JPH02149646A - High strength hot rolled steel sheet having excellent workability and weldability - Google Patents

High strength hot rolled steel sheet having excellent workability and weldability

Info

Publication number
JPH02149646A
JPH02149646A JP30302388A JP30302388A JPH02149646A JP H02149646 A JPH02149646 A JP H02149646A JP 30302388 A JP30302388 A JP 30302388A JP 30302388 A JP30302388 A JP 30302388A JP H02149646 A JPH02149646 A JP H02149646A
Authority
JP
Japan
Prior art keywords
transformation
ferrite
weldability
rolled steel
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30302388A
Other languages
Japanese (ja)
Inventor
Masaaki Katsumata
勝亦 正昭
Ichiro Tsukatani
一郎 塚谷
Shigenobu Nanba
茂信 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP30302388A priority Critical patent/JPH02149646A/en
Publication of JPH02149646A publication Critical patent/JPH02149646A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To manufacture the title steel sheet by subjecting a low carbon steel to hot rolling under specific conditions, satisfactorily progressing ferritic transformation, cooling the steel at a cooling speed which prevents pearite transformation and coiling it. CONSTITUTION:A slab of a low carbon steel contg., by weight, 0.10 to 0.15% C, 0.5 to 3.0% Si and 0.5 to 2.5% Mn is subjected to hot rolling, and finish rolling is ended at the temp. of (Ar3-50 deg.C) to 950 deg.C. Then, the steel is cooled to the nose temp. area of ferritic transformation of 600 to 800 deg.C at 1 to 200 deg.C/sec cooling speed, is thereafter cooled until immediately before the starting of pearlite transformation at <=30 deg.C/sec cooling speed to satisfactorily progress the ferrite transformation and is furthermore cooled and coiled to 300 to 500 deg.C coiling temp. at a cooling speed of preventing the pearlite transformation. The hot rolled steel sheet having excellent workability and weldability which has the structure of which >=5% retained austenite is uniformly dispersed into a two-phase matrix of ferrite and bainite having 75mum grain size, has >=2000 strength-ductility balance (TSXEl) and >=60kgf/mm<2> tensile strength can be obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高強度鋼板の製造技術に係り、特に引張強度6
0 kgf / +u+”以上の高強度で加工性、溶接
性に優れた熱延鋼板とその製造方法に関するものである
。 (従来の技術) 従来より、高強度鋼板は自動車、産業機械等に使用され
てきており、特に、自動車用鋼板は自動車の軽量化や、
衝突時の安全性の確保等から鋼板の高強度化の要請が強
くなってきている。しかし、単に鋼板の高強度化を図る
だけではなく、併せて加工性、溶接性も求められている
。 この種の要請に応えるものとしては、従来より、熱延鋼
板でフェライトとマルテンサイトよりなる二相鋼がある
。 しかし、この二相鋼は、固溶強化型や、析出強化型の高
強度鋼板よりも優れた強度−延性バランス(TSXEn
)を示すもツノ、TSxEQ″:2゜00であり、より
厳しい加工性の要求には耐えられないという欠点があっ
た。 (発明が解決しようとする課題) そこで、この欠点を解消するものとして、TSXEI2
>2000を得るために残留オーステナイトを含む組織
とする熱延鋼板が開発された。 その例としては、一つに、仕上温度850℃以上、全圧
下率80%以上で且つ最終3パスの合計圧下率60%以
上、最終パス圧下率20%以上の大圧下圧延を行い、続
いて50℃/S以上の冷却速度で300℃以下まで冷却
し、残留オーステナイトを含む熱延鋼板を製造する方法
(特開昭60−165320号公報)がある。 しかし、このような熱延鋼板の製造には大圧下圧延を必
要とするため、これを解決することを目的として、■ 
C:0.15〜0.40%、Si:0゜5〜2.0%及
びMn:0.5〜2.0%を含有し、残部が鉄及び不可
避的不純物からなる鋼を、仕上圧延終了温度(Ar3−
50℃)〜(Ar3+50℃)、全圧下率80%以上で
熱間圧延を行い、続いて350〜500℃までを冷却速
度40℃/S以上で冷却して巻取る方法、■ 或いは更
に延性を向上させて強度−延性バランスを高めるために
、巻取り後、鋼板を30℃/hr以上の冷却速度で20
0℃以下まで冷却して残留オーステナイトを含む熱延鋼
板を製造する方法(特開昭63−4017号公報)等が
提案された。 しかし乍ら、これらの方法のうち、■の方法では、TS
xE1!>2400という強度−延性バランスが得られ
るものの、高延性を得るために、巻取り後の冷却として
コイル横方向からのミスト冷却や、コイル全体を水など
に浸漬する冷却を必要とするため、鋼板の板幅方向の材
質を著しく不均一にする等々の問題がある。また、■、
■のいずれもCを0.15%以上添加していることが自
動車用鋼板としては必須条件である溶接性を悪化させる
という問題があり、加工性も良くない。 本発明は、溶接性を悪化させないためにC含有量を0.
15%より低く抑えても、TSXEQ>2000の強度
−延性バランスを有し、引張強さ60 kgf/mm”
以上で加工性及び溶接性ともに優れた高強度熱延鋼板を
提供することを目的とし、また該高強度熱延鋼板を安定
、確実に製造し得る方法を提供することを目的とするも
のである。 (課題を解決するための手段) 前記目的を達成するため、本発明者は、C含有量を0.
15%より低くして溶接性を確保し、更に加工性を向上
させることも可能にするために、組成1組織及び製造条
件について鋭意研究を重ねた。 その結果、Cが0.10以上で0.15%未満含有する
組成の鋼を、特定条件による熱延中に、フェライト変態
を充分進行させ、パーライト変態を阻止し得る冷却速度
で350〜500℃まで冷却して巻取ることにより、フ
ェライト及びベイナイトの二相マトリックス中に残留オ
ーステナイト量が体積分率で5%以上均一に分散した組
織を得ることができ、高強度で、C含有量の低減と製造
条件との関連により加工性を向上でき、併せて溶接性を
確保できることを見出した。 また、該鋼を、特定条件により熱延した後の冷却中に、
フェライト変態を充分進行させ、パーライト変態を阻止
し得る冷却速度で350〜500℃まで冷却して巻取る
ことにより、特にフェライトを微細化せず、このフェラ
イト及びベイナイトの二相マトリックス中に残留オース
テナイト量が体積分率で5%以上均一に分散した組織を
得ることができ、高強度及び溶接性と共に降伏強さが低
く加工性をも確保できることを見出し、ここに本発明を
なしたものである。 すなわち、本発明に係る加工性、溶接性に優れた高強度
熱延鋼板(本発明ml)は、C:0.10以上で0.1
5%未満、Si:0.5〜3.0%及びMn:0.5〜
2.5%を含有し、残部が鉄及び不可避的不純物からな
る組成を有し、フェライト及びベイナイトの二相マトリ
ックス中に5%以上の残留オーステナイトが均一に分散
していることを特徴とするものである。 そして、該高強度熱延鋼板の製造方法(本発明法1)は
、上記組成を有する鋼を、仕上圧延終了温度が(Ar、
−50℃)〜850℃、仕上圧下率が80%以上の条件
で仕上圧延を行い、その後巻取温度300〜500℃ま
でをパーライト変態を阻止し得る冷却速度で冷却し1巻
取ることを特徴とするものである6 更にまた、本発明に係る加工性、溶接性に優れた高強度
熱延鋼板(本発明lll2)は、C:0.10以上で0
.15%未満、Si:0.5〜3.0%及びMn:0.
5〜2.5%を含有し、残部が鉄及び不可避的不純物か
らなる組成を有し、フェライト(但し、粒径5μ醜以上
)及びベイナイトの二相マトリックス中に5%以上の残
留オーステナイトが均一に分散していることを特徴とす
るものである。 そして、該高強度熱延鋼板の製造方法(本発明法2)は
、上記組成を有する鋼を、仕上圧延終了温度が(Ar、
−50℃)〜950℃で熱間圧延を行い、熱延終了後、
600〜800℃のフェライト変態のノーズ温度域まで
1〜b 速度で冷却し、その後30℃/S以下の冷却速度でパー
ライト変態が開始する直前まで冷却してフェライト変態
を進行させ、更に巻取温度300〜500℃までパーラ
イト変態を阻止し得る冷却速度で冷却し、巻取ることを
特徴とするものである。 以下に本発明を更に詳細に説明する。 (作用) まず、本発明における鋼の化学成分の限定理由を説明す
る。 C: Cは鋼の強度増大に不可欠な元素であるので最少量は必
要であるが、少ないほど溶接性向上に効果があると共に
加工性の改善にも効果がある。しかし、0.10%未満
では延性を向上させる残留オーステナイト量が充分得ら
れなくなる。一方、C量の増加は、第二相のベイナイト
若しくは残留オーステナイトが加工誘起変態したマルテ
ンサイト相とフェライト相との硬度差を増大させる。マ
トリックスと第二相との硬度差が大きい場合は、マトリ
ックスと第二相との界面で変形が伝達しにくいため、こ
の界面がクラックの起点となり、加工中に割れが入るこ
とになる。この作用は、C量がo、15%以上のときに
生成する第二相で顕著になり、また0、15%以上では
溶接性を劣化させるので好ましくない、したがって、C
量は0゜10〜0.15%未満の範囲とし、0.10〜
0゜13%が好ましい。 Si: SLは含有量を増すと、延性向上に寄与するフェライト
の生成、純化に有利であり、また、Cを未変態オーステ
ナイト中に濃化させて残留オーステナイトを得るのに有
利となる。更に、Siは巻取り後のベイナイト変態の際
に炭化物形成を抑制し、Cをより未変態オーステナイト
中へ濃化させ、残留オーステナイトを得るのにより有利
になる。 更にまた、Si量を増大させるとフェライト相を固溶硬
化させるため、フェライト相と第二相の硬度差を減少さ
せる効果があるので、クラックの発生が高加工度まで抑
制され、その結果、加工性が向上する。このような効果
は、Siが0.5%未満では十分発揮されない、また3
、0%を超えると、フェライトの生成、純化並びに残留
オーステナイトの確保の効果は飽和し、却ってスケール
性状。 溶接性を悪化させ、また規則相(B2)が形成されるた
めに加工性を害するので好ましくない。したがって、S
i量は0.5〜3.0%の範囲とし、1゜5〜2.0%
が好ましい。 Mn: Mnはオーステナイトの安定化元素としてオーステナイ
トの残留に寄与する効果がある。しかし、この効果は0
.5%未満では十分得られず、また、2.5%を超える
とその効果は飽和し、却って溶接性を悪化させるので好
ましくない。したがって。 Mn量は0.5〜3.0%の範囲とする。 なお、上記鋼には他の合金元素を添加する必要がなく、
残部は鉄及び不可避的不純物である。 次に1本発明法の条件について説明する。 上記組成の熱延鋼板の延性を向上させるためには、まず
、フェライト及びベイナイトの二相マトリックス中に所
定量の残留オーステナイトを均一に含有させることが必
要であり、そのためにはオーステナイトをC等の元素の
濃化等により、安定化させる。 このために1本発明法では、上記の如く組成を調整する
ことを前提に、2通りの製造条件を採用することとした
。 すなわち、第1の手段(本発明法1)としては、上記鋼
を仕上圧延終了温度が(Ar、 −50℃)〜850°
Cで、80%以上の仕上圧下率で仕上圧延して、加工誘
起フェライト変態を生じせしめるのである。 また、第2手段(本発明法2)としては、上記鋼を(A
r3−50℃)〜950℃で仕上圧延を終了し、その後
、600〜800℃のフェライト変態のノーズ付近まで
急冷し、その後フェライト変態のノーズ付近を徐冷して
フェライト変態を促進することにより、延性の向上に有
利なフェライトを生成させ、オーステナイト中へのC等
の元素の濃化を促進させ、オーステナイトの残留に寄与
せしめるのである。なお、この条件は、オーステナイト
の安定化と共に、加工性を向上させるためにフェライト
を微細化しないこと、すなわちフェライト粒径が5μm
未満の微細フェライトにしないことも考慮されている。 第1手段及び第2手段の場合、仕上圧延終了温度が(A
r、−50℃)より低いと、フェライトの加工組織が形
成されて延性を害するので好ましくない。したがって、
いずれの手段の場合にも、仕上圧延終了温度を(Ar、
−50℃)以上にする必要がある。 但し、第1手段の如く、加工誘起フェライト変態を利用
する場合には、熱間圧延加工中に十分な量のフェライト
を得なければならない。しかし、仕上圧延終了温度が高
すぎるとフェライト変態を十分進行させるためには、非
常に大きな圧下率を要するので、実施可能な範囲でフェ
ライト変態を十分進行させるには仕上圧延温度の上限は
850℃に止める必要があり、また延性を害するフェラ
イトの加工変態が形成されない(A r、 −50℃)
以上の温度で十分にフェライト変態を進行させるには仕
上圧延の圧下率を80%以上にする必要がある。 また、第2手段の如く、加工誘起フェライト変態を利用
せず、フェライト変態のノーズ付近まで急冷してフェラ
イト変態のノーズ付近を徐冷してフェライト変態を促進
せしめる場合には、仕上圧延中にフェライト変態を進行
せしめる必要がないため、圧下率の規定は必要ではない
が、仕上圧延終了温度が極端に高い時にはオーステナイ
ト粒径が大きすぎて、フェライト変態のノーズ付近での
フェライト変態進行に長い時間を要するようになり、実
際的でなくなるために、仕上圧延終了温度の上限は第1
手段の場合よりも高目とするが、950℃に止める必要
がある。更に、熱延終了後、600〜800℃のフェラ
イト変態のノーズ温度域までパーライト変態をさせずに
鋼板を冷却させるために1℃/S以上の冷却速度が必要
である。 しかし、200℃/S以上の冷却速度では冷却速度の制
御が困難で過冷却のおそれがあるので望ましくない。 このようにフェライト変態のノーズ付近まで急冷した後
は、30℃/S以下の冷却速度(等温保持を含む)で冷
却することにより、フェライト量を確保できる。この場
合、30℃/Sを超える冷却速度では、フェライト変態
が充分に進行しないので、延性の向上に欠かせないフェ
ライトを充分な量で確保できない。したがって、熱延後
フェライト変態のノーズ付近まで急冷した後は、30℃
/S以下の冷却速度で冷却する必要がある。 上記のいずれの手段の場合も、冷却中にフェライト変態
が終了しパーライト変態が開始すると、オーステナイト
の残留に有効なCが消費され、残留オーステナイトが減
少する。したがって、上記のいずれの手段の場合におい
ても、上記段階以降は、パーライト変態を阻止し得る冷
却速度で巻取温度まで冷却する必要がある。 巻取温度は、500℃を超えると、巻取り後にパーライ
トが生成し、或いはベイナイト変態が過度に進行して、
十分な残量オーステナイトが得られない。また、300
℃未満の巻取温度では加工性(穴拡げ性)が劣化する。 したがって、巻取温度は300〜500℃の範囲とする
。 得られる熱延鋼板は、フェライトとベイナイトの二相マ
トリックスに5%以上の残留オーステナイトが均一に分
散している組織を有している。但し、第1手段による場
合には、フェライト粒径は5μI未満の微細粒であるが
、C量が少ないため溶接性が優れ、また加工性も改善さ
れる。一方。 第2手段の場合には、同様にC量が少ないため溶接性が
優れているほか、フェライトは粒径が5μm以上である
ので、特に降伏強度が低く、加工性が優れている。勿論
、いずれの場合にも、高強度であって強度−延性バラン
スがよい。 次に、本発明の実施例を示す。 (実施例) 第1表に示す化学成分を有する組成の鋼A−Dについて
、第2表に示す条件で熱間圧延を行って巻取り、空冷し
た。 なお、熱間圧延は30+m→16mm→8IIIII→
3mmのパスススケジュールで行った。なお、NQl(
本発明例)は本発明法1により、Nα4〜Nα5(本発
明例)は本発明法2により製造した例である。 得られた鋼板について機械的性質及び組織を調べると共
に溶接性(溶接後の十字引張強度)及び加工性(穴拡げ
率)を調べた。その結果を第2表に併記する。 本発明例Nα1、Na 4及びNα5は、いずれもTS
XEQ>2400という非常に高い強度−延性バランス
を示しく第1図参照)、しかも溶接性、加工性ともに優
れている。 一方、比較例のHa 2はSi量が低いため、またNa
 3はC量が低いため、残留オーステナイトが殆ど生成
せず、延性が低く、強度−延性バランスも低いし、加工
性も悪い。 比較例面6は、圧下率が低すぎるのに巻取温度まで急冷
しているため、フェライト変態が充分進行せず、Cの濃
縮が不足して残留オーステナイト量が十分ではないので
延性が低い。加工性も悪い。 比較例Nα7は、仕上圧延終了温度が低すぎ、加工フェ
ライト組織が形成されているため、延性が低い。加工性
も悪い。 比較例Nα8は、パーライト変態開始温度(この場合は
650℃)以下になってもゆっくりとした冷却速度で冷
却しているため、残留オーステナイトが生成せず、延性
が低い。加工性も悪い。 比較例&9は、巻取温度が高く、残留オーステナイトが
生成せず、延性が不足している。加工性も悪い。 比較例Nα10は、C量が0.25%と高く、溶接強度
が不足して溶接性が悪く、加工性も悪い。 比較例翫11は、仕上圧延温度が970℃と高いために
フェライト変態が充分に進行せず、延性が低い、加工性
も悪い。 比較例NQ12は、巻取温度が低すぎるため、穴拡げ性
(加工性)が劣っている。延性も悪い。 第2図は熱延鋼板の組織を示しており、本発明例&4の
組織(a)は、比較例NqlOの組織(b)に比べ、フ
ェライト粒が粗いことがわかる。
(Industrial Application Field) The present invention relates to a manufacturing technology for high-strength steel sheets, particularly tensile strength 6
This article relates to a hot-rolled steel sheet with a high strength of 0 kgf/+u+" or more and excellent workability and weldability, and a method for manufacturing the same. (Prior technology) High-strength steel sheets have traditionally been used in automobiles, industrial machinery, etc. In particular, steel sheets for automobiles are used to reduce the weight of automobiles,
There is an increasing demand for higher strength steel plates in order to ensure safety in the event of a collision. However, it is not only necessary to simply increase the strength of steel sheets, but also workability and weldability are required. To meet this type of demand, there has conventionally been a dual-phase steel made of hot-rolled steel sheet made of ferrite and martensite. However, this duplex steel has a better strength-ductility balance (TSXEn
), but the horn, TSxEQ'': 2゜00, had the disadvantage of not being able to withstand stricter workability requirements. (Problem to be solved by the invention) Therefore, in order to solve this disadvantage, ,TSXEI2
In order to obtain a hardness of >2000, a hot-rolled steel sheet with a structure containing retained austenite was developed. As an example, one example is performing large reduction rolling with a finishing temperature of 850°C or higher, a total reduction rate of 80% or more, a total reduction rate of 60% or more in the final three passes, and a final pass reduction rate of 20% or more, and then There is a method (Japanese Unexamined Patent Publication No. 165320/1983) of producing a hot rolled steel sheet containing retained austenite by cooling to 300°C or less at a cooling rate of 50°C/S or more. However, manufacturing such hot-rolled steel sheets requires large reduction rolling, so in order to solve this problem,
A steel containing C: 0.15 to 0.40%, Si: 0.5 to 2.0%, and Mn: 0.5 to 2.0%, with the balance consisting of iron and unavoidable impurities, is finished rolled. End temperature (Ar3-
50°C) to (Ar3+50°C), hot rolling at a total reduction rate of 80% or more, followed by cooling from 350 to 500°C at a cooling rate of 40°C/S or more and winding; In order to improve the strength-ductility balance, the steel plate is heated at a cooling rate of 30°C/hr or more for 20 minutes after winding.
A method of manufacturing a hot-rolled steel sheet containing retained austenite by cooling to 0° C. or lower (Japanese Unexamined Patent Publication No. 63-4017) has been proposed. However, among these methods, method
xE1! Although a strength-ductility balance of >2400 can be obtained, in order to obtain high ductility, it is necessary to perform mist cooling from the side of the coil or cooling the entire coil by immersing it in water, etc., to obtain high ductility. There are problems such as making the material material in the width direction of the plate significantly non-uniform. Also, ■,
In any of (2), there is a problem that adding 0.15% or more of C deteriorates weldability, which is an essential condition for automotive steel sheets, and the workability is also poor. In the present invention, the C content is reduced to 0.00 to prevent deterioration of weldability.
Even if it is kept lower than 15%, it has a strength-ductility balance of TSXEQ>2000 and a tensile strength of 60 kgf/mm.”
The purpose of the above is to provide a high-strength hot-rolled steel sheet with excellent workability and weldability, and also to provide a method for stably and reliably manufacturing the high-strength hot-rolled steel sheet. . (Means for Solving the Problem) In order to achieve the above object, the present inventor reduced the C content to 0.
In order to ensure weldability by lowering it to less than 15% and also to improve workability, we conducted extensive research on composition 1 structure and manufacturing conditions. As a result, steel with a composition containing 0.10 or more but less than 0.15% C was hot-rolled under specific conditions at a cooling rate of 350 to 500°C that could sufficiently advance ferrite transformation and prevent pearlite transformation. By cooling to a temperature of 50% and winding it up, it is possible to obtain a structure in which the amount of retained austenite is uniformly dispersed in a two-phase matrix of ferrite and bainite in a volume fraction of 5% or more, resulting in high strength, reduced C content, and It has been found that workability can be improved in relation to manufacturing conditions, and weldability can be ensured at the same time. In addition, during cooling after hot rolling the steel under specific conditions,
By cooling to 350 to 500°C and winding at a cooling rate that allows ferrite transformation to proceed sufficiently and prevents pearlite transformation, the amount of residual austenite in the two-phase matrix of ferrite and bainite is reduced without making the ferrite finer. It has been discovered that it is possible to obtain a structure in which a volume fraction of 5% or more is uniformly dispersed, and that not only high strength and weldability but also low yield strength and workability can be ensured, and the present invention has been made based on this discovery. That is, the high-strength hot-rolled steel sheet (ml of the present invention) with excellent workability and weldability according to the present invention has a C: 0.10 or more and a C: 0.1
Less than 5%, Si: 0.5-3.0% and Mn: 0.5-
2.5%, with the remainder consisting of iron and unavoidable impurities, and characterized by having 5% or more of retained austenite uniformly dispersed in a two-phase matrix of ferrite and bainite. It is. The method for producing the high-strength hot-rolled steel sheet (method 1 of the present invention) is to process steel having the above-mentioned composition at a finish rolling end temperature of (Ar,
-50°C) to 850°C with a finish rolling reduction of 80% or more, and then cooling to a coiling temperature of 300°C to 500°C at a cooling rate that prevents pearlite transformation, and one roll is taken. 6 Furthermore, the high-strength hot-rolled steel sheet (invention 112) with excellent workability and weldability according to the present invention has a C: 0.10 or more and 0.
.. less than 15%, Si: 0.5-3.0% and Mn: 0.
5 to 2.5%, with the balance consisting of iron and unavoidable impurities, and 5% or more of retained austenite is uniform in a two-phase matrix of ferrite (with grain size of 5μ or more) and bainite. It is characterized by being dispersed in The method for manufacturing the high-strength hot-rolled steel sheet (method 2 of the present invention) is to process steel having the above composition at a finish rolling end temperature of (Ar,
-50℃) to 950℃, and after hot rolling,
It is cooled at a rate of 1-b to the nose temperature range of ferrite transformation of 600 to 800°C, and then cooled at a cooling rate of 30°C/S or less until just before pearlite transformation starts to advance ferrite transformation, and then the coiling temperature is It is characterized in that it is cooled to 300 to 500°C at a cooling rate that can prevent pearlite transformation, and then wound up. The present invention will be explained in more detail below. (Function) First, the reason for limiting the chemical composition of steel in the present invention will be explained. C: Since C is an essential element for increasing the strength of steel, a minimum amount is required, but the smaller the amount, the more effective it is in improving weldability as well as the workability. However, if it is less than 0.10%, a sufficient amount of retained austenite that improves ductility cannot be obtained. On the other hand, an increase in the amount of C increases the difference in hardness between the martensite phase, which is a strain-induced transformation of the second phase of bainite or retained austenite, and the ferrite phase. When the difference in hardness between the matrix and the second phase is large, deformation is difficult to transmit at the interface between the matrix and the second phase, and this interface becomes the starting point for cracks, resulting in cracking during processing. This effect becomes noticeable in the second phase generated when the amount of C is 15% or more, and it is not preferable that the amount of carbon is more than 0.15% because it deteriorates weldability.
The amount should be in the range of 0°10 to less than 0.15%, and 0.10 to less than 0.15%.
0°13% is preferred. Si: Increasing the content of SL is advantageous for the generation and purification of ferrite that contributes to improving ductility, and is also advantageous for concentrating C in untransformed austenite to obtain retained austenite. Furthermore, Si suppresses carbide formation during bainite transformation after winding, and makes C more concentrated in untransformed austenite, which is more advantageous for obtaining retained austenite. Furthermore, increasing the amount of Si causes solid solution hardening of the ferrite phase, which has the effect of reducing the difference in hardness between the ferrite phase and the second phase, suppressing the occurrence of cracks to a high degree of workability, and as a result, improving the workability of the ferrite phase. Improves sex. Such an effect is not fully exhibited when Si is less than 0.5%, and when Si is less than 0.5%,
If it exceeds 0%, the effects of ferrite generation, purification, and retention of retained austenite are saturated, and scale properties instead occur. This is not preferable because it deteriorates weldability and impairs workability due to the formation of an ordered phase (B2). Therefore, S
The amount of i should be in the range of 0.5 to 3.0%, and 1°5 to 2.0%.
is preferred. Mn: Mn has the effect of contributing to the retention of austenite as an austenite stabilizing element. However, this effect is 0
.. If it is less than 5%, sufficient results cannot be obtained, and if it exceeds 2.5%, the effect is saturated and weldability is deteriorated, which is not preferable. therefore. The amount of Mn is in the range of 0.5 to 3.0%. In addition, there is no need to add other alloying elements to the above steel,
The remainder is iron and unavoidable impurities. Next, conditions for the method of the present invention will be explained. In order to improve the ductility of hot rolled steel sheets with the above composition, it is first necessary to uniformly contain a predetermined amount of retained austenite in the two-phase matrix of ferrite and bainite. Stabilize by concentrating elements, etc. For this reason, in the method of the present invention, two types of manufacturing conditions are adopted on the premise that the composition is adjusted as described above. That is, as the first means (method 1 of the present invention), the finish rolling temperature of the above steel is (Ar, -50°C) to 850°C.
C, finish rolling is performed at a finish reduction rate of 80% or more to cause deformation-induced ferrite transformation. In addition, as a second means (method 2 of the present invention), the above steel (A
Finish rolling is completed at ~950°C (r3-50°C), then rapidly cooled to 600~800°C near the nose of ferrite transformation, and then slowly cooled around the nose of ferrite transformation to promote ferrite transformation. This produces ferrite that is advantageous for improving ductility, promotes the concentration of elements such as C in austenite, and contributes to the retention of austenite. This condition is to stabilize the austenite and not to refine the ferrite in order to improve workability, that is, the ferrite grain size is 5 μm.
It has also been considered not to make the ferrite less than fine. In the case of the first means and the second means, the finish rolling end temperature is (A
r, −50° C.), a ferrite texture is formed and the ductility is impaired, which is not preferable. therefore,
In the case of either method, the finish rolling end temperature is set to (Ar,
-50°C) or higher. However, when utilizing deformation-induced ferrite transformation as in the first method, a sufficient amount of ferrite must be obtained during hot rolling. However, if the finish rolling end temperature is too high, a very large rolling reduction is required to sufficiently advance ferrite transformation, so the upper limit of the finish rolling temperature is 850°C in order to sufficiently advance ferrite transformation within the practicable range. It is necessary to prevent the formation of processing transformation of ferrite that impairs ductility (Ar, -50℃).
In order to sufficiently advance ferrite transformation at the above temperature, the rolling reduction ratio in finish rolling must be 80% or more. In addition, as in the second method, when the process-induced ferrite transformation is not utilized and the ferrite transformation is rapidly cooled to the vicinity of the ferrite transformation nose and the ferrite transformation nose is gradually cooled to promote the ferrite transformation, the ferrite transformation may be accelerated during finish rolling. Since there is no need to allow transformation to proceed, it is not necessary to specify the rolling reduction ratio, but when the finish rolling end temperature is extremely high, the austenite grain size is too large and it takes a long time for ferrite transformation to proceed near the nose of ferrite transformation. The upper limit of the finish rolling temperature is set at the first
The temperature must be kept at 950°C, although it is higher than in the case of conventional methods. Further, after hot rolling, a cooling rate of 1° C./S or more is required to cool the steel sheet to the ferrite transformation nose temperature range of 600 to 800° C. without pearlitic transformation. However, a cooling rate of 200° C./S or more is not desirable because it is difficult to control the cooling rate and there is a risk of overcooling. After rapidly cooling to the vicinity of the nose of ferrite transformation in this manner, the amount of ferrite can be ensured by cooling at a cooling rate of 30° C./S or less (including isothermal maintenance). In this case, if the cooling rate exceeds 30° C./S, ferrite transformation will not proceed sufficiently, and therefore a sufficient amount of ferrite, which is essential for improving ductility, cannot be secured. Therefore, after being rapidly cooled to the vicinity of the nose of ferrite transformation after hot rolling, the
It is necessary to cool at a cooling rate of /S or less. In any of the above means, when ferrite transformation ends and pearlite transformation starts during cooling, C that is effective for remaining austenite is consumed, and the remaining austenite decreases. Therefore, in any of the above methods, after the above stage, it is necessary to cool down to the coiling temperature at a cooling rate that can prevent pearlite transformation. If the winding temperature exceeds 500°C, pearlite will be generated after winding or bainite transformation will progress excessively.
Not enough residual austenite can be obtained. Also, 300
At a winding temperature below ℃, the workability (hole expandability) deteriorates. Therefore, the winding temperature is in the range of 300 to 500°C. The resulting hot rolled steel sheet has a structure in which 5% or more of retained austenite is uniformly dispersed in a two-phase matrix of ferrite and bainite. However, in the case of the first means, the ferrite grain size is fine grains of less than 5 μI, but since the amount of C is small, weldability is excellent and workability is also improved. on the other hand. In the case of the second means, the weldability is excellent due to the small amount of C, and since the ferrite grain size is 5 μm or more, the yield strength is particularly low and the workability is excellent. Of course, in either case, it has high strength and a good strength-ductility balance. Next, examples of the present invention will be shown. (Example) Steels A to D having the chemical compositions shown in Table 1 were hot rolled under the conditions shown in Table 2, coiled, and air cooled. In addition, hot rolling is 30+m → 16mm → 8III→
A 3mm pass schedule was used. In addition, NQl(
Examples of the present invention) are produced by method 1 of the present invention, and Nα4 to Nα5 (examples of the present invention) are produced by method 2 of the present invention. The mechanical properties and structure of the obtained steel plate were investigated, as well as weldability (cross tensile strength after welding) and workability (hole expansion ratio). The results are also listed in Table 2. Inventive examples Nα1, Na4 and Nα5 are all TS
It exhibits an extremely high strength-ductility balance of XEQ>2400 (see Figure 1), and has excellent weldability and workability. On the other hand, since the comparative example Ha 2 has a low Si content, it also has Na
Since No. 3 has a low C content, almost no retained austenite is formed, the ductility is low, the strength-ductility balance is low, and the workability is also poor. Comparative Example Surface 6 has low ductility because the rolling reduction is too low and the steel is rapidly cooled to the coiling temperature, so ferrite transformation does not progress sufficiently, C concentration is insufficient, and the amount of retained austenite is insufficient. Processability is also poor. In Comparative Example Nα7, the finish rolling end temperature was too low and a processed ferrite structure was formed, so the ductility was low. Processability is also poor. Comparative Example Nα8 is cooled at a slow cooling rate even below the pearlite transformation start temperature (650° C. in this case), so no retained austenite is generated and the ductility is low. Processability is also poor. In Comparative Example &9, the coiling temperature was high, residual austenite was not generated, and ductility was insufficient. Processability is also poor. Comparative example Nα10 has a high C content of 0.25%, has insufficient welding strength, has poor weldability, and has poor workability. In Comparative Example 11, the finish rolling temperature was as high as 970° C., so the ferrite transformation did not proceed sufficiently, and the ductility and workability were low. Comparative Example NQ12 has poor hole expandability (workability) because the winding temperature is too low. It also has poor ductility. FIG. 2 shows the structure of the hot-rolled steel sheet, and it can be seen that the structure (a) of Invention Example &4 has coarser ferrite grains than the structure (b) of Comparative Example NqlO.

【以下余白】[Left below]

(発明の効果) 以上詳述したところから明らかなように、本発明によれ
ば、引張強度60 kgf/mm2以上で強度−延性バ
ランスがよく、且つ加工性、溶接性ともに優れた高強度
熱延鋼板を得ることができる。また特別な合金元素の添
加なしに製造でき、特に大圧下の圧延をしなくともよい
ので、経済的であり、更に巻取後に特別の冷却が不要で
あるので安定した品質が得られる等、産業上の効果は非
常に大きい。
(Effects of the Invention) As is clear from the above detailed description, the present invention provides a high-strength hot rolled sheet having a tensile strength of 60 kgf/mm2 or more, a good strength-ductility balance, and excellent workability and weldability. You can get steel plates. In addition, it is economical because it can be manufactured without adding any special alloying elements, and there is no need for particularly high rolling. Furthermore, it does not require special cooling after winding, so stable quality can be obtained. The above effect is very large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTSとEQの関係(強度−延性バランス)を示
した図、 第2図は実施例で得られた熱延鋼板の金属組織を示す顕
微鏡写真(X400)で、(a)は本発明例の場合を示
し、(b)は比較例の場合を示している。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚 El(/、) (α) 第 し
Figure 1 is a diagram showing the relationship between TS and EQ (strength-ductility balance). Figure 2 is a micrograph (X400) showing the metallographic structure of the hot rolled steel sheet obtained in the example. The case of the invention example is shown, and (b) shows the case of the comparative example. Patent Applicant Kobe Steel Corporation Patent Attorney Hisashi Nakamura (/,) (α) No.

Claims (4)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、C:0.10以上で0
.15%未満、Si:0.5〜3.0%及びMn:0.
5〜2.5%を含有し、残部が鉄及び不可避的不純物か
らなる組成を有し、フェライト及びベイナイトの二相マ
トリックス中に5%以上の残留オーステナイトが均一に
分散していることを特徴とする加工性、溶接性に優れた
高強度熱延鋼板。
(1) In weight% (the same applies hereinafter), C: 0.10 or more
.. less than 15%, Si: 0.5-3.0% and Mn: 0.
5 to 2.5%, with the remainder consisting of iron and unavoidable impurities, and is characterized by having 5% or more of retained austenite uniformly dispersed in a two-phase matrix of ferrite and bainite. High-strength hot-rolled steel sheet with excellent workability and weldability.
(2)C:0.10以上で0.15%未満、Si:0.
5〜3.0%及びMn:0.5〜2.5%を含有し、残
部が鉄及び不可避的不純物からなる組成を有する鋼を、
仕上圧延終了温度が(Ar_3−50℃)〜850℃、
仕上圧下率が80%以上の条件で仕上圧延を行い、その
後巻取温度300〜500℃までをパーライト変態を阻
止し得る冷却速度で冷却し、巻取ることを特徴とする加
工性、溶接性に優れた高強度熱延鋼板の製造方法。
(2) C: 0.10 or more and less than 0.15%, Si: 0.
5 to 3.0% and Mn: 0.5 to 2.5%, with the balance consisting of iron and inevitable impurities,
Finish rolling end temperature is (Ar_3-50℃) ~ 850℃,
Workability and weldability characterized by finishing rolling at a finish rolling reduction of 80% or more, then cooling to a coiling temperature of 300 to 500°C at a cooling rate that can prevent pearlite transformation, and coiling. A method for producing superior high-strength hot-rolled steel sheets.
(3)C:0.10以上で0.15%未満、Si:0.
5〜3.0%及びMn:0.5〜2.5%を含有し、残
部が鉄及び不可避的不純物からなる組成を有し、フェラ
イト(但し、粒径5μm以上)及びベイナイトの二相マ
トリックス中に5%以上の残留オーステナイトが均一に
分散していることを特徴とする加工性、溶接性に優れた
高強度熱延鋼板。
(3) C: 0.10 or more and less than 0.15%, Si: 0.
5 to 3.0% and Mn: 0.5 to 2.5%, with the remainder consisting of iron and unavoidable impurities, and a two-phase matrix of ferrite (with a grain size of 5 μm or more) and bainite. A high-strength hot-rolled steel sheet with excellent workability and weldability, characterized by having 5% or more of retained austenite uniformly dispersed therein.
(4)C:0.10以上で0.15%未満、Si:0.
5〜3.0%、Mn:0.5〜2.5%を含有し、残部
が鉄及び不可避的不純物からなる組成を有する鋼を、仕
上圧延終了温度が(Ar_3−50℃)〜950℃で熱
間圧延を行い、熱延終了後、600〜800℃のフェラ
イト変態のノーズ温度域まで1〜200℃/sの冷却速
度で冷却し、その後30℃/s以下の冷却速度でパーラ
イト変態が開始する直前まで冷却してフェライト変態を
進行させ、更に巻取温度300〜500℃までパーライ
ト変態を阻止し得る冷却速度で冷却し、巻取ることを特
徴とする加工性、溶接性に優れた高強度熱延鋼板の製造
方法。
(4) C: 0.10 or more and less than 0.15%, Si: 0.
5 to 3.0%, Mn: 0.5 to 2.5%, and the balance is iron and unavoidable impurities.The finish rolling temperature is (Ar_3-50℃) to 950℃. After hot rolling, cooling is performed at a cooling rate of 1 to 200°C/s to the nose temperature range of ferrite transformation of 600 to 800°C, and then pearlite transformation is carried out at a cooling rate of 30°C/s or less. It is characterized by the fact that it is cooled until just before the start of ferrite transformation to advance ferrite transformation, and further cooled to a coiling temperature of 300 to 500°C at a cooling rate that can prevent pearlite transformation, and then coiled. A method for producing high-strength hot-rolled steel sheets.
JP30302388A 1988-11-30 1988-11-30 High strength hot rolled steel sheet having excellent workability and weldability Pending JPH02149646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30302388A JPH02149646A (en) 1988-11-30 1988-11-30 High strength hot rolled steel sheet having excellent workability and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30302388A JPH02149646A (en) 1988-11-30 1988-11-30 High strength hot rolled steel sheet having excellent workability and weldability

Publications (1)

Publication Number Publication Date
JPH02149646A true JPH02149646A (en) 1990-06-08

Family

ID=17916005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30302388A Pending JPH02149646A (en) 1988-11-30 1988-11-30 High strength hot rolled steel sheet having excellent workability and weldability

Country Status (1)

Country Link
JP (1) JPH02149646A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341523A (en) * 1991-05-17 1992-11-27 Kobe Steel Ltd Production of hot rolled high strength steel plate excellent in ductility and workability
BE1011557A4 (en) * 1997-11-19 1999-10-05 Cockerill Rech & Dev Steel with a high elasticity limit showing good ductility and a method of manufacturing this steel
EP2752500A4 (en) * 2011-08-31 2015-08-19 Jfe Steel Corp Hot-rolled steel sheet for cold-rolled steel sheet, hot-rolled steel sheet for hot-dipped galvanized steel sheet, method for producing hot-rolled steel sheet for cold-rolled steel sheet, and method for producing hot-rolled steel sheet for hot-dipped galvanized steel sheet
WO2016132542A1 (en) * 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
US10889879B2 (en) 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
US10913988B2 (en) 2015-02-20 2021-02-09 Nippon Steel Corporation Hot-rolled steel sheet
US11236412B2 (en) 2016-08-05 2022-02-01 Nippon Steel Corporation Steel sheet and plated steel sheet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341523A (en) * 1991-05-17 1992-11-27 Kobe Steel Ltd Production of hot rolled high strength steel plate excellent in ductility and workability
BE1011557A4 (en) * 1997-11-19 1999-10-05 Cockerill Rech & Dev Steel with a high elasticity limit showing good ductility and a method of manufacturing this steel
EP2752500A4 (en) * 2011-08-31 2015-08-19 Jfe Steel Corp Hot-rolled steel sheet for cold-rolled steel sheet, hot-rolled steel sheet for hot-dipped galvanized steel sheet, method for producing hot-rolled steel sheet for cold-rolled steel sheet, and method for producing hot-rolled steel sheet for hot-dipped galvanized steel sheet
US11098392B2 (en) 2011-08-31 2021-08-24 Jfe Steel Corporation Hot rolled steel sheet for cold rolled steel sheet, hot rolled steel sheet for galvanized steel sheet, and method for producing the same
WO2016132542A1 (en) * 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
JPWO2016132542A1 (en) * 2015-02-20 2017-10-05 新日鐵住金株式会社 Hot rolled steel sheet
US10913988B2 (en) 2015-02-20 2021-02-09 Nippon Steel Corporation Hot-rolled steel sheet
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
US10889879B2 (en) 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
US11236412B2 (en) 2016-08-05 2022-02-01 Nippon Steel Corporation Steel sheet and plated steel sheet

Similar Documents

Publication Publication Date Title
JP3417878B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue properties and its manufacturing method
JPH0949026A (en) Production of high strength hot rolled steel plate excellent in balance between strength and elongation and in stretch-flange formability
JPH02149646A (en) High strength hot rolled steel sheet having excellent workability and weldability
JPH05179345A (en) Production of compound structure steel plate having high workability and high strength
JPH05195058A (en) Production of thick steel plate having high toughness and high tensile strength
JP3885314B2 (en) Method for producing high-strength hot-rolled steel sheet having excellent shape and workability
JP3954411B2 (en) Manufacturing method of high-strength hot-rolled steel sheet with excellent material uniformity and hole expandability
JPS6156235A (en) Manufacture of high toughness nontemper steel
JP3806958B2 (en) Manufacturing method of high-tensile hot-rolled steel sheet
JPS63241120A (en) Manufacture of high ductility and high strength steel sheet having composite structure
JP3284035B2 (en) High strength hot rolled steel sheet excellent in stretch flangeability and method for producing the same
JPS6119733A (en) Preparation of super 70kg grade high strength hot rolled steel plate excellent in elongation flange property
JPH1036917A (en) Production of high strength hot-rolled steel plate excellent in stretch-flanging property
JPS60181230A (en) Production of high-tension hot rolled steel plate having excellent workability
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction
JP2829510B2 (en) Method for producing high-strength hot-rolled steel sheet with excellent ductility and workability
JPH10280115A (en) Manufacture of high strength hop dip galvanized steel sheet, excellent in workability
JPH0762487A (en) High strength and high workability steel sheet for can producing excellent in baking hardenability, aging resistance and non-earing
JPH10237551A (en) Production of hot rolled steel sheet excellent in fatigue characteristic and stretch-flanging property
JP3831057B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent workability
JPH04341523A (en) Production of hot rolled high strength steel plate excellent in ductility and workability
JP2820774B2 (en) Method for producing high-strength hot-rolled steel sheet with excellent ductility
JPS63223123A (en) Manufacture of non-heat-treated steel having low yielding ratio
JPH0625739A (en) Manufacture of sour resistant steel sheet having excellent low temperature toughness
JPH05186824A (en) Production of cold rolled steel sheet having high strength and high ductility and excellent in aging characteristic