JP3936440B2 - High-strength steel sheet for automobiles with excellent collision safety and formability and its manufacturing method - Google Patents

High-strength steel sheet for automobiles with excellent collision safety and formability and its manufacturing method Download PDF

Info

Publication number
JP3936440B2
JP3936440B2 JP22300897A JP22300897A JP3936440B2 JP 3936440 B2 JP3936440 B2 JP 3936440B2 JP 22300897 A JP22300897 A JP 22300897A JP 22300897 A JP22300897 A JP 22300897A JP 3936440 B2 JP3936440 B2 JP 3936440B2
Authority
JP
Japan
Prior art keywords
weight
steel
steel sheet
martensite
formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22300897A
Other languages
Japanese (ja)
Other versions
JPH1161327A (en
Inventor
治 河野
淳一 脇田
秀里 間渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP22300897A priority Critical patent/JP3936440B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to AU63118/98A priority patent/AU717294B2/en
Priority to EP10181225.3A priority patent/EP2314729B2/en
Priority to PCT/JP1998/001101 priority patent/WO1998041664A1/en
Priority to KR1019997008474A priority patent/KR100334949B1/en
Priority to EP98907247.5A priority patent/EP0969112B2/en
Priority to CA002283924A priority patent/CA2283924C/en
Priority to CN98803465A priority patent/CN1080321C/en
Priority to TW087103834A priority patent/TW426742B/en
Publication of JPH1161327A publication Critical patent/JPH1161327A/en
Application granted granted Critical
Publication of JP3936440B2 publication Critical patent/JP3936440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は主に自動車の構造部材や補強材に使用することを企図した優れた耐衝突安全性と成形性を有する自動車用高強度鋼及びその製造方法に関するものである。
【0002】
【従来の技術】
自動車の燃費規制を背景とした車体軽量化を目的に、高強度鋼の適用が拡大してきたが、直近では自動車事故を想定した耐衝突安全性に関する法規制が国内外で急速に拡大・強化されつつあり、高強度鋼への期待がますます高まっている。
【0003】
しかし、従来の高強度鋼は成形性の向上を主眼として開発されたものであり、耐衝突安全性の観点では適用が疑問視されている。耐衝突安全性に優れた自動車用鋼板及びその製造方法にかかわる従来技術として特開平7−18372が開示され、耐衝突安全性の指標として鋼板の高歪速度下における降伏強さを高めることが提案されているが、部材は成形加工時及び衝突変形時に歪を受けるため、耐衝撃性の指標としては降伏強さに加工硬化分を加味することが必要であり、従来技術では不十分である。
【0004】
さらに衝突安全用部材の成形に際しては、優れた形状凍結性(降伏比≦75%)、優れた張り出し性(引張強さ×全伸び≧18000)、優れた伸びフランジ性(穴拡げ比≧1.2)を兼ね備えることが望まれているが、優れた耐衝突安全性と優れた成形性を両立するものは見あたらないのが実情である。
【0005】
【発明が解決しようとする課題】
本発明は上記問題を解決すべく考案されたもので、優れた耐衝突安全性と成形性を有する自動車用高強度鋼及びその製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は上記課題を達成するためになされたものであり、その手段は以下の通りである。
【0009】
) 化学成分として
C:0.03〜0.2重量%、
Mn:0.5〜2.0重量%
P≦0.02%を含み、
さらに、SiとAlの内の1種もしくは2種の合計量が0.02重量%〜4.0重量%、Cr:0.02〜0.4重量%の少なくとも1種以上を含み、残部はFe及び不可避的成分からなり、鋼板のミクロ組織において、マルテンサイト占積率が3%〜30%、且つ該マルテンサイトの平均結晶粒径が5μm以下であり、フェライト占積率が50%以上、且つ該フェライトの平均結晶粒径が10μm以下であり、鋼板の特性として加工硬化指数が0.13以上、降伏強さ×加工硬化指数が70以上、降伏比が75%以下、引張強さ×全伸びが18000以上、穴拡げ比が1.2以上であることを特徴とする耐衝突安全性と成形性に優れた自動車用高強度鋼板。
【0010】
) さらに、Ca:0.0005〜0.01重量%及び/又はREM:0.005〜0.05重量%を含むことを特徴とする上記()に記載の耐衝突安全性と成形性に優れた自動車用高強度鋼板。
【0011】
) 化学成分として
C:0.03〜0.2重量%、
Mn:0.5〜2.0重量%
P≦0.02%を含み、さらに、Si、Alの内の1種もしくは2種の合計量が0.02重量%〜4.0重量%、Cr:0.02〜0.4重量%の少なくとも1種以上を含み、残部はFe及び不可避的成分からなる鋼片、或いは、さらに、Ca:0.0005〜0.01重量%及び/又はREM:0.005〜0.05重量%を含む鋼片を初期鋼片厚が25mm以上、仕上温度が760℃〜920℃、最終パス圧延速度が500mpm以上で熱間圧延を行い、その後、ランアウトテーブルにおける700℃〜350℃の平均冷却速度が25℃/秒以上で冷却を行い、さらに、350℃以下で巻取を行うことを特徴とする上記(1)または(2)に記載の耐衝突安全性と成形性に優れた自動車用熱延高強度鋼板の製造方法。
【0012】
) 化学成分として
C:0.03〜0.2重量%、
Mn:0.5〜2.0重量%
P≦0.02%を含み、
さらに、Si、Alの内の1種もしくは2種の合計量が0.02重量%〜4.0重量%、Cr:0.02〜0.4重量%の少なくとも1種以上を含み、残部はFe及び不可避的成分からなる鋼片、或いは、さらに、Ca:0.0005〜0.01重量%及び/又はREM:0.005〜0.05重量%を含む鋼片を熱間圧延、酸洗、冷延し、その後、連続焼鈍するに際して、Ac1〜Ac3の温度範囲において、10秒以上保持し、700℃〜350℃の平均冷却速度を10℃/秒以上とすることを特徴とする上記(1)または(2)に記載の耐衝突安全性と成形性に優れた自動車用冷延高強度鋼板の製造方法。
【0013】
【発明の実施の形態】
本発明者らは種々の実験検討を重ねた結果、耐衝突安全性の向上には鋼の加工硬化指数を高めること(0.13以上、好ましくは0.16以上)が基本的に重要であり、降伏強さと加工硬化指数を特定範囲に制御することにより、優れた耐衝突安全性を達成できること、成形性の向上にはマルテンサイトの占積率と粒径を特定範囲に造り込むことが必要であることを見いだし、本発明に到ったのである。
【0014】
以下にその要旨を述べる。
【0015】
図1は部材の耐衝突安全性の指標となる動的エネルギー吸収量と、鋼板の加工硬化指数の関係を同一降伏強さクラスのものについて示すものである。鋼板の加工硬化指数の増大により部材の耐衝突安全性(動的エネルギー吸収量)が向上しており、部材の耐衝突安全性の指標として、同一降伏強さクラスであれば鋼板の加工硬化指数が妥当であることを示している。
【0016】
さらに降伏強さが異なる場合には図2に示すように、降伏強さ×加工硬化指数を部材の耐衝突安全性の指標とすることができることを見いだした。
【0017】
ただし、部材が成形加工時に歪を受けることを考慮して、加工硬化指数は歪5%〜10%のn値で表現したが、動的エネルギー吸収量向上の観点からは、歪5%以下の加工硬化指数、歪10%以上の加工硬化指数も高いことが好ましい。
【0018】
部材の動的エネルギー吸収量は次のようにして求めた。すなわち、鋼板を図3、図4に示す部品形状(コ−ナ−R=5mm)に成形し、先端径5.5mmの電極によりチリ発生電流の0.9倍の電流で35mmピッチでスポット溶接し、170℃×20分の焼付塗装処理を行った後、約150kgの落錘を約10mの高さから落下させ、部材を長手方向に圧壊し、その際の荷重変位線図の面積から変位=0〜150mmの変形仕事を算出して、動的エネルギー吸収量とした。試験方法の模式図を図5に示す。
【0019】
鋼板の加工硬化指数、降伏強さは次のようにして求めた。すなわち、鋼板をJIS−5号試験片(標点距離50mm、平行部幅25mm)に加工し、引張速度10mm/分で引張試験し、降伏強さと加工硬化指数(歪5%〜10%のn値)を求めた。
【0020】
なお、用いた鋼板は板厚1.2mmであり、C:0.03〜0.2重量%、Mn:0.5〜1.0重量%、SiとAlの内の1種もしくは2種の合計量が0.02重量%〜4.0重量%を含み、残部はFe及び不可避的成分からなるものである。
【0021】
次に、本発明の鋼板ミクロ組織について詳述する。
【0022】
マルテンサイトはその占積率を3%〜30%とし、かつ、その平均結晶粒径を5μm以下とすることが必須要件である。
【0023】
マルテンサイトは硬質であり、主に周囲のフェライトに可動転位を発生させることにより降伏比の低減や加工硬化指数の向上に寄与するが、上記規制を満たすことにより、鋼中に微細マルテンサイトを分散させることができ、その特性向上作用が鋼板全体に及ぶようになる。さらに鋼中に微細マルテンサイトが分散することにより硬いマルテンサイトの悪影響である穴拡げ比の劣化や引張強さ×全伸びの劣化を回避することができ、加工硬化指数≧0.13かつ降伏比≦75(%)かつ引張強さ×全伸び≧18000かつ穴拡げ比≧1.2を確実に達成することができるため、耐衝突安全性及び成形性を向上させることができる。
【0024】
マルテンサイトの占積率が3%未満では、降伏比が高くなるとともに加工硬化指数が低下する。一方、マルテンサイトの占積率が30%超では、降伏比が高くなるとともに加工硬化指数が低下し、さらに引張強さ×全伸びや穴拡げ比の劣化が起こる。
【0025】
また、マルテンサイトはその占積率が3%〜30%の範囲内にあっても、その平均結晶粒径が5μm超であると、鋼中にマルテンサイトを微細分散させることができないため、上記マルテンサイトの特性向上作用が局所的に留まるとともに逆に上記マルテンサイトの悪影響が強まり、上記諸特性を満たすことができなくなり、耐衝突安全性及び成形性の両立が不可能となる。
【0026】
さらにフェライトを占積率で50%以上(好ましくは70%以上)含有させ、その平均結晶粒径(平均円相当径)を10μm以下(好ましくは5μm以下)とし、マルテンサイトをフェライトに隣接させることが好ましい。これにより、マルテンサイトがフェライト地中に微細分散することが助けられるとともに、上記特性向上効果が局所的な影響に留まらず鋼板全体に及ぶ様、有効に作用し、上記マルテンサイトの悪影響を抑制するよう、好ましく作用する。
【0027】
また、マルテンサイトやフェライト以外の残部組織はパーライト、ベイナイト、残留γ等の1種あるいは2種以上の組合せでよい。
【0028】
次に、化学成分の規制値とその制限理由を説明する。
【0029】
Cはマルテンサイトの確保のために、0.03重量%以上添加するが、スポット溶接性不良による耐衝突安全性劣化を防止する観点から、その添加上限を0.2重量%以下とする。すなわち、耐衝突安全用の部材においてはスポット溶接が使用されることが多いが、0.2重量%を越えるCを含有している場合、衝突時に接合部が容易に剥離を起こし、耐衝突安全用部材として用をなさなくなるのである。
【0030】
Mnはオーステナイトを安定化してマルテンサイトを確保する作用があるとともに強化元素である。上記観点から、Mnの添加下限量は0.5重量%以上とする必要がある。ただし、過度に添加しても上記効果は飽和し、かえってフェライト変態抑制等の悪影響を生ずるため、添加上限量は2.0重量%以下とする。
【0031】
Si、Alはマルテンサイトを生成させるために有用な元素であり、フェライトの生成を促進し、炭化物の生成を抑制することにより、マルテンサイトを確保する作用があると同時に固溶強化作用と脱酸作用を有する。上記観点から、SiとAlの内の1種もしくは2種の合計添加量の下限は0.02重量%以上とする必要がある。ただし、過度に添加しても上記効果は飽和し、かえって鋼を脆化させるため、SiとAlの内の1種もしくは2種の合計添加量の上限量は4.0重量%以下とする。
【0032】
特に優れた表面性状が要求される場合は、Si<0.1重量%とすることにより、Siスケ−ルを回避するか、逆にSi≧1.0重量%とすることにより、Siスケ−ルを全面に発生させ目立たなくすることが望ましい。
【0033】
Pはマルテンサイトを生成させるために有用な元素であり、同時に固溶強化作用を有するが、特に優れた2次加工性、靭性、スポット溶接性、リサイクル性が要求される場合にはその含有量はP≦0.02%とする。
【0035】
Crはオーステナイトを安定化してマルテンサイトを確保する作用があるとともに強化元素である。上記観点から、その添加下限量は0.02重量%以上とする必要がある。ただし、過度に添加しても上記効果は飽和し、かえってフェライト変態抑制等の悪影響を生ずるため、添加上限量は0.4重量%以下とする。
【0036】
Caは硫化物系介在物の形状制御(球状化)により、成形性(特に穴拡げ比)をより向上させるために0.0005重量%以上添加するが、効果の飽和さらには介在物の増加による逆効果(穴拡げ比の劣化)の点からその上限を0.01重量%とする。また、REMも同様の理由からその添加量を0.005〜0.05重量%とする。
【0037】
以上が本発明における成分の添加理由であるが、強度確保、細粒化を目的にNb、Ti、V、B、Moを1種または2種以上添加してもよい。ただし、Nb、Ti、Bはその添加量がそれぞれ0.2%を越えると本発明のミクロ組織を得ることが困難となるとともにコストが増大するため、上限を0.2%とすることが好ましい。V、Moはその添加量がそれぞれ1.0%を越えると本発明のミクロ組織を得ることが困難となるとともにコストが増大するため、上限を1.0%とすることが好ましい。
【0038】
また、Cu、Niはミクロ組織に与える影響は少ないが、固溶硬化により成形性が損なわれる恐れがあるので、それぞれ1.0%以下にすることが好ましい。
【0039】
Sは硫化物系介在物による成形性(特に穴拡げ比)、スポット溶接性の劣化防止の観点から、S≦0.02%(好ましくは≦0.003%)とすることが好ましい。
【0040】
次に、熱延鋼板の製造条件規制値とその制限理由を説明する。
【0041】
第1に、熱間圧延における仕上温度は760℃〜920℃とする。760℃未満では加工フェライトが生成し、加工硬化能及び成形性を劣化させる。920℃超ではフェライト占積率の低下やフェライトやマルテンサイトの平均円相当径の粗大化が起こるとともに、所望のマルテンサイト占積率を得ることが困難となる。
【0042】
第2に、熱間圧延における初期鋼片厚は25mm以上とする。なお、鋼片の製造に際しては一般的な連続鋳造のみならず、いわゆる薄肉連続鋳造の適用も可能である。また、熱延連続化技術(いわゆるエンドレス圧延)の適用も可能である。25mm未満ではフェライト占積率の低下やフェライトやマルテンサイトの平均円相当径の粗大化が起こるとともに、所望のマルテンサイト占積率を得ることが困難となる。
【0043】
第3に、熱間圧延における最終パス圧延速度は500mpm以上(好ましくは600mpm以上)とする。500mpm未満ではフェライト占積率の低下やフェライトやマルテンサイトの平均円相当径の粗大化が起こるとともに、所望のマルテンサイトを得ることが困難となる。
【0044】
第4に、ホットランテーブルにおける冷却は700〜350℃の平均冷却速度を25℃/秒以上とする。25℃/秒未満では所望のマルテンサイト占積率を得ることが困難となる。
【0045】
700℃超の冷却については特に規定しないが、フェライトやマルテンサイトの微細化やフェライト占積率の増大を狙って、▲1▼「仕上温度〜750℃の平均冷却速度を25℃/秒以上とする」、▲2▼「750℃〜700℃の平均冷却速度を25℃/秒未満とする」を単独ないしは複合して行うことが好ましい。
【0046】
第5に、巻取温度は350℃以下とする。350℃超では所望のマルテンサイト占積率を得ることが困難となる。
【0047】
次に、冷延鋼板の製造条件規制値とその制限理由を説明する。
【0048】
冷延鋼板を製造するに際しては、連続焼鈍条件が最も重要であり、熱延、酸洗、冷延の各製造条件には特に規制値を設けない。ただし、ミクロ組織の微細分散化の観点から、熱間圧延における最終パス圧延速度は500mpm以上(好ましくは600mpm以上)とすることが好ましい。また、焼鈍後に必要に応じ、調質圧延、電気めっき等を施しても良い。
【0049】
以下に連続焼鈍条件規制値とその制限理由を説明する。
【0050】
第1に、Ac1〜Ac3の温度範囲において、10秒以上保持することが必要である。Ac1未満ではオ−ステナイトが生成しないため、その後、マルテンサイトを得る事ができず、Ac3超では粗大なオ−ステナイトの単相組織となるため、その後、所望のマルテンサイトの占積率とその平均粒径を得る事ができない。また、10秒未満ではオ−ステナイトの生成量が不足するため、その後、所望のマルテンサイトを得る事ができない。なお、滞在時間の上限は設備の長大化、ミクロ組織の粗大化を避ける観点から、200秒以下が好ましい。
【0051】
第2に、700℃〜350℃の平均冷却速度を10℃/秒以上とすることが必要である。10℃/秒未満では所望のマルテンサイト占積率が得られない。その上限は特に設けるものではないが、冷却時の温度制御性から、300℃/秒が好ましい。
【0052】
【実施例】
表1に示す化学成分を有する鋼を鋳造して得た鋼片を用いて、鋼番1〜15、23、24については、表2に示す製造条件で熱延鋼板を製造し、鋼番16〜21については、表2に示す製造条件で得られた熱延鋼板をさらに表3に示す製造条件により、冷延鋼板を製造した。
【0053】
【表1】

Figure 0003936440
【0054】
【表2】
Figure 0003936440
【0055】
【表3】
Figure 0003936440
得られた鋼板の最終製品板厚は鋼番1が1.2mm、鋼番2〜3、23、24が2.9mm、鋼番4が1.4mm、鋼番5が2.3mm、鋼番8が1.6mm、鋼番10〜15が1.8mm、鋼番16〜21が0.8mmである。
【0056】
本発明例が鋼番1〜12、鋼番16〜17、鋼番23、24であり、比較例が鋼番13〜15、鋼番18〜21である。
【0057】
なお、得られた鋼板のミクロ組織と機械的性質を表4に示す。
【0058】
【表4】
Figure 0003936440
本発明例では比較例を格段に越える優れた耐衝突安全性(加工硬化指数≧0.130、降伏強さ×加工硬化指数≧70)と成形性(降伏比≦75%、引張強さ×全伸び≧18000、穴拡げ比≧1.20)を有する自動車用高強度鋼板が得られている。なお、本発明例はスポット溶接性もたがね試験において剥離破断がなく、良好であった。
【0059】
ミクロ組織は以下の方法で評価した。
【0060】
フェライト、マルテンサイト及び残部組織の同定、存在位置の観察、及び平均結晶粒径(平均円相当径)と占積率の測定はナイタ−ル試薬及び特開昭59−219473に開示された試薬により鋼板圧延方向断面を腐食した倍率1000倍の光学顕微鏡写真により行った。
【0061】
特性評価は以下の方法で実施した。
【0062】
引張試験はJIS5号(標点距離50mm、平行部幅25mm)を用い引張速度10mm/分で実施し、引張強さ(TS)、降伏強さ(YS)、全伸び(T.El)、加工硬化指数(歪5%〜10%のn値)を求め、YS×加工硬化指数、降伏比=YS/TS×100、TS×T.Elを計算した。穴拡げ試験は、20mmの打ち抜き穴をバリのない面から30度円錐ポンチで押し拡げ、クラックが板厚を貫通した時点での穴径(d)と初期穴径(d0=20mm)との穴拡げ比(d/d0)を求めた。
【0063】
スポット溶接性は鋼板板厚の平方根の5倍の先端径を有する電極によりチリ発生電流の0.9倍の電流で接合したスポット溶接試験片をたがねで破断させた時にいわゆる剥離破断を生じたら不適とした。
【0064】
【発明の効果】
本発明により従来にない優れた耐衝突安全性と成形性を有する自動車用高強度鋼板を低コストかつ安定的に提供することが可能となったため、高強度鋼板の使用用途・使用条件が格段に広がり、工業上、経済上の効果は非常に大きい。
【図面の簡単な説明】
【図1】鋼板の加工硬化指数と動的エネルギー吸収量との関係を示す図である。
【図2】鋼板の降伏強さ×加工硬化指数と動的エネルギー吸収量(J)との関係を示す図である。
【図3】衝撃圧壊試験方法に用いられる部品(ハットモデル)の概観図である。
【図4】試験片形状の断面図である
【図5】衝撃圧壊試験方法の模式図である。
【符号の説明】
1 天板
2 試験片
3 スポット溶接
4 落錘
5 架台
6 ショック・アブソーバー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel for automobiles having excellent collision safety and formability intended mainly for use in structural members and reinforcing materials of automobiles and a method for producing the same.
[0002]
[Prior art]
The application of high-strength steel has been expanded for the purpose of reducing the weight of automobiles against the background of automobile fuel efficiency regulations, but recently, regulations regarding crashworthiness safety assuming automobile accidents have been rapidly expanded and strengthened in Japan and overseas. There is a growing expectation for high-strength steel.
[0003]
However, conventional high-strength steel has been developed mainly for improving formability, and its application has been questioned from the viewpoint of crashworthiness safety. Japanese Patent Laid-Open No. 7-18372 is disclosed as a conventional technique related to a steel plate for automobiles having excellent crash resistance safety and a method for manufacturing the same, and it is proposed to increase the yield strength of the steel plate at a high strain rate as an index of crash resistance safety. However, since the members are distorted during molding and impact deformation, it is necessary to add work hardening to the yield strength as an index of impact resistance, and the prior art is insufficient.
[0004]
Further, when molding a collision safety member, excellent shape freezing property (yield ratio ≦ 75%), excellent overhanging property (tensile strength × total elongation ≧ 18000), and excellent stretch flangeability (hole expansion ratio ≧ 1. Although it is desired to combine 2), the reality is that there is no one that has both excellent collision safety and excellent moldability.
[0005]
[Problems to be solved by the invention]
The present invention has been devised to solve the above problems, and an object of the present invention is to provide a high-strength steel for automobiles having excellent collision safety and formability and a method for producing the same.
[0006]
[Means for Solving the Problems]
The present invention has been made to achieve the above object, and the means thereof is as follows.
[0009]
( 1 ) C: 0.03-0.2% by weight as a chemical component,
Mn: 0.5 to 2.0% by weight
Including P ≦ 0.02% ,
Further, the total amount of one or two of Si and Al includes at least one of 0.02 wt% to 4.0 wt%, Cr: 0.02 to 0.4 wt%, and the balance is Fe and inevitable components, in the microstructure of the steel sheet, the martensite space factor is 3% to 30%, the average grain size of the martensite is 5 μm or less, the ferrite space factor is 50% or more, And the average grain size of the ferrite is 10 μm or less, and the steel sheet has a work hardening index of 0.13 or more, yield strength × work hardening index of 70 or more, yield ratio of 75% or less, tensile strength × total A high-strength steel sheet for automobiles having excellent impact safety and formability, characterized by an elongation of 18000 or more and a hole expansion ratio of 1.2 or more.
[0010]
( 2 ) Collision safety and molding as described in ( 1 ) above, further comprising Ca: 0.0005-0.01 wt% and / or REM: 0.005-0.05 wt% High strength steel plate for automobiles with excellent properties.
[0011]
( 3 ) C: 0.03-0.2% by weight as a chemical component,
Mn: 0.5 to 2.0% by weight
P ≦ 0.02% is included, and the total amount of one or two of Si and Al is 0.02 wt% to 4.0 wt%, Cr: 0.02 to 0.4 wt% At least one kind is included, and the balance includes a steel piece composed of Fe and inevitable components, or further Ca: 0.0005 to 0.01% by weight and / or REM: 0.005 to 0.05% by weight. The steel slab is hot-rolled at an initial steel slab thickness of 25 mm or more, a finishing temperature of 760 ° C. to 920 ° C. and a final pass rolling speed of 500 mpm or more, and then an average cooling rate of 700 ° C. to 350 ° C. on the run-out table is 25. The hot rolling height for automobiles having excellent impact safety and formability as described in (1) or (2) above, wherein cooling is performed at a temperature of at least ° C / second and winding is performed at a temperature of not more than 350 ° C. A method for producing a strength steel plate.
[0012]
( 4 ) C: 0.03-0.2% by weight as a chemical component,
Mn: 0.5 to 2.0% by weight
Including P ≦ 0.02% ,
Further, the total amount of one or two of Si and Al includes at least one of 0.02 wt% to 4.0 wt%, Cr: 0.02 to 0.4 wt%, and the balance is A steel slab comprising Fe and inevitable components, or a steel slab further containing Ca: 0.0005 to 0.01% by weight and / or REM: 0.005 to 0.05% by weight is hot-rolled and pickled. In the case of cold rolling and subsequent continuous annealing, the temperature is maintained for 10 seconds or more in the temperature range of Ac 1 to Ac 3 and the average cooling rate of 700 ° C. to 350 ° C. is set to 10 ° C./second or more. A method for producing a cold-rolled high-strength steel sheet for automobiles having excellent collision safety and formability as described in (1) or (2) above.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
As a result of repeated experiments by the inventors, it is basically important to increase the work hardening index of steel (0.13 or more, preferably 0.16 or more) in order to improve collision safety. In addition, by controlling the yield strength and work hardening index to a specific range, it is possible to achieve excellent collision safety, and to improve the formability, it is necessary to incorporate the martensite space factor and particle size within a specific range. As a result, the present invention has been reached.
[0014]
The summary is described below.
[0015]
FIG. 1 shows the relationship between the amount of dynamic energy absorption, which is an index of the crashworthiness safety of members, and the work hardening index of steel sheets for the same yield strength class. Collision resistance (dynamic energy absorption) of members has been improved by increasing the work hardening index of steel sheets, and the work hardening index of steel sheets has the same yield strength class as an index of the impact resistance safety of members. Is valid.
[0016]
Further, when the yield strength is different, it has been found that the yield strength × work hardening index can be used as an index of the collision safety of the member as shown in FIG.
[0017]
However, the work hardening index is expressed as an n value of 5% to 10% of strain in consideration of the fact that the member is subjected to strain during molding, but from the viewpoint of improving the dynamic energy absorption amount, the strain is 5% or less. It is preferable that the work hardening index and the work hardening index having a strain of 10% or more are also high.
[0018]
The amount of dynamic energy absorbed by the member was determined as follows. That is, the steel plate is formed into the part shape shown in FIGS. 3 and 4 (corner R = 5 mm), and spot welding is performed at a pitch of 35 mm at an electric current 0.9 times the dust generation current with an electrode having a tip diameter of 5.5 mm. After baking treatment at 170 ° C for 20 minutes, drop a weight of about 150 kg from a height of about 10 m, crush the member in the longitudinal direction, and move from the area of the load displacement diagram at that time The deformation work of 0 to 150 mm was calculated and used as the dynamic energy absorption amount. A schematic diagram of the test method is shown in FIG.
[0019]
The work hardening index and the yield strength of the steel sheet were determined as follows. That is, the steel sheet was processed into a JIS-5 test piece (mark distance: 50 mm, parallel part width: 25 mm), subjected to a tensile test at a tensile speed of 10 mm / min, yield strength and work hardening index (n of 5% to 10% strain). Value).
[0020]
The steel plate used had a thickness of 1.2 mm, C: 0.03 to 0.2% by weight, Mn: 0.5 to 1.0% by weight, one or two of Si and Al The total amount includes 0.02 wt% to 4.0 wt%, with the balance being Fe and inevitable components.
[0021]
Next, the steel sheet microstructure of the present invention will be described in detail.
[0022]
It is essential that martensite has a space factor of 3% to 30% and an average crystal grain size of 5 μm or less.
[0023]
Martensite is hard and contributes to the reduction of yield ratio and improvement of work hardening index by generating movable dislocations mainly in the surrounding ferrite, but by satisfying the above regulations, fine martensite is dispersed in steel. And the property improving action reaches the entire steel sheet. Furthermore, the fine martensite dispersed in the steel can prevent the deterioration of the hole expansion ratio and the tensile strength x total elongation, which are adverse effects of hard martensite, and the work hardening index ≧ 0.13 and the yield ratio. Since ≦ 75 (%), tensile strength × total elongation ≧ 18000, and hole expansion ratio ≧ 1.2 can be reliably achieved, collision safety and moldability can be improved.
[0024]
When the space factor of martensite is less than 3%, the yield ratio increases and the work hardening index decreases. On the other hand, if the space factor of martensite exceeds 30%, the yield ratio increases and the work hardening index decreases, and further, the tensile strength × total elongation and the hole expansion ratio deteriorate.
[0025]
In addition, even if the martensite is in the range of 3% to 30%, if the average crystal grain size is more than 5 μm, the martensite cannot be finely dispersed in the steel. The martensite property improving action stays locally and conversely, the martensite is adversely affected, and the various properties cannot be satisfied, making it impossible to achieve both collision safety and moldability.
[0026]
Further, ferrite should be contained in a space factor of 50% or more (preferably 70% or more), its average crystal grain size (average equivalent circle diameter) should be 10 μm or less (preferably 5 μm or less), and martensite should be adjacent to ferrite. Is preferred. This helps martensite to be finely dispersed in the ferrite ground, and also effectively works so that the above-mentioned property improvement effect extends not only to the local effect but also to the entire steel sheet, and suppresses the adverse effect of the above-mentioned martensite. Preferably works.
[0027]
Further, the remaining structure other than martensite and ferrite may be one kind or a combination of two or more kinds such as pearlite, bainite and residual γ.
[0028]
Next, the regulation value of chemical components and the reason for the limitation will be described.
[0029]
C is added in an amount of 0.03% by weight or more in order to secure martensite. However, the upper limit of addition is set to 0.2% by weight or less from the viewpoint of preventing collision safety deterioration due to poor spot weldability. That is, spot welding is often used for collision-resistant safety members. However, when C content exceeds 0.2% by weight, the joint easily peels off at the time of collision, and collision-resistant safety is achieved. It is no longer used as a member.
[0030]
Mn is a strengthening element while stabilizing austenite and ensuring martensite. From the above viewpoint, the lower limit amount of Mn needs to be 0.5% by weight or more. However, even if added excessively, the above effects are saturated and adverse effects such as suppression of ferrite transformation are caused. Therefore, the upper limit of addition is made 2.0% by weight or less.
[0031]
Si and Al are elements that are useful for generating martensite. By promoting the formation of ferrite and suppressing the formation of carbides, they have the effect of securing martensite and at the same time, strengthening solid solution and deoxidizing. Has an effect. From the above viewpoint, the lower limit of the total addition amount of one or two of Si and Al needs to be 0.02% by weight or more. However, even if added excessively, the above effect is saturated and the steel is embrittled, so the upper limit of the total amount of one or two of Si and Al is 4.0 wt% or less.
[0032]
When particularly excellent surface properties are required, Si scale is avoided by setting Si <0.1% by weight, or conversely, Si scale by avoiding Si ≧ 1.0% by weight. It is desirable to make it appear inconspicuous on the entire surface.
[0033]
P is an element useful for generating martensite, and at the same time has a solid solution strengthening action, but its content is particularly required when excellent secondary workability, toughness, spot weldability, and recyclability are required. Is P ≦ 0.02%.
[0035]
Cr has a function of stabilizing austenite and securing martensite and is a strengthening element. From the above viewpoint, the lower limit of addition needs to be 0.02% by weight or more. However, even if added excessively, the above effect is saturated, and adverse effects such as suppression of ferrite transformation are caused. Therefore, the upper limit of addition is made 0.4 % by weight or less.
[0036]
Ca is added in an amount of 0.0005% by weight or more in order to further improve the formability (particularly the hole expansion ratio) by controlling the shape (spheroidization) of sulfide inclusions, but due to saturation of the effect and increase in inclusions. The upper limit is made 0.01% by weight from the standpoint of adverse effect (deterioration of hole expansion ratio). Further, REM is added in an amount of 0.005 to 0.05% by weight for the same reason.
[0037]
The above is the reason for the addition of the components in the present invention, but Nb, Ti, V, B, and Mo may be added singly or in combination for the purpose of securing strength and reducing the size. However, it is difficult to obtain the microstructure of the present invention when the amount of Nb, Ti, and B exceeds 0.2%, respectively, and the cost increases. Therefore, the upper limit is preferably 0.2%. . If the addition amount of V and Mo exceeds 1.0%, respectively, it becomes difficult to obtain the microstructure of the present invention and the cost increases. Therefore, the upper limit is preferably made 1.0%.
[0038]
Moreover, although Cu and Ni have little influence on the microstructure, since there is a possibility that formability may be impaired by solid solution hardening, it is preferable to make each 1.0% or less.
[0039]
S is preferably made S ≦ 0.02% (preferably ≦ 0.003%) from the viewpoints of formability (especially hole expansion ratio) due to sulfide inclusions and prevention of deterioration of spot weldability.
[0040]
Next, the manufacturing condition regulation value of a hot-rolled steel sheet and the reason for the limitation will be described.
[0041]
1stly, the finishing temperature in hot rolling shall be 760 degreeC-920 degreeC. If it is less than 760 degreeC, a process ferrite will produce | generate and work hardening ability and a moldability will deteriorate. If it exceeds 920 ° C., the ferrite space factor will decrease and the average equivalent circular diameter of ferrite and martensite will increase, and it will be difficult to obtain the desired martensite space factor.
[0042]
Second, the initial billet thickness in hot rolling is 25 mm or more. In addition, when manufacturing a steel slab, not only general continuous casting but also so-called thin continuous casting can be applied. Further, it is possible to apply a hot rolling continuous technique (so-called endless rolling). If it is less than 25 mm, the ferrite space factor will decrease and the average equivalent circular diameter of ferrite and martensite will increase, and it will be difficult to obtain the desired martensite space factor.
[0043]
Third, the final pass rolling speed in the hot rolling is 500 mpm or more (preferably 600 mpm or more). If it is less than 500 mpm, the ferrite space factor will decrease and the average equivalent circular diameter of ferrite and martensite will increase, and it will be difficult to obtain the desired martensite.
[0044]
Fourth, the cooling in the hot run table is performed at an average cooling rate of 700 to 350 ° C. at 25 ° C./second or more. If it is less than 25 ° C./second, it becomes difficult to obtain a desired martensite space factor.
[0045]
Cooling above 700 ° C is not specified, but aiming to refine ferrite and martensite and increase ferrite space factor, (1) “Average cooling rate from finishing temperature to 750 ° C is 25 ° C / second or more. It is preferable to perform “Yes” and “2” “Making the average cooling rate between 750 ° C. and 700 ° C. less than 25 ° C./second” alone or in combination.
[0046]
Fifth, the coiling temperature is 350 ° C. or lower. If it exceeds 350 ° C., it is difficult to obtain a desired martensite space factor.
[0047]
Next, the manufacturing condition regulation value of the cold rolled steel sheet and the reason for the limitation will be described.
[0048]
When manufacturing a cold-rolled steel sheet, continuous annealing conditions are the most important, and there are no specific regulation values for the hot-rolling, pickling, and cold-rolling manufacturing conditions. However, from the viewpoint of fine dispersion of the microstructure, the final pass rolling speed in the hot rolling is preferably 500 mpm or more (preferably 600 mpm or more). Moreover, you may perform temper rolling, electroplating, etc. as needed after annealing.
[0049]
The continuous annealing condition regulation value and the limitation reason will be described below.
[0050]
First, in the temperature range of Ac 1 to Ac 3, it is necessary to hold at least 10 seconds. If less than Ac 1 , austenite is not formed, so that martensite cannot be obtained thereafter, and if it exceeds Ac 3 , a coarse austenite single-phase structure is formed. And the average particle size cannot be obtained. Also, if it is less than 10 seconds, the amount of austenite produced is insufficient, and hence desired martensite cannot be obtained thereafter. The upper limit of the staying time is preferably 200 seconds or less from the viewpoint of avoiding the lengthening of the equipment and the coarsening of the microstructure.
[0051]
Second, it is necessary to set the average cooling rate of 700 ° C. to 350 ° C. to 10 ° C./second or more. If it is less than 10 ° C / second, a desired martensite space factor cannot be obtained. The upper limit is not particularly provided, but 300 ° C./second is preferable from the viewpoint of temperature controllability during cooling.
[0052]
【Example】
Using steel slabs obtained by casting steel having chemical components shown in Table 1, hot rolled steel sheets were produced under the production conditions shown in Table 2 for steel numbers 1 to 15, 23 , and 24 , and steel number 16 About ~ 21, the cold-rolled steel plate was manufactured on the hot-rolled steel sheet obtained on the manufacturing conditions shown in Table 2 on the manufacturing conditions further shown in Table 3.
[0053]
[Table 1]
Figure 0003936440
[0054]
[Table 2]
Figure 0003936440
[0055]
[Table 3]
Figure 0003936440
The final product thickness of the obtained steel plate is as follows: Steel No. 1 is 1.2 mm, Steel Nos. 2-3, 23 and 24 are 2.9 mm, Steel No. 4 is 1.4 mm, Steel No. 5 is 2.3 mm, Steel No. 8 is 1.6 mm, steel numbers 10 to 15 are 1.8 mm, and steel numbers 16 to 21 are 0.8 mm.
[0056]
Examples of the present invention are steel numbers 1 to 12, steel numbers 16 to 17, and steel numbers 23 and 24 , and comparative examples are steel numbers 13 to 15 and steel numbers 18 to 21.
[0057]
Table 4 shows the microstructure and mechanical properties of the obtained steel sheet.
[0058]
[Table 4]
Figure 0003936440
In the examples of the present invention, excellent collision safety (work hardening index ≧ 0.130, yield strength × work hardening index ≧ 70) and formability (yield ratio ≦ 75%, tensile strength × total) exceeding the comparative example. A high-strength steel sheet for automobiles having an elongation ≧ 18000 and a hole expansion ratio ≧ 1.20) has been obtained. In addition, the example of the present invention was good with no spot breakage in the spot weldability test.
[0059]
The microstructure was evaluated by the following method.
[0060]
Identification of ferrite, martensite, and remaining structure, observation of existing positions, and measurement of average crystal grain size (average equivalent circle diameter) and space factor were performed using a Nital reagent and a reagent disclosed in JP-A-59-219473. It was carried out by an optical micrograph at a magnification of 1000 times in which the cross section in the steel sheet rolling direction was corroded.
[0061]
The characteristic evaluation was performed by the following method.
[0062]
The tensile test was carried out using JIS No. 5 (standard distance: 50 mm, parallel part width: 25 mm) at a tensile speed of 10 mm / min, tensile strength (TS), yield strength (YS), total elongation (T.El), processing. The hardening index (n value of 5% to 10% strain) was determined, and YS × work hardening index, yield ratio = YS / TS × 100, TS × T. El was calculated. In the hole expansion test, a 20 mm punched hole was expanded from a surface without a burr with a 30-degree conical punch, and the hole diameter (d) when the crack penetrated the plate thickness and the initial hole diameter (d 0 = 20 mm) The hole expansion ratio (d / d 0 ) was determined.
[0063]
Spot weldability causes so-called peeling fracture when spot welding specimens joined with an electrode having a tip diameter 5 times the square root of the steel plate thickness at a current 0.9 times the dust generation current are broken with chisel. Inappropriate.
[0064]
【The invention's effect】
According to the present invention, it has become possible to stably provide a high-strength steel sheet for automobiles having unprecedented superior collision safety and formability at a low cost, and the usage and conditions of use of the high-strength steel sheet are markedly increased. Spread, industrial and economic effects are very large.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a work hardening index of a steel sheet and a dynamic energy absorption amount.
FIG. 2 is a diagram showing the relationship between yield strength × work hardening index and dynamic energy absorption (J) of a steel sheet.
FIG. 3 is a schematic view of a part (hat model) used in an impact crushing test method.
FIG. 4 is a cross-sectional view of the shape of a test piece. FIG. 5 is a schematic diagram of an impact crush test method.
[Explanation of symbols]
1 Top plate 2 Test piece 3 Spot welding 4 Drop weight 5 Base 6 Shock absorber

Claims (4)

化学成分として
C:0.03〜0.2重量%、
Mn:0.5〜2.0重量%
P≦0.02%を含み、
さらに、SiとAlの内の1種もしくは2種の合計量が0.02重量%〜4.0重量%、Cr:0.02〜0.4重量%の少なくとも1種以上を含み、残部はFe及び不可避的成分からなり、鋼板のミクロ組織において、マルテンサイト占積率が3%〜30%、且つ該マルテンサイトの平均結晶粒径が5μm以下であり、フェライト占積率が50%以上、且つ該フェライトの平均結晶粒径が10μm以下であり、鋼板の特性として加工硬化指数が0.13以上、降伏強さ×加工硬化指数が70以上、降伏比が75%以下、引張強さ×全伸びが18000以上、穴拡げ比が1.2以上であることを特徴とする耐衝突安全性と成形性に優れた自動車用高強度鋼板。
C: 0.03-0.2% by weight as a chemical component,
Mn: 0.5 to 2.0% by weight
Including P ≦ 0.02% ,
Further, the total amount of one or two of Si and Al includes at least one of 0.02 wt% to 4.0 wt%, Cr: 0.02 to 0.4 wt%, and the balance is Fe and inevitable components, in the microstructure of the steel sheet, the martensite space factor is 3% to 30%, the average grain size of the martensite is 5 μm or less, the ferrite space factor is 50% or more, And the average grain size of the ferrite is 10 μm or less, and the steel sheet has a work hardening index of 0.13 or more, yield strength × work hardening index of 70 or more, yield ratio of 75% or less, tensile strength × total A high-strength steel sheet for automobiles having excellent impact safety and formability, characterized by an elongation of 18000 or more and a hole expansion ratio of 1.2 or more.
さらに、Ca:0.0005〜0.01重量%及び/又はREM:0.005〜0.05重量%を含むことを特徴とする請求項に記載の耐衝突安全性と成形性に優れた自動車用高強度鋼板。Furthermore, Ca: 0.0005 to 0.01% by weight and / or REM: 0.005 to 0.05% by weight are included, which is excellent in collision safety and moldability according to claim 1 . High strength steel plate for automobiles. 化学成分として
C:0.03〜0.2重量%、
Mn:0.5〜2.0重量%
P≦0.02%を含み、さらに、Si、Alの内の1種もしくは2種の合計量が0.02重量%〜4.0重量%、Cr:0.02〜0.4重量%の少なくとも1種以上を含み、残部はFe及び不可避的成分からなる鋼片、或いは、さらに、Ca:0.0005〜0.01重量%及び/又はREM:0.005〜0.05重量%を含む鋼片を初期鋼片厚が25mm以上、仕上温度が760℃〜920℃、最終パス圧延速度が500mpm以上で熱間圧延を行い、その後、ランアウトテーブルにおける700℃〜350℃の平均冷却速度が25℃/秒以上で冷却を行い、さらに、350℃以下で巻取を行うことを特徴とする請求項1または2に記載の耐衝突安全性と成形性に優れた自動車用熱延高強度鋼板の製造方法。
C: 0.03-0.2% by weight as a chemical component,
Mn: 0.5 to 2.0% by weight
P ≦ 0.02% is included, and the total amount of one or two of Si and Al is 0.02 wt% to 4.0 wt%, Cr: 0.02 to 0.4 wt% At least one kind is included, and the balance includes a steel piece composed of Fe and inevitable components, or further Ca: 0.0005 to 0.01% by weight and / or REM: 0.005 to 0.05% by weight. The steel slab is hot-rolled at an initial steel slab thickness of 25 mm or more, a finishing temperature of 760 ° C. to 920 ° C. and a final pass rolling speed of 500 mpm or more, and then an average cooling rate of 700 ° C. to 350 ° C. on the run-out table is 25. The hot rolled high-strength steel sheet for automobiles having excellent collision safety and formability according to claim 1 or 2 , wherein cooling is performed at a temperature of at least ° C / second, and further winding is performed at a temperature of 350 ° C or less. Production method.
化学成分として
C:0.03〜0.2重量%、
Mn:0.5〜2.0重量%
P≦0.02%を含み、
さらに、Si、Alの内の1種もしくは2種の合計量が0.02重量%〜4.0重量%、Cr:0.02〜0.4重量%の少なくとも1種以上を含み、残部はFe及び不可避的成分からなる鋼片、或いは、さらに、Ca:0.0005〜0.01重量%及び/又はREM:0.005〜0.05重量%を含む鋼片を熱間圧延、酸洗、冷延し、その後、連続焼鈍するに際して、Ac1〜Ac3の温度範囲において、10秒以上保持し、700℃〜350℃の平均冷却速度を10℃/秒以上とすることを特徴とする請求項1または2に記載の耐衝突安全性と成形性に優れた自動車用冷延高強度鋼板の製造方法。
C: 0.03-0.2% by weight as a chemical component,
Mn: 0.5 to 2.0% by weight
Including P ≦ 0.02% ,
Further, the total amount of one or two of Si and Al includes at least one of 0.02 wt% to 4.0 wt%, Cr: 0.02 to 0.4 wt%, and the balance is A steel slab comprising Fe and inevitable components, or a steel slab further containing Ca: 0.0005 to 0.01% by weight and / or REM: 0.005 to 0.05% by weight is hot-rolled and pickled. In the case of cold rolling and subsequent continuous annealing, the temperature is maintained for 10 seconds or more in the temperature range of Ac 1 to Ac 3 and the average cooling rate of 700 ° C. to 350 ° C. is set to 10 ° C./second or more. The manufacturing method of the cold rolled high strength steel plate for motor vehicles excellent in the collision-resistant safety | security and formability of Claim 1 or 2 .
JP22300897A 1997-03-17 1997-08-06 High-strength steel sheet for automobiles with excellent collision safety and formability and its manufacturing method Expired - Fee Related JP3936440B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP22300897A JP3936440B2 (en) 1997-08-06 1997-08-06 High-strength steel sheet for automobiles with excellent collision safety and formability and its manufacturing method
EP10181225.3A EP2314729B2 (en) 1997-03-17 1998-03-16 Dual-phase type high-strength steel sheets having high impact energy absorption properties
PCT/JP1998/001101 WO1998041664A1 (en) 1997-03-17 1998-03-16 Dual-phase high-strength steel sheet having excellent dynamic deformation properties and process for preparing the same
KR1019997008474A KR100334949B1 (en) 1997-03-17 1998-03-16 Dual-phase high-strength steel sheet having excellent dynamic deformation properties and process for preparing the same
AU63118/98A AU717294B2 (en) 1997-03-17 1998-03-16 Dual-phase high-strength steel sheet having excellent dynamic deformation properties and process for preparing the same
EP98907247.5A EP0969112B2 (en) 1997-03-17 1998-03-16 A method of producing dual-phase high-strength steel sheets having high impact energy absorption properties
CA002283924A CA2283924C (en) 1997-03-17 1998-03-16 Dual-phase type high-strength steel sheets having high impact energy absorption properties and a method of producing the same
CN98803465A CN1080321C (en) 1997-03-17 1998-03-16 Dual-phase high-strength steel sheet having excellent dynamic deformation properties, and process for preparing same
TW087103834A TW426742B (en) 1997-03-17 1998-03-16 Dual-phase type high strength steel sheets having high impact energy absorption properties and a method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22300897A JP3936440B2 (en) 1997-08-06 1997-08-06 High-strength steel sheet for automobiles with excellent collision safety and formability and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH1161327A JPH1161327A (en) 1999-03-05
JP3936440B2 true JP3936440B2 (en) 2007-06-27

Family

ID=16791392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22300897A Expired - Fee Related JP3936440B2 (en) 1997-03-17 1997-08-06 High-strength steel sheet for automobiles with excellent collision safety and formability and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3936440B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097559A1 (en) 2012-12-18 2014-06-26 Jfeスチール株式会社 Low-yield-ratio high-strength cold-rolled steel sheet and method for manufacturing same
KR20150004430A (en) 2012-06-01 2015-01-12 제이에프이 스틸 가부시키가이샤 Low yield ratio high-strength cold-rolled steel sheet with excellent elongation and stretch flange formability, and manufacturing method thereof
US10961600B2 (en) 2016-03-31 2021-03-30 Jfe Steel Corporation Steel sheet and plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2850671B1 (en) * 2003-02-05 2006-05-19 Usinor PROCESS FOR MANUFACTURING A DUAL-PHASE STEEL BAND HAVING A COLD-ROLLED FERRITO-MARTENSITIC STRUCTURE AND A BAND OBTAINED THEREFROM
JP4517629B2 (en) * 2003-03-27 2010-08-04 Jfeスチール株式会社 Composite structure cold-rolled steel sheet, plated steel sheet having excellent surface strain resistance, and production method thereof
JP4389727B2 (en) * 2003-08-26 2009-12-24 Jfeスチール株式会社 High tensile cold-rolled steel sheet and method for producing the same
JP4502646B2 (en) * 2004-01-21 2010-07-14 株式会社神戸製鋼所 High-strength hot-rolled steel sheet with excellent workability, fatigue characteristics and surface properties
JP5194811B2 (en) 2007-03-30 2013-05-08 Jfeスチール株式会社 High strength hot dip galvanized steel sheet
JP5119903B2 (en) 2007-12-20 2013-01-16 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP5365217B2 (en) 2008-01-31 2013-12-11 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5315954B2 (en) * 2008-11-26 2013-10-16 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5110398B2 (en) * 2009-06-05 2012-12-26 トヨタ自動車株式会社 Iron-based sintered alloy, method for producing iron-based sintered alloy, and connecting rod
JP5703608B2 (en) 2009-07-30 2015-04-22 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
US10513749B2 (en) 2014-05-28 2019-12-24 Nippon Steel Corporation Hot-rolled steel sheet and production method of therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150004430A (en) 2012-06-01 2015-01-12 제이에프이 스틸 가부시키가이샤 Low yield ratio high-strength cold-rolled steel sheet with excellent elongation and stretch flange formability, and manufacturing method thereof
WO2014097559A1 (en) 2012-12-18 2014-06-26 Jfeスチール株式会社 Low-yield-ratio high-strength cold-rolled steel sheet and method for manufacturing same
KR20150082612A (en) 2012-12-18 2015-07-15 제이에프이 스틸 가부시키가이샤 Low-yield-ratio high-strength cold-rolled steel sheet and method for manufacturing same
US10144996B2 (en) 2012-12-18 2018-12-04 Jfe Steel Corporation High strength cold rolled steel sheet with low yield ratio and method of manufacturing the same
US10961600B2 (en) 2016-03-31 2021-03-30 Jfe Steel Corporation Steel sheet and plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
US11939640B2 (en) 2016-03-31 2024-03-26 Jfe Steel Corporation Method for producing hot-rolled steel sheet, method for producing cold-rolled full-hard steel sheet, and method for producing heat-treated sheet

Also Published As

Publication number Publication date
JPH1161327A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
US6544354B1 (en) High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof
EP0969112B2 (en) A method of producing dual-phase high-strength steel sheets having high impact energy absorption properties
US8137487B2 (en) Method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability
JP4411221B2 (en) Low yield ratio high-strength cold-rolled steel sheet and plated steel sheet excellent in elongation and stretch flangeability, and manufacturing method thereof
JP4235030B2 (en) High-strength cold-rolled steel sheet and high-strength surface-treated steel sheet having excellent local formability and a tensile strength of 780 MPa or more with suppressed increase in hardness of the weld
EP0952235B1 (en) Method for producing high-strength steels having high impact energy absorption properties
JP4484070B2 (en) High-tensile hot-rolled steel sheet and manufacturing method thereof
JP3793350B2 (en) Dual-phase high-strength cold-rolled steel sheet with excellent dynamic deformation characteristics and manufacturing method thereof
JP3619357B2 (en) High strength steel sheet having high dynamic deformation resistance and manufacturing method thereof
KR20100133349A (en) Method of manufacturing automobile high-strength electric resistance welded steel pipe with excellent low-temperature impact properties
JP3936440B2 (en) High-strength steel sheet for automobiles with excellent collision safety and formability and its manufacturing method
JPH1161326A (en) High strength automobile steel plate superior in collision safety and formability, and its manufacture
JPH11193439A (en) Steel plate combining good workability with high strength and having high dynamic deformation resistance, and its production
JPH10130776A (en) High ductility type high tensile strength cold rolled steel sheet
WO2013080398A1 (en) Steel material with excellent crashworthiness and manufacturing process therefor
JPH0949026A (en) Production of high strength hot rolled steel plate excellent in balance between strength and elongation and in stretch-flange formability
JP2008163359A (en) Stainless steel sheet for structural member having excellent impact absorbing property
JPH11256273A (en) High strength steel plate excellent in impact resistance
JPH10273752A (en) Automotive high strength steel sheet excellent in collision resisting safety and formability and its production
JP2004162085A (en) Steel plate with excellent fatigue crack propagation resistance, and its manufacturing method
JP2000290745A (en) High strength steel sheet for working, excellent in fatigue characteristic and safety against collision, and its manufacture
JP2002294400A (en) High tensile strength steel plate and production method therefor
KR20220086172A (en) High strength cold-rolled steel sheet with excellent formability and mathod of manufacturing the same
JP3332172B2 (en) High strength hot rolled steel sheet with excellent strength-stretch flange balance and strength-ductility balance
JP3235416B2 (en) Manufacturing method of high strength hot rolled steel sheet with excellent workability and fatigue properties

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees