JPH11350064A - High strength steel sheet excellent in shape fixability and impact resistance and its production - Google Patents

High strength steel sheet excellent in shape fixability and impact resistance and its production

Info

Publication number
JPH11350064A
JPH11350064A JP15890298A JP15890298A JPH11350064A JP H11350064 A JPH11350064 A JP H11350064A JP 15890298 A JP15890298 A JP 15890298A JP 15890298 A JP15890298 A JP 15890298A JP H11350064 A JPH11350064 A JP H11350064A
Authority
JP
Japan
Prior art keywords
steel sheet
less
strength steel
austenite
impact resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15890298A
Other languages
Japanese (ja)
Inventor
Yoshinobu Omiya
良信 大宮
Yukiaki Tamura
享昭 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15890298A priority Critical patent/JPH11350064A/en
Publication of JPH11350064A publication Critical patent/JPH11350064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high strength steel sheet excellent in press workability and impact energy absorbability and furthermore excellent in shape fixability at the time of press workability and to provide a method for producing it. SOLUTION: This high strength steel sheet is the one having a compsn. contg., by mass, 0.05 to 0.25% C, <=2.0% Sr, 1.0 to 4.0% Mn, <=0.100% P, <=0.030% S, 0.010 to 0.150% Al and Fe as the main component, having a steel structure of three phases of ferrite + martensite + 1 to 5% residual austenite and having <=0.50 yield ratio and >=50 N/mm<2> baking hardening quantity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は引張強度が440〜
980N/mm2 級の高強度鋼板に係り、特に降伏比が低
く、焼付硬化性(BH性)を有し、形状凍結性と耐衝撃
特性に優れる高強度鋼板に関する。
TECHNICAL FIELD The present invention relates to a tensile strength of 440 to 440.
The present invention relates to a high-strength steel sheet of 980 N / mm 2 class, particularly to a high-strength steel sheet which has a low yield ratio, has bake hardenability (BH property), and is excellent in shape freezing property and impact resistance.

【0002】[0002]

【従来の技術】近年、自動車には衝突時の乗員保護の観
点からエアバッグなどの安全装置が装備されるようにな
ったが、ボディ構造においても衝突のエネルギーを吸収
できるような構造が採用されつつある。衝撃エネルギー
吸収特性に関して、素材の面からも盛んに研究開発が行
われ、自動車用鋼板では主として組織面からのアプロー
チが試みられている。
2. Description of the Related Art In recent years, automobiles have been equipped with safety devices such as airbags from the viewpoint of protecting occupants in the event of a collision. However, a structure that can absorb the energy of the collision has been employed in the body structure. It is getting. Research and development has been actively conducted on the impact energy absorption characteristics also from the viewpoint of the material, and an approach from the structural aspect has been attempted mainly for automotive steel sheets.

【0003】一方、二酸化炭素の排出抑制による地球環
境保護の観点から、自動車ボディの軽量化の要求は根強
く、鋼板素材の高強度化による薄肉化が現在も指向され
ている。
On the other hand, from the viewpoint of protecting the global environment by suppressing the emission of carbon dioxide, the demand for reducing the weight of automobile bodies has been strong, and thinning of steel sheet materials by increasing the strength is still being pursued.

【0004】こうした状況から、例えば特開平8−17
6723号公報に開示されているように、自動車の構造
部材や補強部材を中心として、衝突時のエネルギー吸収
特性に優れた引張強度440〜980N/mm2 クラスの
高強度鋼板が開発されている。
Under such circumstances, for example, Japanese Patent Application Laid-Open No.
6723 No. As disclosed in Japanese, about the structural member and reinforcing member of an automobile, high strength steel sheet excellent tensile strength 440~980N / mm 2 class energy absorption characteristics at the time of collision have been developed.

【0005】[0005]

【発明が解決しようとする課題】前記公報に開示の技術
は、鋼板の成分、組織を規定し、一定量のマルテンサイ
ト組織と、固溶Cを一定量以下に抑制したフェライト組
織からなる複合組織鋼板とすることで、耐衝撃特性を改
善したものである。
The technique disclosed in the above publication defines a composite structure consisting of a certain amount of martensite structure and a ferrite structure in which solid solution C is suppressed to a certain amount or less by defining the composition and structure of the steel sheet. By using a steel plate, the impact resistance is improved.

【0006】しかし、この発明は衝突のような高歪速度
下における耐衝撃特性やプレス成形性には優れているも
のの、プレス成形用鋼板を高強度化する際に問題となる
形状凍結性の問題、すなわちプレス成形後にスプリング
バックによって成形形状が変化してしまう問題に対し
て、十分な考慮が払われていない。
However, although the present invention is excellent in impact resistance and press formability under a high strain rate such as collision, it has a problem of shape freezing which becomes a problem when increasing the strength of a steel sheet for press forming. That is, sufficient consideration has not been given to the problem that the molded shape changes due to springback after press molding.

【0007】[0007]

【課題を解決するための手段】発明者らは、自動車の構
造部材用鋼板素材としての高強度鋼板の最適な組織を明
確にするため、種々の組織を有する薄鋼板について、プ
レス加工性としての延性および高歪み速度領域での衝撃
エネルギー吸収特性を検討した結果、鋼組織としてフェ
ライト+マルテンサイト+微量の残留オーステナイトの
3相よりなる鋼組織が伸び特性、衝撃エネルギー吸収特
性に優れていること、加えて広い強度レベルで適用可能
であることを知見した。
In order to clarify the optimal structure of a high-strength steel sheet as a steel sheet material for a structural member of an automobile, the inventors of the present invention have developed a steel sheet having various structures as a press workability. As a result of examining the ductility and impact energy absorption characteristics in the high strain rate region, the steel structure consisting of three phases of ferrite + martensite + a small amount of retained austenite has excellent elongation characteristics and impact energy absorption characteristics. In addition, it was found that it can be applied in a wide range of strength levels.

【0008】さらに、鋼板素材の高強度化を阻害する一
因となっているプレス加工後の形状凍結性を考えると、
比較的多量の残留オーステナイトを含むフェライト+ベ
イナイトの2相鋼板では降伏比が高くなり、また従来か
らあるフェライト+マルテンサイトの複合組織鋼板は他
の組織を有する鋼板と基本的に形状凍結性の程度に変わ
りはないが、本発明では同2相複合組織としながらもマ
ルテンサイトの硬度を調整することで、従来よりもさら
に低い降伏比を達成し、低い応力で塑性変形を進行させ
ることで形状凍結性を向上させることに成功した。
[0008] Further, considering the shape freezing property after press working, which is one of the factors that hinder the high strength of the steel sheet material,
The yield ratio is high in the ferrite + bainite duplex steel sheet containing a relatively large amount of retained austenite, and the conventional ferrite + martensite composite structure steel sheet has a degree of shape freezing that is basically the same as that of steel sheets having other structures. The present invention achieves a lower yield ratio than before by adjusting the hardness of martensite while maintaining the same two-phase composite structure in the present invention, and achieves plastic freezing by promoting plastic deformation with low stress. Succeeded in improving the quality.

【0009】もっとも、鋼板の降伏比を低く設定した場
合、降伏応力が低くなるため、降伏応力が影響する問
題、特に部材の剛性確保の問題すなわち加工度の低い部
分において十分な加工硬化が生じず、その部分の剛性が
低下するという問題がある。発明者らはこの問題に対し
て、加工後の焼付塗装時の熱処理による強度上昇、すな
わち焼付硬化量を一定以上の水準に限定することで十分
補うことができることを見い出した。
However, when the yield ratio of the steel sheet is set low, the yield stress becomes low, so that the problem of the yield stress, particularly the problem of securing the rigidity of the member, that is, sufficient work hardening does not occur in the portion with low workability. However, there is a problem that the rigidity of the portion is reduced. The inventors have found that this problem can be sufficiently compensated for by increasing the strength by heat treatment during baking coating after processing, that is, by limiting the baking hardening amount to a certain level or more.

【0010】本発明は上記検討、知見の基に、プレス加
工性、衝撃エネルギー吸収特性、形状凍結性という構造
部材が要求される諸特性を満足する高強度鋼板およびそ
の製造方法を完成したものである。すなわち、本発明の
高強度鋼板は、mass%で、C:0.05〜0.25%、
Si:2.0%以下、Mn:1.0〜4.0%、P :
0.100%以下、S :0.030%以下、Al:
0.010〜0.150%およびFeを主成分とし、鋼
組織がフェライト+マルテンサイト+1〜5%の残留オ
ーステナイトの3相よりなり、降伏比が0.50以下
で、かつ焼付硬化量が50N/mm2 以上とされたもので
ある。
The present invention is based on the above study and knowledge, and has completed a high-strength steel sheet which satisfies various properties required for a structural member such as press workability, impact energy absorption property and shape freezing property, and a method for producing the same. is there. That is, the high-strength steel sheet of the present invention has a mass% of C: 0.05 to 0.25%,
Si: 2.0% or less, Mn: 1.0 to 4.0%, P:
0.100% or less, S: 0.030% or less, Al:
0.010 to 0.150% and Fe as a main component, the steel structure is composed of three phases of ferrite + martensite + 1 to 5% of retained austenite, the yield ratio is 0.50 or less, and the bake hardening amount is 50N. / Mm 2 or more.

【0011】以下、本発明について詳細に説明する。ま
ず、本発明の鋼板組織について説明する。本発明では鋼
板の組織をフェライト+マルテンサイト+微量の残留オ
ーステナイトの3相よりなる複合組織とする。フェライ
トは延性を向上させ、加工性を得るために必要であり、
一方高歪み速度での転移の移動は硬質なマルテンサイト
相によって妨げられると考えられ、ベイナイトなどの軟
質な変態相の組織強化鋼に比べてエネルギー吸収特性に
優れる。また、マルテンサイトはその硬度を調整するこ
とで、本発明の目指す低降伏比化達成に極めて有利な組
織である。一方、微量の残留オーステナイトは低降伏比
化にほとんど影響を及ぼさないだけでなく、変形を受け
た際のTRIP(変形誘起塑性)効果で延性の向上に寄
与する。残留オーステナイトの量は1〜5%が望まし
い。1%未満では延性向上作用が過少であり、一方5%
を超えると成分元素の多量添加によるコストの増大を招
き、またマルテンサイト量の減少により衝撃エネルギー
の吸収特性の劣化や強度の低下を招くようになる。な
お、主強化機構として組織強化以外の他の強化機溝(例
えば析出強化、固溶強化)を利用した鋼板では、延性に
代表される加工性が劣ったり、高々490N/mm2 程度
の強度レベルまでしか適用が困難である等の理由で本発
明の鋼板組織としては不適当である。
Hereinafter, the present invention will be described in detail. First, the steel sheet structure of the present invention will be described. In the present invention, the structure of the steel sheet is a composite structure composed of three phases of ferrite + martensite + a small amount of retained austenite. Ferrite is necessary to improve ductility and obtain workability,
On the other hand, the transfer of the transition at a high strain rate is considered to be hindered by the hard martensite phase, and is superior in energy absorption characteristics as compared with the structure strengthened steel of a soft transformation phase such as bainite. In addition, martensite is a structure that is extremely advantageous for achieving a low yield ratio aimed at by the present invention by adjusting its hardness. On the other hand, a small amount of retained austenite has almost no effect on lowering the yield ratio, and also contributes to an improvement in ductility by a TRIP (deformation-induced plasticity) effect when subjected to deformation. The amount of retained austenite is desirably 1 to 5%. If it is less than 1%, the effect of improving ductility is too small, while 5%
Exceeding the temperature causes an increase in cost due to the addition of a large amount of component elements, and a decrease in the amount of martensite causes deterioration of impact energy absorption characteristics and a decrease in strength. In addition, a steel plate using a strengthening groove other than the structure strengthening (eg, precipitation strengthening, solid solution strengthening) as the main strengthening mechanism has poor workability typified by ductility or a strength level of at most about 490 N / mm 2. It is not suitable as the steel sheet structure of the present invention because it is difficult to apply the steel sheet only up to this point.

【0012】本発明鋼板の降伏比は0.50以下、望ま
しくは0.45以下とする。降伏比が0.50を超える
と、440〜980N/mm2 級の強度レベルの鋼板で
は、スプリングバックにより、プレス加工後の成形形状
が変化して形状凍結性に劣るようになるからである。
The yield ratio of the steel sheet of the present invention is 0.50 or less, preferably 0.45 or less. If the yield ratio exceeds 0.50, the steel sheet having a strength level of 440 to 980 N / mm 2 class changes the formed shape after press working due to springback, resulting in poor shape freezing property.

【0013】本発明鋼板の焼付硬化量(BH量)は50
N/mm2 以上、望ましくは80N/mm2 以上とする。5
0N/mm2 未満では、降伏比を0.50以下とした場
合、低加工度の部位の剛性が不足し、結局、構造部材の
全体としての剛性が確保できないようになるためであ
る。
The bake hardening amount (BH amount) of the steel sheet of the present invention is 50.
N / mm 2 or more, preferably 80 N / mm 2 or more. 5
If the yield ratio is 0.50 or less when the yield ratio is less than 0 N / mm 2 , the rigidity of the portion with a low working ratio is insufficient, and eventually the rigidity of the entire structural member cannot be secured.

【0014】次に本発明鋼板の鋼成分(単位mass%)の
限定理由について説明する。 C:0.05〜0.25% Cは鋼の強度に大きく作用し、マルテンサイトのような
低温変態生成物を得るために必須である。0.05%未
満では440N/mm2 級以上の高強度を得ることが困難
であるため、下限を0.05%とする。一方、0.25
%を越えて添加すると溶接性の低下を招くので、上限を
0.25%とする。
Next, the reasons for limiting the steel component (unit: mass%) of the steel sheet of the present invention will be described. C: 0.05 to 0.25% C has a large effect on the strength of steel and is essential for obtaining a low-temperature transformation product such as martensite. If it is less than 0.05%, it is difficult to obtain a high strength of 440 N / mm 2 or more, so the lower limit is made 0.05%. On the other hand, 0.25
%, The weldability is reduced, so the upper limit is made 0.25%.

【0015】Si:2.0%以下 Siは延性を劣化させることなく容易に高強度化を行う
作用を有するが、2.0%を超えて多量に添加されると
化成処理性に悪影響を及ぼすため、2.0%以下に止め
る。
Si: 2.0% or less Si has an action of easily increasing the strength without deteriorating the ductility, but when added in a large amount exceeding 2.0%, the chemical conversion treatment property is adversely affected. Therefore, it is limited to 2.0% or less.

【0016】Mn:1.0〜4.0% Mnはオーステナイトを安定化する元素で、微量の残留
オーステナイトを組織中に生成させるのに不可欠であ
り、またオーステナイト中の固溶C量を変化させ、冷却
過程で生成するマルテンサイトのような低温変態生成物
の特性に大きな影響を及ぼし、マルテンサイトの生成の
ためにも必要である。加工性の非常に優れた高強度鋼板
としての特性を得るためには少なくとも1.0%の添加
が必要である。しかし、4.0%を超えると溶製が困難
になるばかりでなく、スポット溶接性に悪影響を及ぼ
し、強度低下を招くため、4.0%を上限とする。
Mn: 1.0 to 4.0% Mn is an element that stabilizes austenite, is indispensable for forming a small amount of retained austenite in the structure, and changes the amount of solid solution C in austenite. This has a great effect on the properties of low-temperature transformation products such as martensite formed in the cooling process, and is necessary for the formation of martensite. In order to obtain the characteristics of a high-strength steel sheet having extremely excellent workability, it is necessary to add at least 1.0%. However, if it exceeds 4.0%, not only does melting become difficult, but it also has an adverse effect on spot weldability and causes a decrease in strength, so the upper limit is 4.0%.

【0017】P :0.100%以下 Pは耐食性の改善に有効であるが、P:0.100%超
では、加工性が劣化するようになる。このため、0.1
00%以下に止める。
P: 0.100% or less P is effective for improving the corrosion resistance, but if P: more than 0.100%, the workability deteriorates. Therefore, 0.1
Stop below 00%.

【0018】S :0.030%以下 Sは不純物元素であり、伸びフランジ性を劣化させるの
で、その上限を0.030%とする。
S: 0.030% or less S is an impurity element and degrades stretch flangeability, so the upper limit is made 0.030%.

【0019】Al:0.010〜0.150% Alは脱酸のために添加する。0.010%未満ではそ
の作用が過少であり、一方0.150%を超えると加工
性が劣化するようになる。このため、下限を0.010
%、上限を0.150%とする。
Al: 0.010-0.150% Al is added for deoxidation. If it is less than 0.010%, the effect is too small, while if it exceeds 0.150%, the workability deteriorates. Therefore, the lower limit is 0.010
%, And the upper limit is 0.150%.

【0020】本発明の鋼板は、以上の基本成分およびF
eを主成分とするものである。主成分とは、不可避的不
純物の含有および上記基本成分の作用を損なうことな
く、むしろこれらの作用を向上させ、あるいは機械的、
化学的特性を改善することができる元素の含有を妨げな
い趣旨であり、例えば下記のCr、B、Mo、Ti、N
b、Cuのうちから1種以上の元素を含有することがで
きる。すなわち、下記(1) 〜(4) の成分とすることがで
きる。 (1) 基本成分にさらに下記Cr、Bの1種以上を含有す
るもの (2) 基本成分あるいは上記(1) の成分にさらに下記Mo
を含有するもの (3) 基本成分、上記(1) の成分あるいは上記(2) の成分
にさらに下記Ti、Nbの1種以上を含有するもの (4) 基本成分、上記(1) の成分、上記(2) の成分あるい
は上記(3) の成分にさらに下記Cuを含有するもの
The steel sheet of the present invention comprises the above basic components and F
e is a main component. The main component means that these actions are improved without impairing the inclusion of unavoidable impurities and the actions of the above basic components, or
The purpose is not to hinder the content of an element capable of improving the chemical properties. For example, the following Cr, B, Mo, Ti, N
One or more elements of b and Cu can be contained. That is, the following components (1) to (4) can be used. (1) The basic component further contains one or more of the following Cr and B. (2) The basic component or the component (1) further includes the following Mo
(3) The basic component, the component (1) or the component (2) further containing one or more of the following Ti and Nb (4) The basic component, the component (1), The following (2) component or the above (3) component further containing the following Cu

【0021】Cr:2.0%以下、B:0.0030% Cr、Bはマルテンサイトの生成を促進する作用を有す
る。しかし、Cr:2.0%超、B:0.0030%超
では、フェライト量が過少になり、加工性が劣化するよ
うになる。
Cr: 2.0% or less, B: 0.0030% Cr and B have an effect of promoting the formation of martensite. However, if the content of Cr exceeds 2.0% and the content of B exceeds 0.0030%, the amount of ferrite becomes too small and workability deteriorates.

【0022】Mo:1.0%以下 Moは耐遅れ破壊牲に有効であるが、1.0%を超える
と加工性が劣化するようになる。
Mo: 1.0% or less Mo is effective for delayed fracture resistance, but if it exceeds 1.0%, the workability deteriorates.

【0023】Ti,Nb:各々0.100%以下 Ti,Nbは鋼の析出強化に有効であり、ともに0.1
00%を超えると加工性および形状凍結性が劣化するよ
うになる。
Ti, Nb: 0.100% or less, respectively Ti and Nb are effective for precipitation strengthening of steel.
If it exceeds 00%, workability and shape freezing property deteriorate.

【0024】Cu:1.0%以下 Cuは耐食性の改善に有効であるが、Cu:1.0%超
では、加工性が劣化するようになる。なお、Cuを添加
する場合は表面性状の改善のためNiを1.0%以下添
加することが好ましい。
Cu: 1.0% or less Cu is effective for improving corrosion resistance, but if Cu: more than 1.0%, workability is deteriorated. In addition, when adding Cu, it is preferable to add 1.0% or less of Ni in order to improve the surface properties.

【0025】次に製造方法について説明する。本発明鋼
板は前記成分組成を有する鋼を常法に従って転炉や電気
炉で溶製した後、下記の条件に従い、熱間圧延により、
あるいはさらに冷間圧延により製造することができる。
Next, the manufacturing method will be described. The steel sheet of the present invention is produced by melting a steel having the above-mentioned composition in a converter or an electric furnace according to a conventional method, and then, according to the following conditions, by hot rolling,
Alternatively, it can be further manufactured by cold rolling.

【0026】熱延鋼板の場合、スラブ加熱温度、仕上温
度、巻取温度は常法に従えばよいが、仕上圧延終了後、
巻取りまでの冷却過程において、熱延後の鋼板をフェラ
イト+オーステナイトの2相域からMs点以下の温度ま
で冷却してオーステナイトが1〜5%残留するようにオ
ーステナイトの大部分をマルテンサイト変態させた後、
100〜200℃の温度域で10sec 以上10min 以下
保持した後冷却する。また、冷延鋼板の場合は、冷延後
に再結晶焼鈍をした後、連続焼鈍炉において焼鈍後の鋼
板に対して上記温度保持処理を行えばよい。オーステナ
イトの一部をマルテンサイトとともに残留させるには、
成分を調整することが簡便である。すなわち、オーステ
ナイトの安定性を高めるC、Mn、Bの含有量を高める
ほど残留オーステナイト量が増加するようになり、これ
らの元素の含有量を調整することで所期の3相組織が得
られる。また、冷却速度に関しても速いほどオーステナ
イトが残留しやすくなる。
In the case of a hot-rolled steel sheet, the slab heating temperature, the finishing temperature, and the winding temperature may be in accordance with ordinary methods.
In the cooling process until winding, the hot-rolled steel sheet is cooled from the two-phase region of ferrite + austenite to a temperature below the Ms point and most of the austenite is transformed into martensite so that 1-5% of austenite remains. After
After maintaining the temperature in a temperature range of 100 to 200 ° C. for 10 seconds or more and 10 minutes or less, it is cooled. Further, in the case of a cold-rolled steel sheet, after performing recrystallization annealing after cold rolling, the above-described temperature holding treatment may be performed on the steel sheet after annealing in a continuous annealing furnace. To leave some of austenite together with martensite,
It is convenient to adjust the components. That is, the amount of retained austenite increases as the contents of C, Mn, and B that increase the stability of austenite increase, and the desired three-phase structure can be obtained by adjusting the contents of these elements. In addition, the faster the cooling rate, the more austenite tends to remain.

【0027】前記フェライト+オーステナイトの2相域
からMs点以下の温度までの冷却は、一般的には水焼き
入れによって行えばよいが、焼入性向上元素を多く含有
する場合は、必ずしも水焼き入れにより急冷する必要は
なく、20℃/sec 以上、望ましくは100℃/sec 以
上の冷却速度でMs点以下の温度まで冷却すればよい。
もっとも、この場合は成分コストの増大が避けられない
ので、鋼成分としてはできる限り低成分とし、水焼き入
れを行うのがコスト面では有利であり、生産効率もよ
い。
The cooling from the ferrite + austenite two phase region to a temperature below the Ms point may be generally carried out by water quenching. It is not necessary to quench rapidly by putting, and it is sufficient to cool to a temperature below the Ms point at a cooling rate of 20 ° C / sec or more, preferably 100 ° C / sec or more.
However, in this case, an increase in the component cost is inevitable, so that it is advantageous to make the steel component as low as possible and to perform water quenching in terms of cost and production efficiency.

【0028】マルテンサイト変態が完了した後、100
〜200℃、好ましくは100〜150℃の温度域で1
0sec 以上保持することにより、組織をフェライト+マ
ルテンサイト+微量の残留オーステナイトの3相としつ
つ、鋼中の固溶C量、マルテンサイト硬度が調整され、
これによって優れた加工性が得られ、また所定の降伏
比、焼付硬化量が得られる。すなわち、かかる熱処理を
行わない場合、あるいは100℃未満での保持、あるい
は100〜200℃で保持しても保持時間が10sec 未
満では、炭化物の析出がほとんど起こらず、鋼板の加工
性が著しく劣化する。一方、200℃超の温度での保
持、あるいは100〜200℃の温度下でも10min 以
上で保持すると、残留オーステナイトが分解して加工性
が劣化する。また、炭化物の析出が過度に生じて、鋼中
の固溶Cが過少となり、必要な焼付硬化量の確保が困難
になる。また、マルテンサイトも過度に軟化され、降伏
比が上昇するようになる。さらに、強度が高い場合には
耐遅れ破壊特性に対しても悪影響が及ぶようになる。1
00〜200℃の温度域での保持は、例えば水焼き入れ
を行った場合のように、100℃未満の温度に冷却して
マルテンサイト変態を完了させた場合は再加熱して当該
温度域まで昇温する必要があるが、100℃超の温度で
マルテンサイト変態を完了させた場合は再加熱すること
なく、その後の冷却過程において当該温度保持処理を行
えばよい。
After completion of the martensitic transformation, 100
1 to 200 ° C., preferably 100 to 150 ° C.
By holding for 0 second or more, the amount of solid solution C in the steel and the martensite hardness are adjusted while the structure is made into three phases of ferrite + martensite + a small amount of retained austenite,
Thereby, excellent workability is obtained, and a predetermined yield ratio and bake hardening amount are obtained. That is, when the heat treatment is not performed, or when the holding time is less than 100 ° C., or when the holding time is less than 10 sec even when the holding temperature is 100 to 200 ° C., the precipitation of carbide hardly occurs, and the workability of the steel sheet is significantly deteriorated. . On the other hand, if the temperature is maintained at a temperature higher than 200 ° C. or at a temperature of 100 to 200 ° C. for 10 minutes or more, the retained austenite is decomposed to deteriorate the workability. Further, excessive precipitation of carbides occurs, so that the amount of solid solution C in the steel becomes too small, and it becomes difficult to secure a necessary amount of bake hardening. Also, martensite is excessively softened, and the yield ratio increases. Further, when the strength is high, the delayed fracture resistance is adversely affected. 1
Holding in a temperature range of 00 to 200 ° C. is performed, for example, by cooling to a temperature lower than 100 ° C. and completing martensitic transformation, as in the case of water quenching, and reheating to the temperature range. Although it is necessary to raise the temperature, when the martensitic transformation is completed at a temperature higher than 100 ° C., the temperature holding treatment may be performed in the subsequent cooling process without reheating.

【0029】なお、冷延鋼板の場合、焼鈍以降に必要に
応じて調質圧延などを行ってもよいが、過度の歪を付加
すると、降伏比の上昇を招来するので、所定の降伏比を
超えないように注意することが必要である。
In the case of a cold-rolled steel sheet, temper rolling and the like may be performed as necessary after annealing. However, if excessive strain is added, the yield ratio will increase. Care must be taken not to exceed.

【0030】本発明鋼板の製造方法は熱延鋼板、冷延鋼
板の製造のみならず、溶融亜鉛めっき鋼板や合金化溶融
亜鉛めっき鋼板の製造にも適用することができる。溶融
亜鉛めっき鋼板の場合は亜鉛浴への浸漬以後の冷却過程
で溶融亜鉛めっきされた鋼板に対して上記温度保持処理
を行えばよく、また合金化溶融亜鉛めっき鋼板の場合は
合金化処理後の冷却過程でめっき処理された鋼板に対し
て同様の温度保持処理を行えばよい。
The method for producing a steel sheet according to the present invention can be applied not only to the production of a hot-rolled steel sheet and a cold-rolled steel sheet, but also to the production of a galvanized steel sheet or an alloyed galvanized steel sheet. In the case of a hot-dip galvanized steel sheet, the above-mentioned temperature holding treatment may be performed on the hot-dip galvanized steel sheet in a cooling process after immersion in a zinc bath, and in the case of an alloyed hot-dip galvanized steel sheet, The same temperature holding treatment may be performed on the steel sheet plated in the cooling process.

【0031】[0031]

【実施例】表1に示す化学成分の鋼を溶製し、スラブと
した。このスラブを常法にて熱間圧延し、その後さらに
冷間圧延し、板厚1.2mmの冷延鋼板を得て、連続焼鈍
ラインにて表2の条件で連続焼鈍を行い、種々の590
N/mm2 級の鋼板を得た。得られた鋼板のミクロ組織を
顕微鏡観察するとともに残留オーステナイト量をX線測
定により求めた。また、圧延方向に沿って試験片を採取
し、引張試験により機械的性質を調べた。これらの結果
を表2に併せて示す。
EXAMPLES Steel having the chemical components shown in Table 1 was melted to form slabs. The slab was hot-rolled in a conventional manner, and then further cold-rolled to obtain a cold-rolled steel sheet having a thickness of 1.2 mm, and continuously annealed in a continuous annealing line under the conditions shown in Table 2 to obtain various 590s.
An N / mm 2 grade steel sheet was obtained. The microstructure of the obtained steel sheet was observed under a microscope, and the amount of retained austenite was determined by X-ray measurement. Further, test specimens were taken along the rolling direction, and mechanical properties were examined by a tensile test. These results are also shown in Table 2.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】また、形状凍結性を調べるため、得られた
鋼板より圧延方向に幅40mmの鋼帯を採取し、図1に示
すように、ハット形の絞り曲げ試験部材(寸法単位mm)
をプレス成形し、離型後、縦壁部に生じた反りの曲率半
径ρを測定した。
In order to examine the shape freezing property, a steel strip having a width of 40 mm was sampled from the obtained steel sheet in the rolling direction, and as shown in FIG. 1, a hat-shaped drawing bending test member (dimension unit: mm)
Was press-molded, and after release, the radius of curvature ρ of the warpage generated in the vertical wall portion was measured.

【0035】また、動的エネルギー吸収特性を調べるた
め、図2に示す衝撃圧壊試験部材(寸法単位mm)を製作
し、動的(衝撃)吸収エネルギーを測定した。前記試験
部材は、横断面がハット形の本体21を曲げ加工により
製作後、開口部に同材質の平板22を付設し、本体21
のフランジ部において50mmピッチでスポット溶接を行
うとともに側縁をTIG溶接し、さらに軸方向の両端に
端板23,23をTIG溶接したものである。この試験
部材を用いて、衝突時の速度が50km/hrとなるように
200kgの落錘を部材軸方向に落下させ、変形量が15
0mmまでの吸収エネルギーを動的吸収エネルギーとして
測定した。一方、静的吸収エネルギーを調べるため、前
記試験部材を引張試験機によって1.0mm/sec の速度
で圧縮し、上記の場合と同様に150mmまでの吸収エネ
ルギーを静的吸収エネルギーとして求めた。
Further, in order to examine the dynamic energy absorption characteristics, an impact crush test member (dimension unit: mm) shown in FIG. 2 was manufactured, and the dynamic (impact) absorbed energy was measured. The test member is manufactured by bending a main body 21 having a hat-shaped cross section and then attaching a flat plate 22 of the same material to the opening.
In the flange portion, spot welding is performed at a pitch of 50 mm, side edges are TIG welded, and end plates 23, 23 are TIG welded to both ends in the axial direction. Using this test member, a 200 kg drop weight was dropped in the member axial direction so that the speed at the time of collision was 50 km / hr, and the amount of deformation was 15
The absorbed energy up to 0 mm was measured as the dynamic absorbed energy. On the other hand, in order to examine the static absorbed energy, the test member was compressed at a speed of 1.0 mm / sec by a tensile tester, and the absorbed energy up to 150 mm was determined as the static absorbed energy as in the above case.

【0036】また、鋼板より圧延方向に沿って試験片を
採取し、この試験片に2%の引張歪を付与した後、焼付
処理(処理条件:170℃×20min 保持)を施して焼
付硬化量(BH量)を調べた。また、軽加工を施した場
合の構造体としての剛性面での問題の有無を調べるた
め、前記試験片に2%の引張歪を付与し、焼付処理(処
理条件:170℃×20min 保持)後の降伏応力そのも
のを測定し、この値によって評価した。これらの試験結
果を表3に併せて示す。
Further, a test piece was sampled from the steel sheet along the rolling direction, a tensile strain of 2% was applied to the test piece, and then a baking treatment (processing condition: holding at 170 ° C. × 20 min) was performed to obtain a bake hardening amount. (BH amount) was examined. In addition, in order to examine whether or not there is a problem in the rigidity of the structure when lightly worked, a 2% tensile strain was applied to the test piece, and after the baking treatment (treatment condition: holding at 170 ° C. × 20 min). The yield stress itself was measured and evaluated based on this value. These test results are shown in Table 3.

【0037】[0037]

【表3】 [Table 3]

【0038】表2および表3より、ミクロ組織、特性
値、成分が本発明範囲内の発明例(試料No. 1,2,
4,8)は、30%以上の高い伸び(El)特性と0.
50未満の低降伏比(YR)を実現しており、形状凍結
性、衝撃エネルギー吸収特性ともに、本発明条件のいず
れかを満足していない比較例に比べて優れた特性を有し
ていることがわかる。また、焼付硬化量も十分高く、軽
加工後の焼付処理によって十分な降伏強度が得られてお
り、構造部材用鋼板として剛性面でも何ら問題がないこ
とがわかる。
From Tables 2 and 3, it can be seen that the microstructures, characteristic values, and components are within the scope of the present invention (Sample Nos. 1, 2, 2).
4,8) have a high elongation (El) characteristic of 30% or more and a 0.1% elongation.
A low yield ratio (YR) of less than 50 is realized, and both the shape freezing property and the impact energy absorption property are superior to those of the comparative examples that do not satisfy any of the conditions of the present invention. I understand. Further, the baking hardening amount is sufficiently high, and a sufficient yield strength is obtained by the baking treatment after light working, and it can be seen that there is no problem in terms of rigidity as a steel sheet for a structural member.

【0039】[0039]

【発明の効果】本発明の高強度鋼板によれば、所定の成
分、微量の残留オーステナイトを有するフェライト、マ
ルテンサイトの3相組織とするとともに降伏比を0.5
0以下の格段に低い値に規定したので、引張強度が44
0〜980N/mm2 級の高強度を実現しつつ、延性に優
れてプレス加工性が良好であり、衝突時の高歪み速度下
における優れた衝撃エネルギー吸収特性とプレス加工時
における優れた形状凍結性を兼備することができる。さ
らに、焼付硬化量を50にN/mm2 以上と規定したの
で、低歪み速度域でのプレス加工に対しても加工部位の
剛性を確保することができる。また、本発明の製造方法
によれば、鋼板の種類を問わず、形状凍結性と耐衝撃特
性、さらには軽加工部位において優れた剛性を有する、
引張強度が440〜980N/mm2 級の高強度鋼板が容
易に製造することができる。
According to the high-strength steel sheet of the present invention, a three-phase structure of a predetermined component, ferrite and martensite having a small amount of retained austenite, and a yield ratio of 0.5 are provided.
0 or less, the tensile strength was 44
While realizing high strength 0~980N / mm 2 grade, good press formability and excellent ductility, excellent shape freezing in excellent impact energy absorption properties and press during processing under a high strain rate at the time of collision It can have sex. Further, since the bake hardening amount is specified to be 50 N / mm 2 or more, the rigidity of the processed portion can be ensured even in the press working in a low strain rate region. Also, according to the production method of the present invention, regardless of the type of steel sheet, shape freezing and impact resistance, and further, has excellent rigidity in lightly processed parts,
A high-strength steel sheet having a tensile strength of 440 to 980 N / mm 2 can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】形状凍結性の試験要領を示す説明図である。FIG. 1 is an explanatory view showing a test procedure of shape freezing property.

【図2】実施例で使用した衝撃圧壊試験部材の斜視図を
示す。
FIG. 2 is a perspective view of an impact crush test member used in the example.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 mass%で、C :0.05〜0.25
%、Si:2.0%以下、Mn:1.0〜4.0%、P
:0.100%以下、S :0.030%以下、A
l:0.010〜0.150%およびFeを主成分と
し、鋼組織がフェライト+マルテンサイト+1〜5%の
残留オーステナイトの3相よりなり、降伏比が0.50
以下で、かつ焼付硬化量が50N/mm2 以上である形状
凍結性と耐衝撃特性に優れる高強度鋼板。
1. C .: 0.05 to 0.25 in mass%
%, Si: 2.0% or less, Mn: 1.0 to 4.0%, P
: 0.100% or less, S: 0.030% or less, A
l: 0.010 to 0.150% and Fe as a main component, steel structure consisting of three phases of ferrite + martensite + 1 to 5% retained austenite, and a yield ratio of 0.50
A high-strength steel sheet excellent in shape freezing property and impact resistance having a baking hardening amount of 50 N / mm 2 or more.
【請求項2】 請求項1に記載の成分のほか、さらにC
r:2.0%以下、B :0.0030%以下の元素の
うち、1種以上を含む請求項1に記載した形状凍結性と
耐衝撃特性に優れる高強度鋼板。
2. The component according to claim 1, further comprising C
The high-strength steel sheet having excellent shape freezing properties and impact resistance according to claim 1, wherein the high-strength steel sheet contains at least one element among elements of r: 2.0% or less and B: 0.0030% or less.
【請求項3】 請求項1又は2に記載の成分のほか、さ
らにMo:1.0%以下を含有する請求項1又は2に記
載した形状凍結性と耐衝撃特性に優れる高強度鋼板。
3. The high-strength steel sheet according to claim 1 or 2, further comprising Mo: 1.0% or less in addition to the components according to claim 1 or 2.
【請求項4】 請求項1〜3のいずれか1項に記載の成
分を有する鋼板をフェライト+オーステナイトの2相域
からMs点以下の温度まで冷却してオーステナイトが1
〜5%残留するようにオーステナイトの大部分をマルテ
ンサイト変態させた後、100〜200℃の温度域で1
0sec 以上10min 以下保持した後、冷却する形状凍結
性と耐衝撃特性に優れる高強度鋼板の製造方法。
4. A steel sheet having the component according to any one of claims 1 to 3 is cooled from a two-phase region of ferrite + austenite to a temperature not higher than the Ms point to reduce the austenite to 1 or less.
After transforming most of the austenite to martensitic so that about 5% remains, 1% at 100-200 ° C.
A method for producing a high-strength steel sheet having excellent shape freezing properties and impact resistance after cooling for 0 sec or more and 10 min or less.
JP15890298A 1998-06-08 1998-06-08 High strength steel sheet excellent in shape fixability and impact resistance and its production Pending JPH11350064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15890298A JPH11350064A (en) 1998-06-08 1998-06-08 High strength steel sheet excellent in shape fixability and impact resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15890298A JPH11350064A (en) 1998-06-08 1998-06-08 High strength steel sheet excellent in shape fixability and impact resistance and its production

Publications (1)

Publication Number Publication Date
JPH11350064A true JPH11350064A (en) 1999-12-21

Family

ID=15681869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15890298A Pending JPH11350064A (en) 1998-06-08 1998-06-08 High strength steel sheet excellent in shape fixability and impact resistance and its production

Country Status (1)

Country Link
JP (1) JPH11350064A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355042A (en) * 2000-04-10 2001-12-25 Kawasaki Steel Corp Hot dip galvanized steel sheet excellent in press formability and strain age hardening characteristic and its production method
JP2002088459A (en) * 1999-11-08 2002-03-27 Kawasaki Steel Corp Galvanized steel sheet excellent in balance of strength- ductility and adhesion of plating and its production method
WO2002024968A1 (en) * 2000-09-21 2002-03-28 Nippon Steel Corporation Steel plate excellent in shape freezing property and method for production thereof
EP1195447A1 (en) * 2000-04-07 2002-04-10 Kawasaki Steel Corporation Hot rolled steel plate, cold rolled steel plate and hot dip galvanized steel plate being excellent in strain aging hardening characteristics, and method for their production
WO2002061161A1 (en) * 2001-01-31 2002-08-08 Kabushiki Kaisha Kobe Seiko Sho High strength steel sheet having excellent formability and method for production thereof
EP1264911A2 (en) * 2001-06-06 2002-12-11 Kawasaki Steel Corporation High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same
WO2003052153A1 (en) * 2001-12-14 2003-06-26 Mmfx Technologies Corporation Triple-phase nano-composite steels
EP1398392A1 (en) * 2001-06-19 2004-03-17 Kawasaki Steel Corporation High tensile hot rolled steel sheet excellent in shape freezing property and endurance fatigue characteristics after forming
US7090731B2 (en) 2001-01-31 2006-08-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength steel sheet having excellent formability and method for production thereof
JP2008101238A (en) * 2006-10-18 2008-05-01 Kobe Steel Ltd High-strength steel sheet excellent in elongation and stretch flangeability, and its manufacturing method
JP2009249733A (en) * 2008-04-10 2009-10-29 Nippon Steel Corp High-strength steel sheet having extremely reduced deterioration in aging property and having excellent baking hardenability, and method for producing the same
CN102803543A (en) * 2009-06-26 2012-11-28 杰富意钢铁株式会社 High-strength molten zinc-plated steel sheet and process for production thereof
US8349471B2 (en) 2009-03-31 2013-01-08 Kobe Steel, Ltd. High-strength cold-rolled steel sheet excellent in workability and shape freezing property
US10071416B2 (en) 2005-10-20 2018-09-11 Nucor Corporation High strength thin cast strip product and method for making the same
US11193188B2 (en) 2009-02-20 2021-12-07 Nucor Corporation Nitriding of niobium steel and product made thereby

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088459A (en) * 1999-11-08 2002-03-27 Kawasaki Steel Corp Galvanized steel sheet excellent in balance of strength- ductility and adhesion of plating and its production method
EP1195447A1 (en) * 2000-04-07 2002-04-10 Kawasaki Steel Corporation Hot rolled steel plate, cold rolled steel plate and hot dip galvanized steel plate being excellent in strain aging hardening characteristics, and method for their production
EP1195447A4 (en) * 2000-04-07 2003-05-02 Kawasaki Steel Co Hot rolled steel plate, cold rolled steel plate and hot dip galvanized steel plate being excellent in strain aging hardening characteristics, and method for their production
JP2001355042A (en) * 2000-04-10 2001-12-25 Kawasaki Steel Corp Hot dip galvanized steel sheet excellent in press formability and strain age hardening characteristic and its production method
WO2002024968A1 (en) * 2000-09-21 2002-03-28 Nippon Steel Corporation Steel plate excellent in shape freezing property and method for production thereof
US6962631B2 (en) 2000-09-21 2005-11-08 Nippon Steel Corporation Steel plate excellent in shape freezing property and method for production thereof
EP1365037A4 (en) * 2001-01-31 2005-02-02 Kobe Steel Ltd High strength steel sheet having excellent formability and method for production thereof
WO2002061161A1 (en) * 2001-01-31 2002-08-08 Kabushiki Kaisha Kobe Seiko Sho High strength steel sheet having excellent formability and method for production thereof
EP1365037A1 (en) * 2001-01-31 2003-11-26 Kabushiki Kaisha Kobe Seiko Sho High strength steel sheet having excellent formability and method for production thereof
US7090731B2 (en) 2001-01-31 2006-08-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength steel sheet having excellent formability and method for production thereof
EP1264911A2 (en) * 2001-06-06 2002-12-11 Kawasaki Steel Corporation High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same
EP1264911A3 (en) * 2001-06-06 2003-05-02 Kawasaki Steel Corporation High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same
US7347902B2 (en) 2001-06-19 2008-03-25 Jfe Steel Corporation High tensile hot rolled steel sheet excellent in shape freezing property and endurance fatigue characteristics after forming
EP1398392A1 (en) * 2001-06-19 2004-03-17 Kawasaki Steel Corporation High tensile hot rolled steel sheet excellent in shape freezing property and endurance fatigue characteristics after forming
EP1398392A4 (en) * 2001-06-19 2004-12-15 Jfe Steel Corp High tensile hot rolled steel sheet excellent in shape freezing property and endurance fatigue characteristics after forming
US6827797B2 (en) 2001-12-14 2004-12-07 Mmfx Technologies Corporation Process for making triple-phase nano-composite steels
US6746548B2 (en) 2001-12-14 2004-06-08 Mmfx Technologies Corporation Triple-phase nano-composite steels
AU2002361700B2 (en) * 2001-12-14 2007-04-05 Mmfx Technologies Corporation Triple-phase nano-composite steels
WO2003052153A1 (en) * 2001-12-14 2003-06-26 Mmfx Technologies Corporation Triple-phase nano-composite steels
CN100406601C (en) * 2001-12-14 2008-07-30 Mmfx技术股份有限公司 Triple-phase nano-composite steels
KR100860292B1 (en) * 2001-12-14 2008-09-25 엠엠에프엑스 테크놀로지 코포레이션 An alloy carbon steel and a process for manufacturing thereof
US10071416B2 (en) 2005-10-20 2018-09-11 Nucor Corporation High strength thin cast strip product and method for making the same
JP2008101238A (en) * 2006-10-18 2008-05-01 Kobe Steel Ltd High-strength steel sheet excellent in elongation and stretch flangeability, and its manufacturing method
JP2009249733A (en) * 2008-04-10 2009-10-29 Nippon Steel Corp High-strength steel sheet having extremely reduced deterioration in aging property and having excellent baking hardenability, and method for producing the same
US11193188B2 (en) 2009-02-20 2021-12-07 Nucor Corporation Nitriding of niobium steel and product made thereby
US8349471B2 (en) 2009-03-31 2013-01-08 Kobe Steel, Ltd. High-strength cold-rolled steel sheet excellent in workability and shape freezing property
CN102803543A (en) * 2009-06-26 2012-11-28 杰富意钢铁株式会社 High-strength molten zinc-plated steel sheet and process for production thereof

Similar Documents

Publication Publication Date Title
JP4306202B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP6043801B2 (en) Steel plate for warm press forming, warm press forming member, and manufacturing method thereof
JP5287770B2 (en) High strength steel plate and manufacturing method thereof
US8366844B2 (en) Method of making hot rolled dual phase steel sheet
JP5668337B2 (en) Ultra-high-strength cold-rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP5228062B2 (en) High strength thin steel sheet with excellent weldability and method for producing the same
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
US10724113B2 (en) High-strength flat steel product having a bainitic-martensitic microstructure and method for producing such a flat steel product
JP3424619B2 (en) High tensile cold rolled steel sheet and method for producing the same
KR20070061859A (en) High strength thin steel plate excellent in elongation and bore expanding characteristics and method for production thereof
JP3619357B2 (en) High strength steel sheet having high dynamic deformation resistance and manufacturing method thereof
JP5070947B2 (en) Hardened steel plate member, hardened steel plate and manufacturing method thereof
JP6610113B2 (en) High-strength galvannealed steel sheet, hot-rolled steel sheet for the steel sheet, and methods for producing them
JPH11350064A (en) High strength steel sheet excellent in shape fixability and impact resistance and its production
JP3587126B2 (en) High tensile hot-dip galvanized steel sheet excellent in ductility and method for producing the same
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JPH11256273A (en) High strength steel plate excellent in impact resistance
JP2010126808A (en) Cold rolled steel sheet and method for producing the same
JP5870825B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JPH11350063A (en) High strength steel sheet excellent in shape fixability and impact resistance and its production
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
KR102075216B1 (en) High strength steel sheet having high yield ratio and method for manufacturing the same
JP4348939B2 (en) Manufacturing method of high-strength molded body with excellent moldability and crushing properties
JP4225082B2 (en) Method for producing high-tensile hot-dip galvanized steel sheet with excellent ductility and fatigue resistance
JP4513701B2 (en) Steel plate for rapid heating and quenching and its manufacturing method