JPH0297620A - Production of high-strength steel sheet having excellent workability - Google Patents

Production of high-strength steel sheet having excellent workability

Info

Publication number
JPH0297620A
JPH0297620A JP24993988A JP24993988A JPH0297620A JP H0297620 A JPH0297620 A JP H0297620A JP 24993988 A JP24993988 A JP 24993988A JP 24993988 A JP24993988 A JP 24993988A JP H0297620 A JPH0297620 A JP H0297620A
Authority
JP
Japan
Prior art keywords
steel sheet
austenite
strength
steel
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24993988A
Other languages
Japanese (ja)
Other versions
JPH0670246B2 (en
Inventor
Koji Sakuma
康治 佐久間
Osamu Matsumura
松村 理
Osamu Akisue
秋末 治
Hiroshi Kato
弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24993988A priority Critical patent/JPH0670246B2/en
Publication of JPH0297620A publication Critical patent/JPH0297620A/en
Publication of JPH0670246B2 publication Critical patent/JPH0670246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the title low-carbon high-strength steel sheet having excellent workability by hot-rolling a steel having specified contents of C, Si, Mn, Ni, Al, and Fe, then cold-rolling, heat-treating, and cooling the steel under specified conditions. CONSTITUTION:A steel contg. 0.07-0.30wt.% C, 0.30-1.50wt.% Si, 0.20-2.00wt.% Mn, 1.00-6.00wt.% Ni, 0.005-0.100wt.% SolAl, <=1wt.% of >=1 kind among Cu, Co, and Cr as required, the balance Fe, and inevitable impurities is hot-rolled. The hot-rolled steel sheet is pickled, and then cold-rolled at 35-80% draft. The cold-rolled steel sheet is then heated to a two-phase coexistent temp. region at 600-800 deg.C, and kept at that temp. for 15sec to 5 min. The steel sheet is then cooled to 250-500 deg.C at a rate of 1-200 deg.C/sec, and kept at that temp. for 5sec to 10min. The cooling is preferably carried out at a rate of 1-20 deg.C/sec to 550-700 deg.C, and then at a rate of 25-200 deg.C/sec. The steel sheet is subsequently cooled to <=150 deg.C for <=30sec. As a result, a high-strength steel sheet having excellent workability is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は加工性良好な高強度鋼板の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a high-strength steel plate with good workability.

(従来の技術) 乗用車の走行性や快適性、安全性は近年かってなかった
ほど著しい進歩を遂げた。これは搭載される電子制御部
品や安全保安部品の増加と車体投影面積の増加によると
ころが大であるが、その−方で車体総重量にほとんど変
化は見られない。これは主要な構成材料である自動車用
薄鋼板の高強度化によって重量増加が相殺されているた
めである。生活水準の向上を背景とした消費者の高級化
、高性能化指向は今後とも続くことと思われるが、同時
にオイルショックの経験に起因する鋭敏化したコスト意
識も根強く存在するためこの傾向は引き続き認められよ
う。したがって自動車用薄鋼板には60〜100 kg
f/mm!を超える引張強度を有しながら従来30〜4
0kgf/1IIIIlz級の強度の鋼が有していたの
と勝るとも劣らない優れたプレス加工性を同時に持つこ
とが要求されることとなろう。
(Prior Art) In recent years, the driving performance, comfort, and safety of passenger cars have made remarkable advances to an extent never seen before. This is largely due to an increase in the number of electronic control parts and safety and security parts installed and an increase in the projected area of the car body, but there is almost no change in the total weight of the car body. This is because the weight increase is offset by the increased strength of automobile thin steel sheets, which are the main constituent material. It is thought that consumers' preference for luxury and high performance will continue due to the improvement in living standards, but at the same time, this trend will continue as there is a deep-rooted heightened cost consciousness resulting from the experience of the oil crisis. It will be recognized. Therefore, thin steel sheets for automobiles require 60 to 100 kg.
f/mm! While having a tensile strength exceeding 30 to 4
At the same time, it will be required to have excellent press workability comparable to that of steel with a strength of 0 kgf/1III1z class.

このような高強度と加工性の両立を図った薄鋼板として
は特公昭56−11741号公報等で提案されているフ
ェライト・マルテンサイト二相鋼いわゆるDual p
hasefiが著名である。これは軟質なフェライトに
伸びを、硬質なマルテンサイトに強度を分担させ、その
両立を図って強度延性バランスを改善した鋼であるが、
それでも一つの指標値とされる引張強度と全伸びの積は
2000 kgf/mm”  ・%程度にすぎず、従来
の軟鋼板の場合と同様な形状にプレス成形することは極
めて困難となる。さらに改善を図った鋼種としては変態
誘起塑性(Transforlllation Ind
uced Plasticity )の活用を意図して
残留オーステナイトを混在させた綱が特開昭60−43
430号公報や特開昭61−157625号公報等で提
案されている。軟鋼板用の連続焼鈍設備を利用して製造
でき、しかも比較的単純な化学組成ながら10〜15%
もの残留オーステナイトを含むこれらの鋼はたとえば1
00 kgf/mm2の引張強度でも全伸びが30%内
外に達する他、曲げ性や穴拡げ性なども自動車用薄鋼板
として要求されるレベルを満足し今後広範な利用が期待
されている。
A thin steel sheet that achieves both high strength and workability is the so-called ferrite-martensitic dual phase steel proposed in Japanese Patent Publication No. 11741/1983.
hasefi is famous. This is a steel that has an improved balance of strength and ductility by having soft ferrite share the elongation and hard martensite share the strength.
Even so, the product of tensile strength and total elongation, which is an index value, is only about 2000 kgf/mm"%, making it extremely difficult to press-form it into the same shape as conventional mild steel plates. Steel types that have been improved include transformation-induced plasticity (Transformation Ind.
A rope mixed with retained austenite was developed in JP-A-60-43 with the intention of utilizing plasticity (uced plasticity).
This method has been proposed in Japanese Patent Application Laid-Open No. 430, Japanese Patent Application Laid-Open No. 157625/1984, and the like. It can be manufactured using continuous annealing equipment for mild steel sheets, and it has a relatively simple chemical composition, but it is 10 to 15%
These steels containing retained austenite are, for example, 1
Even with a tensile strength of 0.00 kgf/mm2, the total elongation reaches around 30%, and its bendability and hole expandability meet the levels required for thin steel sheets for automobiles, so it is expected to be widely used in the future.

しかし、これまでに見出された方法で高強度と加工性の
最善の組み合わせを得るために10〜15%程度からさ
らにそれ以上の残留オーステナイトをフェライトおよび
ベイナイトと共存させようとすると特開昭62−188
729号公報のように種々の工夫がなされているもの0
0゜20%程度以1−の従来薄鋼板の範晴では一般に考
えられていなかった程のCを含有させる必要がある。こ
のようにCの含有量が多いとパーライトの比率が大きく
冷間圧延で望ましい圧延率をとることが難しく、連続熱
処理ラインでの操業上程々の困難をまねく。のみならず
自動車の車体を組み立てる際に多用されているスポット
溶接で接合部に所要の強度を付与できないため、従来に
ない高強度で極めて良好な加工性をもつにもかかわらず
この種の鋼板を大量に使用することを妨げていた。
However, in order to obtain the best combination of high strength and workability using the methods discovered so far, it has been attempted to coexist 10 to 15% retained austenite with ferrite and bainite. -188
Items with various improvements such as Publication No. 7290
It is necessary to contain an amount of C that has not been generally considered in the conventional thin steel sheet range of about 0.20% or less. When the content of C is high as described above, the ratio of pearlite is large, making it difficult to obtain a desirable rolling ratio in cold rolling, which causes considerable operational difficulties in a continuous heat treatment line. In addition, spot welding, which is often used when assembling car bodies, cannot provide the required strength to the joints, so this type of steel plate, despite having unprecedentedly high strength and extremely good workability, is This prevented it from being used in large quantities.

(発明が解決しようとする課題) 本発明は前記したような従来技術の有する課題を解決し
、より低いC含有量で残留オーステナイトがもたらす従
来発明と同等以上の良好な加工性を有する高強度鋼板の
製造方法を提供するものである。
(Problems to be Solved by the Invention) The present invention solves the problems of the prior art as described above, and has a high-strength steel plate with lower C content and superior workability equivalent to or better than the conventional invention due to retained austenite. The present invention provides a method for manufacturing.

(課題を解決するだめの手段) 本発明による高強度鋼板はフェライト、ベイナイト、残
留オーステナイトの混合組織からなることを特徴とし、
目的とする強度を確保するために所要量の残留オーステ
ナイトとベイナイトを、また良好な加工性を得るために
所要量の残留オーステナイトをフェライトと共存させる
必要がある。
(Another Means to Solve the Problems) The high-strength steel sheet according to the present invention is characterized by having a mixed structure of ferrite, bainite, and retained austenite,
It is necessary to have a required amount of retained austenite and bainite coexist with ferrite to ensure the desired strength, and a required amount of retained austenite and bainite to obtain good workability.

平衡状態図上でオーステナイト域を広げA+変態点を下
げる元素の量を増せば一般に残留オーステナイトは生成
しやすくなり、その安定性を調節して変態誘起塑性によ
る伸びの向上を図ることができる。この種の元素の代表
的なものにNiがあり5US304をはじめとした準安
定オーステナイト系ステンレス鋼に添加されている。ま
た特公昭44−738号公報や特公昭46−13498
号公報のように4〜10%内外のNiを添加して極微細
な残留オーステナイト粒をマトリクラス中に混在させ低
温での靭性を改善させた鋼がある。このように極めて有
用な元素ながらクラーク数がo、 o o sと小さい
Niは高価であり、多量生産され安価なことが必須であ
る自動車用薄鋼板にこれほどの多量添加することはでき
ない。経済性を著しくは損なわない2〜4%のNiを添
加した綱の例にASTM規格のA203鋼があるが、組
織的には何ら特徴のないものであり低温での靭性は優れ
るとしても室温近傍での強度延性バランスは陳腐である
。しかし本発明者らはSiやMnの添加量を適正化し、
軟鋼板の連続焼鈍類似のヒートサイクルからなる一連の
熱処理を施すと相当量の残留オーステナイトが混在した
組織が得られることを見出した。しかもNiのみでオー
ステナイトの安定化を図ったものと異なりCやMn等の
元素による安定化も図られているためMs点とMd点と
の開きが大きく変態誘起塑性の活用が容易であることに
着目し本発明をなしたものである。
By expanding the austenite region on the equilibrium phase diagram and increasing the amount of elements that lower the A+ transformation point, retained austenite generally becomes easier to generate, and its stability can be adjusted to improve elongation due to transformation-induced plasticity. Ni is a typical element of this type and is added to metastable austenitic stainless steels such as 5US304. Also, Special Publication No. 44-738 and Special Publication No. 46-13498
There is a steel in which 4 to 10% Ni is added to mix ultrafine retained austenite grains in the matrix class, as disclosed in Japanese Patent No. 3, to improve the toughness at low temperatures. Although Ni is an extremely useful element, it is expensive, with a small Clark number of o, o o s, and cannot be added in such a large amount to thin steel sheets for automobiles, which are mass-produced and must be inexpensive. An example of a steel with 2 to 4% Ni added that does not significantly impair economic efficiency is ASTM standard A203 steel, but it has no structural characteristics and although its toughness at low temperatures is excellent, its toughness remains close to room temperature. The strength-ductility balance in However, the present inventors optimized the amount of Si and Mn added,
It has been found that by applying a series of heat treatments consisting of heat cycles similar to continuous annealing of mild steel sheets, a structure containing a considerable amount of retained austenite can be obtained. Moreover, unlike the case where austenite is stabilized with only Ni, stabilization is also achieved with elements such as C and Mn, so the difference between the Ms point and the Md point is large, making it easy to utilize transformation-induced plasticity. This is what the present invention has focused on.

すなわち、本発明は重量%でC: 0.07〜0.30
%、Si : 0.30〜1.50%、Mn: 0.2
0〜2.00%、Ni:1.00〜6.00%、sol
、N : 0.005〜0、100%及び必要に応じて
Cu、Co、Crのうちの1種または2種以上を合計1
%以下を含み、残部Feおよび不可避的不純物からなる
鋼を熱間圧延し酸洗と圧延率35〜80%の冷延を行っ
てから、600〜800℃の二相共存温度域に加熱し1
5秒〜5分保持後、1〜200°C/secの速度で2
50〜500℃に冷却し、この温度域内で5秒〜lO分
保定し、その後30秒以内に150℃以下まで冷却する
ことを特徴とする加工性良好な高強度鋼板の製造方法を
要旨とするものである。
That is, the present invention has C: 0.07 to 0.30 in weight%.
%, Si: 0.30-1.50%, Mn: 0.2
0-2.00%, Ni: 1.00-6.00%, sol
, N: 0.005 to 0, 100%, and if necessary, one or more of Cu, Co, and Cr in a total of 1
% or less, with the remainder being Fe and unavoidable impurities, hot rolled, pickled and cold rolled at a rolling reduction of 35 to 80%, then heated to a two-phase coexistence temperature range of 600 to 800°C.
After holding for 5 seconds to 5 minutes, heat at a rate of 1 to 200°C/sec.
The gist of the present invention is a method for producing a high-strength steel sheet with good workability, which is characterized by cooling to 50 to 500°C, holding in this temperature range for 5 seconds to 10 minutes, and then cooling to 150°C or less within 30 seconds. It is something.

(作 用) 最初に本発明の対象とする鋼の成分範囲の限定理由につ
いて述べる。
(Function) First, the reason for limiting the range of components of steel that is the object of the present invention will be described.

まず、Cは最も低コストなオーステナイト安定化元素で
あり、二相共存温度域およびベイナイト変態温度域でフ
ェライト中からオーステナイト中に短時間で移動し、そ
の安定度を増す。その結果元素が鋼中で均一分布してい
る時にその化学組成で決まるMs点が室温よりかなり高
い温度であったとしてもMnやNiの分配がもたらす効
果と相乗し室温以下に冷却しても相当量のオーステナイ
トが残存する。その結果、従来にない高強度と良好な加
工性が得られる。その添加量は溶接性や衝撃特性を優れ
たものとするには低い方が好ましいが0.07%未満で
は伸びの向上が明らかとなるほどの残留オーステナイト
量を確保することはできない、−方0.30%を超すよ
うになると残留オーステナイトは多量に得られるものの
加工誘発変態によりプレス成形後に存在することとなる
マルテンサイトの量も相当なものとなり緒特性の劣化が
著しいし、スポット溶接部で所要の強度を得ることがで
きないため実用に耐えない。
First, C is the lowest-cost austenite stabilizing element, and moves from ferrite to austenite in a short time in the two-phase coexistence temperature range and bainite transformation temperature range, increasing its stability. As a result, even if the Ms point determined by the chemical composition is considerably higher than room temperature when the elements are uniformly distributed in the steel, the effect combined with the distribution of Mn and Ni makes it possible to maintain the temperature even when cooled to below room temperature. A large amount of austenite remains. As a result, unprecedented high strength and good workability can be obtained. It is preferable that the amount added be low in order to achieve excellent weldability and impact properties, but if it is less than 0.07%, it will not be possible to secure enough retained austenite to clearly improve elongation. If it exceeds 30%, a large amount of retained austenite can be obtained, but due to processing-induced transformation, the amount of martensite that will be present after press forming will also be considerable, resulting in a significant deterioration of properties, and the required It cannot be put to practical use because it cannot obtain strength.

Siはセメンタイト中に固溶しないためその析出を抑制
する作用を存し、250〜500℃で暫時保持する間に
未変態オーステナイト中に固溶限をはるかに越えるCを
濃化させ、その安定度を増す。
Since Si is not solid-solubilized in cementite, it has the effect of suppressing its precipitation, and during temporary holding at 250 to 500°C, C is concentrated in untransformed austenite far exceeding the solid-solubility limit, and its stability is reduced. increase.

しかし、本発声のC量の範囲ではSiが0.30%未満
ではこのような効果は明らかではなく、目的を達成する
ためには0.70%以上が好ましい、一方、過剰に添加
すると酸洗性を著しく悪化させるほどのスケールを熱延
時に生じることとなるし、またCを黒鉛として析出させ
ることもある。このため1.50%超の過剰な添加は避
けなければならない。
However, in the range of C amount for this vocalization, such an effect is not obvious if Si is less than 0.30%, and to achieve the purpose, 0.70% or more is preferable. During hot rolling, a scale that significantly deteriorates the properties may be generated, and C may be precipitated as graphite. Therefore, excessive addition of more than 1.50% must be avoided.

Mnは二相域からベイナイト変態域への冷却の際にオー
ステナイトがパーライトへ分解するのを抑制し、急冷を
開始した時点で存在するオーステナイトをそのままの状
態で500℃以下まで持ち来す上でその添加が極めて有
効な元素である。またNiとともにオーステナイト形成
元素に分類され、その安定に存在する温度域を広げ残留
オーステナイトの生成を容易にする。その量が0.20
%未満だと熱延時に熱間脆性を生じる可能性があり、ま
た500℃まで冷却する途上でパーライトが大量に生じ
るので適当でない、しかし、2.00%を超すようにな
ると先に述べたような目的は達せられるものの、Cの濃
化によるオーステナイトの安定化反応に極めて長時間を
要することとなり、連続ラインでの多量生産を事実上不
可能なものとする。
Mn suppresses the decomposition of austenite into pearlite during cooling from the two-phase region to the bainite transformation region, and is effective in bringing the austenite that is present at the start of rapid cooling to below 500°C as it is. It is an extremely effective element to add. It is also classified as an austenite-forming element along with Ni, and it broadens the temperature range in which it remains stable and facilitates the formation of retained austenite. The amount is 0.20
If it is less than 2.00%, hot brittleness may occur during hot rolling, and a large amount of pearlite will be produced during cooling to 500°C, so it is not suitable. However, as mentioned earlier, if it exceeds 2.00%, Although this objective is achieved, the stabilization reaction of austenite due to concentration of C requires an extremely long time, making mass production in a continuous line virtually impossible.

また、バンド組織の形成により特性を劣化させることも
あるから避けなければならない。
Furthermore, the formation of a band structure may deteriorate the characteristics and must be avoided.

また、Niはオーステナイト形成元素であり鉄中に置換
型元素として固溶し、そのMs点を下げる。
Further, Ni is an austenite-forming element and dissolves in solid solution as a substitutional element in iron, lowering its Ms point.

このため特開昭62−188729号公報に示されるよ
うな従来の発明例よりそのC濃度が低くとも、室温以下
に冷却した時にオーステナイトをマルテンサイトに変態
することなく残存させうる。またセメンタイトには固溶
しないためSi同様に250〜500℃での保定中にC
が炭化物として析出す、るのを抑制しながらオーステナ
イトへの濃化を促進する。しかし、その量が1.00%
未満では添加の効果が認められない、また、6.00%
を超すと本発明のヒートサイクルによれば熱処理完了後
に残留オーステナイトの量が30%を超し、オーステナ
イトが連結して存在しやすくなるため塑性誘起変態が一
度に起こり、目的とするような大きな伸びが得られない
Therefore, even if the C concentration is lower than that of the conventional invention example shown in JP-A-62-188729, austenite can remain without being transformed into martensite when cooled to room temperature or below. In addition, because it does not dissolve in cementite, C
Precipitates as carbides, and promotes concentration into austenite while suppressing the formation of carbides. However, the amount is 1.00%
If it is less than 6.00%, the effect of addition is not recognized.
According to the heat cycle of the present invention, the amount of retained austenite exceeds 30% after the heat treatment is completed, and the austenite becomes connected and tends to exist, so plasticity-induced transformation occurs all at once, resulting in the desired large elongation. is not obtained.

さらにs ol、 klは脱酸元素として、またAZN
による熱延素材の細粒化、および一連の熱処理工程にお
ける結晶粒の粗大化を抑制することで材質が改善される
ため0.005〜o、ioo%を添加する。その量が0
.005%未満だと目的とする効果が不十分であり、0
.100%を超すと介在物により靭性が劣化することが
あるので避けなければならない。
Furthermore, sol and kl can be used as deoxidizing elements, and AZN
Since the quality of the material is improved by making the hot rolled material finer and suppressing the coarsening of crystal grains during a series of heat treatment steps, 0.005 to 0.000% is added. The amount is 0
.. If it is less than 0.05%, the desired effect is insufficient, and
.. If it exceeds 100%, the toughness may deteriorate due to inclusions, so it must be avoided.

本発明の綱は以上を基本成分とするが、これらの元素お
よびRe以外にP、S、Nその他の一般に鋼に対して不
可避的に混入する元素を含むものである。またオーステ
ナイト形成元素のCuやCo、焼入れ性を増す元素であ
るCr等を添加し、残留オーステナイ1−ffiを増す
ことは本発明の目的を達成する上で好ましいことである
。しかし、過大に添加すると複雑な組成の化合物を微細
に析出し加工性を著しく劣化することがあるのでその量
は合計で1%以下に限定する。
The steel of the present invention has the above-mentioned basic components, but in addition to these elements and Re, it also contains P, S, N, and other elements that are generally unavoidably mixed in steel. In addition, it is preferable to increase the residual austenite 1-ffi by adding Cu or Co, which is an austenite-forming element, or Cr, which is an element that increases hardenability. However, if excessively added, compounds with complex compositions may be finely precipitated and workability may be significantly deteriorated, so the total amount is limited to 1% or less.

次に工程上の限定理由を詳述する0本発明では熱間圧延
した鋼板を酸洗し、圧延率35〜80%の冷延を行う。
Next, the reason for the limitations on the process will be explained in detail. In the present invention, a hot rolled steel plate is pickled and cold rolled at a rolling reduction of 35 to 80%.

これは引き続いて行う一連のサイクルからなる熱処理後
に微細な残留オーステナイトがフェライトとベイナイト
の中に分散した組織を得ることを目的とする。この圧延
率が35%未満だと組織の微細化が不十分であるため、
本発明に規定した熱処理を施しても十分な量の残留オー
ステナイトが得られず、伸びをはじめとした特性の劣っ
たものしか得られない。その効果は圧延率が増すと飽和
する傾向にあり、80%を超えた冷延を行うことは圧延
に要する動力が莫大なものとなるだけで効果が小さいた
め適当でない。
The purpose of this is to obtain a structure in which fine residual austenite is dispersed in ferrite and bainite after a heat treatment consisting of a series of successive cycles. If this rolling rate is less than 35%, the structure will not be refined enough, so
Even if the heat treatment specified in the present invention is performed, a sufficient amount of retained austenite cannot be obtained, and only those with poor properties such as elongation can be obtained. The effect tends to be saturated as the rolling ratio increases, and cold rolling exceeding 80% is not appropriate because the power required for rolling becomes enormous and the effect is small.

本発明の一連のサイクルからなる熱処理ではまず最初に
600〜800°Cの二相共存温度域に加熱し15秒〜
5分保持する。本発明の成分系を有する鋼板にこの加熱
を行うと固溶限以上の炭化物はほとんど消滅し、オース
テナイトが40〜80%存在し、フェライトが残余をし
める組織状態が現出される。拡散定数の大きいCはオー
ステナイト中に濃化しフェライト中では希薄となる。こ
のため引き続く一連のサイクルを経た後では8〜30%
の残留オーステナイトがフェライトとベイナイトの混在
した中に微細に分散した組織が得られ高強度にして加工
性良好な鋼板とすることができる。
In the heat treatment consisting of a series of cycles of the present invention, first, heating is performed to a two-phase coexistence temperature range of 600 to 800 °C for 15 seconds to
Hold for 5 minutes. When a steel sheet having the composition system of the present invention is heated in this way, most of the carbides above the solid solubility limit disappear, and a structure is created in which 40 to 80% austenite exists and ferrite accounts for the remainder. C, which has a large diffusion constant, is concentrated in austenite and diluted in ferrite. Therefore, after a series of successive cycles, 8-30%
A structure in which residual austenite is finely dispersed in a mixture of ferrite and bainite is obtained, and a steel sheet with high strength and good workability can be obtained.

加熱温度が600°C未満の時、連続ラインで実現する
ことのできる時間内では炭化物が溶解せずオーステナイ
トの存在量もごく僅かであり、また再結晶も不十分な状
態であるため後に続く処理が本発明に規定されるもので
あったとしても高強度にして加工性良好な鋼板とするこ
とはできない。
When the heating temperature is less than 600°C, the carbides do not dissolve and the amount of austenite is very small within the time that can be achieved in a continuous line, and recrystallization is insufficient, so subsequent processing is difficult. Even if it is as defined in the present invention, it is not possible to obtain a steel plate with high strength and good workability.

一方、800°Cを超える温度域に加熱することは多大
なエネルギーを要し不経済であるばかりか表面性状が劣
化する等種々の好ましくない現象を生む。この温度域で
の保持時間が15秒未満では未溶解炭化物が存在する可
能性が大であり、望まれるだけの量のオーステナイトが
形成されず強度と加工性の両立が図れない。一方、5分
を超えた保持は連続ラインで経済的な多量生産をするに
は適さないし、行ったとしても結晶粒粗大化等により材
質が劣化する可能性がある。
On the other hand, heating to a temperature range exceeding 800° C. not only requires a large amount of energy and is uneconomical, but also causes various undesirable phenomena such as deterioration of surface properties. If the holding time in this temperature range is less than 15 seconds, there is a high possibility that undissolved carbides will exist, and the desired amount of austenite will not be formed, making it impossible to achieve both strength and workability. On the other hand, holding for more than 5 minutes is not suitable for economical mass production on a continuous line, and even if held, the quality of the material may deteriorate due to coarsening of crystal grains, etc.

本発明ではこの後1〜200°C/!IEICの速度で
250〜500°Cに冷却する。これは二相域に加熱し
て生成させたオーステナイトをパーライトに変態するこ
となくベイナイト変態域に持ち来し、引き続く処理によ
り室温では残留オーステナイトとベイナイトとして所定
の特性を得ることを目的とする。この冷却速度が1°C
/sec未満ということは臨界冷却速度以下であること
を意味し、オーステナイトのほとんどがパーライト変態
するため熱処理後にはベイナイトも残留オーステナイト
もごく僅かの量となり強度も低く加工性も良好ではない
。逆に200°C/secを超えるようだと針状のフェ
ライトが生成し強度延性バランスの劣化をもたらす原因
となる。また鋼板全体にわたって目標とした温度で冷却
を終了することが難しく、形状も工業的な用途に耐えら
れないものとなることがある。この冷却が500°Cよ
りも高い温度で終了するとSiやNiを含んでいてもそ
の後の保持中に炭化物が急速に生成しオーステナイト中
のCfi度が急減するのでそれを室温まで残留すること
が不可能となる。一方NiやMnのオーステナイト安定
化元素が添加されているとは言え、二相域で生成したま
まの状態ではMs点を250℃未満に下げるほどにオー
ステナイト中にCが濃化していないため、そのまま25
0℃未満に冷却すると多量のマルテンサイトを生じ、そ
の後に焼戻されたとしても強度は十分としても加工性は
良好と言える範囲にはなりえない。なお二相域での均熱
終了後550〜700℃までを1〜b 〜200°(/secで冷却し、上段での緩冷中にNi
やMn等を残存するオーステナイト中に濃化させながら
清浄なフェライトを成長させることは残留オーステナイ
ト量の増加にもつながり加工性をさらに良好とする好ま
しい方法である。
In the present invention, the temperature after this is 1 to 200°C/! Cool to 250-500°C at IEIC rate. The purpose of this is to bring the austenite generated by heating to the two-phase region to the bainite transformation region without transforming into pearlite, and to obtain predetermined characteristics as residual austenite and bainite at room temperature through subsequent treatment. This cooling rate is 1°C
Less than /sec means that the cooling rate is below the critical cooling rate, and since most of the austenite transforms into pearlite, the amount of bainite and residual austenite becomes very small after heat treatment, and the strength is low and the workability is not good. On the other hand, if it exceeds 200°C/sec, acicular ferrite will be produced, causing deterioration of the strength-ductility balance. Further, it is difficult to finish cooling the entire steel plate at a target temperature, and the shape may not be suitable for industrial use. If this cooling ends at a temperature higher than 500°C, carbides will rapidly form during the subsequent holding even if they contain Si and Ni, and the Cfi degree in austenite will rapidly decrease, so it is impossible to leave them until room temperature. It becomes possible. On the other hand, although austenite stabilizing elements such as Ni and Mn are added, C is not concentrated in austenite enough to lower the Ms point to below 250°C when it is still formed in the two-phase region. 25
If it is cooled to less than 0°C, a large amount of martensite will be produced, and even if it is subsequently tempered, the strength will be sufficient but the workability will not be within the range that can be said to be good. After soaking in the two-phase region, cooling is performed from 550 to 700°C at a rate of 1 to 200° (/sec).
Growing clean ferrite while concentrating , Mn, etc. in the remaining austenite is a preferred method for increasing the amount of retained austenite and further improving workability.

この冷却終了後、本発明では250〜500 ”Cに5
秒〜lO分保定し、その後30秒以内に150以下まで
冷却する。これは本発明成分の綱ではオーステナイトか
らベイナイトへの変態が二段階に分離することを活用し
、炭化物をほとんど含まないベイナイトとその部分から
掃きだされたCが濃化しNiやMn等による安定化と合
わせてMs点が室温以下に低下した残留オーステナイト
、および二相域加熱中に純化が進んだ残存フェライトや
先の冷却中に成長した清浄なフェライトの混在した組織
を現出させ、高強度と良好な加工性を両立させることに
ある。この保定温度が500℃よりも高いとその間に炭
化物が急速に生成しオーステナイト中のCW11度が急
減するのでそれを残留することは不可能となる。一方探
定温度が250℃未満だと実質的にCの拡散が困難とな
るため未変態オーステナイト中にCが濃化せずMs点を
室温以下に下げることができないため残留オーステナイ
トを得る上で有効なものとならない。この保定時間が5
秒未璃ではベイナイト変態の進行が不十分なためCが十
分に濃化していないオーステナイトは室温までの冷却中
にマルテンサイト変態し、得られる鋼板は高強度ではあ
るものの加工性に乏しいものとなる。また保定時間が1
0分を超すとベイナイト変態がさらに進み、前段の反応
でCの濃化したオーステナイトも炭化物を析出してベイ
ナイトに分解するため変態誘起塑性により加工性を改善
する残留オーステナイト量の不足をもたらすこととなる
。この後150℃以下まで冷却するのに30秒を超える
時間要した場合も同様であり、発明の目的を達し得ない
After this cooling is completed, in the present invention, the temperature is increased to 250-500"C
Hold for 10 seconds to 10 minutes, then cool to below 150 within 30 seconds. This takes advantage of the fact that the transformation from austenite to bainite is separated into two stages in the composition of the present invention, and the bainite, which contains almost no carbides, and the C swept out from that part are concentrated and stabilized by Ni, Mn, etc. In addition, a structure containing retained austenite whose Ms point has decreased to below room temperature, residual ferrite that has been purified during the two-phase region heating, and clean ferrite that has grown during the previous cooling is revealed, resulting in high strength and The aim is to achieve both good workability. If this holding temperature is higher than 500° C., carbides will rapidly form during this period and the CW11 degree in austenite will rapidly decrease, making it impossible to retain them. On the other hand, if the detection temperature is less than 250°C, it becomes difficult for C to diffuse effectively, so C does not concentrate in untransformed austenite and the Ms point cannot be lowered below room temperature, which is effective in obtaining retained austenite. It doesn't become something. This retention time is 5
In the second milli, the progress of bainite transformation is insufficient, so the austenite that is not sufficiently enriched with carbon undergoes martensitic transformation during cooling to room temperature, and the resulting steel sheet has high strength but poor workability. . Also, the retention time is 1
If the time exceeds 0 minutes, the bainite transformation will further progress, and the austenite enriched with C in the previous reaction will also precipitate carbides and decompose into bainite, resulting in an insufficient amount of retained austenite to improve workability due to transformation-induced plasticity. Become. The same applies if it takes more than 30 seconds to cool down to 150° C. or less, and the object of the invention cannot be achieved.

なお、以上に説明してきた工程における二相域での加熱
温度や二相域からの冷却が終了した後の保定温度、また
その間の冷却速度は規定の範囲内であれば一定である必
要はなく、その範囲内で変動したとしても最終製品の特
性をなんら劣化させはしないし向上する場合もある。
In addition, in the process explained above, the heating temperature in the two-phase region, the holding temperature after cooling from the two-phase region, and the cooling rate during that period do not need to be constant as long as they are within the specified range. , even if it fluctuates within that range, it does not degrade the properties of the final product in any way, and may even improve them.

(実施例) 第1表に成分を示す鋼を熱間圧延し酸洗した後、第2表
に記載するような条件の冷間圧延と一連のサイクルから
なる熱処理を行うた。その後0.8%の調質圧延を施し
てからJIS5号引張試験片を調製し、ゲージ長さ50
■、引張速度10閣/mlnで常温引張試験を行ったと
ころ同表に記載するような引張強度と全伸びを得た。
(Example) After hot rolling and pickling the steel whose components are shown in Table 1, it was subjected to heat treatment consisting of cold rolling and a series of cycles under the conditions shown in Table 2. After that, a JIS No. 5 tensile test piece was prepared after 0.8% temper rolling, and the gauge length was 50.
(2) A room temperature tensile test was conducted at a tensile rate of 10 min/ml, and the tensile strength and total elongation as shown in the table were obtained.

本発明試料である試料Nα2.4.5.7.8、l 1
.14.17.18.20.22.23.26 27 
30.34はいずれも2500kgf/−−%を超える
引張強度と全伸びの積を有することがら判断できるよう
に高強度であると同時に良好な加工性を有している。こ
れに対し本発明成分範囲外の鋼a、cSg、h、t、に
は最適と考え得る処理を施しても試料kl、3.31〜
33.35にあるように、また本発明成分鋼であっても
処理条件に一つでも不適切なところが存在すると試料N
116.9.10,12.13.15.16.19.2
1.24.25.28.29にあるように引張強度か全
伸びのいずれか、あるいは両方が劣るため2500kg
f/−・%未満の引張強度と全伸びの積しか得られず、
加工性良好な高強度鋼板とはなし得ない。
Sample Nα2.4.5.7.8, l 1 which is a sample of the present invention
.. 14.17.18.20.22.23.26 27
No. 30.34 both have high strength and good workability, as can be judged from the product of tensile strength and total elongation exceeding 2500 kgf/--%. On the other hand, for steels a, cSg, h, and t, which are outside the composition range of the present invention, samples kl, 3.31~
As shown in 33.35, even if the composition steel of the present invention is used, if there is even one inappropriate point in the processing conditions, sample N
116.9.10, 12.13.15.16.19.2
1.24.25.28.29, the tensile strength, total elongation, or both are inferior, so the weight is 2500 kg.
Only the product of tensile strength and total elongation less than f/-% can be obtained,
It cannot be made into a high-strength steel plate with good workability.

(発明の効果) 以上の実施例から明らかなように本発明によれば5〜3
0%の残留オーステナイトがフェライトおよびベイナイ
トと共存することにより引張強度50〜140kgf/
−の広い範囲にわたり加工性良好な高強度鋼板を得るこ
とができる。しかも従来発明よりもはるかに低いC含有
量でこのような特性かえられるため、本発明の有する効
果は産業上極めて大きなものである。
(Effect of the invention) As is clear from the above examples, according to the present invention, 5 to 3
0% retained austenite coexists with ferrite and bainite, resulting in a tensile strength of 50 to 140 kgf/
- It is possible to obtain high-strength steel sheets with good workability over a wide range of conditions. Furthermore, since such characteristics can be achieved with a much lower C content than in the conventional invention, the effects of the present invention are extremely significant industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は冷間圧延の後で鋼板に施す熱処理サイクルを示
す図である。 冷却所要縛間Cd
FIG. 1 is a diagram showing a heat treatment cycle applied to a steel plate after cold rolling. Required cooling interval Cd

Claims (1)

【特許請求の範囲】 1、重量%でC:0.07〜0.30%、Si:0.3
0〜1.50%、Mn:0.20〜2.00%、Ni:
1.00〜6.00%、sol.Al:0.005〜0
.100%を含み、残部Feおよび不可避的不純物から
なる鋼を熱間圧延し酸洗と圧延率35〜80%の冷延を
行ってから、600〜800℃の二相共存温度域に加熱
し15秒〜5分保持後、1〜200℃/secの速度で
250〜500℃に冷却し、この温度域内で5秒〜10
分保定し、その後30秒以内に150℃以下まで冷却す
ることを特徴とする加工性良好な高強度鋼板の製造方法
。 2、Cu、Co、Crのうちの1種または2種以上を重
量%で合計1%以下添加することを特徴とする請求項1
記載の加工性良好な高強度鋼板の製造方法。 3、二相共存温度域に加熱し15秒〜5分保持後の冷却
を、550〜700℃までを1〜20℃/sec、それ
以下を25〜200℃/secとすることを特徴とする
請求項1または2記載の加工性良好な高強度鋼板の製造
方法。
[Claims] 1. C: 0.07 to 0.30% by weight, Si: 0.3
0-1.50%, Mn: 0.20-2.00%, Ni:
1.00-6.00%, sol. Al: 0.005~0
.. A steel containing 100% Fe and unavoidable impurities is hot-rolled, pickled and cold-rolled at a rolling reduction of 35-80%, then heated to a two-phase coexistence temperature range of 600-800°C. After holding for 1 to 5 minutes, cool to 250 to 500℃ at a rate of 1 to 200℃/sec, and hold for 5 to 10 minutes within this temperature range.
A method for manufacturing a high-strength steel sheet with good workability, characterized by holding the plate for a minute and then cooling it to 150°C or less within 30 seconds. 2. Claim 1 characterized in that one or more of Cu, Co, and Cr are added in a total weight percent of 1% or less.
The method for producing a high-strength steel plate with good workability as described above. 3. Cooling after heating to a two-phase coexistence temperature range and holding for 15 seconds to 5 minutes is 1 to 20 °C/sec up to 550 to 700 °C, and 25 to 200 °C/sec below that. The method for producing a high-strength steel plate with good workability according to claim 1 or 2.
JP24993988A 1988-10-05 1988-10-05 Method for manufacturing high strength steel plate with good workability Expired - Fee Related JPH0670246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24993988A JPH0670246B2 (en) 1988-10-05 1988-10-05 Method for manufacturing high strength steel plate with good workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24993988A JPH0670246B2 (en) 1988-10-05 1988-10-05 Method for manufacturing high strength steel plate with good workability

Publications (2)

Publication Number Publication Date
JPH0297620A true JPH0297620A (en) 1990-04-10
JPH0670246B2 JPH0670246B2 (en) 1994-09-07

Family

ID=17200420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24993988A Expired - Fee Related JPH0670246B2 (en) 1988-10-05 1988-10-05 Method for manufacturing high strength steel plate with good workability

Country Status (1)

Country Link
JP (1) JPH0670246B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008488B2 (en) 2002-07-12 2006-03-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength steel sheet having excellent workability and production process therefor
US7413617B2 (en) 2004-12-21 2008-08-19 Kabushiki Kaisha Kobe Seiko Sho Composite structure sheet steel with excellent elongation and stretch flange formability
US8657969B2 (en) 2008-02-08 2014-02-25 Jfe Steel Corporation High-strength galvanized steel sheet with excellent formability and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008488B2 (en) 2002-07-12 2006-03-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength steel sheet having excellent workability and production process therefor
US7413617B2 (en) 2004-12-21 2008-08-19 Kabushiki Kaisha Kobe Seiko Sho Composite structure sheet steel with excellent elongation and stretch flange formability
US8657969B2 (en) 2008-02-08 2014-02-25 Jfe Steel Corporation High-strength galvanized steel sheet with excellent formability and method for manufacturing the same
EP2243852A4 (en) * 2008-02-08 2017-04-12 JFE Steel Corporation High-strength hot-dip zinc coated steel sheet excellent in workability and process for production thereof

Also Published As

Publication number Publication date
JPH0670246B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
US5876521A (en) Ultra high strength, secondary hardening steels with superior toughness and weldability
US5328528A (en) Process for manufacturing cold-rolled steel sheets with high-strength, and high-ductility and its named article
JP2601581B2 (en) Manufacturing method of high strength composite structure cold rolled steel sheet with excellent workability
WO1999002747A1 (en) Ultra high strength, secondary hardening steels with superior toughness and weldability
US4398970A (en) Titanium and vanadium dual-phase steel and method of manufacture
US6673171B2 (en) Medium carbon steel sheet and strip having enhanced uniform elongation and method for production thereof
JPS61217529A (en) Manufacture of high strength steel sheet superior in ductility
US4609410A (en) Method for producing high-strength deep-drawable dual-phase steel sheets
JPH0759726B2 (en) Method for manufacturing high strength cold rolled steel sheet with excellent local ductility
JPH01230715A (en) Manufacture of high strength cold rolled steel sheet having superior press formability
JP2004018912A (en) High-tensile strength cold-rolled steel plate excellent in elongation and stretch-flanging property and method for manufacturing the same
JP3037767B2 (en) Low yield ratio high strength hot-dip galvanized steel sheet and method for producing the same
JPH02217425A (en) Production of high strength steel sheet having superior formability
JP2588421B2 (en) Method for producing ultra-high strength steel with excellent ductility
JPH02101117A (en) Production of high strength steel sheet having satisfactory formability
JPH0297620A (en) Production of high-strength steel sheet having excellent workability
JPH02213416A (en) Production of steel bar with high ductility
JPS613843A (en) Manufacture of high ductility and high strength cold rolled steel sheet
CA1182387A (en) Method for producing high-strength deep drawable dual phase steel sheets
JP2001329340A (en) High strength steel sheet excellent in formability and its production method
JPH059576A (en) Production of non-heattreated bar steel excellent in toughness at low temperature
JPH0645827B2 (en) Method for manufacturing high strength steel sheet with excellent workability
JPS63312917A (en) Production of high-strength steel plate having excellent spring property and ductility
JPH0135052B2 (en)
JPS62139821A (en) Production of high-ductility high-strength cold rolled steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070907

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees