JPS6239230B2 - - Google Patents

Info

Publication number
JPS6239230B2
JPS6239230B2 JP3944283A JP3944283A JPS6239230B2 JP S6239230 B2 JPS6239230 B2 JP S6239230B2 JP 3944283 A JP3944283 A JP 3944283A JP 3944283 A JP3944283 A JP 3944283A JP S6239230 B2 JPS6239230 B2 JP S6239230B2
Authority
JP
Japan
Prior art keywords
steel
ferrite
rolling
transformation
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3944283A
Other languages
Japanese (ja)
Other versions
JPS59166651A (en
Inventor
Giichi Matsumura
Hiroshi Yada
Seishiro Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3944283A priority Critical patent/JPS59166651A/en
Publication of JPS59166651A publication Critical patent/JPS59166651A/en
Publication of JPS6239230B2 publication Critical patent/JPS6239230B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は安価な二相高強度熱延鋼板に関するも
のである。 現在、自動車用鋼材を中心に加工性の良い高強
度鋼板が強く求められている。高抗張力と加工性
は常識的には相反するものであり、それらの両立
は困難であるが、最近開発されたフエライト結晶
粒と少量の高硬度焼入組織から成る二相鋼(以下
DP鋼と言う)はそれらを両立させたある意味で
は理想的な材料である。ところが従来のDP鋼は
以下に述べる理由により製造コストが高く広く使
われるに至つていない。 二相組織を得る方法として現在採られている方
法は鋼材をA3点温度とA1、点温度の中間である
オーステナイト/フエライト二相温度域にある時
間滞留させることによりフエライトを十分に発達
させると共にオーステナイト中の炭素を濃化させ
た後に急冷してオーステナイトをマルテンサイト
等の高硬度低温変態生成組織とするものである。
この技術の要点はフエライトが発達し易くしかも
小量のオーステナイトは変態し難いと言う二相分
離を起こさせる成分系の設計にある。特に連続熱
延工程で製造される熱延ままDP鋼は圧延終了後
から冷却開始までの時間が短いので成分は極めて
重要である。フエライト変態の促進のためにはSi
量を増加する方法が採られ、通常1%前後まで添
加される。オーステナイト部の変態を抑えるには
Mn量を増加する方法が採られ通常1.5%以上添加
される。さらに焼入れ組織を得易くするために
Cr、Mo、B等が添加される事もあるがその結果
成分コストは高いものになる。このような成分調
整以外に冷却制御も重要である。急冷開始時にお
けるオーステナイトの分率が変態終了後の焼入れ
第二相の分率を決め、第二相の分率と強度は、焼
入れ第二相の割合と引張り強度との関係を示す第
1図(0.1C―0.5Si―1.5Mn鋼、Nα=11.5)の如
く直線関係にある。従つて圧延終了後から冷却開
始までの時間経過におけるフエライト変態量を精
度よく制御する様な温度履歴を鋼板に与えねばな
らず、さらに急冷後の第二相が十分硬い組織にな
るためには急冷後の鋼板温度を200℃近くまで低
下させる必要がある。このために冷却においては
圧延材毎に微妙な作業が必要となり生産性を低下
させることでコスト高の一因となつている。 以上に述べた従来の熱延D.P.鋼製造法の欠点は
圧延終了後から急冷開始までの短い時間でフエラ
イト変態量を制御せねばならない事に由来してい
るが、本発明者らはフエライト変態量を圧延中に
制御すると共にフエライトを超細粒化するという
新規な方法を見出し、従来法の欠点を克服した。 すなわち本本発明の要旨とするところは、重量
%でC:0.02〜0.2%、Si:1%以下、Mn:1.5%
以下、残部Feと不可避不純物からなり、平均粒
径5μm以下の大傾角粒界に囲まれた加工誘起等
軸フエライト結晶粒を体積比で50〜70%未満含
み、他がマルテンサイトまたはこれとベイナイト
の焼入れ組織からなる二相高張力熱延鋼板にあ
る。 以下、本発明について詳細に説明する。 従来、オーステナイト温度域の低温側で加工を
行なうと変態点が上昇する事は知られていたが、
温度、加工量と変態量の定量的研究はなされてい
なかつた。本発明者らは研究の結果圧延により変
態を制御しうる可能性があるとの結論を得るに至
つた。第2図に一例を示す。第2図は0.1C―
0.5Si―1.0Mnの炭素鋼をAr3の温度域で種種の圧
下率により加工し、加工直後に水冷して変態量を
調べた結果である。圧下率が大なる程、また、圧
延温度が低い程フエライトの変態量は多い。Ar3
以上の温度でフエライト変態が進行する理由は加
工により主にオーステナイト粒界に高歪を受ける
場所があり、回復が追い付かない場合にはエネル
ギー的にオーステナイトとして再結晶するよりは
フエライトに変態した方が安定である場合がある
からと考えられる。従つて温度が高い場合は変態
を起こさせる加工量はより大である必要があり、
この様な変態は加工を受けると同時に起こるであ
ろう。この変態の重要な特徴は変態後のフエライ
ト結晶粒が極端に小さい事にある。第4図a〜c
は0.12C―0.48Si―0.5Mn鋼を850℃において、
種々の圧下率により加工した後、直ちに水冷した
場合の顕微鏡組織写真(圧下率は、(a)=80%、(b)
=87%、(c)=95%)を示すが、圧下率が大きい程
変態量すなわちフエライト分率が大きくなると同
時にフエライト粒径は圧下率の上昇と共に小さく
なり、最小フエライト粒径は3μ以下になる事が
分る。本発明者らは種々の成分範囲の鋼について
実験を重ねた結果、加工により細粒フエライトを
得、しかも変態量を適正に制御できる温度範囲は
Ar3+100℃〜Ar1+50℃で30秒以内の累積圧下率
を60%以上にする必要があるとの結論に達した。 次に極細粒フエライト組織を持つD.P.鋼につい
て考察する。 結晶粒の微細化はPetchの関係としてよく知ら
れている様に降伏点の上昇をもたらす。同時に抗
張力も上昇させるがその効果は降伏点に対する程
には大きくない。従つて細粒鋼は降伏比(降伏強
度の抗張力に対する比)が高いという特徴があ
り、成形性が要求される薄板としては不利と考え
られる。しかしながら構造部材として要求される
高強度とは高降伏応力である筈であるし、降伏比
の大きい事は塑性変形中の加工硬化が小さい事で
あるから全伸びさえ十分にあればむしろ成形上も
好ましい場合さえある。 ところで本発明により得られる極細粒鋼では変
態が非常に短時間に行なわれるために炭素の拡散
による移動距離が少なく、従つて大きな炭化物が
出来難い。実際第4図cには変態が終了している
にも拘わらずパーライト状の組織は認め難い。炭
化物の厚みが薄いと変形時の辷り線が炭化物内部
で交差する事なく、厚み全体を貫通する機会が増
え、クラツクを発生し難くなり、鋼材の全伸びは
増加する。高炭素パーライト鋼でラメラ間隔を小
さくすると絞り性が上昇するのはこの理由によ
る。第3図は本発明による細粒DP鋼の強度―延
性バランスを従来法のDP鋼と比較したものであ
るが、従来DP材よりは劣るものの析出強化材よ
りは高いレベルにある事が分る。 次に冷却について述べる。本発明は従来法で成
分と調整冷却によつて起こさせていた二相分離を
加工歪によつて起こさせるものであるから、圧延
終了時には既にフエライトとオーステナイト混合
組織になつているので調整冷却の必要は無く、オ
ーステナイトが焼入れ組織になるだけの十分な冷
却速度がありさえすれば良い。結晶粒の成長を抑
える意味では冷却速度は大きい程望ましいが、極
低炭素鋼でない限り20℃/secの冷却速度で十分
である。炭化物の粗大化を防ぐ意味からも冷却速
度は大きい方が良いが、炭化物の粗大化はフエラ
イト中の過剰炭素の減少と同義であるのでその効
果は相殺される。この様に本発明によれば冷却の
制御は特に必要とせず、実生産上有利である。 以下に本発明の構成要件の限定理由について述
べる。 成分: Cは焼入れ相を得る為には原理的に0.02%以上
必要であるから下限を0.02%とし、また0.2%以
上では加工性の点からDP鋼である有位性を消失
するので0.2%を上限とした。 Siは二相分離を助長させる事と強度―延性バラ
ンスを向上させる効果があるが、多過ぎると所望
の変態量に対し要する加工率が高くなり制御困難
になるので上限を1%とする事が望ましい。 Mnは変態点を調節し、加工誘起変態を起りや
すくし、また加工誘起フエライトの急速な粒成長
を防止することにより細粒化に寄与し、また焼入
性を向上させることにより超細粒フエライト部以
外の部分をマルテンサイトまたはこれとベイナイ
トからなる焼入組織を形成せしめるのに効果があ
る。しかし1.5%を超えて添加すると、変態温度
が下り表面の微細粒フエライトが生成しにくくな
るので1.5%以下と定めた。 PおよびSは通常鋼中に多少は含有される元素
であるが、多量に含有されれば鋼の延靭性を損
う。しかし、通常の鋼に含まれている量、P0.03
%以下、S0.02%以下程度では本発明の本質に大
きな影響を与えないので、特にその量の限定を行
わない。 Nは不純物元素として鋼中は多少は含有される
が、その量は通常0.002〜0.01%程度であり、こ
の範囲内では本発明鋼の特性にそれほど影響を与
えない。なおN量が0.002%より少ない場合は加
工誘起変態が本発明におけるより容易に起るよう
になり、また0.01%を超えると特にAl、Ti等の元
素を含む場合ではやや起りにくくなる。 Alは通常脱酸のため鋼中に多少含まれている
が、通常含有される程度0.1%以下ならば、一般
に本発明鋼の特性に大きい影響を与えることはな
い。 フエライト相の比率: 細粒フエライト相が50%以下では強度は高いも
のの加工性が劣るために実用的ではなく、70%以
上では第二相による強化の効果が小さいのでその
比率を50〜70%未満に限定した。 本発明の鋼板を製造するための好ましい条件に
ついて述べる。 圧延温度: 圧延温度はAr3+100℃を超えると加工による
変態が起らず、Ar1+50℃未満では大きなフエラ
イト粒が生成し混粒になると共に先在のフエライ
トが加工され延性が低下してしまう。従つて温度
範囲をAr3+100℃〜Ar1+50℃とする。 圧下率: 合計圧下率が60%未満であると成品板が混粒と
なり加工性が低下するので60%を下限とした。1
パスの圧下率は大きい程フエライト粒は小さくな
り、40%以上の圧下率が好ましいが、パス間時間
が十分小さければ多パス圧延でもよい。但し多パ
ス圧延とした場合効果の現われる累計圧下率は1
パス大圧下加工の場合よりも大となり、2秒以内
のパスにおける累計圧下率で50%以上が必要であ
る。そこで1パスまたは2パス以上の累計圧下率
を50%以上とするまた累計圧下率の選択によりフ
エライト粒径とフエライト量の調整が可能である
が、本発明の主旨より圧延終了時点でフエライト
量が95%を超える程フエライト変態を進行させて
はならない。 圧延時間: 多パス圧延の場合は途中パスの1パスまたは2
パス以上で累計圧下率が50%以上となる加工を2
秒以内に行なう必要がある。さもなければパス間
の回復により加工の効果が失なわれフエライトが
粗大になり成品板の加工性が劣化する。そこで累
計圧下率が50%以上となる1パスまたは2パス以
上の加工時間を2秒以内とする。 フエライトの超細粒化のためには圧下率を多パ
ス圧延の後段になるほど大きくする事がとくに効
果的で、この時、パス間時間が短いほど加工歪の
累積効果が発揮される。例えば多パス圧延の最終
1パスまたは2パス以上の圧延を1秒以内に累計
圧下率50%以上で行なつた時のフエライト粒径は
4μ以下という超微細なものになるのである。こ
の点からは圧延はタンデムミルによる連続熱延が
適している。 冷却速度: 冷却速度は該鋼が圧延終了時に持つオーステナ
イトが焼入れ組織となるに必要な20℃/secを下
限とする。 実施例 表1に示す成分からなる炭素鋼を表2に示す圧
延:冷却条件で連続熱延を行なつた。表2中のA
〜Dが本発明鋼であるが、それぞれ焼入相の割合
に応じた強度となつており、70〜80Kg/mm2級の高
張力鋼が作り分けられている。本発明鋼の降伏比
(YR)は従来の成分調整+冷却制御型二相鋼と較
べるとやや高いものの通常の圧延材よりは低く二
相鋼の特徴を示している。 表2中のE〜Iは比較鋼であり、E、Gは冷却
速度が遅いために焼入れ組織が得られず、Fは圧
下率が大きいために冷却開始以前に変態が終了
し、Hは圧延温度が低いために圧延中に変態が終
了したのでいずれも二相鋼にはなつていない。比
較鋼Fは二相組織ではないが、結晶粒が微細なた
めに強度が高い。しかし細粒強化のために降伏比
が高い。Iは2秒以内の累計圧下率が50%未満で
ありフエライト粒径が大きくなつている。Jは仕
上温度が高いためにフエライト変態が十分には進
行せず、焼入れ相が多くなり、強度は高いものの
延性は従来材並みである。上記結果を第3図に表
示している。図中〇印は本発明鋼を示し、×印は
比較鋼を示している。 以上の様に本発明によれば圧延温度と圧下率の
調整のみで特殊成分の添加や、制御冷却を必要と
せずに熱延ままで二相組織高張力鋼板を安価に提
供しうるものである。 強度が高い、しかし細粒強化のために降伏比が
高い。Iは2秒以内の累計圧下率が50%未満であ
りフエライト粒径が大きくなつている。Jは仕上
温度が高いためにフエライト変態が十分には進行
せず、焼入れ相が多くなり、強度は高いものの延
性は従来材並みである。上記結果を第3図に表示
している。図中〇印は本発明鋼を示し、×印は比
較鋼を示している。 以上の様の本発明によれば圧延温度と圧下率の
調整のみで特殊成分の添加や、制御冷却を必要と
せずに熱延まま二相鋼板を製造する事ができ、し
かも強度範囲を単一成分で広範囲に作り分けられ
る。すなわち従来製造コストの高かつた二相組織
高張力鋼板が安価に製造できる様になつた。
The present invention relates to an inexpensive two-phase high-strength hot-rolled steel sheet. Currently, there is a strong demand for high-strength steel sheets with good workability, mainly for automotive steel materials. Common sense suggests that high tensile strength and workability are contradictory, and it is difficult to achieve both. However, recently developed duplex steels (hereinafter referred to as
In a sense, DP steel (DP steel) is an ideal material that achieves both of these requirements. However, conventional DP steel has not been widely used due to its high manufacturing cost for the reasons described below. The method currently used to obtain a two-phase structure is to allow the steel to remain in the austenite/ferrite two-phase temperature range between point A 3 and point A 1 for a certain period of time to fully develop ferrite. At the same time, the carbon in the austenite is concentrated and then rapidly cooled to transform the austenite into a high-hardness, low-temperature transformation-generated structure such as martensite.
The key point of this technology lies in the design of a component system that causes two-phase separation in which ferrite is easy to develop and a small amount of austenite is difficult to transform. In particular, the composition of as-hot-rolled DP steel manufactured in a continuous hot-rolling process is extremely important because the time from the end of rolling to the start of cooling is short. Si to promote ferrite transformation
A method of increasing the amount is adopted, and it is usually added up to around 1%. To suppress metamorphosis of austenite part
A method is adopted to increase the amount of Mn, which is usually added at 1.5% or more. In order to make it easier to obtain a hardened structure
Cr, Mo, B, etc. are sometimes added, but as a result the component cost becomes high. In addition to such component adjustment, cooling control is also important. The fraction of austenite at the start of quenching determines the fraction of the quenched second phase after the completion of transformation, and the fraction and strength of the second phase are shown in Figure 1, which shows the relationship between the proportion of the quenched second phase and the tensile strength. There is a linear relationship as shown in (0.1C-0.5Si-1.5Mn steel, Nα=11.5). Therefore, it is necessary to provide the steel sheet with a temperature history that accurately controls the amount of ferrite transformation over time from the end of rolling to the start of cooling. Furthermore, in order for the second phase to become a sufficiently hard structure after quenching, quenching is necessary. It is necessary to lower the temperature of the subsequent steel plate to nearly 200℃. For this reason, during cooling, delicate work is required for each rolled material, reducing productivity and contributing to increased costs. The drawbacks of the conventional hot-rolled DP steel manufacturing method described above stem from the fact that the amount of ferrite transformation must be controlled in a short period of time from the end of rolling to the start of quenching. We discovered a new method to control the amount of ferrite during rolling and to make the ferrite into ultra-fine particles, overcoming the drawbacks of the conventional method. In other words, the gist of the present invention is that C: 0.02 to 0.2%, Si: 1% or less, and Mn: 1.5% by weight.
Below, the remainder consists of Fe and unavoidable impurities, and contains less than 50 to 70% by volume of deformation-induced equiaxed ferrite crystal grains surrounded by high-angle grain boundaries with an average grain size of 5 μm or less, and the rest is martensite or bainite. It is a two-phase high-strength hot-rolled steel sheet consisting of a hardened structure. The present invention will be explained in detail below. It was previously known that the transformation point increases when processing is performed at the low temperature side of the austenite temperature range, but
Quantitative studies of temperature, amount of processing and amount of transformation have not been conducted. As a result of our research, the present inventors came to the conclusion that it is possible to control transformation by rolling. An example is shown in FIG. Figure 2 is 0.1C-
These are the results of processing 0.5Si-1.0Mn carbon steel at various reduction rates in the Ar 3 temperature range, cooling it with water immediately after processing, and examining the amount of transformation. The larger the rolling reduction ratio and the lower the rolling temperature, the larger the amount of ferrite transformation. Ar 3
The reason why ferrite transformation progresses at temperatures above is that there are places that are subject to high strain mainly at austenite grain boundaries due to processing, and if recovery cannot keep up, it is better to transform to ferrite than to recrystallize as austenite due to energy. This is thought to be because it may be stable. Therefore, when the temperature is high, the amount of processing to cause transformation needs to be larger.
Such transformation will occur simultaneously with processing. An important feature of this transformation is that the ferrite crystal grains after transformation are extremely small. Figure 4 a-c
is 0.12C-0.48Si-0.5Mn steel at 850℃,
Microscopic microstructure photographs obtained when immediately cooled with water after processing at various rolling reductions (rolling ratios are (a) = 80%, (b)
= 87%, (c) = 95%), but as the rolling reduction increases, the amount of transformation, that is, the ferrite fraction increases, and at the same time, the ferrite grain size decreases as the rolling reduction increases, and the minimum ferrite grain size is 3μ or less. I know what will happen. As a result of repeated experiments on steels with various composition ranges, the present inventors found that the temperature range in which fine-grained ferrite can be obtained by processing and the amount of transformation can be appropriately controlled is
It was concluded that the cumulative reduction rate within 30 seconds at Ar 3 +100°C to Ar 1 +50°C needs to be 60% or more. Next, we will consider DP steel with an ultrafine-grained ferrite structure. Refinement of grains leads to an increase in yield point, as is well known as the Petch relationship. At the same time, the tensile strength is increased, but the effect is not as great as that on the yield point. Therefore, fine-grained steel is characterized by a high yield ratio (ratio of yield strength to tensile strength), which is considered to be disadvantageous for thin plates that require formability. However, the high strength required for structural members should mean high yield stress, and a large yield ratio means that work hardening during plastic deformation is small, so if the total elongation is sufficient, it will actually be easier to form. In some cases it may even be desirable. By the way, in the ultra-fine grained steel obtained by the present invention, transformation occurs in a very short time, so the distance that carbon travels due to diffusion is small, and therefore large carbides are difficult to form. In fact, in Fig. 4c, it is difficult to recognize a pearlite-like structure even though the metamorphosis has been completed. When the thickness of the carbide is thin, the slip lines during deformation have an increased chance of penetrating the entire thickness without intersecting inside the carbide, making it difficult to generate cracks and increasing the total elongation of the steel material. This is the reason why drawability increases when the lamella spacing is reduced in high carbon pearlite steel. Figure 3 compares the strength-ductility balance of the fine-grained DP steel of the present invention with that of the conventional DP steel, and it can be seen that although it is inferior to the conventional DP steel, it is at a higher level than the precipitation strengthened material. . Next, let's talk about cooling. In the present invention, two-phase separation, which was caused by components and controlled cooling in the conventional method, is caused by processing strain, so by the end of rolling, the structure has already become a mixed structure of ferrite and austenite, so controlled cooling is not necessary. It is not necessary, as long as there is a sufficient cooling rate for the austenite to become a hardened structure. A higher cooling rate is more desirable in terms of suppressing the growth of crystal grains, but a cooling rate of 20°C/sec is sufficient unless the steel is an ultra-low carbon steel. A higher cooling rate is better in order to prevent coarsening of carbides, but since coarsening of carbides is synonymous with reduction of excess carbon in ferrite, this effect is canceled out. As described above, according to the present invention, no particular cooling control is required, which is advantageous in terms of actual production. The reasons for limiting the constituent elements of the present invention will be described below. Ingredients: In principle, 0.02% or more of C is required to obtain a quenched phase, so the lower limit is set at 0.02%, and 0.2% because if it exceeds 0.2%, the orientation of DP steel will disappear from the viewpoint of workability. was set as the upper limit. Si has the effect of promoting two-phase separation and improving the strength-ductility balance, but if it is too large, the processing rate required for the desired amount of transformation becomes high and control becomes difficult, so the upper limit should be set at 1%. desirable. Mn adjusts the transformation point, makes deformation-induced transformation more likely to occur, and contributes to grain refinement by preventing rapid grain growth of deformation-induced ferrite, and also contributes to ultra-fine ferrite by improving hardenability. This is effective in forming a hardened structure consisting of martensite or martensite and bainite in the other parts. However, if it is added in excess of 1.5%, the transformation temperature will drop, making it difficult to form fine grained ferrite on the surface, so it was set at 1.5% or less. P and S are elements that are normally contained in steel to some extent, but if they are contained in large amounts, they impair the ductility and toughness of steel. However, the amount contained in ordinary steel, P0.03
% or less, S0.02% or less does not significantly affect the essence of the present invention, so the amount is not particularly limited. Although some amount of N is contained in steel as an impurity element, the amount is usually about 0.002 to 0.01%, and within this range it does not significantly affect the properties of the steel of the present invention. Note that when the amount of N is less than 0.002%, deformation-induced transformation occurs more easily than in the present invention, and when it exceeds 0.01%, it becomes slightly less likely to occur, especially when elements such as Al and Ti are included. Al is usually contained in steel to some extent for deoxidation, but if it is normally contained at 0.1% or less, it generally does not have a large effect on the properties of the steel of the present invention. Ratio of ferrite phase: If the fine-grained ferrite phase is less than 50%, the strength will be high but the workability will be poor, making it impractical. If it is more than 70%, the reinforcing effect of the second phase will be small, so the ratio should be reduced to 50-70%. limited to less than Preferred conditions for manufacturing the steel plate of the present invention will be described. Rolling temperature: When the rolling temperature exceeds Ar 3 +100℃, transformation due to processing does not occur, and when the rolling temperature is lower than Ar 1 +50℃, large ferrite grains are formed and mixed grains are formed, and the existing ferrite is processed and ductility decreases. Put it away. Therefore, the temperature range is set to Ar 3 +100°C to Ar 1 +50°C. Reduction ratio: If the total reduction ratio is less than 60%, the finished plate will have mixed grains and the workability will decrease, so 60% was set as the lower limit. 1
The larger the rolling reduction ratio of the passes, the smaller the ferrite grains become, and a rolling reduction ratio of 40% or more is preferable, but multi-pass rolling may be used as long as the time between passes is sufficiently short. However, in the case of multi-pass rolling, the cumulative reduction rate at which the effect appears is 1
This is larger than in the case of pass large reduction processing, and a cumulative reduction rate of 50% or more in passes within 2 seconds is required. Therefore, it is possible to adjust the ferrite grain size and the amount of ferrite by setting the cumulative rolling reduction rate of 1 pass or 2 passes or more to 50% or more, and by selecting the cumulative rolling reduction rate. Ferrite metamorphosis must not progress beyond 95%. Rolling time: 1 or 2 intermediate passes in case of multi-pass rolling
Processing in which the cumulative reduction rate is 50% or more in passes or more is 2
Must be done within seconds. Otherwise, the processing effect will be lost due to recovery between passes, the ferrite will become coarse, and the workability of the finished plate will deteriorate. Therefore, the machining time for one pass or two or more passes in which the cumulative reduction rate is 50% or more is set to within 2 seconds. In order to make the grains of ferrite ultra-fine, it is particularly effective to increase the rolling reduction in the later stages of multi-pass rolling, and at this time, the shorter the time between passes, the more the cumulative effect of processing strain will be exerted. For example, when the final pass or two or more passes of multi-pass rolling are performed at a cumulative reduction rate of 50% or more within 1 second, the ferrite grain size becomes ultra-fine, 4 microns or less. From this point of view, continuous hot rolling using a tandem mill is suitable for rolling. Cooling rate: The lower limit of the cooling rate is 20°C/sec, which is necessary for the austenite that the steel has at the end of rolling to become a quenched structure. Example Carbon steel having the components shown in Table 1 was subjected to continuous hot rolling under the rolling and cooling conditions shown in Table 2. A in Table 2
- D are the steels of the present invention, and each has a strength depending on the ratio of the quenched phase, and high tensile strength steels of 70 to 80 kg/mm 2 class are produced. The yield ratio (YR) of the steel of the present invention is slightly higher than that of conventional composition-adjusted + cooling-controlled dual-phase steel, but lower than that of ordinary rolled material, showing the characteristics of dual-phase steel. In Table 2, E to I are comparative steels, E and G cannot obtain a hardened structure due to slow cooling rate, F has a large rolling reduction and transformation ends before cooling starts, and H has a hardened structure. Because the temperature was low, the transformation ended during rolling, so none of them became duplex steel. Comparative steel F does not have a two-phase structure, but has high strength because of its fine crystal grains. However, the yield ratio is high due to fine grain reinforcement. In case I, the cumulative reduction rate within 2 seconds is less than 50%, and the ferrite grain size is large. In J, the finishing temperature is high, so the ferrite transformation does not proceed sufficiently, and there are many quenched phases, and although the strength is high, the ductility is on the same level as conventional materials. The above results are shown in FIG. In the figure, the circle mark indicates the steel of the present invention, and the mark x indicates the comparative steel. As described above, according to the present invention, it is possible to inexpensively provide a high-strength steel sheet with a dual-phase structure as hot-rolled, without adding any special ingredients or requiring controlled cooling, simply by adjusting the rolling temperature and reduction rate. . High strength, but high yield ratio due to fine grain reinforcement. In case of I, the cumulative reduction rate within 2 seconds is less than 50% and the ferrite grain size is large. In J, the finishing temperature is high, so the ferrite transformation does not proceed sufficiently, and there are many quenched phases, and although the strength is high, the ductility is on the same level as conventional materials. The above results are shown in FIG. In the figure, the circle mark indicates the steel of the present invention, and the mark x indicates the comparative steel. According to the present invention as described above, it is possible to produce a duplex steel plate as hot-rolled by simply adjusting the rolling temperature and rolling reduction ratio without adding any special ingredients or requiring controlled cooling. It can be made with a wide range of ingredients. In other words, dual-phase structure high-strength steel sheets, which were conventionally expensive to manufacture, can now be manufactured at low cost.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼入れ第二相の割合と引張強度の関係
を示す図(0.1C―0.5Si―1.5Mn鋼、Nα=
11.5)、第2図は0.1C―0.5Si―1.0Mn鋼(Ar3
793℃)をAr3変態点近傍の温度で1パス圧延
し、圧延直後急冷(水冷)した時の圧下率と変態
率の関係を示す図、第3図は本発明により製造し
た二相鋼(〇印)と従来法により製造した鋼及び
比較鋼の強度―延性バランスの比較を示した図、
第4図は0.12C―0.48Si―0.5Mn鋼を850℃におい
て種々の圧下率で加工し、加工直後水冷した時の
組織を示す顕微鏡写真図で、aは圧下率80%、b
は圧下率87%、cは圧下率95%の場合である。
Figure 1 shows the relationship between the proportion of the quenched second phase and the tensile strength (0.1C-0.5Si-1.5Mn steel, Nα =
11.5), Figure 2 shows 0.1C-0.5Si-1.0Mn steel (Ar 3 :
Figure 3 shows the relationship between rolling reduction and transformation rate when a steel (793°C) is rolled for one pass at a temperature near the Ar 3 transformation point and then rapidly cooled (water-cooled) immediately after rolling. A diagram showing a comparison of the strength-ductility balance of steel manufactured by the conventional method and comparison steel (marked with a circle),
Figure 4 is a micrograph showing the structure of 0.12C-0.48Si-0.5Mn steel processed at 850℃ at various reduction rates and water-cooled immediately after processing, where a is 80% reduction and b
is the case where the rolling reduction rate is 87%, and c is the case where the rolling reduction rate is 95%.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%でC:0.02〜0.2%、Si:1%以下、
Mn:1.5%以下、残部Feと不可避不純物からな
り、平均粒径5μm以下の大傾角粒界に囲まれた
加工誘起等軸フエライト結晶粒を体積比で50〜70
%未満含み、他がマルテンサイトまたはこれとベ
イナイトの焼入れ組織からなる二相高張力熱延鋼
板。
1% by weight: C: 0.02-0.2%, Si: 1% or less,
Mn: 1.5% or less, the balance consists of Fe and unavoidable impurities, and the volume ratio is 50 to 70 deformation-induced equiaxed ferrite crystal grains surrounded by large-angle grain boundaries with an average grain size of 5 μm or less.
A two-phase high-strength hot-rolled steel sheet containing less than % martensite and a hardened structure of martensite or martensite and bainite.
JP3944283A 1983-03-10 1983-03-10 Two-phase high tensile hot rolled steel plate comprising two-phase structure of ultra-fine grain ferrite phase and hardening phase and preparation tehereof Granted JPS59166651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3944283A JPS59166651A (en) 1983-03-10 1983-03-10 Two-phase high tensile hot rolled steel plate comprising two-phase structure of ultra-fine grain ferrite phase and hardening phase and preparation tehereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3944283A JPS59166651A (en) 1983-03-10 1983-03-10 Two-phase high tensile hot rolled steel plate comprising two-phase structure of ultra-fine grain ferrite phase and hardening phase and preparation tehereof

Publications (2)

Publication Number Publication Date
JPS59166651A JPS59166651A (en) 1984-09-20
JPS6239230B2 true JPS6239230B2 (en) 1987-08-21

Family

ID=12553124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3944283A Granted JPS59166651A (en) 1983-03-10 1983-03-10 Two-phase high tensile hot rolled steel plate comprising two-phase structure of ultra-fine grain ferrite phase and hardening phase and preparation tehereof

Country Status (1)

Country Link
JP (1) JPS59166651A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2540282B2 (en) * 1993-07-28 1996-10-02 日本冶金工業株式会社 Superplastic duplex stainless steel
JP2540283B2 (en) * 1993-07-28 1996-10-02 日本冶金工業株式会社 Superplastic duplex stainless steel
TW426744B (en) * 1997-09-11 2001-03-21 Kawasaki Steel Co Hot rolled steel plate to be processed having hyper fine particles, method of manufacturing the same, and method of manufacturing cold rolled steel plate
US7117925B2 (en) * 2000-09-29 2006-10-10 Nucor Corporation Production of thin steel strip
KR100934089B1 (en) 2002-12-23 2009-12-24 주식회사 포스코 Manufacturing method of composite tissue hot rolled steel
CN100357474C (en) * 2006-02-17 2007-12-26 东北大学 Tensile strength 600Mpa grade dual phase steel plate and its production method
ITRM20060262A1 (en) * 2006-05-17 2007-11-18 Ct Sviluppo Materiali Spa PROCEDURE FOR THE PRODUCTION OF FINE CARBON STEEL RIBBONS AND RIBBONS AS SUCH POSSIBLE
JP5708775B2 (en) * 2013-12-12 2015-04-30 新日鐵住金株式会社 Structural member
JP5765411B2 (en) * 2013-12-12 2015-08-19 新日鐵住金株式会社 Cold rolled steel sheet manufacturing method
CN104878287A (en) * 2015-06-12 2015-09-02 武汉钢铁(集团)公司 Wide and heavy low-cost steel plate having high hot rolling performance and manufacturing method thereof

Also Published As

Publication number Publication date
JPS59166651A (en) 1984-09-20

Similar Documents

Publication Publication Date Title
US6846371B2 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
KR101232972B1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
CN108220774B (en) Wire rod and steel wire having excellent toughness, and method for producing same
KR100958019B1 (en) Dual phase steel sheet and method for manufacturing the same
JP4085826B2 (en) Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same
KR102020407B1 (en) High-strength steel sheet having high yield ratio and method for manufacturing thereof
CN110100027B (en) Low yield ratio steel plate having excellent low temperature toughness and method for manufacturing same
JPS6239230B2 (en)
KR100782785B1 (en) Hot-rolled dual-phase steel with fine-grain and the method for production thereof
JP2000273577A (en) High tensile strength hot rolled steel plate excellent in stretch-flanging workability and material stability and its production
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
KR101714979B1 (en) High strength hot rolled steel sheet having excellent bake hardenability and low yield ratio and method for manufacturing thereof
JPH05179345A (en) Production of compound structure steel plate having high workability and high strength
JP2000336455A (en) High ductility hot rolled steel sheet and its production
CN111542631A (en) Ultra-high strength cold-rolled steel sheet and method for manufacturing same
JP2837056B2 (en) Method for producing low carbon equivalent rolled section steel by controlled rolling
JPH05195058A (en) Production of thick steel plate having high toughness and high tensile strength
JP3168665B2 (en) Hot-rolled high-strength steel sheet with excellent workability and its manufacturing method
JPS63145745A (en) Hot rolled high tensile steel plate and its production
JPH06264183A (en) Hot rolled high tensile strength steel plate with high workability and its production
KR100370473B1 (en) A Method for Manufacturing a High Strength Structural Steel Having Fine Ferrites
CN115537677B (en) High-strength high-plasticity austenitic high-manganese steel with double-peak structure and production method thereof
JPH05295432A (en) Production of steel plate having high strength and high toughness by online thermomechanical treatment
JP2003055716A (en) Method for producing high workability high strength hot rolled steel sheet
JPH09137232A (en) Production of high tensile strength hot rolled steel plate