a temperature calculated by the concentration of a solid solution element other than C, and T2 is an Ac determined by the components of the steel sheet. 1 And Ac Three And the temperature calculated from the C concentration in the retained austenite at Tq determined by the annealing temperature To. Also, Ceq * Is the carbon equivalent in austenite remaining at the annealing temperature To. Therefore, T1 is T1 = 561-33 × {Mn% + (Ni + Cr + Cu + Mo) / 2},
T2 is
Ac 1 = 723- 10.7 X Mn%-16.9 x Ni% + 29.1 x Si% + 16.9 x Cr%, and
Ac Three = 910-203 × (C%) 1/2 −15.2 × Ni% + 44.7 × Si% + 104 × V% + 31.5 × Mo% −30 × Mn% −11 × Cr% −20 × Cu% + 70 × P% + 40 × A1% + 400 × Ti% ,
And the annealing temperature To,
Ceq * = (Ac Three -Ac 1 ) X C / (To-Ac 1 ) + (Mn + Si / 4 + Ni / 7 + Cr + Cu + 1.5Mo) / 6
In the case of more than 0.6, T2 = 474 × (Ac Three -Ac 1 ) X C / (To-Ac 1 ), If 0.6 or less,
T2 = 474 × (Ac Three -Ac 1 ) × C / {3 × (Ac Three -Ac 1 ) × C + [(Mn + Si / 4 + Ni / 7 + Cr + Cu + 1.5Mo) /2−0.85]} × (To-Ac 1 ) } It is expressed by.
[0040]
That is, when Te is equal to or higher than Tem, desired martensite cannot be obtained. On the other hand, when Toa is 400 ° C. or higher, martensite obtained by cooling decomposes, and good dynamic characteristics and moldability cannot be obtained. On the other hand, when Toa is less than Te-50 ° C., additional cooling equipment is required, or the variation in material due to the temperature difference between the furnace temperature of the continuous annealing furnace and the steel sheet becomes large. Was the lower limit. Further, when the holding time exceeds 20 minutes, the facility becomes long, so the upper limit was set to 20 minutes.
[0041]
By adopting the steel sheet composition and manufacturing method as described above, the microstructure of the steel sheet is a composite structure with other low-temperature generation phases containing 3-50% martensite in which the main phase is ferrite and the volume fraction is 3-50%. Consist of A steel plate, said steel plate The After 5% molding with equivalent strain, martensite contains 3-50% in volume fraction, and after pre-deformation with more than 0% and less than 10% in equivalent strain, 5 × 10 -Four ~ 5x10 -3 Quasi-static deformation strength (σs) when deformed in a strain rate range of (1 / s) and 5 × 10 after applying the pre-deformation 2 ~ 5x10 Three The difference (σd−σs) from the dynamic deformation strength (σd) measured in the strain rate range of (1 / s) satisfies 60 MPa or more, and the work hardening index of 5 to 10% strain is 0.13 or more. It is possible to obtain a dual phase type high-strength cold-rolled steel sheet excellent in high dynamic deformation characteristics that satisfies the above. In addition, the steel plate by this invention can also be made into the target product by giving annealing, temper rolling, electroplating, etc.
[0042]
【Example】
Next, this invention is demonstrated based on an Example.
<Example 1>
The 22 types (steel numbers 1 to 22) shown in Table 1 are heated to 1050 to 1250 ° C., hot-rolled, cooled and wound, further pickled, and then cold-rolled under the conditions shown in Table 2. A cold-rolled steel sheet was manufactured. Then, from each steel component Ac 1 , Ac Three Each temperature was determined, heated, cooled and held under the annealing conditions as shown in Table 2, and then cooled to room temperature. Steel sheets satisfying the component conditions and production conditions according to the present invention have a dual phase structure containing 3% or more and 50% or less in martensite volume fraction as shown in Table 3, and these cold-rolled steel plate machines As shown in Table 4, the work properties show excellent impact safety such that the work hardening index of strain 5-10% is 0.13 or more, σd-σs is 60 MPa or more, and σdyn ≧ 0.766 × TS + 250. It is clear that it has both formability and weldability.
[0043]
[Table 1]
[0044]
[Table 2]
[0045]
[Table 3]
[0046]
[Table 4]
[0047]
The microstructure was evaluated by the following method.
Identification of ferrite, bainite, martensite, and remaining structure, observation of existing positions, and measurement of average crystal grain size (average equivalent circle diameter) and space factor were performed using Nital reagent and the reagent disclosed in JP-A-59-219473. It was carried out by an optical micrograph at a magnification of 1000 times in which the cross section in the steel sheet rolling direction was corroded.
[0048]
The characteristic evaluation was performed by the following method.
The tensile test was conducted using JIS No. 5 (marking distance: 50 mm, parallel part width: 25 mm) at a strain rate of 0.001 / s. Tensile strength (TS), yield strength (YS), total elongation (T. El) Then, a work hardening index (n value of 1% to 5% of strain) was obtained, and YS × work hardening index, TS × T. El was calculated.
Spot weldability causes so-called peeling fracture when spot welding specimens joined with an electrode having a
[0049]
【The invention's effect】
As described above, the present invention makes it possible to stably provide a high-strength hot-rolled steel sheet and cold-rolled steel sheet for automobiles that have unprecedented superior collision safety and formability at low cost and stably. In addition, the usage and usage conditions of the high-strength steel sheet are greatly expanded.
[Brief description of the drawings]
FIG. 1 is a view showing a relationship between absorbed energy (Eab) of a molded member and material strength (S) at the time of a collision in the present invention.
2 is a perspective view showing a molded member for measuring shock absorption energy in FIG. 1. FIG.
FIG. 3 is a view showing a relationship between a work hardening index of a steel plate and a dynamic energy absorption amount.
FIG. 4 is a diagram showing the relationship between yield strength × work hardening index and dynamic energy absorption of steel sheets.
FIG. 5 is an overview diagram of a (hat model) used in the impact crushing test method related to FIGS. 3 and 4;
6 is a cross-sectional view of the shape of the test piece in FIG.
FIG. 7 is a schematic diagram of an impact crush test method related to FIGS.
FIG. 8 is an index of impact energy absorption capacity at the time of collision in the present invention, 5 × 10. 2 ~ 5x10 Three The figure which shows the relationship between the average value (sigma) dyn-TS of deformation stress, and TS in the equivalent strain range of 3-10% when deform | transforming with the strain rate of (1 / S).
FIG. 9 is a graph showing a change in static ratio by temper rolling in the inventive example and the comparative example.
FIG. 10 is a schematic diagram showing an annealing cycle of continuous annealing according to the present invention.
Claims (10)
2.5{YS(0)/TS'(5) - 0.5}+ 15 ≧T≧ 2.5{YS(0)/TS'(5) - 0.5}+ 0.5を満足することを特徴とする請求項1〜5のいずれか1項に記載の動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板。Pre-deformation by one or both of temper rolling and tension leveler, plastic deformation (T) is expressed by the following formula:
6. The following relationship is satisfied: 2.5 {YS (0) / TS ′ (5) −0.5} + 15 ≧ T ≧ 2.5 {YS (0) / TS ′ (5) −0.5} +0.5 A dual-phase high-strength cold-rolled steel sheet excellent in dynamic deformation characteristics according to any one of the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18198198A JP3793350B2 (en) | 1998-06-29 | 1998-06-29 | Dual-phase high-strength cold-rolled steel sheet with excellent dynamic deformation characteristics and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18198198A JP3793350B2 (en) | 1998-06-29 | 1998-06-29 | Dual-phase high-strength cold-rolled steel sheet with excellent dynamic deformation characteristics and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000017385A JP2000017385A (en) | 2000-01-18 |
JP3793350B2 true JP3793350B2 (en) | 2006-07-05 |
Family
ID=16110245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18198198A Expired - Fee Related JP3793350B2 (en) | 1998-06-29 | 1998-06-29 | Dual-phase high-strength cold-rolled steel sheet with excellent dynamic deformation characteristics and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3793350B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012105126A1 (en) | 2011-01-31 | 2012-08-09 | Jfeスチール株式会社 | High-strength cold-rolled steel sheet having excellent processability and high yield ratio, and method for producing same |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4369545B2 (en) | 1998-11-30 | 2009-11-25 | 新日本製鐵株式会社 | Ferritic sheet steel with excellent strain rate dependency and automobile using the same |
JP4936298B2 (en) * | 2000-03-27 | 2012-05-23 | 新日本製鐵株式会社 | Manufacturing method of aluminum alloy for automobile body excellent in formability |
KR100664433B1 (en) | 2000-04-07 | 2007-01-03 | 제이에프이 스틸 가부시키가이샤 | Hot rolled steel plate, cold rolled steel plate and hot dip galvanized steel plate being excellent in strain aging hardening characteristics, and method for their production |
JP4664475B2 (en) * | 2000-09-07 | 2011-04-06 | 新日本製鐵株式会社 | High-strength cold-rolled steel sheet and high-strength plated steel sheet excellent in workability and spot weldability and manufacturing method thereof |
JP4826694B2 (en) * | 2001-09-28 | 2011-11-30 | Jfeスチール株式会社 | Method for improving fatigue resistance of thin steel sheet |
JP4530606B2 (en) | 2002-06-10 | 2010-08-25 | Jfeスチール株式会社 | Manufacturing method of ultra-high strength cold-rolled steel sheet with excellent spot weldability |
US20040238082A1 (en) * | 2002-06-14 | 2004-12-02 | Jfe Steel Corporation | High strength cold rolled steel plate and method for production thereof |
FR2850671B1 (en) * | 2003-02-05 | 2006-05-19 | Usinor | PROCESS FOR MANUFACTURING A DUAL-PHASE STEEL BAND HAVING A COLD-ROLLED FERRITO-MARTENSITIC STRUCTURE AND A BAND OBTAINED THEREFROM |
JP4517629B2 (en) * | 2003-03-27 | 2010-08-04 | Jfeスチール株式会社 | Composite structure cold-rolled steel sheet, plated steel sheet having excellent surface strain resistance, and production method thereof |
JP4501716B2 (en) * | 2004-02-19 | 2010-07-14 | Jfeスチール株式会社 | High-strength steel sheet with excellent workability and method for producing the same |
JP4513701B2 (en) * | 2005-09-15 | 2010-07-28 | 住友金属工業株式会社 | Steel plate for rapid heating and quenching and its manufacturing method |
JP4461112B2 (en) * | 2006-03-28 | 2010-05-12 | 株式会社神戸製鋼所 | High strength steel plate with excellent workability |
EP2123786A1 (en) * | 2008-05-21 | 2009-11-25 | ArcelorMittal France | Method of manufacturing very high-resistance, cold-laminated dual-phase steel sheets, and sheets produced thereby |
JP5315954B2 (en) * | 2008-11-26 | 2013-10-16 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet and manufacturing method thereof |
JP5418168B2 (en) * | 2008-11-28 | 2014-02-19 | Jfeスチール株式会社 | High-strength cold-rolled steel sheet excellent in formability, high-strength hot-dip galvanized steel sheet, and production method thereof |
JP5304521B2 (en) * | 2009-08-03 | 2013-10-02 | 新日鐵住金株式会社 | High-strength steel sheet with excellent workability and method for producing the same |
WO2011036351A1 (en) * | 2009-09-24 | 2011-03-31 | Arcelormittal Investigación Y Desarrollo Sl | Ferritic stainless steel having high drawability properties |
JP2013104114A (en) * | 2011-11-15 | 2013-05-30 | Jfe Steel Corp | Cold rolled steel sheet having excellent bending workability and method for producing the same |
JP2013139591A (en) * | 2011-12-28 | 2013-07-18 | Jfe Steel Corp | High-strength hot-rolled steel sheet with excellent workability and method for producing the same |
JP2013224476A (en) * | 2012-03-22 | 2013-10-31 | Jfe Steel Corp | High-strength thin steel sheet excellent in workability and method for manufacturing the same |
JP2013209727A (en) * | 2012-03-30 | 2013-10-10 | Jfe Steel Corp | Cold rolled steel sheet excellent in workability and manufacturing method thereof |
ES2684342T3 (en) | 2012-04-10 | 2018-10-02 | Nippon Steel & Sumitomo Metal Corporation | Impact absorption element and method of manufacturing |
CA2878685C (en) | 2012-07-20 | 2017-06-06 | Nippon Steel & Sumitomo Metal Corporation | Steel material |
WO2014030663A1 (en) | 2012-08-21 | 2014-02-27 | 新日鐵住金株式会社 | Steel material |
ES2726106T3 (en) | 2012-12-06 | 2019-10-01 | Nippon Steel Corp | Steel material and shock absorption member and use thereof |
-
1998
- 1998-06-29 JP JP18198198A patent/JP3793350B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012105126A1 (en) | 2011-01-31 | 2012-08-09 | Jfeスチール株式会社 | High-strength cold-rolled steel sheet having excellent processability and high yield ratio, and method for producing same |
US9914988B2 (en) | 2011-01-31 | 2018-03-13 | Jfe Steel Corporation | High-strength cold-rolled steel sheet with high yield ratio having excellent formability and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2000017385A (en) | 2000-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3793350B2 (en) | Dual-phase high-strength cold-rolled steel sheet with excellent dynamic deformation characteristics and manufacturing method thereof | |
AU717294B2 (en) | Dual-phase high-strength steel sheet having excellent dynamic deformation properties and process for preparing the same | |
EP0974677B1 (en) | A method for producing high strength steels having excellent formability and high impact energy absorption properties | |
KR101609968B1 (en) | Steel sheet for hot pressing use, press-molded article, and method for producing press-molded article | |
JP3619357B2 (en) | High strength steel sheet having high dynamic deformation resistance and manufacturing method thereof | |
KR101827187B1 (en) | Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article | |
WO2013133166A1 (en) | Steel sheet for hot pressing use, press-molded article, and method for producing press-molded article | |
JP5597006B2 (en) | High strength and high ductility austenitic stainless steel sheet for structural members and method for producing the same | |
JP3492176B2 (en) | Good workability high-strength steel sheet having high dynamic deformation resistance and method for producing the same | |
KR101626233B1 (en) | High strength cold rolled steel sheet with high yield ratio and method for producing the same | |
KR20000057266A (en) | High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same | |
JPH1161326A (en) | High strength automobile steel plate superior in collision safety and formability, and its manufacture | |
JP3936440B2 (en) | High-strength steel sheet for automobiles with excellent collision safety and formability and its manufacturing method | |
JP3401427B2 (en) | High-strength steel sheet with excellent impact resistance | |
JPH11350064A (en) | High strength steel sheet excellent in shape fixability and impact resistance and its production | |
JP2003253385A (en) | Cold-rolled steel sheet superior in high-velocity deformation characteristic and bending characteristic, and manufacturing method therefor | |
WO2005019487A1 (en) | High tensile strength cold-rolled steel sheet and method for production thereof | |
JP2010180462A (en) | Cold-rolled steel sheet and method for producing the same | |
JP2001011565A (en) | High strength steel sheet excellent in impact energy absorbability and its production | |
EP3730651A1 (en) | High yield ratio-type high-strength steel sheet and method for manufacturing same | |
JP3530356B2 (en) | Good workability high-strength cold-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and method for producing the same | |
JP4055486B2 (en) | High-tensile hot-rolled steel sheet excellent in high-speed deformation characteristics and elongation characteristics and method for producing the same | |
JP4513701B2 (en) | Steel plate for rapid heating and quenching and its manufacturing method | |
JPH11350063A (en) | High strength steel sheet excellent in shape fixability and impact resistance and its production | |
JP4237912B2 (en) | High strength cold-rolled steel sheet having high dynamic deformation resistance and good formability and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060407 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090414 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120414 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140414 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |