JP3257009B2 - Manufacturing method of high workability high strength composite structure steel sheet - Google Patents

Manufacturing method of high workability high strength composite structure steel sheet

Info

Publication number
JP3257009B2
JP3257009B2 JP35816491A JP35816491A JP3257009B2 JP 3257009 B2 JP3257009 B2 JP 3257009B2 JP 35816491 A JP35816491 A JP 35816491A JP 35816491 A JP35816491 A JP 35816491A JP 3257009 B2 JP3257009 B2 JP 3257009B2
Authority
JP
Japan
Prior art keywords
less
heating
sec
temperature
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35816491A
Other languages
Japanese (ja)
Other versions
JPH05179345A (en
Inventor
青史 津山
浩之 角田
佳弘 細谷
恭紀 大崎
康幸 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP35816491A priority Critical patent/JP3257009B2/en
Publication of JPH05179345A publication Critical patent/JPH05179345A/en
Application granted granted Critical
Publication of JP3257009B2 publication Critical patent/JP3257009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高加工性高強度複合組織
鋼板の製造方法に係り、自動車などの成形加工部材に用
いられるに適した複合組織鋼板の製造方法を提供しよう
とするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-workability, high-strength composite structure steel sheet, and an object of the present invention is to provide a method for producing a composite structure steel sheet suitable for use in forming members such as automobiles. .

【0002】[0002]

【従来の技術】近年、地球環境保全の観点から、自動車
の燃費向上が望まれており、このために車体材料の高強
度化による薄肉化により車体そのものを軽量化しようと
する動きが活発である。しかしながら、このような自動
車用薄鋼板の高強度化は延性すなわち成形加工性の低下
を招くことから、高強度と高加工性を合わせ持った材料
の開発が望まれている。
2. Description of the Related Art In recent years, from the viewpoint of global environmental protection, it has been desired to improve the fuel efficiency of automobiles. For this reason, there is an active movement to reduce the weight of the vehicle itself by making the body material thinner by increasing the strength. . However, increasing the strength of such a thin steel sheet for automobiles leads to a decrease in ductility, that is, a reduction in formability, and therefore, development of a material having both high strength and high workability has been desired.

【0003】斯様な要求に対して、特開昭55−145
121、特開昭62−182224、特開昭63−24
1120、特開昭64−79321など残留オーステナ
イトの加工誘起変態を利用した複合組織鋼板が多く提案
されている。これらの鋼では残留オーステナイトが加工
誘起マルテンサイト変態することによって硬化し、局所
的な歪みの集中が生じず、一様変形能が高くなることを
特長とし、高強度であるにかかわらず、加工性にもすぐ
れる。このような特性を得るには、化学組成と製造条件
の適正組み合わせが必須であり、連続焼鈍を施す冷延鋼
板においては、フェライト・オーステナイト2相域での
加熱温度および保持時間、引き続く中間保持の温度およ
び時間、さらにはこの温度間の冷却速度の制御の重要性
が開示されている。
In response to such a demand, Japanese Patent Application Laid-Open No. 55-145
121, JP-A-62-182224, JP-A-63-24
1120, JP-A-64-79321 and the like have been proposed many steel sheets having a composite structure utilizing the work-induced transformation of retained austenite. These steels are characterized in that the retained austenite is hardened by transformation induced martensitic transformation, does not cause local strain concentration, and has high uniform deformability. Excellent. To obtain such properties, a proper combination of chemical composition and manufacturing conditions is essential. In cold-rolled steel sheets subjected to continuous annealing, the heating temperature and holding time in the ferrite-austenite two-phase region, and the subsequent intermediate holding The importance of controlling the temperature and time, as well as the cooling rate between these temperatures, is disclosed.

【0004】[0004]

【発明が解決しようとする課題】上記した従来技術のよ
うな制御だけでは、かならずしも、高い加工性が安定し
て得られないという問題がある。すなわち、2相域加熱
により組織を複合化することを前提とする場合は、完全
にオーステナイト変態させるわけではないので、連続焼
鈍における2相域加熱前の組織が最終組織および特性に
大きく影響を及ぼすことになる。
However, there is a problem that high workability cannot always be stably obtained by only the control as in the above-mentioned prior art. That is, when it is assumed that the structure is complexed by heating in the two-phase region, the structure is not completely transformed into austenite, so that the structure before heating in the two-phase region in continuous annealing greatly affects the final structure and properties. Will be.

【0005】[0005]

【課題を解決するための手段】本発明は上記したような
従来技術における課題を解決することについて検討を重
ねた結果、このような複合組織鋼板の製造条件を改善す
ることにより適切な解決をなし得ることを確認した。
The present invention has been studied to solve the problems in the prior art as described above, and as a result, it has been found that an appropriate solution can be attained by improving the manufacturing conditions of such a composite structure steel sheet. I confirmed that I got it.

【0006】即ち、本発明においては、連続焼鈍加熱に
よりフェライト・オーステナイトの2相状態とし、引き
続く冷却・中間保持により基本的にはオーステナイトを
一部残留させつつ、ベイナイトもしくはマルテンサイト
あるいはその両方に変態させる。この場合、これら組
織、特にフェライトおよび残留オーステナイトの分率制
御が高強度および高加工性確保の観点から重要であるこ
とは、周知の如くで、連続焼鈍における2相域加熱以降
のプロセスの制御が盛んになされている。しかしなが
ら、単なる組織の分率制御だけでは材質的安定性に欠け
るという問題があり、材質安定化には組織の形態および
寸法の制御も重要となる。後者に対しては、連続焼鈍時
の加熱条件のみならず加熱過程での組織変化が重要な因
子であり、その制御のため、2相域加熱以降のプロセス
のみならず加熱速度を適正化することにより、残留オー
ステナイトを均一微細に分散させ、材質の安定化および
さらなる特性向上が可能であることを新たに見いだし
た。なお、加熱速度の重要性を開示したものとして、特
開昭61−217529と特開昭60─17013があ
るが、前者はオーステナイト単相領域に加熱するもので
あり、2相域加熱との組み合わせを必要条件とする本発
明の骨子とは本質的に異なるものである。また、後者は
加熱速度が1000℃/分(=16.7℃/sec) 以上となっ
ており、本発明の2段加熱速度制御の思想および2段目
の速度範囲が大きく異なる。本発明は以下の如くであ
る。
That is, in the present invention, the ferrite-austenite is made into a two-phase state by continuous annealing heating, and is transformed into bainite and / or martensite while a part of austenite basically remains by subsequent cooling and intermediate holding. Let it. In this case, it is well known that the control of the fraction of these structures, particularly ferrite and retained austenite, is important from the viewpoint of ensuring high strength and high workability. It is being prospered. However, there is a problem that mere control of the tissue fraction alone lacks material stability, and control of the form and size of the tissue is also important for material stabilization. For the latter, not only the heating conditions during continuous annealing but also the microstructural changes during the heating process are important factors. To control this, it is necessary to optimize not only the process after the two-phase region heating but also the heating rate. As a result, it has been newly found that the retained austenite can be uniformly and finely dispersed to stabilize the material and further improve the characteristics. Japanese Patent Application Laid-Open Nos. 61-217529 and 60-17013 disclose the importance of the heating rate. The former is for heating in the austenite single phase region, and the combination with the two-phase region heating is disclosed. Is essentially different from the gist of the present invention which requires the following. In the latter, the heating rate is 1000 ° C./min (= 16.7 ° C./sec) or more, and the concept of the two-step heating rate control of the present invention and the speed range of the second step are greatly different. The present invention is as follows.

【0007】(1) 重量%で、C:0.07〜0.3%、
Si:0.7〜2.5%、Mn:0.7〜2.5%、sol.Al:0.00
5〜0.10%、N:0.0080%以下、P:0.02%以
下、S:0.01%以下を含有し、残部がFeおよび不可避
不純物よりなる鋼スラブを熱間圧延し、700℃以下で
巻き取った後、スケール除去、冷間圧延し、2相域加熱
の連続焼鈍を施すに当って、500℃から次式で示され
る加熱速度変曲点:Ttまでの温度範囲を20℃/sec 以
上、該加熱速度変曲点:TtからAc1 変態点+25℃以上
Ac3 変態点未満の保持温度までを1〜5℃/sec の昇温
速度により加熱することを特徴とする高加工性高強度複
合組織鋼板の製造方法。但し、675−66〔%C〕−
14〔%Mn〕+22〔%Si〕≦ Tt(℃) ≦725−66
〔%C〕−14〔%Mn〕+22〔%Si〕
(1) C: 0.07 to 0.3% by weight,
Si: 0.7 to 2.5%, Mn: 0.7 to 2.5%, sol. Al: 0.00
Hot rolling a steel slab containing 5 to 0.10%, N: 0.0080% or less, P: 0.02% or less, S: 0.01% or less, with the balance being Fe and unavoidable impurities; After winding at 700 ° C. or less, the scale is removed, cold-rolled, and subjected to continuous annealing in a two-phase region heating, and the temperature range from 500 ° C. to the heating rate inflection point: Tt represented by the following equation: 20 ° C / sec or more, the heating rate inflection point: Tt to Ac 1 transformation point + 25 ° C or more
A method for producing a high-workability, high-strength composite steel sheet, comprising heating to a holding temperature lower than the Ac 3 transformation point at a rate of 1 to 5 ° C / sec. However, 675-66 [% C]-
14 [% Mn] +22 [% Si] ≦ Tt (° C.) ≦ 725-66
[% C] -14 [% Mn] +22 [% Si]

【0008】(2) 重量%で、C:0.07〜0.3%、
Si:0.7〜2.5%、Mn:0.7〜2.5%、sol.Al:0.00
5〜0.10%、N:0.0080%以下、P:0.02%以
下、S:0.01%以下を含有し、さらに、B:0.0005〜
0.003 %、Ti:0.005 〜0.08%、Nb:0.005 〜0.08
%、V:0.005〜0.08%、Zr:0.005〜0.08
%、Cr:0.2〜1.0%、Mo:0.2〜1.0%、Ni:0.2〜
1.0%、Cu:0.2〜1.0%の中から選ばれる少なくとも
1種または2種以上を含有し、残部がFeおよび不可避不
純物よりなる鋼スラブを熱間圧延し、700℃以下で巻
き取った後、スケール除去、冷間圧延し、2相域加熱の
連続焼鈍を施すに当って、500℃から次式で示される
加熱速度変曲点:Ttまでの温度範囲を20℃/sec 以
上、該加熱速度変曲点:TtからAc1 変態点+25℃以上
Ac3 変態点未満の保持温度までを1〜5℃/sec の昇温
速度により加熱することを特徴とする高加工性高強度複
合組織鋼板の製造方法。但し、675−66〔%C〕−
14〔%Mn〕+22〔%Si〕−8〔%Cr〕−8〔%Mo〕
≦ Tt(℃) ≦725−66〔%C〕−14〔%Mn〕+2
2〔%Si〕−8〔%Cr〕−8〔%Mo〕
(2) C: 0.07 to 0.3% by weight,
Si: 0.7 to 2.5%, Mn: 0.7 to 2.5%, sol. Al: 0.00
5 to 0.10%, N: 0.0080% or less, P: 0.02% or less, S: 0.01% or less, and B: 0.0005 to
0.003%, Ti: 0.005 to 0.08%, Nb: 0.005 to 0.08
%, V: 0.005 to 0.08%, Zr: 0.005 to 0.08
%, Cr: 0.2-1.0%, Mo: 0.2-1.0%, Ni: 0.2-
Hot rolled steel slab containing at least one or more selected from 1.0% and Cu: 0.2 to 1.0%, the balance being Fe and unavoidable impurities, 700 ° C or less And then subjected to scale removal, cold rolling, and continuous annealing in a two-phase region heating. sec or more, the heating rate inflection point: Tt to Ac 1 transformation point + 25 ° C or more
High workability high strength method for producing a composite steel sheet, which comprises heating Ac 3 a to the holding temperature of less than transformation point by heating rate of 1 to 5 ° C. / sec. However, 675-66 [% C]-
14 [% Mn] +22 [% Si] -8 [% Cr] -8 [% Mo]
≤ Tt (° C) ≤ 725-66 [% C] -14 [% Mn] + 2
2 [% Si] -8 [% Cr] -8 [% Mo]

【0009】(3) Ac1 変態点+25℃以上Ac3 変態
点未満の保持温度範囲に15〜240秒保持し、該温度
から600〜750℃までを5〜30℃/sec 、それ以
下を30〜300℃/秒の冷却速度で350〜500℃
まで冷却し、引続き該温度範囲で20〜600秒保持し
てから室温まで冷却することを特徴とする前記(1)ま
たは(2)に記載の高加工性高強度複合組織鋼板の製造
方法。
(3) The temperature is held for 15 to 240 seconds in a holding temperature range of not less than Ac 1 transformation point + 25 ° C. and less than Ac 3 transformation point, 5 to 30 ° C./sec from the temperature to 600 to 750 ° C. 350-500 ° C at cooling rate of ~ 300 ° C / sec
The method for producing a high-workability, high-strength composite structure steel sheet according to the above (1) or (2), wherein the steel sheet is cooled to room temperature, kept at this temperature range for 20 to 600 seconds, and then cooled to room temperature.

【0010】[0010]

【作用】上記したような本発明について、先ずその対象
とする鋼の成分範囲限定理由は以下の如くである。 C:0.07〜0.3%。 Cは、強化元素であるとともにオーステナイト安定化元
素であり、2相域加熱および中間加熱保持時にオーステ
ナイト中に濃化し、室温までオーステナイトを残留させ
る。この残留オーステナイトが加工中に塑性誘起マルテ
ンサイト変態し、成形加工性を向上させることから極め
て重要な元素である。0.07%未満では加工性を向上さ
せるだけの、残留オーステナイトが確保できない。一
方、0.3%を超えると溶接性が劣化し、溶接性継手強度
も低下する。したがって、Cの適性添加量は0.07〜0.
3%とする。
In the present invention as described above, the reasons for limiting the range of components of the steel to be treated are as follows. C: 0.07 to 0.3%. C is an austenite stabilizing element as well as a strengthening element, and is concentrated in austenite during two-phase region heating and intermediate heating holding, leaving austenite to room temperature. This retained austenite is a very important element because it undergoes plasticity-induced martensitic transformation during processing and improves formability. If it is less than 0.07%, retained austenite, which only improves workability, cannot be secured. On the other hand, when the content exceeds 0.3%, the weldability deteriorates and the weldability joint strength also decreases. Therefore, the appropriate addition amount of C is 0.07 to 0.0.
3%.

【0011】Si:0.7〜2.5%。 Siは、フェライト安定化元素であるが、強度を上昇させ
るとともに、炭化物生成を抑え、オーステナイト中への
C濃化を促進するために、残留オーステナイト量を増す
重要な元素である。この効果を得るには、0.7%以上の
添加が必要であるが、2.5%を超えると、鋼を硬質化さ
せ、鋼板そのものの製造性を大きく低下させるので、添
加の範囲としては0.7〜2.5%とした。
Si: 0.7-2.5%. Si is a ferrite stabilizing element, and is an important element that increases the amount of retained austenite in order to increase strength, suppress carbide formation, and promote C enrichment in austenite. To obtain this effect, the addition of 0.7% or more is necessary. However, if it exceeds 2.5%, the steel is hardened and the productivity of the steel sheet itself is greatly reduced. 0.7-2.5%.

【0012】Mn:0.7〜2.5%。 Mnは、焼入れ性を高め、パーライトの生成を抑制すると
ともに、オーステナイトを安定化する重要な元素であ
り、0.7 %以上の添加が必要である。しかし、2.5%を
超えるような過剰の添加によりバンド状組織が形成さ
れ、延性が劣化する。したがって、添加の範囲としては
0.7 〜2.5%とすることが必要である。
Mn: 0.7-2.5%. Mn is an important element that enhances hardenability, suppresses the formation of pearlite, and stabilizes austenite, and must be added in an amount of 0.7% or more. However, an excessive addition of more than 2.5% forms a band-like structure and deteriorates ductility. Therefore, the range of addition
It is necessary to set it to 0.7 to 2.5%.

【0013】sol.Al:0.005〜0.10%。 sol.Alは、脱酸のために0.005%以上添加する必要が
あるが、0.10%を超える過剰の添加は窒化物の増加に
より延性を劣化させるので、0.005〜0.10%が適性
添加量である。
Sol.Al: 0.005 to 0.10%. Although sol. Al needs to be added in an amount of 0.005% or more for deoxidation, an excessive addition exceeding 0.10% degrades ductility due to an increase in nitrides. % Is the appropriate addition amount.

【0014】N:0.0080%以下。 Nは、Cと同様のオーステナイト安定化侵入型固溶元素
であるが、0.0080%を超えると延性の低下を招くの
で、添加量は0.0080%以下とすることが必要であ
る。
N: 0.0080% or less. N is an austenite-stabilized interstitial solid-solution element similar to C, but if it exceeds 0.0080%, ductility is reduced. Therefore, the amount of N must be 0.0080% or less.

【0015】P:0.02%以下。 Pは、フェライト安定化元素であり、Siと同様の効果を
有するが、偏析により脆化を引き起こす。よって、0.0
2%以下に限定する。
P: 0.02% or less. P is a ferrite stabilizing element and has the same effect as Si, but causes embrittlement due to segregation. Therefore, 0.0
Limited to 2% or less.

【0016】S:0.01%以下。 Sは、延性を低下させるために、できるだけ少ない方が
望ましく、上限を0.01%とすべきである。
S: 0.01% or less. S is desirably as small as possible to reduce ductility, and the upper limit should be 0.01%.

【0017】本発明においては上記組成を基本成分とす
るが、必要に応じて以下の元素を1種または2種以上添
加してもよい。即ち、Bは、微量で焼入れ性を向上させ
る元素であり冷却時のフェライトの粒成長を抑える効果
がある。しかし、0.0005%より少ないとその効果が
得られず、逆に0.003%を超えると却って粗大なボラ
イドを形成し、却って焼入れ性を低下させるので、添加
量は0.0005〜0.003%とする。
In the present invention, the above composition is used as a basic component, but one or more of the following elements may be added as necessary. That is, B is an element that improves the hardenability in a trace amount and has an effect of suppressing the grain growth of ferrite during cooling. However, if the amount is less than 0.0005%, the effect cannot be obtained. On the contrary, if the amount exceeds 0.003%, coarse boride is formed and the hardenability is rather lowered, so that the addition amount is 0.0005 to 0.005%. 003%.

【0018】Ti、Nb、V、Zrは微細な炭窒化物を形成
し、組織の細粒化が図れ、残留オーステナイトが均一に
分布することによって加工誘起変態を効果的に生じさせ
ることができる。0.005%より少ないと、その効果が
得られず、0.08%を超えると炭窒化物が粗大になり、
却って延性の低下を招くので、添加量は0.005〜0.0
8%とする。
Ti, Nb, V, and Zr form fine carbonitrides, refine the structure, and uniformly distribute the retained austenite, whereby the work-induced transformation can be effectively generated. If it is less than 0.005%, the effect cannot be obtained, and if it exceeds 0.08%, the carbonitride becomes coarse,
On the contrary, since the ductility is reduced, the amount of addition is 0.005 to 0.0.
8%.

【0019】Cr、Moは、フェライト安定化元素であるが
焼入れ性を向上させ、オーステナイトを残留させる効果
がある。その効果は0.2%以上で得られるが、1.0%を
超えると安定炭化物の生成により、逆に残留オーステナ
イトが減少することになる。したがって、添加量は0.2
〜1.0%とした。
Although Cr and Mo are ferrite stabilizing elements, they have the effect of improving hardenability and leaving austenite. The effect can be obtained at 0.2% or more. However, when the content exceeds 1.0%, the generation of stable carbides causes the reduction of retained austenite. Therefore, the added amount is 0.2
11.0%.

【0020】Cu、Niは、オーステナイト安定化元素であ
り、オーステナイトを残留させるとともに強度上昇にも
効果がある。この効果は0.2%未満では得られず、1.0
%を超えると強度が高くなりすぎて、却って成形性が低
下する。したがって、添加量を0.2〜1.0%とする。
Cu and Ni are austenite stabilizing elements, and are effective in retaining austenite and increasing strength. This effect cannot be obtained at less than 0.2%,
%, The strength is too high, and the moldability is rather reduced. Therefore, the amount of addition is set to 0.2 to 1.0%.

【0021】上記したような成分組成の鋼に対する本発
明の製造条件について述べると、常法によって溶製−鋳
造したスラブを熱間圧延し、700℃以下で巻き取るこ
ととする。700℃を超えるような巻き取り温度では、
炭化物が凝集・粗大化し、これを核として生成するオー
ステナイト粒が大きくなり、高い延性が得られなくなる
ので、巻き取り温度は700℃以下とする。なお、熱間
圧延は直送圧延であっても、再加熱圧延であっても特に
問題はない。
The production conditions of the present invention for steel having the above composition are described below. A slab melt-cast by a conventional method is hot-rolled and wound at 700 ° C. or less. At winding temperatures above 700 ° C,
The carbide is agglomerated and coarsened, and austenite grains generated using the nucleus as a core become large and high ductility cannot be obtained. Therefore, the winding temperature is set to 700 ° C. or lower. It should be noted that there is no particular problem whether the hot rolling is direct rolling or reheating rolling.

【0022】このようにして得られた熱間圧延コイルを
酸洗などによりスケール除去し、冷間圧延により所定の
板厚とする。この時の冷間圧延率は特に規定しないが、
微細な再結晶・変態組織を得るためには50%以上の圧
延率の確保が望ましい。そして、次に連続焼鈍を行う。
The hot-rolled coil thus obtained is scale-removed by pickling or the like, and is cold-rolled to a predetermined thickness. Although the cold rolling reduction at this time is not particularly specified,
In order to obtain a fine recrystallized / transformed structure, it is desirable to secure a rolling rate of 50% or more. Then, continuous annealing is performed.

【0023】連続焼鈍における2段の加熱速度制御は、
図1の薄鋼板のプレス成形の主変形様式である平面歪み
状態での張出成形高さ(LDHo)に及ぼす1段目と2段目
の加熱速度の影響から分かるように本発明の骨子をなす
ものである。1段目は速く、2段目は遅く加熱すると成
形性が向上する。すなわち、室温から500℃までの加
熱速度は任意であるが、500℃から加熱速度変曲点:
Ttまでは回復・再結晶域であり、ここでの加熱速度が2
0℃/秒より小さいと、緩慢なフェライトの再結晶が進
行するために、フェライト粒が微細でなくなるととも
に、第2相が凝集・粗大化しやすくなり、最終的な残留
オーステナイトの分布が、成形加工の進行に伴う連続的
な塑性誘起変態を起こさせるに望ましい均一微細分散状
態とはならなくなる。また、TtからAc1 変態点+25℃
以上Ac3 変態点未満の保持温度までは、5℃/秒以下に
加熱速度を制御し、残留オーステナイト確保の観点から
逆に変態を緩慢に進行させ、オーステナイト中にCを濃
化させる必要がある。このようなCの濃化は加熱保持中
にも起りうるが、後者の場合は粒成長などの顕著な組織
変化をともなうことになるので、前者の制御が重要な意
味を持つ。ただし、加熱速度が1℃/秒より小さすぎる
と、保持温度まで達するのに長時間を要するので、ライ
ン長の増大・設備の大型化が必須となり、経済性を損ね
る原因となる。したがって、加熱速度は500℃からTt
までの温度範囲を20℃/秒以上、TtからAc1 変態点+
25℃以上Ac3 変態点未満の保持温度までを1〜5℃/
秒とする。
The two-step heating rate control in the continuous annealing is as follows.
As can be seen from the influence of the first and second heating rates on the overhang height (LDHo) in the plane strain state, which is the main deformation mode of the press forming of the thin steel sheet in FIG. What to do. The first stage is faster, and the second stage is slower, whereby the moldability is improved. That is, the heating rate from room temperature to 500 ° C. is arbitrary, but the heating rate inflection point from 500 ° C .:
Up to Tt, it is a recovery / recrystallization area, where the heating rate is 2
If the temperature is lower than 0 ° C./sec, since slow recrystallization of ferrite proceeds, the ferrite grains are not fine, and the second phase is easily aggregated and coarsened. It becomes impossible to obtain a uniform and finely dispersed state which is desirable for causing continuous plasticity-induced transformation as the process proceeds. Also, from Tt to Ac 1 transformation point + 25 ° C
Up to the holding temperature lower than the Ac 3 transformation point, it is necessary to control the heating rate to 5 ° C./sec or less, to progress the transformation slowly in order to secure the retained austenite, and to concentrate C in the austenite. . Such a concentration of C may occur during the heating and holding, but in the latter case, a remarkable structural change such as grain growth is accompanied, so that the former control is important. However, if the heating rate is less than 1 ° C./sec, it takes a long time to reach the holding temperature, so that an increase in the line length and an increase in the size of the equipment are indispensable, which is a cause of impairing economic efficiency. Therefore, the heating rate is from 500 ° C to Tt
Temperature range up to 20 ° C / sec, Tt to Ac 1 transformation point +
1 to 5 ° C. until the holding temperature below 25 ° C. or higher Ac 3 transformation point /
Seconds.

【0024】なお、図1中のデ−タに対応する製造条件
は本発明の請求範囲内であり、実施例中に明記した。こ
こで、加熱速度変曲点:Ttは基本的にはAc1 変態点およ
び炭化物の分解速度を支配する成分の関数となり、本発
明の成分範囲内では、近似的に次式で表される。 675−66〔%C〕−14〔%Mn〕+22〔%Si〕−
8〔%Cr〕−8〔%Mo〕≦Tt(℃)≦725−66%
〔C〕−14〔%Mn〕+22〔%Si〕−8〔%Cr〕−8
〔%Mo〕
The manufacturing conditions corresponding to the data in FIG. 1 are within the scope of the present invention, and are specified in the examples. Here, the heating rate inflection point: Tt is basically a function of the Ac 1 transformation point and a component that governs the decomposition rate of carbide, and is approximately represented by the following equation within the component range of the present invention. 675-66 [% C] -14 [% Mn] +22 [% Si]-
8 [% Cr] -8 [% Mo] ≦ Tt (° C) ≦ 725-66%
[C] -14 [% Mn] +22 [% Si] -8 [% Cr] -8
[% Mo]

【0025】この加熱変曲点が図2に示すように上記成
分で表される温度より低くても、また高くても成形性が
低下する。この温度が低いとCの濃化が十分に起こら
ず、逆に、高いと組織が粗くなり、いずれも成形性を低
下させるため、上記の式の範囲内でなければならない。
なお、図中の縦軸は上記の式で表される加熱速度変曲点
の中央値Tt mean (℃)=700−66〔%C〕−14
〔%Mn〕+22〔%Si〕−8〔%Cr〕−8〔%Mo〕にお
けるLDHoを1として、加熱温度変曲点を変化させた場合
のTt mean からの温度差とLDHoの比をプロットしたもの
である。なお、加熱温度変曲点以外は組成、製造条件と
もに本発明の請求範囲内のものである。
If the heating inflection point is lower or higher than the temperature represented by the above-mentioned components as shown in FIG. 2, the moldability is reduced. If the temperature is low, the concentration of C does not sufficiently occur. Conversely, if the temperature is high, the structure becomes coarse and the formability is lowered. Therefore, the temperature must be within the above range.
The vertical axis in the figure is the median Tt mean (° C.) of the heating rate inflection point expressed by the above equation = 700−66 [% C] −14.
Plotting the ratio of the temperature difference from Tt mean to LDHo when the heating temperature inflection point is changed, where LDHo in [% Mn] +22 [% Si] -8 [% Cr] -8 [% Mo] is 1 It was done. Except for the heating temperature inflection point, both the composition and the production conditions are within the scope of the present invention.

【0026】次に、加熱温度に関しては、Ac1 変態点+
25℃よりも低い場合は、2相域でのオーステナイト量
が不足するため、最終的に残留するオーステナイト量が
加工誘起変態の効果を発揮するのに十分な量に至らな
い。逆に、Ac3 変態点以上の場合は、オーステナイト単
相域となるために、Cの濃化が起こらずにオーステナイ
トが残留しなくなる。したがって、加熱温度はAc1 変態
点+25℃以上Ac3 変態点未満とする。
Next, regarding the heating temperature, the Ac 1 transformation point +
When the temperature is lower than 25 ° C., the amount of austenite in the two-phase region is insufficient, so that the amount of austenite finally remaining does not reach an amount sufficient to exert the effect of the work-induced transformation. Conversely, when the temperature is equal to or higher than the Ac 3 transformation point, the austenite single phase region is formed, so that austenite does not remain without concentration of C occurring. Therefore, the heating temperature is set to be at least the Ac 1 transformation point + 25 ° C and less than the Ac 3 transformation point.

【0027】この温度域での保持時間が15秒未満の場
合は、オーステナイトへのC、Mnの濃化が十分におこな
われないために、低加熱速度を前提としても、最終的な
残留オーステナイトの確保が不可能となる。一方、24
0秒を超える保持は結晶粒の粗大化を招き、最終的な延
性が低下するので避けなければならない。したがって、
保持時間は15〜240秒とする。
If the holding time in this temperature range is less than 15 seconds, the concentration of C and Mn in austenite is not sufficiently performed, so that even if a low heating rate is assumed, the final residual austenite is not removed. It becomes impossible to secure. Meanwhile, 24
Holding for more than 0 seconds must be avoided because it leads to coarsening of crystal grains and ultimately lowers ductility. Therefore,
The holding time is 15 to 240 seconds.

【0028】この温度から600〜750℃までの1次
冷却においてはフェライト変態が進行し、さらにオース
テナイト中にCが濃縮する。この冷却速度が5℃/秒よ
り小さいとオーステナイトがパーライトに分解してしま
うために残留オーステナイトが確保できなくなる。逆
に、30℃/秒より大きい場合も十分なオーステナイト
へのC濃化が起こらないために残留オーステナイトが減
少する。この1次冷却の終了温度が750℃よりも高い
とオーステナイトへのC濃化が十分に達成できないまま
2次の急冷却が始まってしまい、600℃未満だとオー
ステナイトがパーライトに分解してしまうので、高延性
が得られなくなる。したがって、Ac1 +50℃以上Ac3
未満の保持温度からの1次冷却は600〜750℃まで
を5〜30℃/秒の速度とする。
In the primary cooling from this temperature to 600 to 750 ° C., ferrite transformation proceeds, and C is further enriched in austenite. If the cooling rate is lower than 5 ° C./sec, austenite is decomposed into pearlite, so that retained austenite cannot be secured. Conversely, if the rate is higher than 30 ° C./sec, the sufficient austenite C concentration does not occur, so that the retained austenite decreases. If the end temperature of the primary cooling is higher than 750 ° C., the secondary rapid cooling starts without sufficiently enriching C in austenite, and if it is lower than 600 ° C., the austenite is decomposed into pearlite. , High ductility cannot be obtained. Thus, Ac 1 + 50 ℃ above Ac 3
Primary cooling from a holding temperature of less than 600 to 750 ° C at a rate of 5 to 30 ° C / sec.

【0029】次に、2次冷却として600〜750℃か
ら350〜500℃までを30〜300℃/秒で冷却す
る。これは十分にCの濃化したオーステナイトをパーラ
イトに分解させることなく、ベイナイトに変態させるこ
とにある。この冷却速度が30℃/秒より小さいとパー
ライト分解がおこり、300℃/秒を超えるとフェライ
トが針状となり、成形性が低下する。また、この冷却停
止が500℃より高いと炭化物が生成し、オーステナイ
トが室温まで残留しなくなる。逆に、350℃より低い
とオーステナイトがマルテンサイトに変態してしまうた
めに加工誘起変態効果が得られなくなる。
Next, as a secondary cooling, cooling is performed from 600 to 750 ° C. to 350 to 500 ° C. at a rate of 30 to 300 ° C./sec. This is to transform austenite sufficiently enriched in C into bainite without decomposing into pearlite. If the cooling rate is lower than 30 ° C./sec, pearlite decomposition occurs, and if it exceeds 300 ° C./sec, the ferrite becomes acicular and the formability decreases. If the cooling is stopped at a temperature higher than 500 ° C., carbides are generated, and austenite does not remain at room temperature. Conversely, if the temperature is lower than 350 ° C., austenite is transformed into martensite, so that a work-induced transformation effect cannot be obtained.

【0030】この2次冷却後この温度範囲で20〜60
0秒保持する。ここでのベイナイト変態中にさらなるC
などのオーステナイト安定化元素の分配がおこり、Cを
ほとんど含まないベイナイトとMs点が室温以下になるま
でオーステナイト安定化元素が濃化した残留オーステナ
イトとなる。この保持時間が20秒より短いと十分なベ
イナイト変態が進行しないため、室温までの冷却中にオ
ーステナイトがマルテンサイト変態してしまう。一方、
600秒より長いとCの濃化したオーステナイトまでベ
イナイトと炭化物に分解してしまい、結果的に加工誘起
変態効果が得られなくなる。
After this secondary cooling, in this temperature range, 20 to 60
Hold for 0 seconds. More C during bainite transformation here
Such an austenite stabilizing element is distributed, so that bainite containing almost no C and residual austenite in which the austenite stabilizing element is concentrated until the Ms point becomes lower than room temperature. If the holding time is shorter than 20 seconds, sufficient transformation of bainite does not proceed, so that austenite undergoes martensite transformation during cooling to room temperature. on the other hand,
If the time is longer than 600 seconds, the C-enriched austenite is decomposed into bainite and carbide, and as a result, the work-induced transformation effect cannot be obtained.

【0031】なお、以上説明した工程の範囲内であれ
ば、加熱速度、保持温度および冷却速度は一定である必
要はなく、その範囲内で変動しても本発明の効果が損な
われることはない。
The heating rate, the holding temperature and the cooling rate do not need to be constant within the range of the steps described above, and the effects of the present invention are not impaired even if they are varied within the range. .

【0032】[0032]

【実施例】本発明によるものの具体的な実施例について
説明すると、本発明者等が具体的に準備した本発明によ
る鋼およびその比較鋼の若干例は次の表1に示す如く
で、表1においてはそれらの変態点および板厚も併せて
示してある。
EXAMPLES Specific examples of the present invention will now be described. Some examples of steels according to the present invention and comparative steels prepared specifically by the present inventors are shown in Table 1 below. In Table 2, the transformation point and the plate thickness are also shown.

【0033】[0033]

【表1】 [Table 1]

【0034】上記した表1の各鋼に対する熱間圧延は9
05〜920℃で終了し、3.2mmとした。スケール除去
後、冷間圧延により表1に示す板厚とし、連続焼鈍を実
施した。連続焼鈍の熱サイクルは模式的に図3に示す如
くで、具体的な製造プロセスおよび0.8%の調質圧延後
の特性結果は次の表2〜表5(表2及び表3には本発明
鋼、表4及び表5には比較鋼を示す)の如くであって、
特性として、強度をJIS 5号引張試験片により、成形性
を、平面歪み成形高さ:LDHo(試験条件は図1中に示
す)により評価した。
The hot rolling for each steel in Table 1 was 9
Finished at 0.05 to 920 ° C and reduced to 3.2 mm. After the scale was removed, the sheet thickness was as shown in Table 1 by cold rolling, and continuous annealing was performed. The thermal cycle of the continuous annealing is schematically shown in FIG. 3, and the specific production process and the characteristic results after the temper rolling of 0.8% are shown in Tables 2 to 5 (Tables 2 and 3 below). Inventive steels, Tables 4 and 5 show comparative steels)
As characteristics, strength was evaluated by a JIS No. 5 tensile test piece, and formability was evaluated by a plane strain forming height: LDHo (test conditions are shown in FIG. 1).

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【表5】 [Table 5]

【0039】即ち、上記した表2〜表5の結果によると
きは、本発明鋼はいずれも強度が同じクラスの比較鋼に
対して、成形性が優れている。なお、比較鋼の内44、
45、47〜52、55、56、60、63、68、7
0、73、74は加熱速度が本発明範囲外、46、5
3、57、58、64〜69、71、72は加熱速度変
曲点が本発明の範囲外、54、62は第1段加熱温度が
Ac3 以上と範囲外、59は巻取温度が範囲外、61は加
熱温度が低くて範囲外で成形性に劣る。図4には表2〜
表5のデータを引張強度と平面歪み成形高さバランスと
して整理したものであり、本発明鋼は比較鋼に比較して
何れにしても明確にすぐれていることが確認できる。
That is, according to the results of Tables 2 to 5, the steels of the present invention are more excellent in formability than comparative steels of the same strength class. In addition, 44 of the comparative steels,
45, 47 to 52, 55, 56, 60, 63, 68, 7
0, 73, and 74 are heating rates outside the range of the present invention.
3, 57, 58, 64-69, 71, 72 have heating rate inflection points outside the range of the present invention, and 54, 62 have first stage heating temperatures.
Ac 3 or more and out of the range, 59 has a winding temperature out of the range, and 61 has a low heating temperature and is out of the range, resulting in poor moldability. FIG.
The data in Table 5 are arranged as a balance between the tensile strength and the formed height of plane strain, and it can be confirmed that the steel of the present invention is clearly superior to the comparative steel in any case.

【0040】[0040]

【発明の効果】以上説明したような本発明によるとき
は、高加工性と共に高強度性を具備した複合組織鋼板を
的確に製造し提供することができるものであって自動車
の車体用材料その他に関して安定且つ有利な利用を得し
めるものであるから工業的にその効果の大きい発明であ
る。
According to the present invention as described above, it is possible to accurately manufacture and provide a composite structure steel sheet having high workability and high strength. The present invention is industrially effective because it provides stable and advantageous use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼板のプレス成形主変形様式である平面歪みの
成形高さ(LDHo)におよぼす1段目、2段目の加熱速度
の影響を要約して示した図表である。
FIG. 1 is a table summarizing the effects of the first and second heating rates on the forming height (LDHo) of plane distortion, which is the main deformation mode of press forming of a steel sheet.

【図2】加熱速度変曲点の分布範囲を示した図表であ
る。
FIG. 2 is a chart showing a distribution range of a heating rate inflection point.

【図3】本発明による連続焼鈍熱サイクルの説明図であ
る。
FIG. 3 is an explanatory view of a continuous annealing heat cycle according to the present invention.

【図4】本発明によるものと比較鋼についての引張強度
と平面歪み成形高さとの関係を示した図表である。
FIG. 4 is a table showing the relationship between tensile strength and plane strain forming height for the steel according to the present invention and comparative steel.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大崎 恭紀 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 高田 康幸 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平2−217425(JP,A) 特開 平1−184226(JP,A) 特開 昭63−195221(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 9/46 - 9/48 C21D 8/00 - 8/04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuki Osaki 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Yasuyuki Takada 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Japan (56) References JP-A-2-217425 (JP, A) JP-A-1-184226 (JP, A) JP-A-63-195221 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) C21D 9/46-9/48 C21D 8/00-8/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C:0.07〜0.3%、Si:0.
7〜2.5%、 Mn:0.7〜2.5%、sol.Al:0.005〜0.10%、N:
0.0080%以下、 P:0.02%以下、S:0.01%以下を含有し、残部が
Feおよび不可避不純物よりなる鋼スラブを熱間圧延し、
700℃以下で巻き取った後、スケール除去、冷間圧延
し、2相域加熱の連続焼鈍を施すに当って、500℃か
ら次式で示される加熱速度変曲点:Ttまでの温度範囲を
20℃/sec 以上、該加熱速度変曲点:TtからAc1 変態
点+25℃以上Ac3 変態点未満の保持温度までを1〜5
℃/sec の昇温速度により加熱することを特徴とする高
加工性高強度複合組織鋼板の製造方法。但し、675−
66〔%C〕−14〔%Mn〕+22〔%Si〕≦ Tt(℃)
≦725−66〔%C〕−14〔%Mn〕+22〔%Si〕
C .: 0.07 to 0.3% by weight, Si: 0.3% by weight.
7 to 2.5%, Mn: 0.7 to 2.5%, sol.Al: 0.005 to 0.10%, N:
0.0080% or less, P: 0.02% or less, S: 0.01% or less, with the balance being
Hot rolling steel slab consisting of Fe and unavoidable impurities,
After winding at 700 ° C. or less, the scale is removed, cold-rolled, and subjected to continuous annealing in a two-phase region heating, and the temperature range from 500 ° C. to the heating rate inflection point: Tt represented by the following equation: 20 ° C./sec or more, the heating rate inflection point: from Tt to the holding temperature lower than the Ac 1 transformation point + 25 ° C. and less than the Ac 3 transformation point is 1 to 5.
A method for producing a high-workability, high-strength composite structure steel sheet, wherein the steel sheet is heated at a heating rate of ° C / sec. However, 675-
66 [% C] -14 [% Mn] +22 [% Si] ≦ Tt (℃)
≤725-66 [% C] -14 [% Mn] +22 [% Si]
【請求項2】 重量%で、C:0.07〜0.3%、Si:0.
7〜2.5%、 Mn:0.7〜2.5%、sol.Al:0.005〜0.10%、N:
0.0080%以下、 P:0.02%以下、S:0.01%以下を含有し、さら
に、 B:0.0005〜0.003 %、Ti:0.005 〜0.08%、Nb:0.00
5 〜0.08%、 V:0.005〜0.08%、Zr:0.005〜0.08%、C
r:0.2〜1.0%、 Mo:0.2〜1.0%、Ni:0.2〜1.0%、Cu:0.2〜1.0
%の中から選ばれる少なくとも1種または2種以上を含
有し、残部がFeおよび不可避不純物よりなる鋼スラブを
熱間圧延し、700℃以下で巻き取った後、スケール除
去、冷間圧延し、2相域加熱の連続焼鈍を施すに当っ
て、500℃から次式で示される加熱速度変曲点:Ttま
での温度範囲を20℃/sec 以上、該加熱速度変曲点:
TtからAc1 変態点+25℃以上Ac3 変態点未満の保持温
度までを1〜5℃/sec の昇温速度により加熱すること
を特徴とする高加工性高強度複合組織鋼板の製造方法。
但し、675−66〔%C〕−14〔%Mn〕+22〔%
Si〕−8〔%Cr〕−8〔%Mo〕≦ Tt(℃) ≦725−6
6〔%C〕−14〔%Mn〕+22〔%Si〕−8〔%Cr〕
−8〔%Mo〕
2. C: 0.07 to 0.3% by weight, Si: 0.3% by weight.
7 to 2.5%, Mn: 0.7 to 2.5%, sol.Al: 0.005 to 0.10%, N:
0.0080% or less, P: 0.02% or less, S: 0.01% or less, B: 0.0005 to 0.003%, Ti: 0.005 to 0.08%, Nb: 0.00
5 to 0.08%, V: 0.005 to 0.08%, Zr: 0.005 to 0.08%, C
r: 0.2 to 1.0%, Mo: 0.2 to 1.0%, Ni: 0.2 to 1.0%, Cu: 0.2 to 1.0%
%, At least one selected from the group consisting of Fe and inevitable impurities is hot-rolled, rolled up at 700 ° C. or less, scale removed, cold-rolled, In performing the continuous annealing in the two-phase zone heating, the temperature range from 500 ° C. to the heating rate inflection point: Tt represented by the following formula is 20 ° C./sec or more, and the heating rate inflection point:
High workability high strength method for producing a composite steel sheet, which comprises heating a heating rate of 1 to 5 ° C. / sec from Tt to the holding temperature of Ac less than 1 transformation point + 25 ° C. or higher Ac 3 transformation point.
However, 675-66 [% C] -14 [% Mn] +22 [%
Si] -8 [% Cr] -8 [% Mo] ≦ Tt (° C.) ≦ 725-6
6 [% C] -14 [% Mn] +22 [% Si] -8 [% Cr]
-8 [% Mo]
【請求項3】 Ac1 変態点+25℃以上Ac3 変態点未満
の保持温度範囲に15〜240秒保持し、該温度から6
00〜750℃までを5〜30℃/sec 、それ以下を3
0〜300℃/秒の冷却速度で350〜500℃まで冷
却し、引続き該温度範囲で20〜600秒保持してから
室温まで冷却することを特徴とする請求項1または請求
項2に記載の高加工性高強度複合組織鋼板の製造方法。
3. The temperature is kept for 15 to 240 seconds in a holding temperature range of not less than Ac 1 transformation point + 25 ° C. and less than Ac 3 transformation point.
5 to 30 ° C / sec from 00 to 750 ° C, 3
3. The method according to claim 1, wherein the cooling is performed at a cooling rate of 0 to 300 [deg.] C./sec to 350 to 500 [deg.] C., the temperature is maintained in the temperature range for 20 to 600 seconds, and then cooled to room temperature. A method for producing a high workability, high strength composite structure steel sheet
JP35816491A 1991-12-27 1991-12-27 Manufacturing method of high workability high strength composite structure steel sheet Expired - Fee Related JP3257009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35816491A JP3257009B2 (en) 1991-12-27 1991-12-27 Manufacturing method of high workability high strength composite structure steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35816491A JP3257009B2 (en) 1991-12-27 1991-12-27 Manufacturing method of high workability high strength composite structure steel sheet

Publications (2)

Publication Number Publication Date
JPH05179345A JPH05179345A (en) 1993-07-20
JP3257009B2 true JP3257009B2 (en) 2002-02-18

Family

ID=18457877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35816491A Expired - Fee Related JP3257009B2 (en) 1991-12-27 1991-12-27 Manufacturing method of high workability high strength composite structure steel sheet

Country Status (1)

Country Link
JP (1) JP3257009B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170070168A (en) * 2014-11-21 2017-06-21 가부시키가이샤 고베 세이코쇼 High strength high ductility steel plate

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470652B1 (en) * 2000-12-20 2005-03-07 주식회사 포스코 A method for manufacturing high strength cold rolled steel sheet with superior formability
JP4494903B2 (en) * 2004-08-12 2010-06-30 新日本製鐵株式会社 Continuous annealing equipment for manufacturing high-strength steel sheets
KR101130837B1 (en) 2008-04-10 2012-03-28 신닛뽄세이테쯔 카부시키카이샤 High-strength steel sheets which are extreamely excellent in the balance between burring workability and ductility and excellent in fatigue endurance, zinc-coated steel sheets, and processes for production of both
JP5438302B2 (en) 2008-10-30 2014-03-12 株式会社神戸製鋼所 High yield ratio high strength hot dip galvanized steel sheet or alloyed hot dip galvanized steel sheet with excellent workability and manufacturing method thereof
JP5418168B2 (en) * 2008-11-28 2014-02-19 Jfeスチール株式会社 High-strength cold-rolled steel sheet excellent in formability, high-strength hot-dip galvanized steel sheet, and production method thereof
CN103805840B (en) * 2012-11-15 2016-12-21 宝山钢铁股份有限公司 A kind of high formability galvanizing ultrahigh-strength steel plates and manufacture method thereof
CN103805838B (en) * 2012-11-15 2017-02-08 宝山钢铁股份有限公司 High formability super strength cold-roll steel sheet and manufacture method thereof
CN103290320B (en) * 2013-04-28 2015-06-24 首钢总公司 Hot rolling multiphase steel and production method thereof
JP6221424B2 (en) * 2013-07-04 2017-11-01 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
CN106119703B (en) * 2016-06-21 2018-01-30 宝山钢铁股份有限公司 A kind of 980MPa levels hot-rolled dual-phase steel and its manufacture method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170070168A (en) * 2014-11-21 2017-06-21 가부시키가이샤 고베 세이코쇼 High strength high ductility steel plate
EP3222741A4 (en) * 2014-11-21 2018-05-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength high ductility steel sheet
KR102111923B1 (en) 2014-11-21 2020-05-18 가부시키가이샤 고베 세이코쇼 High strength high ductility steel plate

Also Published As

Publication number Publication date
JPH05179345A (en) 1993-07-20

Similar Documents

Publication Publication Date Title
CN113549823B (en) 900 MPa-grade hot-rolled and pickled multiphase steel with low yield ratio and high hole expansion rate and production method thereof
CN113186461B (en) High-strength-ductility deep cold-rolled steel plate and preparation method thereof
WO2005095663A1 (en) High-rigidity high-strength thin steel sheet and method for producing same
JPH0635619B2 (en) Manufacturing method of high strength steel sheet with good ductility
JP3257009B2 (en) Manufacturing method of high workability high strength composite structure steel sheet
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JPH0555586B2 (en)
JPH0499227A (en) Production of ultrahigh-strength cold rolled steel sheet excellent in workability
JPS6239230B2 (en)
CN113073271B (en) 1180 MPa-grade cold-rolled light high-strength steel and preparation method thereof
JPH02149646A (en) High strength hot rolled steel sheet having excellent workability and weldability
JPS6156235A (en) Manufacture of high toughness nontemper steel
JPH06264183A (en) Hot rolled high tensile strength steel plate with high workability and its production
JP3806958B2 (en) Manufacturing method of high-tensile hot-rolled steel sheet
JPS589816B2 (en) Manufacturing method of non-thermal rolled steel bar
JPH10280050A (en) Production of high strength hot rolled steel sheet excellent in press formability
KR101149193B1 (en) Steel sheet having excellent formability and galvanizing property, and method for producing the same
JPS6338518A (en) Production of steel plate having excellent hydrogen induced cracking resistance
KR19990053985A (en) Bainite steel with excellent low temperature toughness and manufacturing method
JPH0452229A (en) Highly efficient production of cold rolled steel sheet extremely excellent in workability
JPH1121625A (en) Production of thick steel plate excellent in strength and toughness
KR101091368B1 (en) Method for manufacturing a high-strength hot rolled steel sheet for linepipe with superior DWTT characteristics at low temperature
JP4002315B2 (en) High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
CN116179949A (en) 780 MPa-grade ultra-high reaming performance cold-rolled complex-phase steel plate for automobile and preparation method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees