JP3530356B2 - Good workability high-strength cold-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and method for producing the same - Google Patents

Good workability high-strength cold-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and method for producing the same

Info

Publication number
JP3530356B2
JP3530356B2 JP25892897A JP25892897A JP3530356B2 JP 3530356 B2 JP3530356 B2 JP 3530356B2 JP 25892897 A JP25892897 A JP 25892897A JP 25892897 A JP25892897 A JP 25892897A JP 3530356 B2 JP3530356 B2 JP 3530356B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
rolled steel
impact
deformation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25892897A
Other languages
Japanese (ja)
Other versions
JPH11100636A (en
Inventor
学 高橋
朗弘 上西
力 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP25892897A priority Critical patent/JP3530356B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to CN98802157A priority patent/CN1072272C/en
Priority to AU55767/98A priority patent/AU716203B2/en
Priority to EP98900718.2A priority patent/EP0974677B2/en
Priority to KR1019997006826A priority patent/KR100334948B1/en
Priority to US09/355,435 priority patent/US6544354B1/en
Priority to CA002278841A priority patent/CA2278841C/en
Priority to PCT/JP1998/000272 priority patent/WO1998032889A1/en
Priority to EP10181439A priority patent/EP2312008B1/en
Publication of JPH11100636A publication Critical patent/JPH11100636A/en
Application granted granted Critical
Publication of JP3530356B2 publication Critical patent/JP3530356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車部材等に使
用され、衝突時の衝撃エネルギーを効率よく吸収するこ
とによって乗員の安全性確保に寄与することの出来る高
い動的変形抵抗を示す衝突時衝撃吸収用高強度冷延鋼板
とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for automobile members and the like, and at the time of collision showing high dynamic deformation resistance which can contribute to ensuring safety of passengers by efficiently absorbing impact energy at the time of collision. The present invention relates to a high-strength cold-rolled steel sheet for impact absorption and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、自動車衝突時の乗員保護が自動車
の最重要性能として認識され、それに対応するための高
い高速変形抵抗を示す材料への期待が高まっている。例
えば乗用車の前面衝突においては、フロントサイドメン
バと呼ばれる部材にこのような材料を適用すれば、該部
材が圧潰することで衝撃のエネルギーが吸収され、乗員
にかかる衝撃を和らげることが出来る。
2. Description of the Related Art In recent years, occupant protection in the event of an automobile collision has been recognized as the most important performance of an automobile, and there is an increasing expectation for a material having a high high-speed deformation resistance in order to cope with it. For example, in the case of a frontal collision of a passenger car, if such a material is applied to a member called a front side member, the energy of the shock is absorbed by the member being crushed, and the shock to the occupant can be softened.

【0003】自動車の衝突時に各部位が受ける変形の歪
み速度は103 (1/s)程度まで達するため、材料の
衝撃吸収性能を考える場合には、この様な高歪み速度領
域での動的変形特性の解明が必要である。また同時に、
省エネルギー、CO2 排出削減を目指して自動車車体の
軽量化を同時に達成することが必須と考えられ、このた
めに有効な高強度鋼板へのニーズが高まっている。
Since the strain rate of deformation which each part receives at the time of a collision of an automobile reaches up to about 10 3 (1 / s), when considering the shock absorbing performance of a material, dynamic strain in such a high strain rate range is considered. It is necessary to clarify the deformation characteristics. At the same time,
At the same time, it is indispensable to achieve the weight reduction of the automobile body aiming at energy saving and reduction of CO 2 emission, and for this reason, there is a growing need for effective high strength steel sheets.

【0004】例えば本発明者らは、CAMP−ISIJ
Vol.9(1996)P.1112〜1115に、
高強度薄鋼板の高速変形特性と衝撃エネルギー吸収能に
ついて報告し、その中で、103 (1/s)程度の高歪
み速度領域での動的強度は、10-3(1/s)の低歪み
速度での静的強度と比較して大きく上昇すること、材料
の強化機構によって変形抵抗の歪み速度依存性が変化す
ること、この中で、TRIP(変態誘起塑性)型の鋼や
DP(フェライト/マルテンサイト2相)型の鋼が他の
高強度鋼板に比べて優れた成形性と衝撃吸収能を兼ね備
えていることを報告している。
[0004] For example, the present inventors have found that CAMP-ISIJ
Vol. 9 (1996) P.I. 1112 to 1115,
Reported on high speed deformation properties and impact energy absorption capacity of high-strength thin steel sheet, in which the dynamic strength at high strain rate region of the order of 10 3 (1 / s) is 10 -3 (1 / s) A large increase in static strength at low strain rate, a change in strain rate dependence of deformation resistance due to the strengthening mechanism of the material, among which TRIP (transformation induced plasticity) type steel and DP ( It has been reported that a ferrite / martensite two-phase type steel has both excellent formability and impact absorbing ability as compared with other high strength steel sheets.

【0005】また、残留オーステナイトを含む耐衝撃特
性に優れた高強度鋼板とその製造方法を提供するものと
して特開平7−18372号公報には、衝撃吸収能を変
形速度の上昇に伴う降伏応力の上昇のみで解決できるこ
とが開示されているが、衝撃吸収能を向上させるため
に、残留オーステナイトの量以外に残留オーステナイト
の性質をどのように制御すべきかは明確にされていな
い。
Further, Japanese Patent Application Laid-Open No. 7-18372 discloses a high-strength steel sheet containing retained austenite and having excellent impact resistance and a method for producing the same. Although it is disclosed that the problem can be solved only by raising, it is not clear how to control the properties of the retained austenite other than the amount of the retained austenite in order to improve the impact absorption capacity.

【0006】[0006]

【発明が解決しようとする課題】このように、自動車衝
突時の衝撃エネルギーの吸収に及ぼす部材構成材料の動
的変形特性は少しづつ解明されつつあるものの、衝撃エ
ネルギー吸収能に優れた自動車部品用鋼材としてどの様
な特性に注目し、どの様な基準に従って材料選定を行う
べきかは未だ明らかにはされていない。また、自動車用
部品は、鋼材をプレス成形によって要求された部品形状
に成形され、その後、一般的には塗装焼き付けされた後
に自動車に組み込まれ、実際の衝突現象に直面する。し
かしながら、このような予変形+焼き付け処理を行った
後の鋼材の衝突時の衝撃エネルギー吸収能の向上にどの
ような鋼材強化機構が適しているかも未だ明らかにはさ
れていない。
As described above, although the dynamic deformation characteristics of the material constituting the members that affect the absorption of impact energy in the event of an automobile collision are being elucidated little by little, it is for automobile parts having excellent impact energy absorption ability. It has not yet been clarified what characteristics the steel material should be focused on and what criteria should be used for the material selection. Further, automobile parts are formed into a required part shape by press forming a steel material, and then are generally baked in a paint and then incorporated into an automobile to face an actual collision phenomenon. However, it has not been clarified yet what kind of steel material strengthening mechanism is suitable for improving the impact energy absorption capacity at the time of collision of the steel material after such pre-deformation + baking treatment.

【0007】[0007]

【課題を解決するための手段】本発明は、フロントサイ
ドメンバー等の衝突時の衝撃エネルギー吸収を担う部品
に成形加工されて使用される鋼材で、高い衝撃エネルギ
ー吸収能を示す高強度鋼板とその製造方法を提供するこ
とを目的としている。本発明の要旨は次のとおりであ
る。
DISCLOSURE OF THE INVENTION The present invention is a steel material that is used by being formed into a part that absorbs impact energy at the time of collision, such as a front side member, and a high-strength steel sheet that exhibits a high impact energy absorption capacity. It is intended to provide a manufacturing method. The gist of the present invention is as follows.

【0008】(1)重量%で、C:0.04%以上0.
3%以下、SiとAlの一方または双方を合計で0.5
%以上3.0%以下、Mn,Ni,Cr,Cu,Moの
1種または2種以上を合計で0.5%以上3.5%以下
含み、残部がFe及び不可避的不純物からなり、最終的
に得られる冷延鋼板のミクロ組織がフェライトおよびベ
イナイトを含み、このいずれかを主相とし、体積分率で
3%以上の残留オーステナイトを含む第3相との複合組
織であり、残留オーステナイト中の固溶〔C〕量と鋼材
の平均Mn等量{Mneq=Mn+(Ni+Cr+Cu
+Mo)/2}によって決まる値(M=678−428
×〔C〕−33×Mneq)が−140以上70未満
で、588 MPa 以上の引張り強度を有し、その鋼材に相
当歪みで0%超10%以下の予変形を与えた後、5×1
2 〜5×103 (1/s)の歪み速度範囲で変形した
時の3〜10%の相当歪み範囲における変形応力の平均
値σdyn(MPa)と5×10-4〜5×10-3(1/
s)の歪み速度範囲で変形した時の3〜10%の相当歪
み範囲における変形応力の平均値σst(MPa)の差
が5×10-4〜5×10-3(1/s)の歪み速度範囲で
測定された静的な引張り試験における最大応力TS(M
Pa)によって表現される式(σdyn−σst)≧−
0.272×TS+300を満足することを特徴とする
高い動的変形抵抗を有する衝突時衝撃吸収用良加工性高
強度冷延鋼板。
(1) C: 0.04% or more by weight%, 0.
3% or less, 0.5 of Si or Al or both in total
% Or more and 3.0% or less, and one or more of Mn, Ni, Cr, Cu, Mo in a total amount of 0.5% or more and 3.5% or less, and the balance consisting of Fe and inevitable impurities. The cold-rolled steel sheet thus obtained has a microstructure containing ferrite and bainite, which is a composite structure with a third phase containing either of them as a main phase and containing 3% or more of retained austenite by volume fraction. Amount of solid solution [C] and average Mn equivalent of steel material {Mneq = Mn + (Ni + Cr + Cu
+ Mo) / 2} (M = 678-428)
X [C] -33xMneq) is -140 or more and less than 70 , has a tensile strength of 588 MPa or more , and after pre-deformation of more than 0% and 10% or less by equivalent strain to the steel material, it is 5x1.
Mean value σdyn (MPa) of deformation stress and 5 × 10 −4 to 5 × 10 in the equivalent strain range of 3 to 10% when deformed in the strain rate range of 0 2 to 5 × 10 3 (1 / s). 3 (1 /
s) the strain is 5 × 10 −4 to 5 × 10 −3 (1 / s) when the strain is deformed in the strain rate range and the difference in the average value σst (MPa) of the deformation stress in the equivalent strain range of 3 to 10% is 5 × 10 −4 to 5 × 10 −3 (1 / s). Maximum stress TS (M in a static tensile test measured in the velocity range
Pa) expressed by (σdyn−σst) ≧ −
A good workability, high strength cold rolled steel sheet having high dynamic deformation resistance for impact shock absorption, which satisfies 0.272 × TS + 300.

【0009】(2)Nb,Ti,Vの1種又は2種以上
を合計で0.3重量%以下更に含むことを特徴とする
(1)記載の高い動的変形抵抗を有する衝突時衝撃吸収
良加工性高強度冷延鋼板。 (3)Pを0.2重量%以下更に含むことを特徴とする
(1)または(2)記載の高い動的変形抵抗を有する
突時衝撃吸収用良加工性高強度冷延鋼板。
(2) Absorption at impact with high dynamic deformation resistance as described in (1), further containing one or more of Nb, Ti and V in a total amount of 0.3% by weight or less.
Use good workability high-strength cold-rolled steel sheet. (3) An impeller having a high dynamic deformation resistance as described in (1) or (2), which further contains 0.2% by weight or less of P.
Good workability and high strength cold rolled steel sheet for shock absorption at impact .

【0010】(4)Bを0.01重量%以下更に含むこ
とを特徴とする(1)〜(3)のいずれか1に記載の高
い動的変形抵抗を有する衝突時衝撃吸収用良加工性高強
度冷延鋼板。 (5)0%超10%以下の予変形を与えた後の鋼材の残
留オーステナイト体積分率が2.5%超であり、かつ、
予変形前の残留オーステナイト体積分率と予変形後の残
留オーステナイト体積分率の比が0.4以上であること
を特徴とする(1)〜(4)のいずれか1に記載の高い
動的変形抵抗を有する衝突時衝撃吸収用良加工性高強度
冷延鋼板。
(4) B: 0.01% by weight or less is further contained, and good workability for impact shock absorption with high dynamic deformation resistance according to any one of (1) to (3) is provided. High strength cold rolled steel sheet. (5) The residual austenite volume fraction of the steel material after pre-deformation of more than 0% and 10% or more is more than 2.5%, and
The high dynamics according to any one of (1) to (4), characterized in that the ratio of the retained austenite volume fraction before pre-deformation to the retained austenite volume fraction after pre-deformation is 0.4 or more. Good workability and high-strength cold-rolled steel sheet for impact absorption at the time of collision with deformation resistance.

【0011】(6)最終的に得られた冷延鋼板のミクロ
組織中の残留オーステナイトの平均粒径と、主相である
フェライトもしくはベイナイトの平均粒径の比が0.6
以下であることを特徴とする(1)〜(5)のいずれか
1に記載の高い動的変形抵抗を有する衝突時衝撃吸収用
良加工性高強度冷延鋼板。 (7)重量%で、C:0.04%以上0.3%以下、S
iとAlの一方または双方を合計で0.5%以上3.0
%以下、Mn,Ni,Cr,Cu,Moの1種または2
種以上を合計で0.5%以上3.5%以下含み、残部が
Fe及び不可避的不純物からなる鋳造スラブを、鋳造ま
まで熱延工程へ直送し、もしくは一旦冷却した後に再度
加熱した後、熱延して巻き取った熱延鋼板を酸洗後冷延
し、連続焼鈍工程で焼鈍して最終的な製品とする際に、
0.1×(Ac3 −Ac1 )+Ac1 ℃以上Ac3 +5
0℃以下の温度で10秒〜3分焼鈍した後に、1〜10
℃/秒の一次冷却速度で550〜670℃の範囲の一次
冷却停止温度まで冷却し、引き続いて10〜200℃/
secの二次冷却速度で320℃超500℃以下の二次
冷却停止温度まで冷却した後320℃超500℃以下の
温度範囲で15秒〜20分保持し、室温まで冷却、最
終的に得られる冷延鋼板のミクロ組織がフェライトおよ
びベイナイトを含み、そのいずれかを主相とし、体積分
率で3%以上の残留オーステナイトを含む第3相との複
合組織であり、588 MPa 以上の引張り強度を有し、
留オーステナイト中の固溶〔C〕量と鋼材の平均Mn等
量{Mneq=Mn+(Ni+Cr+Cu+Mo)/
2}によって決まる値(M=678−428×〔C〕−
33×Mneq)が70以上180以下で、その鋼材に
相当歪みで0%超10%以下の予変形を与えた後、5×
102 〜5×103 (1/s)の歪み速度範囲で変形し
た時の3〜10%の相当歪み範囲における変形応力の平
均値σdyn(MPa)と5×10-4〜5×10-3(1
/s)の歪み速度範囲で変形した時の3〜10%の相当
歪み範囲における変形応力の平均値σst(MPa)の
差が5×10-4〜5×10-3(1/s)の歪み速度範囲
で測定された静的な引張り試験における最大応力TS
(MPa)によって表現される式(σdyn−σst)
≧−0.272×TS+300を満足することを特徴と
する高い動的変形抵抗を有する衝突時衝撃吸収用良加工
性高強度冷延鋼板の製造方法。
(6) The ratio of the average grain size of retained austenite in the microstructure of the finally obtained cold rolled steel sheet to the average grain size of ferrite or bainite as the main phase is 0.6.
Good workability high-strength cold-rolled steel sheet for impact absorption during collision having high dynamic deformation resistance according to any one of (1) to (5), characterized in that : (7) Weight%, C: 0.04% or more and 0.3% or less, S
One or both of i and Al total 0.5% or more 3.0
% Or less, one or two of Mn, Ni, Cr, Cu, Mo
A casting slab that contains 0.5% or more and 3.5% or less in total of the seeds or more, and the balance of Fe and unavoidable impurities is directly sent to the hot rolling step as cast, or after being cooled once and then heated again, When pickling the cold rolled hot rolled steel sheet which was hot rolled and wound and then annealed in the continuous annealing step to make the final product,
0.1 × (Ac 3 −Ac 1 ) + Ac 1 ° C. or higher Ac 3 +5
After annealing for 10 seconds to 3 minutes at a temperature of 0 ° C. or less, 1 to 10
Cooling to a primary cooling stop temperature in the range of 550 to 670 ° C at a primary cooling rate of ° C / sec, followed by 10 to 200 ° C /
After cooling to a secondary cooling stop temperature of 320 ° C. to 500 ° C. at a secondary cooling rate of sec, hold at a temperature range of 320 ° C. to 500 ° C. for 15 seconds to 20 minutes, cool to room temperature, and finally obtain The cold-rolled steel sheet has a microstructure containing ferrite and bainite, which is a composite structure with a third phase containing either of them as the main phase and a retained austenite content of 3% or more, and a tensile strength of 588 MPa or more. It has an average of solute (C) the amount and the steel in the residual austenite Mn eq {Mneq = Mn + (Ni + Cr + Cu + Mo) /
2} value (M = 678-428 × [C] −
33 × Mneq) is 70 or more and 180 or less, and 5 × after giving a pre-deformation of more than 0% and 10% or less with equivalent strain to the steel material.
Mean value σdyn (MPa) of deformation stress and 5 × 10 −4 to 5 × 10 in the equivalent strain range of 3 to 10% when deformed in the strain rate range of 10 2 to 5 × 10 3 (1 / s). 3 (1
/ S) when deformed in the strain rate range of 3 to 10% in the equivalent strain range of the deformation stress average value σst (MPa) is 5 × 10 -4 to 5 × 10 -3 (1 / s) Maximum stress TS in a static tensile test measured in the strain rate range
Expression (σdyn−σst) expressed by (MPa)
A method for producing a good workability high strength cold rolled steel sheet for impact shock absorption having high dynamic deformation resistance, characterized by satisfying ≧ −0.272 × TS + 300.

【0012】(8)Nb,Ti,Vの1種又は2種以上
を合計で0.3重量%以下更に含むことを特徴とする
(7)記載の高い動的変形抵抗を有する衝突時衝撃吸収
良加工性高強度冷延鋼板の製造方法。 (9)Pを0.2重量%以下更に含むことを特徴とする
(7)または(8)記載の高い動的変形抵抗を有する
突時衝撃吸収用良加工性高強度冷延鋼板の製造方法。
(8) The impact absorption at the time of collision with high dynamic deformation resistance as described in (7), which further contains one or more of Nb, Ti and V in a total amount of 0.3% by weight or less.
Manufacturing method of use good workability high-strength cold-rolled steel sheet. (9) The impact having a high dynamic deformation resistance according to (7) or (8), further containing 0.2% by weight or less of P.
A method for manufacturing a high-workability, high-strength cold-rolled steel sheet for impact shock absorption .

【0013】(10)Bを0.01重量%以下更に含む
ことを特徴とする(7)〜(9)のいずれか1に記載の
高い動的変形抵抗を有する衝突時衝撃吸収用良加工性高
強度冷延鋼板の製造方法。
(10) Good workability for impact shock absorption at high impact having high dynamic deformation resistance as set forth in any one of (7) to (9), further containing 0.01% by weight or less of B. Manufacturing method of high strength cold rolled steel sheet.

【0014】[0014]

【発明の実施の形態】自動車のフロントサイドメンバー
等の衝突時の衝撃吸収用部材は、鋼板に曲げ加工やプレ
ス成形加工によって製造される。自動車の衝突時の衝撃
は、このようにして加工された後に一般的には塗装焼き
付けされた後に加えられる。従って、このように部材へ
の加工、処理が行われた後に高い衝撃エネルギーの吸収
能を示す鋼板が必要となる。
BEST MODE FOR CARRYING OUT THE INVENTION A shock absorbing member such as a front side member of an automobile at the time of collision is manufactured by bending or press forming a steel plate. The impact at the time of collision of the automobile is applied after being processed in this way and generally after being baked. Therefore, a steel sheet that exhibits a high impact energy absorption capacity after being processed and treated as described above is required.

【0015】本発明者らの研究の結果、このような成形
加工された実部材において鋼板に適量の残留オーステナ
イトを含むことが優れた衝撃吸収特性を示す高強度鋼板
に適していることが判明した。すなわち、最適なミクロ
組織は、種々の置換型元素によって容易に固溶強化され
るフェライトおよびベイナイトを含み、そのいずれかを
主相として、変形中に硬質のマルテンサイトに変態する
残留オーステナイトを体積分率で3%以上含む場合に、
高い動的変形抵抗を示すことが判明した。また、初期ミ
クロ組織の第3相にマルテンサイト粒子を含む場合に
も、他の条件が満足されれば、本発明の目的とする高い
動的変形抵抗を有する良加工性高強度冷延鋼板が得られ
ることが可能になる。
As a result of the research conducted by the present inventors, it has been found that it is suitable for a high-strength steel sheet having excellent impact absorption characteristics that the steel sheet in such a formed actual member contains an appropriate amount of retained austenite. . That is, the optimum microstructure contains ferrite and bainite that are easily solid-solution strengthened by various substitutional elements, and the residual austenite that transforms into hard martensite during deformation is contained as the main phase in either volume. If the rate includes 3% or more,
It was found to exhibit high dynamic deformation resistance. Further, even when martensite particles are included in the third phase of the initial microstructure, if other conditions are satisfied, the good workability high-strength cold-rolled steel sheet having high dynamic deformation resistance, which is the object of the present invention, is obtained. Can be obtained.

【0016】本発明に規定する冷延鋼板の各成分の限定
理由は下記のとおりである。 C:Cはオーステナイトを室温で安定化させて残留させ
るために必要なオーステナイトの安定化に貢献する最も
安価な元素であるために、本発明において最も重要な元
素といえる。鋼材の平均C量は、室温で確保できる残留
オーステナイト体積分率に影響を及ぼすのみならず、製
造の加工熱処理中に未変態オーステナイト中に濃化する
ことで、残留オーステナイトの加工に対する安定性を向
上させることが出来る。しかしながら、この添加量が
0.04重量%未満の場合には、最終的に得られる残留
オーステナイト体積分率が3%以上を確保することが出
来ないので0.04重量%を下限とした。一方、鋼材の
平均C量が増加するに従って確保可能な残留オーステナ
イト体積分率は増加し、残留オーステナイト体積率を確
保しつつ残留オーステナイトの安定性を確保することが
可能となる。しかしながら、鋼材のC添加量が過大にな
ると、必要以上に鋼材の強度を上昇させ、プレス加工等
の成形性を阻害するのみならず、静的な強度上昇に比し
て動的な応力上昇が阻害されると共に、溶接性を低下さ
せることによって部品としての鋼材の利用が制限される
ようになるためC添加量の上限を0.3重量%とした。
The reasons for limiting each component of the cold rolled steel sheet specified in the present invention are as follows. C: C is the most important element in the present invention because it is the cheapest element that contributes to the stabilization of austenite necessary for stabilizing and remaining austenite at room temperature. The average C content of steel not only affects the retained austenite volume fraction that can be secured at room temperature, but also improves the stability of retained austenite during processing by concentrating it in untransformed austenite during the manufacturing heat treatment. It can be done. However, if the added amount is less than 0.04% by weight, the finally obtained retained austenite volume fraction cannot be 3% or more, so 0.04% by weight was set as the lower limit. On the other hand, the retained austenite volume fraction that can be ensured increases as the average C content of the steel material increases, and it becomes possible to secure the stability of the retained austenite while securing the retained austenite volume ratio. However, if the amount of C added to the steel material becomes excessively large, the strength of the steel material is increased more than necessary, and not only the formability such as press working is hindered but also the dynamic stress increase is caused as compared with the static strength increase. The upper limit of the amount of C added is set to 0.3% by weight because the use of steel as a part is restricted due to the impediment and deterioration of weldability.

【0017】Al,Si:AlとSiは共にフェライト
の安定化元素であり、フェライト体積率を増加させるこ
とによって鋼材の加工性を向上させる働きがある。ま
た、Al,Si共にセメンタイトの生成を抑制し、効果
的にオーステナイト中へのCを濃化させることを可能と
することから、室温で適量の体積分率のオーステナイト
を残留させるためには不可避的な添加元素である。この
ようなセメンタイト生成抑制機能を持つ添加元素として
は、Al,Si以外に、PやCu,Cr,Mo等が挙げ
られ、このような元素を適切に添加することも同様な効
果が期待される。しかしながら、AlとSiの一種もし
くは双方の合計が0.5重量%未満の場合には、セメン
タイト生成抑制の効果が十分でなく、オーステナイトの
安定化に最も効果的な添加されたCの多くが炭化物の形
で浪費され、本発明に必要な残留オーステナイト体積率
を確保することが出来ないか、もしくは残留オーステナ
イトの確保に必要な製造条件が大量生産工程の条件に適
しないため下限を0.5重量%とした。また、AlとS
iの一種もしくは双方の合計が3.0重量%を越える場
合には、母相であるフェライトもしくはベイナイトの硬
質化や脆化を招き、歪み速度上昇による変形抵抗の増加
を阻害するばかりでなく、鋼材の加工性の低下、靱性の
低下、さらには鋼材コストの上昇を招き、また化成処理
性等の表面処理特性が著しく劣化するために、3.0重
量%を上限値とした。
Al, Si: Al and Si are both stabilizing elements of ferrite, and have the function of improving the workability of the steel material by increasing the ferrite volume ratio. Further, since both Al and Si suppress the generation of cementite and enable effective concentration of C in austenite, it is unavoidable to leave a proper amount of austenite at room temperature. Is an additional element. Examples of additional elements having such a cementite formation suppressing function include P, Cu, Cr, and Mo in addition to Al and Si. Proper addition of such elements is expected to have the same effect. . However, when the total amount of one or both of Al and Si is less than 0.5% by weight, the effect of suppressing the formation of cementite is not sufficient, and most of the added C that is most effective for stabilizing austenite is a carbide. The amount of residual austenite volume ratio required for the present invention cannot be secured, or the manufacturing conditions necessary for securing retained austenite are not suitable for the conditions of mass production process. %. Also, Al and S
When the amount of one or both of i exceeds 3.0% by weight, not only the ferrite or bainite as the matrix phase is hardened or embrittled, but also the increase of the deformation resistance due to the increase of the strain rate is hindered. Since the workability of the steel material is lowered, the toughness is lowered, the cost of the steel material is increased, and the surface treatment characteristics such as chemical conversion treatment property are remarkably deteriorated, 3.0% by weight is set as the upper limit value.

【0018】Mn,Ni,Cr,Cu,Mo:Mn,N
i,Cr,Cu,Moは全てオーステナイト安定化元素
であり、室温でオーステナイトを安定化させるためには
有効な元素である。特に、溶接性の観点からCの添加量
が制限される場合には、このようなオーステナイト安定
化元素を適量添加することによって効果的にオーステナ
イトを残留させることが可能となる。また、これらの元
素はAlやSi程ではないがセメンタイトの生成を抑制
する効果があり、オーステナイトへのCの濃化を助ける
働きもする。更に、これらの元素はAl,Siと共にマ
トリックスであるフェライトやベイナイトを固溶強化さ
せることによって、高速での動的変形抵抗を高める働き
も持つ。しかしながら、これらの元素の1種もしくは2
種以上の添加の合計が0.5重量%未満の場合には、必
要な残留オーステナイトの確保が出来なくなるととも
に、鋼材の強度が低くなり、有効な車体軽量化が達成で
きなくなることから、下限を0.5重量%とした。一
方、これらの合計が3.5重量%を越える場合には、母
相であるフェライトもしくはベイナイトの硬質化を招
き、歪み速度上昇による変形抵抗の増加を阻害するばか
りでなく、鋼材の加工性の低下、靱性の低下、さらには
鋼材コストの上昇を招くために、上限を3.5重量%と
した。
Mn, Ni, Cr, Cu, Mo: Mn, N
i, Cr, Cu and Mo are all austenite stabilizing elements and are effective elements for stabilizing austenite at room temperature. In particular, when the amount of C added is limited from the viewpoint of weldability, it is possible to effectively retain austenite by adding an appropriate amount of such an austenite stabilizing element. Further, these elements have an effect of suppressing the formation of cementite, though not so much as Al or Si, and also have a function of helping the concentration of C in austenite. Further, these elements also have a function of enhancing the dynamic deformation resistance at high speed by solid-solution strengthening the matrix ferrite or bainite together with Al and Si. However, one or two of these elements
If the total addition of at least one species is less than 0.5% by weight, it becomes impossible to secure the necessary retained austenite and the strength of the steel material decreases, making it impossible to achieve effective weight reduction of the vehicle body. It was 0.5% by weight. On the other hand, when the total amount of these exceeds 3.5% by weight, the matrix ferrite or bainite is hardened, which not only hinders the increase of the deformation resistance due to the increase of the strain rate, but also the workability of the steel material. The upper limit was set to 3.5% by weight in order to lower the toughness and the steel cost.

【0019】Nb,Ti,V:また、必要に応じて添加
するNb,Ti,Vは、炭化物、窒化物もしくは炭窒化
物を形成することによって鋼材を高強度化することが出
来るが、その合計が0.3重量%を越えた場合には母相
であるフェライトやベイナイト粒内もしくは粒界に多量
の炭化物、窒化物もしくは炭窒化物として析出し、高速
変形時の可動転位発生源となって、高い動的変形抵抗を
得ることが出来なくなる。また、炭化物の生成は、本発
明にとって最も重要な残留オーステナイト中へのCの濃
化を阻害し、Cを浪費することから上限を0.3重量%
とした。
Nb, Ti, V: In addition, Nb, Ti, V added as necessary can strengthen the steel material by forming carbides, nitrides or carbonitrides, but the total of them. When it exceeds 0.3% by weight, a large amount of carbides, nitrides or carbonitrides are precipitated in the matrix of ferrite or bainite grains or in grain boundaries, and become a source of mobile dislocations during high speed deformation. , It becomes impossible to obtain high dynamic deformation resistance. Further, the formation of carbides inhibits the concentration of C in the retained austenite, which is the most important for the present invention, and wastes C, so the upper limit is 0.3% by weight.
And

【0020】P:更に、必要に応じて添加するPは、鋼
材の高強度化や前述のように残留オーステナイトの確保
に有効ではあるが、0.2重量%を越えて添加された場
合には鋼材のコストの上昇を招くばかりでなく、主相で
あるフェライトやベイナイトの変形抵抗を必要以上に高
め、かつ高速変形時の変形抵抗の上昇を阻害する。更
に、耐置き割れ性の劣化や疲労特性、靱性の劣化を招く
ことから、0.2重量%をその上限とした。
P: Further, P added as necessary is effective for increasing the strength of the steel material and securing retained austenite as described above. However, when P is added in excess of 0.2% by weight, Not only does this lead to an increase in the cost of the steel material, but it also increases the deformation resistance of the main phase ferrite and bainite more than necessary, and hinders the increase of the deformation resistance during high-speed deformation. Further, 0.2 wt% is set as the upper limit because deterioration of resistance to cracking due to placement, deterioration of fatigue characteristics and deterioration of toughness are caused.

【0021】B:また、必要に応じて添加するBは、粒
界の強化や鋼材の高強度化に有効ではあるが、その添加
量が0.01重量%を越えるとその効果が飽和するばか
りでなく、必要以上に鋼板強度を上昇させ、高速変形時
の変形抵抗の上昇を阻害すると共に、部品への加工性も
低下させることから、上限を0.01重量%とした。次
に、本発明者らの実験・検討の結果、フロントサイドメ
ンバー等の衝撃吸収用部材の成形加工に相当する予変形
の量は、部材中の部位によっては最大20%以上に達す
る場合もあるが、相当歪みとして0%超10%以下の部
位が大半であり、またこの範囲の予変形の効果を把握す
ることで、部材全体としての予加工後の挙動を推定する
ことが可能であることを見いだした。従って、本発明に
おいては、部材への加工時に与えられる予変形量として
相当歪みにして0%超10%以下の変形を選択した。
B: B, which is added as necessary, is effective for strengthening grain boundaries and strengthening the steel material, but when the addition amount exceeds 0.01% by weight, the effect is saturated. In addition, the steel plate strength is increased more than necessary, the increase of the deformation resistance at the time of high-speed deformation is hindered, and the workability of parts is also decreased. Therefore, the upper limit was made 0.01% by weight. Next, as a result of experiments and studies by the present inventors, the amount of pre-deformation corresponding to the forming process of the impact absorbing member such as the front side member may reach up to 20% or more depending on the part in the member. However, most of the equivalent strains are more than 0% and less than 10%, and by grasping the effect of pre-deformation in this range, it is possible to estimate the behavior of the entire member after pre-processing. I found it. Therefore, in the present invention, as the amount of pre-deformation given to the member during processing, a strain of not less than 0% and not more than 10% in equivalent strain is selected.

【0022】また、フロントサイドメンバー等の衝撃吸
収用部材は、特徴的にハット型の断面形状をしており、
このような部材の高速での衝突圧潰時の変形を本発明者
らが解析した結果、最大では40%以上の高い歪みまで
変形が進んでいるものの、吸収エネルギー全体の約70
%以上が、高速の応力−歪み線図の10%以下の歪み範
囲で吸収されていることを見いだした。従って、高速で
の衝突エネルギーの吸収能の指標として、10%以下で
の高速変形時の動的変形抵抗を採用した。特に、歪み量
として3%〜10%の範囲が最も重要であることから、
高速引張り変形時の相当歪みで3%〜10%の範囲の平
均応力σdynをもって衝撃エネルギー吸収能の指標と
した。
Further, the shock absorbing member such as the front side member characteristically has a hat-shaped cross section,
As a result of the analysis by the present inventors of the deformation at the time of high-speed collision crushing of such a member, the deformation has advanced to a high strain of 40% or more at the maximum, but about 70% of the total absorbed energy.
It has been found that% or more is absorbed in the strain range of 10% or less of the high-speed stress-strain diagram. Therefore, the dynamic deformation resistance during high-speed deformation at 10% or less was adopted as an index of the impact energy absorption capacity at high speed. Especially, since the range of 3% to 10% is the most important as the strain amount,
The equivalent strain during high-speed tensile deformation was used as an index of impact energy absorption capacity with an average stress σdyn in the range of 3% to 10%.

【0023】この高速変形時の3%〜10%の平均応力
σdyn(MPa)は、鋼材の静的な引張り強度(5×
10-4〜5×10-3(1/s)の歪み速度範囲で測定さ
れた静的な引張り試験における最大応力:TS(MP
a))の上昇に伴って大きくなることが一般的である。
従って鋼材の静的な引張り強度を増加させることは部材
の衝撃エネルギー吸収能の向上に直接寄与する。しかし
ながら、鋼材の強度が上昇すると部材への成形性が劣化
し、必要な部材形状を得ることが困難となる。従って、
同一の引張り強度(TS)で高いσdynを持つ鋼材が
望ましい。特に部材への加工時の歪みレベルが主に10
%以下であることから、部材への成型時の形状凍結性等
の成形性の指標となる低歪み領域での応力が低いことが
成形性向上のためには重要である。従ってσdynと5
×10-4〜5×10-3(1/s)の歪み速度範囲で変形
した時の3〜10%の相当歪み範囲における変形応力の
平均値σst(MPa)の差が大きいほど静的には成形
性に優れ、動的には高い衝撃エネルギーの吸収能を持つ
と言える。この関係で、特に(σdyn−σst)≧−
0.272×TS+300の関係を満足する鋼材は、実
部材への成形性に優れると同時に衝撃エネルギー吸収能
が他の鋼材に比べて高く、部材の総重量を増加させるこ
となく衝撃エネルギー吸収能を向上させることができ
る。
The average stress σdyn (MPa) of 3% to 10% at the time of high-speed deformation is the static tensile strength (5 ×) of the steel material.
Maximum stress in a static tensile test measured in a strain rate range of 10 −4 to 5 × 10 −3 (1 / s): TS (MP
It generally becomes larger as a)) rises.
Therefore, increasing the static tensile strength of the steel material directly contributes to the improvement of the impact energy absorption capacity of the member. However, if the strength of the steel material increases, the formability of the member deteriorates, and it becomes difficult to obtain the required member shape. Therefore,
A steel material having the same tensile strength (TS) and high σdyn is desirable. In particular, the strain level during processing of parts is mainly 10
% Or less, it is important for improving the moldability that the stress in the low strain region, which is an index of the moldability such as shape fixability during molding into a member, is low. Therefore σdyn and 5
The larger the difference in the average value σst (MPa) of the deformation stress in the equivalent strain range of 3 to 10% when deformed in the strain rate range of × 10 -4 to 5 × 10 -3 (1 / s), the more static the static. Can be said to have excellent formability and to have a high impact energy absorption capacity dynamically. In this relationship, in particular (σdyn−σst) ≧ −
A steel material satisfying the relationship of 0.272 × TS + 300 is excellent in formability into an actual member, and at the same time has a higher impact energy absorption capacity than other steel materials, so that the impact energy absorption capacity can be increased without increasing the total weight of the member. Can be improved.

【0024】本発明者らの実験・検討の結果、同一レベ
ルの引張り強度(TS)に対して、(σdyn−σs
t)は部材への加工が行われる以前の鋼板中に含まれる
残留オーステナイト中の固溶炭素量〔C〕(重量%)と
鋼材の平均Mn等量{Mneq=Mn+(Ni+Cr+
Cu+Mo)/2}(重量%)によって変化することが
見いだされた。残留オーステナイト中の炭素濃度は、X
線解析やメスバウアー分光により実験的に求めることが
出来、例えばMoのKα線を用いたX線解析によりフェ
ライトの(200)面、(211)面及びオーステナイ
トの(200)面、(220)面、(311)面の積分
反射強度を用いて、Journal of The Ironand Steel Ins
titute,206(1968),p.60に示された方法にて算出でき
る。本発明者らが行った実験結果から、このようにして
得られた残留オーステナイト中の固溶〔C〕と鋼材に添
加されている置換型合金元素から求められるMneqを
用いて計算される値(M=678−428×〔C〕−3
3×Mneq)が−140以上70未満の場合に、同一
の静的な引張り強度(TS)に対して大きな(σdyn
−σst)を示すことが見いだされた。このときMが7
0以上では、残留オーステナイトが低歪み領域で硬質の
マルテンサイトに変態することから、成形性を支配する
低歪み領域での静的な応力を上昇させてしまい、形状凍
結性等の成形性を劣化させるのみならず、(σdyn−
σst)の値を小さくすることから、良好な成形性と高
い衝撃エネルギー吸収能の両立が得られないためにMを
70未満とした。また、Mが−140未満の場合には、
残留オーステナイトの変態が高い歪み領域に限定される
ために、良好な成形性は得られるものの(σdyn−σ
st)を増大させる効果がなくなることからMの下限を
−140とした。
As a result of experiments and examinations conducted by the present inventors, for the same level of tensile strength (TS), (σdyn−σs
t) is the amount of solid solution carbon [C] (% by weight) in the retained austenite contained in the steel sheet before being processed into a member and the average Mn equivalent amount of the steel material {Mneq = Mn + (Ni + Cr +)
It was found to change with Cu + Mo) / 2} (wt%). The carbon concentration in the retained austenite is X
It can be experimentally obtained by line analysis or Moessbauer spectroscopy. For example, by X-ray analysis using Mo Kα rays, ferrite (200) plane, (211) plane and austenite (200) plane, (220) plane , Of the Iron and Steel Ins using the integrated reflection intensity of the (311) plane
It can be calculated by the method shown in titute, 206 (1968), p.60. From the results of experiments conducted by the present inventors, a value calculated using Mneq obtained from the solid solution [C] in the retained austenite thus obtained and the substitutional alloying elements added to the steel material ( M = 678-428 × [C] -3
When 3 × Mneq) is −140 or more and less than 70, it is large (σdyn) with respect to the same static tensile strength (TS).
It has been found to exhibit −σst). At this time, M is 7
When it is 0 or more, the retained austenite transforms into hard martensite in the low strain region, which increases the static stress in the low strain region that governs the formability and deteriorates the formability such as shape fixability. As well as (σdyn−
Since the value of σst) is made small, it is not possible to obtain both good moldability and high impact energy absorption ability, so M was set to less than 70. When M is less than −140,
Since the transformation of retained austenite is limited to a high strain region, good formability is obtained (σdyn-σ
Since the effect of increasing st) is lost, the lower limit of M is set to -140.

【0025】製造条件:熱延後冷延・焼鈍して本発明の
鋼板を製造する場合には、所定の成分に調整されたスラ
ブを、鋳造ままで熱延工程へ直送し、もしくは一旦冷却
した後再加熱して熱延を行い、その後酸洗し、冷延し、
次いで連続焼鈍することで最終製品とする。この時、熱
延仕上げ温度は鋼の化学成分によって決まるAr3 変態
温度以上で行うのが一般的であるが、Ar3 から10℃
程度低温までであれば最終的な鋼板の特性を劣化させな
い。また、冷却後の巻取温度は鋼の化学成分によって決
まるベイナイト変態開始温度以上とすることで、冷延時
の荷重を必要以上に高めることが避けられるが、冷延の
全圧下率が小さい場合にはこの限りでなく、鋼のベイナ
イト変態温度以下で巻き取られても最終的な鋼板の特性
を劣化させない。また、冷延の全圧下率は、最終板厚と
冷延荷重の関係から設定されるが、40%以上であれば
最終的な鋼板の特性を劣化させない。
Manufacturing conditions: When the steel sheet of the present invention is manufactured by cold rolling / annealing after hot rolling, a slab adjusted to have predetermined components is directly sent to the hot rolling step as it is, or once cooled. After that, it is reheated and hot rolled, then pickled, cold rolled,
Then, the product is finished by continuous annealing. At this time, the hot rolling finish temperature is generally set to an Ar 3 transformation temperature or higher determined by the chemical composition of the steel, but from Ar 3 to 10 ° C.
It does not deteriorate the properties of the final steel sheet up to a low temperature. In addition, the coiling temperature after cooling is set to be equal to or higher than the bainite transformation start temperature determined by the chemical composition of steel, so that it is possible to avoid increasing the load during cold rolling more than necessary, but when the total reduction ratio of cold rolling is small. Is not limited to this, and the properties of the final steel sheet will not be deteriorated even if wound at a temperature below the bainite transformation temperature of the steel. Further, the total reduction ratio of cold rolling is set from the relationship between the final plate thickness and the cold rolling load, but if it is 40% or more, the properties of the final steel sheet are not deteriorated.

【0026】冷延後焼鈍する際に、焼鈍温度が鋼の化学
成分によって決まる温度Ac1 及びAc3 温度(例えば
「鉄鋼材料学」:W.C.Leslie著、幸田成康監
訳、丸善p273,で表現される0.1×(Ac3 −A
1 )+Ac1 ℃未満の場合には、焼鈍温度で得られる
オーステナイト量が少ないので、最終的な鋼板中に安定
して残留オーステナイトを残すことができないために、
0.1×(Ac3 −Ac1 )+Ac1 ℃を焼鈍温度の下
限とした。また焼鈍温度がAc3 +50℃を越えても何
ら鋼板の特性を改善することができない一方で製造コス
トの上昇をまねくために、焼鈍温度の上限をAc3 +5
0℃とした。この温度での焼鈍時間は鋼板の温度均一化
とオーステナイトの確保のために10秒以上が必要であ
る。しかし、3分超では、効果が飽和するばかりでなく
コストの上昇を招くので3分を上限とした。
When annealing after cold rolling, the annealing temperatures are determined by the chemical composition of the steel, Ac 1 and Ac 3 temperatures (for example, "Steel Material Science": W. C. Leslie, translated by Shigeyasu Koda, Maruzen p273). Expressed 0.1 × (Ac 3 −A
In the case of less than c 1 ) + Ac 1 ° C, the amount of austenite obtained at the annealing temperature is small, so that residual austenite cannot be stably left in the final steel sheet.
The lower limit of the annealing temperature was 0.1 × (Ac 3 −Ac 1 ) + Ac 1 ° C. Further, even if the annealing temperature exceeds Ac 3 + 50 ° C, the properties of the steel sheet cannot be improved at all, but in order to increase the manufacturing cost, the upper limit of the annealing temperature is set to Ac 3 +5.
It was set to 0 ° C. The annealing time at this temperature needs to be 10 seconds or more in order to make the temperature of the steel plate uniform and to secure austenite. However, if it exceeds 3 minutes, not only the effect will be saturated, but also the cost will increase, so 3 minutes was made the upper limit.

【0027】その後の一次冷却はオーステナイトからフ
ェライトへの変態を促して、未変態のオーステナイト中
にCを濃化させてオーステナイトの安定化をはかるのに
重要である。この冷却速度が1℃/秒未満にすること
は、必要な生産ライン長を長くしたり、生産速度を極め
て遅くするといった製造上のデメリットを生じるため
に、この冷却速度の下限を1℃/秒とした。一方、冷却
速度が10℃/秒超の場合にはフェライト変態が十分に
起こらず、最終的な鋼板中の残留オーステナイト確保が
困難となるためにこれを上限とした。この一次冷却が5
50℃未満まで行われると、冷却中にパーライトが生成
し、オーステナイト安定化元素であるCを浪費し、最終
的に十分な量の残留オーステナイトが得られないため
に、550℃を下限とした。しかしながら、冷却が67
℃超までしか行われなかった場合にはフェライト変態
の進行が十分ではないので670℃を上限とした。
The subsequent primary cooling is important for promoting the transformation of austenite to ferrite and concentrating C in the untransformed austenite to stabilize the austenite. If this cooling rate is less than 1 ° C / sec, the production line disadvantages such as lengthening the required production line length and extremely slowing down the production rate occur, so the lower limit of this cooling rate is 1 ° C / sec. And On the other hand, when the cooling rate is higher than 10 ° C./sec, ferrite transformation does not sufficiently occur and it becomes difficult to secure the retained austenite in the final steel sheet, so this was made the upper limit. This primary cooling is 5
When the temperature is lower than 50 ° C., pearlite is generated during cooling, C which is an austenite stabilizing element is wasted, and a sufficient amount of residual austenite cannot be finally obtained. Therefore, the lower limit is 550 ° C. However, the cooling is 67
When the temperature is higher than 0 ° C, the ferrite transformation does not proceed sufficiently. Therefore, the upper limit was 670 ° C.

【0028】引き続き行われる二次冷却の急速冷却は、
冷却中にパーライト変態や鉄炭化物の析出などが起こら
ないような冷却速度として最低10℃/秒以上が必要と
なる。但し、この冷却速度を200℃/秒超にすること
は設備能力上困難であることから、10〜200℃を冷
却速度の範囲とした。この二次冷却の冷却停止温度が3
20℃以下の場合には、得られる残留オーステナイトの
特性が好ましくなく、最終的に得ようとする(σdyn
−σst)の値を低下させる為に、320℃超を下限と
した。また、二次冷却停止温度が500℃超の場合に
は、必要な量の残留オーステナイトを得ることができな
いために、500℃を上限とした。
The rapid cooling of the subsequent secondary cooling is
A cooling rate of at least 10 ° C./second or more is required so that pearlite transformation or precipitation of iron carbide does not occur during cooling. However, since it is difficult to set the cooling rate to more than 200 ° C./sec in terms of facility capacity, the cooling rate range was set to 10 to 200 ° C. The cooling stop temperature of this secondary cooling is 3
When the temperature is 20 ° C. or lower, the properties of the obtained retained austenite are not preferable, and the final attempt is made to obtain (σdyn
In order to reduce the value of −σst), the lower limit was made to exceed 320 ° C. Further, when the secondary cooling stop temperature is higher than 500 ° C, the required amount of retained austenite cannot be obtained, so 500 ° C is set as the upper limit.

【0029】鋼板中に残留しているオーステナイトを室
温で安定にするためには、その一部をベイナイトへ変態
させることでオーステナイト中の炭素濃度を更に高める
ことが必須である。二次冷却停止温度がベイナイト変態
処理のために保持される温度より低温である場合には、
保持温度まで加熱される。このときの加熱速度は5℃/
秒〜50℃/秒の範囲であれば最終的な特性を劣化させ
ることはない。また逆に、二次冷却停止温度がベイナイ
ト処理温度よりも高温の場合は、ベイナイト処理温度ま
で5℃/秒〜200℃/秒の冷却速度で強制的に冷却し
ても、あらかじめ目標温度が設定された加熱ゾーンの直
接搬送されても、鋼板の最終的な特性を劣化させない。
一方、鋼板が320℃以下で保持された場合には、鋼板
の静的な変形抵抗が上昇し、加工性と衝撃エネルギー吸
収能の両立を示す(σdyn−σst)の値を低下させ
るために、320℃超を下限とした。また500℃超に
保持された場合には、十分な量の残留オーステナイトを
確保できないことから、保持温度の範囲を320℃超〜
500℃以下とした。このとき、320℃超〜500℃
以下での保持が15秒未満ではベイナイト変態の進行が
十分でないことから最終的に必要な量の残留オーステナ
イトを得ることができず、また、20分超ではベイナイ
ト変態の後に鉄炭化物の析出やパーライト変態が起こ
り、残留オーステナイト生成に不可欠なCを浪費してし
まい、残留オーステナイトを得ることができなくなるた
めに保持時間を15秒から20分の範囲とした。ベイナ
イト変態を促進させるために行う320℃超〜500℃
以下の保持は、等温での保持であっても、または、この
温度範囲であれば温度変化があっても最終的な鋼板の特
性を劣化させることはない。
In order to stabilize the austenite remaining in the steel sheet at room temperature, it is essential to further increase the carbon concentration in the austenite by transforming part of it into bainite. When the secondary cooling stop temperature is lower than the temperature maintained for the bainite transformation process,
It is heated to the holding temperature. The heating rate at this time is 5 ° C /
Within the range of seconds to 50 ° C./second, the final characteristics are not deteriorated. On the contrary, when the secondary cooling stop temperature is higher than the bainite treatment temperature, the target temperature is set in advance even if the bainite treatment temperature is forcibly cooled at a cooling rate of 5 ° C / sec to 200 ° C / sec. Even if it is directly conveyed to the heated zone, the final properties of the steel sheet are not deteriorated.
On the other hand, when the steel sheet is held at 320 ° C. or lower, the static deformation resistance of the steel sheet increases and the value of (σdyn−σst), which shows both workability and impact energy absorption capacity, is decreased. The lower limit was over 320 ° C. Further, when the temperature is maintained above 500 ° C, a sufficient amount of retained austenite cannot be secured, so the range of the holding temperature exceeds 320 ° C.
It was set to 500 ° C. or less. At this time, more than 320 ℃ ~ 500 ℃
If retained below 15 seconds, the progress of bainite transformation is insufficient, so that the required amount of retained austenite cannot be finally obtained, and if it exceeds 20 minutes, precipitation of iron carbide and pearlite after bainite transformation. Since the transformation occurs and C, which is indispensable for the formation of retained austenite, is wasted and the retained austenite cannot be obtained, the holding time is set to 15 seconds to 20 minutes. Over 320 ℃ ~ 500 ℃ to accelerate bainite transformation
The following holding does not deteriorate the properties of the final steel sheet even if it is held isothermally or if the temperature changes within this temperature range.

【0030】[0030]

【実施例】〔実施例1〕 表1に示す25種類の鋼材を1200℃に加熱し、Ar
3変態温度以上で熱延を完了し、冷却後各鋼の化学成分
で決まるベイナイト変態開始温度以上で巻き取った鋼帯
を酸洗後、冷延して1.0mm厚とした。その後、各鋼の
成分からAc1=723−10.7×Mn%−16.9
×Ni%+29.1×Si%+16.9×Cr,Ac3
=910−203×(C%)1/2 −15.2×Ni%+
44.7×Si%+104×V%+31.5×Mo%−
30×Mn%−11×Cr%−20×Cu%+700×
P%+400×Al%+400×Ti%、で計算される
Ac1 変態温度とAc3 から計算される温度(Ac1
Ac3 )/2に90秒加熱し、5℃/秒で670℃まで
冷却した後100℃/秒で300℃まで冷却し、再加熱
後400℃で5分のベイナイト変態処理を行った後に室
温まで冷却した冷延鋼板の冷延方向(L方向)とこれに
直行する方向(C方向)に単軸引張りにより5%の予変
形を付加し、焼き付け処理を模擬するために170℃×
20分の熱処理を行った後に鋼材の動的な特性を調査
し、予変形する前の静的な特性と比較した結果を表2に
示した。588 MPa 以上の引張り強度を有し、鋼の成分
が本発明の範囲内のものについては表中の*1の欄に示
した値が正、すなわち、目的通り(σdyn−σst)
が(−0.272×TS+300)以上であることがわ
かる。 〔実施例2〕 表1に示した本発明の成分範囲内である鋼P2を用い
て、焼鈍条件、予変形条件及び熱処理条件、を変化させ
た場合の特性を調査した結果を表3および表4に示す。
P2鋼のAc1 ,Ac3 変態温度は742,848℃と
計算された。熱延鋼板を酸洗後1.0mm厚まで冷延し、
各種の焼鈍条件で焼鈍した。
[Example] [Example 1] 25 kinds of steel materials shown in Table 1 were heated to 1200 ° C, and Ar
Hot rolling was completed at 3 transformation temperatures or higher, and after cooling, the steel strip wound at the bainite transformation start temperature or higher determined by the chemical composition of each steel was pickled and cold rolled to a thickness of 1.0 mm. Then, from the composition of each steel, Ac 1 = 723-10.7 × Mn% −16.9.
× Ni% + 29.1 × Si% + 16.9 × Cr, Ac 3
= 910−203 × (C%) 1 / 2−15.2 × Ni% +
44.7 x Si% + 104 x V% + 31.5 x Mo%-
30 x Mn% -11 x Cr% -20 x Cu% + 700 x
Ac 1 transformation temperature calculated by P% + 400 × Al% + 400 × Ti% and a temperature calculated from Ac 3 (Ac 1 +
Ac 3 ) / 2 for 90 seconds, cooled to 670 ° C. at 5 ° C./second, cooled to 300 ° C. at 100 ° C./second, reheated, and subjected to bainite transformation treatment at 400 ° C. for 5 minutes and then at room temperature. Pre-deformation of 5% was added by uniaxial tension in the cold rolling direction (L direction) of the cold rolled steel sheet cooled to (L direction) and the direction orthogonal to this (C direction), and 170 ° C. was applied to simulate the baking process.
Table 2 shows the results of examining the dynamic properties of the steel material after the heat treatment for 20 minutes and comparing it with the static properties before pre-deformation. For those having a tensile strength of 588 MPa or more and a steel composition within the range of the present invention, the value shown in the column of * 1 in the table is positive, that is, as intended (σdyn-σst)
Is (−0.272 × TS + 300) or more. [Example 2] The results of investigating the characteristics when the annealing condition, the pre-deformation condition and the heat treatment condition were changed using the steel P2 within the composition range of the present invention shown in Table 1 are shown in Table 3 and Table. 4 shows.
The Ac 1 and Ac 3 transformation temperatures of P2 steel were calculated to be 742,848 ° C. After pickling the hot-rolled steel sheet, cold-roll it to a thickness of 1.0 mm,
It was annealed under various annealing conditions.

【0031】No.1は焼鈍温度が本発明範囲外であ
り、必要量の残留オーステナイトが得られていない。ま
た、No.2は一次冷却の冷却停止温度が500℃と本
発明の範囲外であるために、冷却中に出たパーライトに
より、残留オーステナイトの確保が阻害されている。ま
た、No.3は二次冷却の冷却速度が本発明外であるた
めに、冷却中に生成したパーライトにより、残留オース
テナイトの確保が達成されていない。またNo.4は二
次冷却の冷却停止温度が低すぎたためにマルテンサイト
の生成量が多くなり、残留オーステナイトの確保が達成
できていない。また、No.7は二次冷却速度及びベイ
ナイト変態処理温度が高すぎて、鉄炭化物の生成により
残留オーステナイトの確保が出来ていない。更に、N
o.9では、焼鈍温度を必要以上に高温としたために、
組織の粗大化がすすみ、残留オーステナイトの粒径が大
きくなり、結果として十分大きな動的変形抵抗と静的変
形抵抗の差を得ることができない。他の例はすべて本発
明の例であり、焼鈍条件が本発明の範囲内であれば、予
変形付与の形態や予変形後の加工硬化処理(BH処理:
170℃×20分の熱処理)の有無に関わらず表中の*
1の欄の値が正、すなわち、所定の変形抵抗の上昇(σ
dyn−σst)が得らることがわかる。ここで、L方
向とは熱延と同一の方向を指し、C方向はこれと直行す
る方向を指す。
No. In No. 1, the annealing temperature was outside the range of the present invention, and the required amount of retained austenite was not obtained. In addition, No. In No. 2, the cooling stop temperature of the primary cooling is 500 ° C., which is outside the range of the present invention, so that the retained austenite is prevented from being secured by the pearlite generated during the cooling. In addition, No. In No. 3, since the cooling rate of the secondary cooling is outside the scope of the present invention, the retained austenite is not ensured by the pearlite generated during the cooling. In addition, No. In No. 4, since the cooling stop temperature of the secondary cooling was too low, the amount of martensite formed increased, and retained austenite could not be secured. In addition, No. In No. 7, the secondary cooling rate and the bainite transformation treatment temperature were too high, and retained austenite could not be secured due to the formation of iron carbide. Furthermore, N
o. In No. 9, since the annealing temperature was set higher than necessary,
The coarsening of the structure progresses and the grain size of retained austenite increases, and as a result, a sufficiently large difference between the dynamic deformation resistance and the static deformation resistance cannot be obtained. All other examples are examples of the present invention, and if the annealing conditions are within the scope of the present invention, the form of pre-deformation and work hardening after pre-deformation (BH treatment:
(With heat treatment at 170 ° C for 20 minutes) *
The value in the column 1 is positive, that is, the predetermined increase in deformation resistance (σ
It can be seen that dyn−σst) is obtained. Here, the L direction refers to the same direction as the hot rolling, and the C direction refers to the direction orthogonal to this.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【発明の効果】本発明により、自動車の軽量化と衝突安
全性の確保の要求に応えることのできる高い動的変形抵
抗を有する衝突時衝撃吸収用良加工性高強度冷延鋼板を
確実に提供することができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to reliably provide a good workability high strength cold rolled steel sheet for impact absorption at the time of collision, which has a high dynamic deformation resistance and can meet the demands of weight reduction of automobiles and ensuring of collision safety. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における、衝突時の衝撃エネルギー吸収
能の指標である、5×102 〜5×103 (1/s)の
歪み速度範囲で変形した時の3〜10%の相当歪み範囲
における変形応力の平均値σdynと5×10-4〜5×
10-3(1/s)の歪み速度範囲で変形した時の3〜1
0%の相当歪み範囲における変形応力の平均値σstの
差(σdyn−σst)と静的な素材強度との関係を示
す図である。
FIG. 1 is an equivalent strain of 3 to 10% when deformed in a strain velocity range of 5 × 10 2 to 5 × 10 3 (1 / s), which is an index of impact energy absorption capacity during collision in the present invention. Mean value of deformation stress σdyn in the range and 5 × 10 −4 to 5 ×
3-1 when deformed in the strain rate range of 10 -3 (1 / s)
It is a figure which shows the relationship between the difference ((sigma) dyn- (sigma) st) of the average value (sigma) st of the deformation stress in the equivalent strain range of 0%, and static material strength.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−241788(JP,A) 特開 平7−62485(JP,A) 特開 平7−252592(JP,A) 特開 平7−207413(JP,A) 特開 平1−184226(JP,A) 特開 昭64−79345(JP,A) 国際公開95/029268(WO,A1) 三浦ら,自動車用衝撃吸収高張力鋼板 の開発,まてりあ ,1996年 5月20 日,Vol.35 No.3, P,570 −572 板橋ら,予ひずみを与えられた建築構 造用圧延鋼材SN490Bの高速引張特性, 日本材料学会学術講演会講演論文集, 1997年 5月22日,Vol.46th , P.291−292 (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 8/02 - 8/04 C21D 9/46 - 9/48 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-9-241788 (JP, A) JP-A-7-62485 (JP, A) JP-A-7-252592 (JP, A) JP-A-7- 207413 (JP, A) JP-A-1-184226 (JP, A) JP-A 64-79345 (JP, A) International Publication 95/029268 (WO, A1) Miura et al., Development of shock absorbing high-strength steel sheet for automobiles Materia, May 20, 1996, Vol. 35 No. 3, P, 570-572 Itabashi et al., High-speed tensile properties of prestrained rolled steel SN490B for building structures, Proc. Of the Japan Society of Materials Science, May 22, 1997, Vol. 46th, P. 291-292 (58) Fields surveyed (Int.Cl. 7 , DB name) C22C 38/00-38/60 C21D 8/02-8/04 C21D 9/46-9/48

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C:0.04%以上0.3%
以下、SiとAlの一方または双方を合計で0.5%以
上3.0%以下、Mn,Ni,Cr,Cu,Moの1種
または2種以上を合計で0.5%以上3.5%以下含
み、残部がFe及び不可避的不純物からなり、最終的に
得られる冷延鋼板のミクロ組織がフェライトおよびベイ
ナイトを含み、このいずれかを主相とし、体積分率で3
%以上の残留オーステナイトを含む第3相との複合組織
であり、残留オーステナイト中の固溶〔C〕量と鋼材の
平均Mn等量{Mneq=Mn+(Ni+Cr+Cu+
Mo)/2}によって決まる値(M=678−428×
〔C〕−33×Mneq)が−140以上70未満で、
588 MPa 以上の引張り強度を有し、その鋼材に相当歪
みで0%超10%以下の予変形を与えた後、5×102
〜5×103 (1/s)の歪み速度範囲で変形した時の
3〜10%の相当歪み範囲における変形応力の平均値σ
dyn(MPa)と5×10-4〜5×10-3(1/s)
の歪み速度範囲で変形した時の3〜10%の相当歪み範
囲における変形応力の平均値σst(MPa)の差が5
×10-4〜5×10-3(1/s)の歪み速度範囲で測定
された静的な引張り試験における最大応力TS(MP
a)によって表現される式(σdyn−σst)≧−
0.272×TS+300を満足することを特徴とする
高い動的変形抵抗を有する衝突時衝撃吸収用良加工性高
強度冷延鋼板。
1. C: 0.04% or more and 0.3% by weight
Hereinafter, one or both of Si and Al are 0.5% or more and 3.0% or less in total, and one or more of Mn, Ni, Cr, Cu, and Mo are 0.5% or more and 3.5% or more in total. % Or less, the balance consisting of Fe and unavoidable impurities, and the microstructure of the finally obtained cold-rolled steel sheet contains ferrite and bainite. Either of them is the main phase and the volume fraction is 3
% Is a composite structure with a third phase containing at least% retained austenite, and the amount of solid solution [C] in the retained austenite and the average Mn equivalent of steel {Mneq = Mn + (Ni + Cr + Cu +
Mo) / 2} determined value (M = 678-428 ×
[C] −33 × Mneq) is −140 or more and less than 70,
It has a tensile strength of 588 MPa or more, and after subjecting the steel material to pre- deformation of more than 0% and 10% or less with equivalent strain, 5 × 10 2
Average value σ of deformation stress in an equivalent strain range of 3 to 10% when deformed in a strain rate range of ˜5 × 10 3 (1 / s)
dyn (MPa) and 5 × 10 −4 to 5 × 10 −3 (1 / s)
The difference of the average value σst (MPa) of the deformation stress in the equivalent strain range of 3 to 10% when deformed in the strain rate range of 5 is
Maximum stress TS (MP in a static tensile test measured in a strain rate range of × 10 -4 to 5 × 10 -3 (1 / s))
a) expressed by (adyn−σst) ≧ −
A good workability, high strength cold rolled steel sheet having high dynamic deformation resistance for impact shock absorption, which satisfies 0.272 × TS + 300.
【請求項2】 Nb,Ti,Vの1種又は2種以上を合
計で0.3重量%以下更に含むことを特徴とする請求項
1記載の高い動的変形抵抗を有する衝突時衝撃吸収用
加工性高強度冷延鋼板。
2. The impact-absorbing shock having high dynamic deformation resistance according to claim 1, further comprising one or more of Nb, Ti and V in a total amount of 0.3% by weight or less . Good workability High strength cold rolled steel sheet.
【請求項3】 Pを0.2重量%以下更に含むことを特
徴とする請求項1または2記載の高い動的変形抵抗を有
する衝突時衝撃吸収用良加工性高強度冷延鋼板。
3. The good workable high strength cold rolled steel sheet for impact shock absorption having a high dynamic deformation resistance according to claim 1 or 2, further comprising P in an amount of 0.2% by weight or less.
【請求項4】 Bを0.01重量%以下更に含むことを
特徴とする請求項1〜3のいずれか1項に記載の高い動
的変形抵抗を有する衝突時衝撃吸収用良加工性高強度冷
延鋼板。
4. Better content of 0.01% by weight or less , good workability and high strength for impact shock absorption with high dynamic deformation resistance according to any one of claims 1 to 3. Cold rolled steel sheet.
【請求項5】 0%超10%以下の予変形を与えた後の
鋼材の残留オーステナイト体積分率が2.5%超であ
り、かつ、予変形前の残留オーステナイト体積分率と予
変形後の残留オーステナイト体積分率の比が0.4以上
であることを特徴とする請求項1〜4のいずれか1項に
記載の高い動的変形抵抗を有する衝突時衝撃吸収用良加
工性高強度冷延鋼板。
5. The residual austenite volume fraction of the steel material after pre-deformation of more than 0% and 10% or more is more than 2.5%, and the residual austenite volume fraction before pre-deformation and after pre-deformation. The ratio of residual austenite volume fraction of is 0.4 or more, good workability and high strength for impact absorption at impact having high dynamic deformation resistance according to any one of claims 1 to 4. Cold rolled steel sheet.
【請求項6】 最終的に得られた冷延鋼板のミクロ組織
中の残留オーステナイトの平均粒径と、主相であるフェ
ライトもしくはベイナイトの平均粒径の比が0.6以下
であることを特徴とする請求項1〜5のいずれか1項に
記載の高い動的変形抵抗を有する衝突時衝撃吸収用良加
工性高強度冷延鋼板。
6. The ratio of the average grain size of retained austenite in the microstructure of the finally obtained cold rolled steel sheet to the average grain size of ferrite or bainite as the main phase is 0.6 or less. The high workability high strength cold rolled steel sheet for impact shock absorption having high dynamic deformation resistance according to any one of claims 1 to 5.
【請求項7】 重量%で、C:0.04%以上0.3%
以下、SiとAlの一方または双方を合計で0.5%以
上3.0%以下、Mn,Ni,Cr,Cu,Moの1種
または2種以上を合計で0.5%以上3.5%以下含
み、残部がFe及び不可避的不純物からなる鋳造スラブ
を、鋳造ままで熱延工程へ直送し、もしくは一旦冷却し
た後に再度加熱した後、熱延して巻き取った熱延鋼板を
酸洗後冷延し、連続焼鈍工程で焼鈍して最終的な製品と
する際に、0.1×(Ac3 −Ac1 )+Ac1 ℃以上
Ac3 +50℃以下の温度で10秒〜3分焼鈍した後
に、1〜10℃/秒の一次冷却速度で550〜670
の範囲の一次冷却停止温度まで冷却し、引き続いて10
〜200℃/secの二次冷却速度で320℃超500
℃以下の二次冷却停止温度まで冷却した後320℃超5
00℃以下の温度範囲で15秒〜20分保持し、室温ま
で冷却、最終的に得られる冷延鋼板のミクロ組織がフ
ェライトおよびベイナイトを含み、そのいずれかを主相
とし、体積分率で3%以上の残留オーステナイトを含む
第3相との複合組織であり、588 MPa 以上の引張り強
度を有し、残留オーステナイト中の固溶〔C〕量と鋼材
の平均Mn等量{Mneq=Mn+(Ni+Cr+Cu
+Mo)/2}によって決まる値(M=678−428
×〔C〕−33×Mneq)が70以上180以下で、
その鋼材に相当歪みで0%超10%以下の予変形を与え
た後、5×102 〜5×103 (1/s)の歪み速度範
囲で変形した時の3〜10%の相当歪み範囲における変
形応力の平均値σdyn(MPa)と5×10-4〜5×
10-3(1/s)の歪み速度範囲で変形した時の3〜1
0%の相当歪み範囲における変形応力の平均値σst
(MPa)の差が5×10-4〜5×10-3(1/s)の
歪み速度範囲で測定された静的な引張り試験における最
大応力TS(MPa)によって表現される式(σdyn
−σst)≧−0.272×TS+300を満足する
とを特徴とする高い動的変形抵抗を有する衝突時衝撃吸
収用良加工性高強度冷延鋼板の製造方法。
7. C: 0.04% or more and 0.3% by weight%
Hereinafter, one or both of Si and Al are 0.5% or more and 3.0% or less in total, and one or more of Mn, Ni, Cr, Cu, and Mo are 0.5% or more and 3.5% or more in total. % Or less, and the balance being Fe and inevitable impurities, the cast slab is sent directly to the hot rolling process as it is, or once cooled and then reheated, the hot rolled steel sheet rolled by hot rolling is pickled. When it is post-cold rolled and annealed in a continuous annealing step to obtain a final product, it is annealed at a temperature of 0.1 × (Ac 3 −Ac 1 ) + Ac 1 ° C. or more and Ac 3 + 50 ° C. or less for 10 seconds to 3 minutes. After that, at a primary cooling rate of 1 to 10 ° C./sec, 550 to 670 ° C.
Cooling to the primary cooling stop temperature in the range of 10
~ 320 ℃ / 500 at secondary cooling rate of 200 ℃ / sec 500
After cooling to the secondary cooling stop temperature below ℃ 5
Hold in the temperature range of 00 ° C. or lower for 15 seconds to 20 minutes, cool to room temperature, the microstructure of the finally obtained cold-rolled steel sheet contains ferrite and bainite, one of which is the main phase, and the volume fraction is It is a composite structure with a third phase containing 3% or more of retained austenite, and has a tensile strength of 588 MPa or more.
Of the solid solution [C] in the retained austenite and the average Mn equivalent of steel {Mneq = Mn + (Ni + Cr + Cu
+ Mo) / 2} (M = 678-428)
X [C] -33 x Mneq) is 70 or more and 180 or less,
Equivalent strain of 3-10% when deformed in a strain rate range of 5 × 10 2 to 5 × 10 3 (1 / s) after subjecting the steel material to pre-deformation of more than 0% and 10% or less with equivalent strain Average value of deformation stress σdyn (MPa) in the range and 5 × 10 −4 to 5 ×
3-1 when deformed in the strain rate range of 10 -3 (1 / s)
Average value of deformation stress σst in the 0% equivalent strain range
The expression (σdyn) represented by the maximum stress TS (MPa) in the static tensile test in which the difference in (MPa) is measured in the strain rate range of 5 × 10 −4 to 5 × 10 −3 (1 / s).
This to satisfy the -σst) ≧ -0.272 × TS + 300
Impact absorption during collision with high dynamic deformation resistance characterized by
Excessive workability High strength cold rolled steel sheet manufacturing method.
【請求項8】 Nb,Ti,Vの1種又は2種以上を合
計で0.3重量%以下更に含むことを特徴とする請求項
7記載の高い動的変形抵抗を有する衝突時衝撃吸収用
加工性高強度冷延鋼板の製造方法。
8. The impact-absorbing shock having high dynamic deformation resistance according to claim 7, further comprising one or more of Nb, Ti and V in a total amount of 0.3% by weight or less . Good workability High strength cold rolled steel sheet manufacturing method.
【請求項9】 Pを0.2重量%以下更に含むことを特
徴とする請求項7または8記載の高い動的変形抵抗を有
する衝突時衝撃吸収用良加工性高強度冷延鋼板の製造方
法。
9. The method for producing a good workability high-strength cold-rolled steel sheet for impact shock absorption having high dynamic deformation resistance according to claim 7, further comprising P in an amount of 0.2% by weight or less. .
【請求項10】 Bを0.01重量%以下更に含むこと
を特徴とする請求項7〜9のいずれか1項に記載の高い
動的変形抵抗を有する衝突時衝撃吸収用良加工性高強度
冷延鋼板の製造方法。
10. A good workability and high strength for impact absorption at impact having a high dynamic deformation resistance according to claim 7, further comprising 0.01% by weight or less of B. Manufacturing method of cold rolled steel sheet.
JP25892897A 1997-01-29 1997-09-24 Good workability high-strength cold-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and method for producing the same Expired - Fee Related JP3530356B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP25892897A JP3530356B2 (en) 1997-09-24 1997-09-24 Good workability high-strength cold-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and method for producing the same
AU55767/98A AU716203B2 (en) 1997-01-29 1998-01-23 High strength steels having excellent formability and high impact energy absorption properties, and a method for production the same
EP98900718.2A EP0974677B2 (en) 1997-01-29 1998-01-23 A method for producing high strength steels having excellent formability and high impact energy absorption properties
KR1019997006826A KR100334948B1 (en) 1997-01-29 1998-01-23 High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof
CN98802157A CN1072272C (en) 1997-01-29 1998-01-23 High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for production thereof
US09/355,435 US6544354B1 (en) 1997-01-29 1998-01-23 High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof
CA002278841A CA2278841C (en) 1997-01-29 1998-01-23 High strength steels having excellent formability and high impact energy absorption properties, and a method for producing the same
PCT/JP1998/000272 WO1998032889A1 (en) 1997-01-29 1998-01-23 High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof
EP10181439A EP2312008B1 (en) 1997-01-29 1998-01-23 High-strength steels having high impact energy absorption properties.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25892897A JP3530356B2 (en) 1997-09-24 1997-09-24 Good workability high-strength cold-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11100636A JPH11100636A (en) 1999-04-13
JP3530356B2 true JP3530356B2 (en) 2004-05-24

Family

ID=17326997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25892897A Expired - Fee Related JP3530356B2 (en) 1997-01-29 1997-09-24 Good workability high-strength cold-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and method for producing the same

Country Status (1)

Country Link
JP (1) JP3530356B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189839A (en) * 1997-12-26 1999-07-13 Nippon Steel Corp High strength steel plate with high dynamic deformation resistance, and its production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1431406A1 (en) * 2002-12-20 2004-06-23 Sidmar N.V. A steel composition for the production of cold rolled multiphase steel products

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479345A (en) * 1987-06-03 1989-03-24 Nippon Steel Corp High-strength hot rolled steel plate excellent in workability and its production
JPH0735536B2 (en) * 1988-01-14 1995-04-19 株式会社神戸製鋼所 Manufacturing method of high ductility and high strength composite structure steel sheet
JP3066689B2 (en) * 1993-08-25 2000-07-17 新日本製鐵株式会社 High-strength composite structure hot-rolled steel sheet excellent in workability and fatigue properties, and method for producing the same
JP3569307B2 (en) * 1994-01-12 2004-09-22 新日本製鐵株式会社 High strength composite structure cold rolled steel sheet having excellent workability and a tensile strength of 45 to 65 kgf / mm2, and a method for producing the same
JPH07252592A (en) * 1994-03-15 1995-10-03 Nippon Steel Corp Hot rolled high strength steel sheet excellent in formability, low temperature toughness and fatigue property
TW363082B (en) * 1994-04-26 1999-07-01 Nippon Steel Corp Steel sheet having high strength and being suited to deep drawing and process for producing the same
JPH09241788A (en) * 1996-03-04 1997-09-16 Kawasaki Steel Corp High tensile strength steel plate excellent in impact resistance and its production

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
三浦ら,自動車用衝撃吸収高張力鋼板の開発,まてりあ ,1996年 5月20日,Vol.35 No.3, P,570−572
板橋ら,予ひずみを与えられた建築構造用圧延鋼材SN490Bの高速引張特性,日本材料学会学術講演会講演論文集,1997年 5月22日,Vol.46th , P.291−292

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189839A (en) * 1997-12-26 1999-07-13 Nippon Steel Corp High strength steel plate with high dynamic deformation resistance, and its production

Also Published As

Publication number Publication date
JPH11100636A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
US6544354B1 (en) High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof
JP3793350B2 (en) Dual-phase high-strength cold-rolled steel sheet with excellent dynamic deformation characteristics and manufacturing method thereof
WO2013133166A1 (en) Steel sheet for hot pressing use, press-molded article, and method for producing press-molded article
JP3619357B2 (en) High strength steel sheet having high dynamic deformation resistance and manufacturing method thereof
JP3492176B2 (en) Good workability high-strength steel sheet having high dynamic deformation resistance and method for producing the same
KR20000057266A (en) High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same
JP3039842B2 (en) Hot-rolled and cold-rolled steel sheets for automobiles having excellent impact resistance and methods for producing them
JP3478128B2 (en) Method for producing composite structure type high tensile cold rolled steel sheet excellent in ductility and stretch flangeability
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
JP3958842B2 (en) Work-induced transformation-type high-strength steel sheet for absorbing automobile collision energy with excellent dynamic deformation characteristics
JPH1161327A (en) High strength automobile steel plate superior in collision safety and formability, and its manufacture
JP3406094B2 (en) Method for producing ultra-high strength steel sheet with excellent hydrogen embrittlement resistance
JP4539447B2 (en) High strength hot rolled steel sheet and method for producing the same
JP4492111B2 (en) Manufacturing method of super high strength steel plate with good shape
JP3530353B2 (en) High-strength cold-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and manufacturing method thereof
JP4313507B2 (en) High-strength steel sheet for automobile cabin structural parts and its manufacturing method
JP3530356B2 (en) Good workability high-strength cold-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and method for producing the same
JP3530355B2 (en) High-strength hot-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and manufacturing method thereof
JP3530354B2 (en) High-workability high-strength hot-rolled steel sheet with high dynamic deformation resistance for impact absorption at impact and manufacturing method thereof
JP2004084074A (en) Hot rolled sheet steel having excellent impact resistance
JP3582182B2 (en) Cold rolled steel sheet excellent in impact resistance and method for producing the same
JP3236339B2 (en) Manufacturing method of high strength hot rolled steel sheet
JPH0762485A (en) High strength steel plate excellent in workability and fatigue property and its production method
JP2000290745A (en) High strength steel sheet for working, excellent in fatigue characteristic and safety against collision, and its manufacture
KR102398271B1 (en) High-strength steel sheet having excellent bendability and hole expandability and method for manufacturing same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees