JP3954411B2 - Manufacturing method of high-strength hot-rolled steel sheet with excellent material uniformity and hole expandability - Google Patents

Manufacturing method of high-strength hot-rolled steel sheet with excellent material uniformity and hole expandability Download PDF

Info

Publication number
JP3954411B2
JP3954411B2 JP2002053972A JP2002053972A JP3954411B2 JP 3954411 B2 JP3954411 B2 JP 3954411B2 JP 2002053972 A JP2002053972 A JP 2002053972A JP 2002053972 A JP2002053972 A JP 2002053972A JP 3954411 B2 JP3954411 B2 JP 3954411B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
strength
hot
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002053972A
Other languages
Japanese (ja)
Other versions
JP2003253339A (en
Inventor
浩次 面迫
昭史 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2002053972A priority Critical patent/JP3954411B2/en
Publication of JP2003253339A publication Critical patent/JP2003253339A/en
Application granted granted Critical
Publication of JP3954411B2 publication Critical patent/JP3954411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、自動車足回り部品等の構造部材に用いられる高強度熱延鋼板であって、特に材質均一性,穴拡げ性に優れた鋼板の製造方法、およびその鋼板に関するものである。
【0002】
【従来の技術】
近年、自動車の燃費改善策の一つとして車体の軽量化が進められている。足回り部品等の構造部材においては、材料を薄肉化することによる軽量化効果が大きく、そのためには素材鋼板に一層の高強度化が望まれる。しかし、鋼板の高強度化は往々にして加工性の低下を招く。高強度化した熱延鋼板において良好な加工性を維持することは必ずしも容易ではない。自動車の構造部材用途においては、加工性の中でも特に「穴拡げ性」の改善要求が高まっている。
【0003】
従来から、成形用高強度熱延鋼板の製造方法に関して数多くの提案があり、例えば特開平10−46258号公報には、TiCによる析出強化を利用した熱延鋼板の製造において熱延時の加熱温度・時間をTi含有量との関係で制御することにより、鋼板間の強度のばらつきを低減する手法が開示されている。
また、特開平7−252592号公報には、残留オーステナイトを利用したTRIP鋼板として、強度−延性バランス(引張強さ×全伸び)が20000MPa・%以上と非常に高いものが開示されている。
最近では、Ti,Nb、あるいはCrを添加した高強度鋼を用いて熱延鋼板の穴拡げ性を向上させる研究も行われている。
【0004】
【発明が解決しようとする課題】
自動車足回り部品等の構造部材に用いる熱延鋼板には、引張強さ700N/mm2以上の高強度と、少なくとも15%以上の伸び、さらに70%以上の高い穴拡げ率〔(試験後穴径d−初期穴径d0)/d0×100〕が要求されるようになってきている。
【0005】
しかしながら、TiCによる析出強化を利用した熱延鋼板ではTiの多量添加のため高強度を得やすい反面、降伏点が高く、穴拡げ性が十分とは言えない。また、残留オーステナイトを利用した熱延鋼板では強度−延性バランスは優れるが、穴拡げ率は40%程度と低い。
【0006】
他方、Ti,Nb,Cr等を添加した鋼種においては上記特性を満たすものも出現している。
しかし、これらの特殊元素の助けを借りずに上記特性を付与する技術は未だ確立されていない。また、得られた熱延鋼板は、鋼帯幅方向の硬度分布ができるだけ小さいこと、すなわち、材質均一性に優れることが望ましい。
本発明は、このような状況に鑑み、Ti,Nb,Crを添加することなく、上記のような高強度と優れた穴拡げ性を有し、かつ材質均一性に優れた熱延鋼板を工業的に安定的に提供することを目的とする。
【0007】
【課題を解決するための手段】
発明者らは、Ti,Nb,Crといった特殊元素を添加することなく、高強度熱延鋼帯の穴拡げ性を改善する手法について種々研究を重ねた。その結果、以下の2点を実現することが、穴拡げ性改善に非常に有効であることがわかった。
▲1▼熱延鋼板の金属組織を微細な「ベイナイティックフェライト+ベイナイトの複相組織」または「ベイナイト単相組織」とし、ポリゴナルフェライトやマルテンサイトを生成させないこと。
▲2▼熱延鋼板の表面凹凸をできるだけ平滑化すること。
そして、これら▲1▼▲2▼は、熱間圧延工程において、デスケールを適切に行い、かつ、仕上熱延から巻取までの冷却パターンを成分組成に応じて適切にコントロールすることによって実現可能であることがわかった。
本発明はこのような知見に基づいて完成したものである。
【0008】
すなわち前記目的は、質量%で、C:0.06〜0.13%,Si:0.5〜1.0%,Mn:2.1〜3.0%,P:0.030%以下,S:0.003%以下,Al:0.02〜0.06%,N:0.002〜0.006%,O:0.0030%以下であり、必要に応じてさらにB:0.0050%以下、Ca:0.0050%以下のうち1種または2種を含み、残部がFeおよび不可避的不純物からなる鋼を熱間圧延してコイルにする際、加熱後〜仕上熱延前の段階で少なくとも1回以上スラブまたは鋼板表面に衝突圧2.0kgf/cm2以上で水を吹き付けてデスケールを行い、最終パス温度T1が800〜950℃の範囲のオーステナイト単相域となるように仕上熱延を行い、仕上熱延後〜巻取り前に、T1から下記(1)式で定義される温度T2までの平均冷却速度が80℃/sec以上となり、T2から巻取温度T3までの平均冷却速度が40℃/sec以下となり、かつT3が250〜450℃の範囲となるように冷却制御を行うことを特徴とする材質均一性、穴拡げ性に優れた高強度熱延鋼板の製造方法によって達成される。
T2(℃)=673×C−37×Si+52×Mn−4284×S+442 ・・・(1)
【0009】
ここで、最終パス温度とは、最終パスの圧延機出側において測定される鋼板表面温度をいう。(1)式におけるC,Si,Mn,Sの箇所には、それぞれの元素の含有量(質量%)の値が代入される。
【0010】
上記本発明の製造方法に従えば、上記化学組成の鋼であって、ベイナイティックフェライト+ベイナイトの複相組織またはベイナイト単相組織を呈し、引張強さが700N/mm2以上、伸びが15%以上、穴拡げ率が70%以上であり、鋼帯の幅方向においてエッジから50mm位置と中央位置の硬さ(Hv)の差ΔHvの絶対値が15以下である高強度熱延鋼板が得られる。これらの複相組織または単相組織においては、微量(0.040体積%以下)の析出物や介在物の含有は許容される。ΔHvの絶対値は、両側のエッジそれぞれについて「そのエッジから50mm位置と中央位置の硬さの差」を求めた場合の、大きい方の値を意味する。
【0012】
【発明の実施の形態】
以下、本発明を特定する事項について説明する。
〔成分元素〕
C,Mnは、熱延鋼板の強度を確保するための重要元素である。Cが0.06質量%未満またはMnが2.1質量%未満ではポリゴナルフェライトが生成し易くなる。本発明に係る鋼板はベイナイティックフェライト+ベイナイトの複相組織またはベイナイト単相組織を基調とするものであるが、このような組織においてポリゴナルフェライトが生成すると、強度向上が不十分となるばかりでなく、穴拡げ性が低下する(後述)。一方、Cが0.13質量%を超えるか、またはMnが3.0質量%を超えると溶接性が劣化するとともに、ベイナイトの強度が増加して穴拡げ性が劣化する。このため、C含有量は0.06〜0.13質量%、Mn含有量は2.1〜3.0質量%とした。
【0013】
Siは、フェライト形成元素であるため、Si含有量が1.0質量%を超えるとポリゴナルフェライトが生成し易くなり、強度向上および穴拡げ性を阻害する要因となる。また、Si含有量が1.0質量%を超えるとスラブ加熱時にファイアライトが生成し易くなり、熱間圧延工程でのデスケール性が低下するため、熱延鋼板の表面性状を劣化させる場合がある。一方、Siは固溶強化型の元素でもあり、熱延鋼板の強度を確保するためには少なくとも0.5質量%以上の含有が必要である。このため、Si含有量は0.5〜1.0質量%とした。
【0014】
Pは、0.030質量%を超える含有量になるとポリゴナルフェライトが生成し易くなるとともに、粒界にPが偏析し、強度向上および穴拡げ性を阻害する要因となる。このため、P含有量は0.030質量%以下に制限する必要がある。より好ましいP含有量の範囲は0.020質量%以下である。
【0015】
Sは、MnSを形成し、この介在物は熱延鋼板の中に伸びた形態で存在するので、穴拡げ性を劣化させる。特に高強度熱延鋼板の場合、S含有量が0.003質量%を超えると穴拡げ性の劣化が顕著になる。このため、S含有量は0.003質量%以下に制限する必要がある。より好ましいS含有量の範囲は0.001質量%以下である。
【0016】
Nは、AlNを形成し、溶接時の結晶粒の粗大化を抑制する効果がある。この効果を十分に得るためには少なくとも0.002質量%以上のN含有が必要である。しかし、鋼中のN含有量が0.006質量%を超えると固溶N量が増加する場合があり、そうなると時効硬化によって加工性が劣化する。このため、N含有量は0.002〜0.006質量%とした。
【0017】
Alは、一般に脱酸材として用いられる元素であるが、本発明ではAlNの析出により結晶粒を微細化するためにも重要な元素である。結晶粒微細化とともに、AlN析出物を核として冷却制御によりベイナイティックフェライトを微細に生成させ、均一分散させる効果もある。これらの効果は0.02質量%以上のAl含有により発揮される。ただし、0.06質量%を超える過剰なAl添加はアルミナ系非金属介在物の増加を招き、穴拡げ性を劣化させるだけでなく、表面疵の原因ともなるため好ましくない。このため、Al含有量は0.02〜0.6質量%とした。
【0018】
Oは、鋼中の含有量が0.0030質量%を超えると酸化物の生成が顕著になり、この非金属介在物が加工時の破壊の起点となって穴拡げ性を劣化させる。また、巨大な酸化物は鋼板表面の疵の原因となり易い。このため、O含有量は0.0030質量%以下に制限する必要がある。
【0019】
Bは、極微量の添加で結晶粒界のひずみエネルギーを低下させ、加工性や靱性を改善する。また、ポリゴナルフェライトの生成を抑制する効果があるため、オーステナイトからベイナイト変態を促進させるのに有利に働く。ただし、0.0050質量%を超えてBを添加してもその効果が飽和するとともにコスト上昇を招く。このため、Bを添加する場合には0.0050質量%以下の含有量範囲で行うことが望ましい。
【0020】
Caは、MnS等の硫化物系介在物の形態を球状化する効果があり、それにより局部伸びが向上する。このため、穴拡げ性を改善する上でCa添加は有利に作用する。ただし、0.0050質量%を超えるCa含有は、非金属介在物清浄度を低下させるとともに、溶接性を劣化させる要因にもなる。したがって、Caを添加する場合には0.0050質量%以下の含有量範囲で行うことが望ましい。
【0021】
〔金属組織〕
本発明では、上記の化学組成および後述の製造法により、熱延鋼板の金属組織を「ベイナイティックフェライト+ベイナイトの複相組織」または「ベイナイト単相組織」とし、これによって高強度と優れた穴拡げ性を両立させる。この金属組織は、ポリゴナルフェライトやマルテンサイトが基本的に存在しないもの(すなわち、光学顕微鏡観察でポリゴナルフェライトやマルテンサイトが確認できないもの)を意味する。
【0022】
なお、ポリゴナルフェライトは、オーステナイトからAr1変態点で生じたフェライト相であって、恒温変態による組織変化を受けておらず、C濃度が低く軟質なものである。これに対し、ベイナイティックフェライトは、Ar1点より低温で未変態オーステナイトから冷却途中に生じたものであり、ベイナイトとフェライトの中間的な組織であるが、セメンタイトがほとんど観察されない点はベイナイトと相違する。
ポリゴナルフェライトおよびマルテンサイトは、光学顕微鏡観察によりベイナイティックフェライトやベイナイトとは異なる形態として識別できる。
【0023】
熱間圧延工程において冷却中にポリゴナルフェライトが生成すると、残りの未変態オーステナイトにCが濃化し、その後の冷却過程で生成するベイナイトの強度を増大させる。そうなるとポリゴナルフェライトとベイナイトの強度差が大きくなり、穴拡げ加工時にポリゴナルフェライト/ベイナイト界面で亀裂が生じ易くなる。その結果、穴拡げ性は劣化する。また、ポリゴナルフェライトは軟質であるため、強度レベルも低下する。
また、マルテンサイトが生成すると、その部分は著しく硬化するため、延性が低下するとともに穴拡げ性も劣化する。
【0024】
〔デスケール〕
発明者らの研究の結果、熱延鋼板表面の凹凸を平滑化することが穴拡げ性向上に非常の有効であることが確認された。Ti,Nb,Crを添加しない本発明においては、「鋼板表面の平滑化」と「金属組織の調整」とを組み合わせることが、工業的に安定して高強度化と優れた穴拡げ性の両立を図る上で重要である。熱延鋼板表面の問題となる凹凸は、主としてスラブ表面に生成した酸化スケールが圧延によって材料表面に押し込まれることによって生じる。そこで、本発明では加熱後〜仕上熱延前の段階で、スラブまたは鋼板の表面に水を吹き付けることによりデスケールを行う。なお、デスケールは広面の両面について行う必要がある。
【0025】
水の吹き付け圧は、材料表面の衝突圧が2.0kgf/cm2以上となるようにする。それより低い衝突圧では材料表面にスケールが残存し易く、製品表面に表面疵(凹部)を形成する原因となる。その場合、加工時に凹部に応力集中が生じ、穴拡げ性は劣化する。連続熱延ラインの場合、デスケール用の水吹き付けノズルは、例えば、加熱炉の出口付近、粗圧延機(リバース圧延機)の前後、仕上圧延機(タンデム圧延機)の入口付近等に設置することができ、これらのうち少なくとも1つ以上を稼働させて(すなわち1回以上のデスケールを行うことにより)スラブまたは鋼板表面の酸化スケールを除去する。デスケール回数はスケールの生成程度により増減することができるが、回数を増やすほど材料温度低下は大きくなる。仕上熱延での最終パス温度T1を後述の適性範囲に確保できるよう配慮する必要がある。
【0026】
〔最終パス温度T1〕
仕上熱延での最終パス温度が800℃未満になると、オーステナイト→フェライト変態が起こり易くなることに起因してポリゴナルフェライトが生成し易くなる。一方、最終パス温度が950℃を超えて高くなると、オーステナイト粒径が大きくなることに起因して、変態組織の結晶粒径が大きくなり穴拡げ性が劣化する。したがって、本発明では最終パス温度T1を800〜950℃にコントロールすることが重要である。
【0027】
〔T1からT2までの平均冷却速度〕
T2は、C,Si,MnおよびSの含有量に応じて前記(1)式により定まる温度であり、仕上熱延後における「強冷却」を停止させる目標温度である。発明者らは多くの実験により、C,Mnが高めの材料やSi,Sが少なめの材料の場合、強冷却を停止させる温度を高めにすべきことを経験した。このT2は、その経験に基づき、成分組成と強制冷却停止温度との関係を定量的に表したものである。
T1からT2までの平均冷却速度が80℃/sec未満では、ポリゴナルフェライトが生成し、高強度化と穴拡げ性改善の両立が達成できない。また材質安定性も劣化し易い。したがって、T1からT2までの平均冷却速度は80℃/sec以上とする。
【0028】
〔T2からT3までの平均冷却速度〕
本発明では、T2から巻取温度T3までを「弱冷却」とし、基本的にはこの間で恒温変態的にベイナイティックフェライトやベイナイトを生成させる。T2からT3までの平均冷却速度が40℃/secを超えると生成するベイナイトの硬さが高くなり過ぎるため、伸びおよび穴拡げ性が低下するとともに、鋼帯中の材質均一性が劣化する。したがって、T2からT3までの平均冷却速度は40℃/sec以下とする。
設備のライン構成などによりT2からT3までの保持時間が非常に短い場合には、巻取り後にもベイナイトの生成が起こる場合があるが、差し支えない。
【0029】
〔巻取温度T3〕
巻取温度T3が450℃を超えると強度不足となり、250℃未満になると未変態オーステナイトが残存する場合マルテンサイトとなり硬化するので、延性および穴拡げ性が低下する。したがって本発明では巻取温度T3が250〜450℃の範囲になるように冷却制御を行う必要がある。
仕上熱延後〜巻取り前における冷却制御は、仕上熱延機と巻取装置の間のローラーテーブル上において、強冷却から弱冷却に切り替える位置、および強冷却を行う部分と弱冷却を行う部分の冷却水量をコントロールすることにより実現できる。冷却水量のコントロールは、例えばラインの特性として予め採取してある圧延速度,板厚,冷却水量等の各パラメータと冷却曲線のデータに基づいて行うことができる。
【0030】
【実施例】
表1に供試鋼の成分組成を示す。A〜F鋼は本発明対象鋼、G〜K鋼は比較鋼である。各鋼の連続鋳造スラブを連続熱延ラインを用いて熱間圧延し、板厚3.4mm,幅920mmの熱延コイルとした。表2に製造条件を示してある。
【0031】
【表1】

Figure 0003954411
【0032】
【表2】
Figure 0003954411
【0033】
熱延コイルを連続酸洗した鋼板について、以下の特性を調べた。
〔引張特性〕 鋼板からJIS 5号引張試験片(圧延方向に直角)採取して行った。引張強さは700N/mm2以上を合格とした。ただし、720N/mm2以上のものは特に良好であると評価される。伸びは15%以上を合格とした。
〔穴拡げ性〕 鋼板から150mm角のサンプルを切り出し、その中央に初期穴径d0=φ10mmの穴をクリアランス12%にて打抜いた後、φ50mmの60°円錐ポンチにて打抜きの穴のバリをダイス側として穴拡げを行い、穴周辺に亀裂が生じ始めたときの穴径(試験後穴径d)を測定した。試験はn=3で行った。下記(2)式にて穴拡げ率を求め、n=3の平均値をその鋼板の穴拡げ率とした。
穴拡げ率(%)=(試験後穴径d−初期穴径d0)/d0×100 ・・・(2)
穴拡げ率70%以上を合格とした。
〔表面粗さ〕 鋼板表面の最大高さRy(JIS B 0601)を測定した。
〔材質均一性〕 鋼帯の幅方向中央位置と、両エッジ側についてエッジから幅方向50mm位置の硬さを測定した。そして、一方のエッジ側50mm位置と中央位置の硬さ(Hv)の差の絶対値ΔHv1と、他方のエッジ側50mm位置と中央位置の硬さ(Hv)の差の絶対値ΔHv2を求め、ΔHv1とΔHv2のうち大きい方の値をΔHvとした。ΔHvは15以下を合格とした。
結果を表3に示す。
【0034】
【表3】
Figure 0003954411
【0035】
No.1〜6は本発明で規定する条件に従った発明例である。これらはいずれも引張強さ720N/mm2以上、穴拡げ率70%以上を有している。光学顕微鏡組織観察の結果、これらの熱延鋼板にはポリゴナルフェライトやマルテンサイトは観察されず、いずれもベイナイティックフェライト+ベイナイトの複相組織またはベイナイト単相組織を呈していた。鋼板表面の最大高さRyは10μm以下であり、表面肌は良好であった。また、BあるいはCaを添加したNo.5(E鋼),No.6(F鋼)は、同強度レベルで比較して、さらに良好な穴拡げ率を示している。
【0036】
これに対し、No.7は、Cが高いためベイナイトの硬さが高くなり、伸びが低下した。またSが高いため穴拡げ率が低かった。
No.8は、Cが低いため、Mnが高いにもかかわらず少量のポリゴナルフェライトが生成した。Mnが高いことによりベイナイトが硬質化したため、ポリゴナルフェライトが少量であっても、ベイナイトとの界面にマクロクラックが発生し穴拡げ性は低下した。
No.9は、フェライト形成元素であるSiが高いため、ポリゴナルフェライトが生成し、穴拡げ加工中にベイナイトとの分離が起こって穴拡げ性は低下した。
【0037】
No.10は、Mnが低いためポリゴナルフェライトが粒界に析出しており、強度、穴拡げ率がともに低かった。
No.11は、最終パス温度T1が高すぎたため結晶粒が大きくなり、粒界にポリゴナルフェライトが析出し、穴拡げ率が低下した。Siが低いためベイナイト量が増加し、幅方向の冷却速度のばらつきにより硬さの変動が大きくなった。
No.12は、成分組成は本発明規定範囲であるが、T1からT2までの平均冷却速度が80℃/sec未満であったためポリゴナルフェライトが増加し、強度および穴拡げ性が低下した。材質均一性にも劣った。
No.13は、成分組成は本発明規定範囲であるが、T1からT2までの平均冷却速度が80℃/sec未満であったためポリゴナルフェライトが増加し、強度および穴拡げ性が低下するとともに材質均一性も劣化した。また、デスケールが不十分であったため表面粗さが大きくなり、鋼板表面の凹凸起因による穴拡げ性の低下も認められた。
【0038】
No.14は、成分組成は本発明規定範囲であるが、T2からT3までの平均冷却速度が40℃/secを超えたため部分的にマルテンサイトが生成し、穴拡げ率が低下した。また、デスケールを実施しなかったので鋼板表面の最大高さRyが大きくなり、鋼板表面の凹凸起因による穴拡げ性の低下も認められた。さらに巻取温度T3が低かったので材質均一性に劣った。
No.15は、成分組成は本発明規定範囲であるが、巻取温度が高すぎたため強度が不足した。材質均一性にも劣った。
No.16は、成分組成は本発明規定範囲であるが、T2からT3までの平均冷却速度が40℃/secを超え、巻取温度T3が低すぎたため、マルテンサイトが生成し、そのため伸びや穴拡げ率が低かった。材質均一性にも劣った。
【0039】
【発明の効果】
以上のように、本発明によれば、熱間圧延工程でのデスケールおよび比較的簡単な冷却制御を組み合わせることで、Ti,Nb,Cr等の高価な合金元素を必要とせずに、720N/m2以上の強度レベルと、70%以上の高い穴拡げ率を両立した熱延鋼板が工業的に安定して低コストで提供できるようになった。また、本発明が提供する熱延鋼板はSi含有鋼の中でも表面性状が良好であり、材質均一性にも優れる。したがって本発明は、自動車足回り部品等の構造部材用途への高強度鋼の普及を促進し、部材の薄肉化による自動車の軽量化に寄与するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength hot-rolled steel sheet used for structural members such as automobile undercarriage parts, and more particularly to a method for manufacturing a steel sheet excellent in material uniformity and hole expansibility, and the steel sheet.
[0002]
[Prior art]
In recent years, weight reduction of the vehicle body has been promoted as one of the measures for improving the fuel consumption of automobiles. In structural members such as undercarriage parts, the effect of reducing the weight by reducing the thickness of the material is great. For this purpose, it is desired to further increase the strength of the material steel plate. However, increasing the strength of steel sheets often leads to a decrease in workability. It is not always easy to maintain good workability in a high-strength hot-rolled steel sheet. In automotive structural member applications, there is an increasing demand for improvement of “hole expandability” among workability.
[0003]
Conventionally, many proposals have been made regarding a method for producing a high-strength hot-rolled steel sheet for forming. For example, Japanese Patent Laid-Open No. 10-46258 discloses a heating temperature at the time of hot rolling in the production of a hot-rolled steel sheet using precipitation strengthening by TiC. A technique for reducing the variation in strength between steel sheets by controlling the time in relation to the Ti content is disclosed.
Japanese Unexamined Patent Publication No. 7-252592 discloses a TRIP steel sheet using retained austenite having a very high strength-ductility balance (tensile strength x total elongation) of 20000 MPa ·% or more.
Recently, research has been conducted to improve the hole expandability of hot-rolled steel sheets using high-strength steel added with Ti, Nb, or Cr.
[0004]
[Problems to be solved by the invention]
Hot-rolled steel sheets used for structural parts such as automobile undercarriage parts have high strength with a tensile strength of 700 N / mm 2 or more, elongation of at least 15%, and a high hole expansion ratio of 70% or more [(hole after test The diameter d−the initial hole diameter d 0 ) / d 0 × 100] has been demanded.
[0005]
However, hot-rolled steel sheets using precipitation strengthening by TiC are easy to obtain high strength due to the addition of a large amount of Ti, but the yield point is high and the hole expandability is not sufficient. Moreover, in the hot rolled steel sheet using retained austenite, the balance between strength and ductility is excellent, but the hole expansion rate is as low as about 40%.
[0006]
On the other hand, some steel types to which Ti, Nb, Cr, etc. are added satisfy the above characteristics.
However, a technique for imparting the above characteristics without the help of these special elements has not yet been established. Further, it is desirable that the obtained hot-rolled steel sheet has a hardness distribution in the steel strip width direction as small as possible, that is, excellent in material uniformity.
In view of such a situation, the present invention provides a hot-rolled steel sheet having high strength, excellent hole expansibility, and excellent material uniformity as described above without adding Ti, Nb, and Cr. It aims at providing it stably.
[0007]
[Means for Solving the Problems]
The inventors have made various studies on techniques for improving the hole expandability of a high-strength hot-rolled steel strip without adding special elements such as Ti, Nb, and Cr. As a result, it has been found that realizing the following two points is very effective for improving the hole expansibility.
(1) The hot rolled steel sheet should have a fine “bainitic ferrite + bainite double-phase structure” or “bainite single-phase structure” to prevent the formation of polygonal ferrite or martensite.
(2) Smooth the surface irregularities of the hot-rolled steel sheet as much as possible.
These (1) and (2) can be realized by appropriately performing descaling in the hot rolling process and appropriately controlling the cooling pattern from finish hot rolling to winding. I found out.
The present invention has been completed based on such findings.
[0008]
That is, the purpose is mass%, C: 0.06 to 0.13%, Si: 0.5 to 1.0%, Mn: 2.1 to 3.0%, P: 0.030% or less, S: 0.003% or less, Al: 0.02 to 0.06%, N : 0.002 to 0.006%, O: 0.0030% or less, and if necessary, B: 0.0050% or less, Ca: 0.0050% or less, one or two of them, the balance being Fe and inevitable impurities When the steel is hot rolled into a coil, it is descaled by spraying water at a collision pressure of 2.0 kgf / cm 2 or more on the surface of the slab or steel plate at least once after heating to before finish hot rolling, and the final pass temperature Finishing hot rolling so that T1 becomes an austenite single phase region in the range of 800-950 ° C, and after the finishing hot rolling to before winding, average cooling from T1 to temperature T2 defined by the following formula (1) The speed is 80 ° C / sec or more, the average cooling rate from T2 to the winding temperature T3 is 40 ° C / sec or less, and T 3 is achieved by a method for producing a high-strength hot-rolled steel sheet excellent in material uniformity and hole expansibility, characterized in that cooling control is performed so as to be in the range of 250 to 450 ° C.
T2 (° C.) = 673 × C−37 × Si + 52 × Mn−4284 × S + 442 (1)
[0009]
Here, the final pass temperature refers to the steel plate surface temperature measured on the rolling mill exit side of the final pass. The value of the content (mass%) of each element is substituted into the locations of C, Si, Mn, and S in the formula (1).
[0010]
According to the production method of the present invention, the steel having the above-described chemical composition, which exhibits a bainitic ferrite + bainite double phase structure or a bainite single phase structure, has a tensile strength of 700 N / mm 2 or more, and an elongation of 15 %, The hole expansion ratio is 70% or more, and a high-strength hot-rolled steel sheet is obtained in which the absolute value of the difference ΔHv between the hardness (Hv) at the 50mm position and the center position in the width direction of the steel strip is 15 or less. It is done . In these multiphase structures or single phase structures, the inclusion of a minute amount (0.040% by volume or less) of precipitates and inclusions is allowed. The absolute value of ΔHv means the larger value when the “difference in hardness between the 50 mm position and the central position from the edge” is obtained for each edge on both sides.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the matter which specifies this invention is demonstrated.
[Constituent elements]
C and Mn are important elements for ensuring the strength of the hot-rolled steel sheet. When C is less than 0.06% by mass or Mn is less than 2.1% by mass, polygonal ferrite is easily formed. The steel sheet according to the present invention is based on a bainitic ferrite + bainite multiphase structure or a bainite single-phase structure. When polygonal ferrite is generated in such a structure, the strength improvement is not sufficient. In addition, the hole expandability is reduced (described later). On the other hand, when C exceeds 0.13 mass% or Mn exceeds 3.0 mass%, the weldability deteriorates, and the strength of bainite increases and the hole expandability deteriorates. For this reason, C content was 0.06-0.13 mass%, and Mn content was 2.1-3.0 mass%.
[0013]
Since Si is a ferrite forming element, if the Si content exceeds 1.0 mass%, polygonal ferrite is likely to be generated, which becomes a factor that hinders strength improvement and hole expandability. Moreover, when Si content exceeds 1.0 mass%, it becomes easy to produce | generate a firelite at the time of slab heating, and since the descaling property in a hot rolling process falls, the surface property of a hot-rolled steel plate may be deteriorated. On the other hand, Si is also a solid solution strengthening element, and it is necessary to contain at least 0.5% by mass or more in order to ensure the strength of the hot-rolled steel sheet. For this reason, Si content was 0.5-1.0 mass%.
[0014]
When the P content exceeds 0.030% by mass, polygonal ferrite is easily generated, and P is segregated at the grain boundaries, which becomes a factor that hinders strength improvement and hole expansibility. For this reason, P content needs to be limited to 0.030 mass% or less. A more preferable range of the P content is 0.020% by mass or less.
[0015]
S forms MnS, and since this inclusion exists in the form extended in the hot-rolled steel sheet, the hole expandability is deteriorated. In particular, in the case of a high-strength hot-rolled steel sheet, when the S content exceeds 0.003 mass%, the deterioration of hole expansibility becomes significant. For this reason, S content needs to be limited to 0.003 mass% or less. A more preferable range of the S content is 0.001% by mass or less.
[0016]
N forms AlN and has an effect of suppressing coarsening of crystal grains during welding. In order to sufficiently obtain this effect, N content of at least 0.002% by mass or more is necessary. However, when the N content in the steel exceeds 0.006% by mass, the solid solution N amount may increase, and when this happens, workability deteriorates due to age hardening. For this reason, N content was made into 0.002-0.006 mass%.
[0017]
Al is an element generally used as a deoxidizer, but in the present invention, it is also an important element for refining crystal grains by precipitation of AlN. Along with the refinement of crystal grains, there is also an effect of finely producing bainitic ferrite by AlN precipitates as a core and controlling the cooling to uniformly disperse. These effects are exhibited by containing 0.02% by mass or more of Al. However, excessive addition of Al exceeding 0.06% by mass causes an increase in alumina-based non-metallic inclusions, which not only deteriorates the hole expansibility but also causes surface defects. Therefore, the Al content is set to 0.02 to 0.6% by mass.
[0018]
When the content of O exceeds 0.0030 mass% in steel, the formation of oxide becomes remarkable, and this non-metallic inclusion becomes a starting point of fracture during processing and deteriorates the hole expansibility. Moreover, a huge oxide tends to cause wrinkles on the surface of the steel sheet. For this reason, it is necessary to restrict | limit O content to 0.0030 mass% or less.
[0019]
B, when added in a very small amount, lowers the strain energy at the grain boundaries and improves workability and toughness. Moreover, since it has the effect of suppressing the formation of polygonal ferrite, it works advantageously to promote bainite transformation from austenite. However, even if B is added in excess of 0.0050 mass%, the effect is saturated and the cost is increased. For this reason, when adding B, it is desirable to carry out in the content range of 0.0050 mass% or less.
[0020]
Ca has the effect of spheroidizing the form of sulfide inclusions such as MnS, thereby improving local elongation. For this reason, the addition of Ca is advantageous in improving the hole expandability. However, the Ca content exceeding 0.0050 mass% decreases the cleanliness of non-metallic inclusions and also causes deterioration of weldability. Therefore, when adding Ca, it is desirable to carry out in the content range of 0.0050 mass% or less.
[0021]
[Metal structure]
In the present invention, the metal structure of the hot-rolled steel sheet is changed to “bainitic ferrite + bainite single-phase structure” or “bainite single-phase structure” by the above-described chemical composition and the manufacturing method described later. Balances hole expandability. This metal structure means that there is basically no polygonal ferrite or martensite (that is, polygonal ferrite or martensite cannot be confirmed by optical microscope observation).
[0022]
Polygonal ferrite is a ferrite phase generated from austenite at the Ar 1 transformation point, is not subjected to a structural change due to isothermal transformation, and has a low C concentration and is soft. In contrast, bainitic ferrite, which has occurred during cooling from untransformed austenite at a temperature lower than the one point Ar, is a bainite and ferrite intermediate tissue, that cementite is hardly observed and bainite Is different.
Polygonal ferrite and martensite can be identified as different forms from bainitic ferrite and bainite by optical microscope observation.
[0023]
When polygonal ferrite is generated during cooling in the hot rolling process, C is concentrated in the remaining untransformed austenite, and the strength of bainite generated in the subsequent cooling process is increased. When this happens, the difference in strength between polygonal ferrite and bainite becomes large, and cracks are likely to occur at the polygonal ferrite / bainite interface during hole expansion. As a result, hole expandability deteriorates. In addition, since the polygonal ferrite is soft, the strength level also decreases.
Further, when martensite is generated, the portion is remarkably cured, so that ductility is lowered and hole expansibility is also deteriorated.
[0024]
[Descale]
As a result of the inventors' research, it was confirmed that smoothing the irregularities on the surface of the hot-rolled steel sheet is very effective for improving the hole expandability. In the present invention in which Ti, Nb, and Cr are not added, the combination of “smoothing of the steel sheet surface” and “adjustment of the metal structure” achieves both industrially stable and high strength and excellent hole expansibility. It is important to plan. The unevenness that becomes a problem on the surface of the hot-rolled steel sheet is mainly caused by the oxide scale generated on the surface of the slab being pushed into the material surface by rolling. Therefore, in the present invention, descaling is performed by spraying water on the surface of the slab or the steel plate in a stage after heating to before finish hot rolling. Note that descaling must be performed on both sides of the wide surface.
[0025]
The water spray pressure is such that the impact pressure on the material surface is 2.0 kgf / cm 2 or more. If the impact pressure is lower than that, scale tends to remain on the surface of the material, which causes surface defects (concave portions) to be formed on the surface of the product. In that case, stress concentration occurs in the recess during processing, and the hole expansibility deteriorates. In the case of a continuous hot rolling line, for example, a water spray nozzle for descaling should be installed near the exit of the heating furnace, before and after the roughing mill (reverse rolling mill), near the entrance of the finishing mill (tandem rolling mill), etc. At least one or more of these are operated (ie, by performing one or more descales) to remove the oxide scale on the surface of the slab or the steel plate. The number of descales can be increased or decreased depending on the scale generation level, but the material temperature drop increases as the number is increased. It is necessary to consider so that the final pass temperature T1 in the finish hot rolling can be ensured within an appropriate range described later.
[0026]
[Final pass temperature T1]
When the final pass temperature in finish hot rolling is less than 800 ° C., polygonal ferrite is likely to be formed due to the austenite → ferrite transformation being liable to occur. On the other hand, when the final pass temperature is higher than 950 ° C., the austenite grain size is increased, so that the crystal grain size of the transformed structure is increased and the hole expansibility is deteriorated. Therefore, in the present invention, it is important to control the final pass temperature T1 to 800 to 950 ° C.
[0027]
[Average cooling rate from T1 to T2]
T2 is a temperature determined by the above equation (1) according to the contents of C, Si, Mn, and S, and is a target temperature for stopping “strong cooling” after finishing hot rolling. The inventors have experienced through many experiments that, in the case of a material with a high C and Mn and a material with a small amount of Si and S, the temperature at which strong cooling is stopped should be increased. This T2 is a quantitative representation of the relationship between the component composition and the forced cooling stop temperature based on that experience.
When the average cooling rate from T1 to T2 is less than 80 ° C./sec, polygonal ferrite is generated, and it is not possible to achieve both high strength and improved hole expansibility. Also, the material stability is likely to deteriorate. Therefore, the average cooling rate from T1 to T2 is 80 ° C./sec or more.
[0028]
[Average cooling rate from T2 to T3]
In the present invention, “weak cooling” is performed from T2 to the coiling temperature T3, and basically bainitic ferrite and bainite are generated isothermally during this period. If the average cooling rate from T2 to T3 exceeds 40 ° C./sec, the hardness of the bainite produced becomes too high, so that the elongation and hole expansibility decrease, and the material uniformity in the steel strip deteriorates. Therefore, the average cooling rate from T2 to T3 is set to 40 ° C./sec or less.
If the holding time from T2 to T3 is very short due to the line configuration of the equipment, bainite may be generated even after winding, but this is not a problem.
[0029]
[Winding temperature T3]
When the coiling temperature T3 exceeds 450 ° C., the strength is insufficient, and when it is less than 250 ° C., when untransformed austenite remains, it becomes martensite and hardens, so that ductility and hole expansibility are lowered. Therefore, in the present invention, it is necessary to perform cooling control so that the winding temperature T3 is in the range of 250 to 450 ° C.
The cooling control after finishing hot rolling to before winding is performed on the roller table between the finishing hot rolling machine and the winding device, the position to switch from strong cooling to weak cooling, and the part that performs strong cooling and the part that performs weak cooling. This can be achieved by controlling the amount of cooling water. The cooling water amount can be controlled based on parameters such as rolling speed, sheet thickness, cooling water amount, and the like, which are previously collected as line characteristics, and cooling curve data.
[0030]
【Example】
Table 1 shows the component composition of the test steel. A to F steels are steels according to the present invention, and G to K steels are comparative steels. Continuous cast slabs of each steel were hot-rolled using a continuous hot rolling line to form hot rolled coils with a plate thickness of 3.4 mm and a width of 920 mm. Table 2 shows the manufacturing conditions.
[0031]
[Table 1]
Figure 0003954411
[0032]
[Table 2]
Figure 0003954411
[0033]
The following characteristics were investigated for the steel sheet obtained by continuously pickling hot-rolled coils.
[Tensile properties] JIS No. 5 tensile specimens (perpendicular to the rolling direction) were taken from the steel sheet. The tensile strength was set to 700 N / mm 2 or more. However, those with 720 N / mm 2 or more are evaluated as being particularly good. Elongation was 15% or more.
A sample was cut out of 150mm square from [hole expandability] steel sheet, after punching the holes in the initial hole diameter d 0 = .phi.10 mm in the center with a clearance of 12%, of the punched hole at 60 ° conical punch of φ50mm Bali Was expanded on the die side, and the hole diameter (post-test hole diameter d) was measured when cracking started around the hole. The test was performed at n = 3. The hole expansion rate was calculated by the following formula (2), and the average value of n = 3 was defined as the hole expansion rate of the steel sheet.
Hole expansion rate (%) = (post-test hole diameter d−initial hole diameter d 0 ) / d 0 × 100 (2)
A hole expansion rate of 70% or more was accepted.
[Surface roughness] The maximum height Ry (JIS B 0601) of the steel sheet surface was measured.
[Material uniformity] The hardness at the center position in the width direction of the steel strip and the position of the edge in the width direction 50 mm from both edges were measured. Then, the absolute value ΔHv1 of the difference in hardness (Hv) between the 50 mm position and the center position on one edge side and the absolute value ΔHv2 of the difference in hardness (Hv) between the 50 mm position on the other edge side and the center position are obtained, and ΔHv1 And ΔHv2 is the larger value ΔHv. ΔHv was determined to be 15 or less.
The results are shown in Table 3.
[0034]
[Table 3]
Figure 0003954411
[0035]
Nos. 1 to 6 are invention examples according to the conditions defined in the present invention. All of these have a tensile strength of 720 N / mm 2 or more and a hole expansion ratio of 70% or more. As a result of observation of the optical microscope structure, neither polygonal ferrite nor martensite was observed in these hot-rolled steel sheets, and both exhibited a bainite ferrite + bainite multiphase structure or a bainite single phase structure. The maximum height Ry of the steel sheet surface was 10 μm or less, and the surface skin was good. In addition, No. 5 (E steel) and No. 6 (F steel) to which B or Ca is added show a better hole expansion rate than the same strength level.
[0036]
On the other hand, since No. 7 had high C, the hardness of bainite became high and elongation fell. Moreover, since S was high, the hole expansion rate was low.
In No. 8, since C was low, a small amount of polygonal ferrite was produced even though Mn was high. Since the bainite was hardened due to the high Mn, macrocracks were generated at the interface with the bainite even if the amount of polygonal ferrite was small, and the hole expandability was lowered.
In No. 9, since Si, which is a ferrite forming element, is high, polygonal ferrite was generated, and separation from bainite occurred during hole expansion processing, resulting in a decrease in hole expandability.
[0037]
In No. 10, since Mn was low, polygonal ferrite was precipitated at the grain boundaries, and both the strength and the hole expansion rate were low.
In No. 11, since the final pass temperature T1 was too high, the crystal grains became large, polygonal ferrite precipitated at the grain boundaries, and the hole expansion rate decreased. Since Si was low, the amount of bainite increased, and the variation in hardness increased due to variations in the cooling rate in the width direction.
In No. 12, the component composition was within the range specified in the present invention, but the average cooling rate from T1 to T2 was less than 80 ° C./sec, so the polygonal ferrite increased, and the strength and hole expansibility decreased. The material uniformity was also inferior.
In No. 13, the component composition is within the range specified in the present invention, but since the average cooling rate from T1 to T2 was less than 80 ° C / sec, polygonal ferrite increased, the strength and hole expandability decreased, and the material Uniformity also deteriorated. Further, since the descaling was insufficient, the surface roughness was increased, and a decrease in hole expandability due to unevenness on the steel sheet surface was also observed.
[0038]
In No. 14, the component composition is within the range specified in the present invention, but since the average cooling rate from T2 to T3 exceeded 40 ° C./sec, martensite was partially generated and the hole expansion rate was lowered. Further, since the descaling was not performed, the maximum height Ry of the steel sheet surface was increased, and a decrease in hole expansibility due to unevenness on the steel sheet surface was also observed. Furthermore, since the coiling temperature T3 was low, the material uniformity was poor.
In No. 15, the component composition was within the range specified in the present invention, but the strength was insufficient because the coiling temperature was too high. The material uniformity was also inferior.
In No. 16, the component composition is within the range specified in the present invention, but the average cooling rate from T2 to T3 exceeded 40 ° C./sec, and the coiling temperature T3 was too low, so martensite was formed, and therefore elongation and The hole expansion rate was low. The material uniformity was also inferior.
[0039]
【The invention's effect】
As described above, according to the present invention, by combining descaling in the hot rolling process and relatively simple cooling control, expensive alloy elements such as Ti, Nb, and Cr are not required, and 720 N / m. Hot-rolled steel sheets that have both a strength level of 2 or more and a high hole expansion rate of 70% or more can be provided industrially stably at low cost. Moreover, the hot rolled steel sheet provided by the present invention has good surface properties among Si-containing steels, and is excellent in material uniformity. Accordingly, the present invention promotes the spread of high-strength steel for use in structural members such as automobile undercarriage parts, and contributes to reducing the weight of automobiles by reducing the thickness of the members.

Claims (2)

質量%で、C:0.06〜0.13%,Si:0.5〜1.0%,Mn:2.1〜3.0%,P:0.030%以下,S:0.003%以下,Al:0.02〜0.06%,N:0.002〜0.006%,O:0.0030%以下であり、残部がFeおよび不可避的不純物からなる鋼を熱間圧延してコイルにする際、加熱後〜仕上熱延前の段階で少なくとも1回以上スラブまたは鋼板表面に衝突圧2.0kgf/cm2以上で水を吹き付けてデスケールを行い、最終パス温度T1が800〜950℃の範囲のオーステナイト単相域となるように仕上熱延を行い、仕上熱延後〜巻取り前に、T1から下記(1)式で定義される温度T2までの平均冷却速度が80℃/sec以上となり、T2から巻取温度T3までの平均冷却速度が40℃/sec以下となり、かつT3が250〜450℃の範囲となるように冷却制御を行うことを特徴とする材質均一性、穴拡げ性に優れた高強度熱延鋼板の製造方法。
T2(℃)=673×C−37×Si+52×Mn−4284×S+442 ・・・(1)
In mass%, C: 0.06 to 0.13%, Si: 0.5 to 1.0%, Mn: 2.1 to 3.0%, P: 0.030% or less, S: 0.003% or less, Al: 0.02 to 0.06%, N: 0.002 to 0.006% , O: 0.0030% or less, and when the remainder is made of Fe and inevitable impurities and is hot rolled into a coil, it collides with the surface of the slab or steel plate at least once after heating to before finishing hot rolling. Descaling is performed by spraying water at a pressure of 2.0 kgf / cm 2 or more, and finish hot rolling is performed so that the final pass temperature T1 is an austenite single phase region in the range of 800 to 950 ° C. After finishing hot rolling and before winding Furthermore, the average cooling rate from T1 to the temperature T2 defined by the following equation (1) is 80 ° C / sec or more, the average cooling rate from T2 to the winding temperature T3 is 40 ° C / sec or less, and T3 is High strength heat with excellent material uniformity and hole expansibility, characterized by cooling control to be in the range of 250-450 ° C Method of manufacturing a steel plate.
T2 (° C.) = 673 × C−37 × Si + 52 × Mn−4284 × S + 442 (1)
鋼がさらにB:0.0050%以下、Ca:0.0050%以下のうち1種または2種を含むものである請求項1に記載の製造方法。  The manufacturing method according to claim 1, wherein the steel further contains one or two of B: 0.0050% or less and Ca: 0.0050% or less.
JP2002053972A 2002-02-28 2002-02-28 Manufacturing method of high-strength hot-rolled steel sheet with excellent material uniformity and hole expandability Expired - Fee Related JP3954411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053972A JP3954411B2 (en) 2002-02-28 2002-02-28 Manufacturing method of high-strength hot-rolled steel sheet with excellent material uniformity and hole expandability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053972A JP3954411B2 (en) 2002-02-28 2002-02-28 Manufacturing method of high-strength hot-rolled steel sheet with excellent material uniformity and hole expandability

Publications (2)

Publication Number Publication Date
JP2003253339A JP2003253339A (en) 2003-09-10
JP3954411B2 true JP3954411B2 (en) 2007-08-08

Family

ID=28665251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053972A Expired - Fee Related JP3954411B2 (en) 2002-02-28 2002-02-28 Manufacturing method of high-strength hot-rolled steel sheet with excellent material uniformity and hole expandability

Country Status (1)

Country Link
JP (1) JP3954411B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5037415B2 (en) * 2007-06-12 2012-09-26 新日本製鐵株式会社 High Young's modulus steel plate excellent in hole expansibility and method for producing the same
JP5672916B2 (en) * 2010-09-30 2015-02-18 Jfeスチール株式会社 High-strength steel sheet for sour line pipes, method for producing the same, and high-strength steel pipe using high-strength steel sheets for sour line pipes
JP5900303B2 (en) * 2011-12-09 2016-04-06 Jfeスチール株式会社 High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5991174B2 (en) * 2011-12-09 2016-09-14 Jfeスチール株式会社 High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5991175B2 (en) * 2011-12-09 2016-09-14 Jfeスチール株式会社 High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method
CN114309086B (en) * 2022-01-05 2024-02-23 湖南华菱涟钢特种新材料有限公司 Preparation method for improving performance uniformity of Ti-reinforced cold-formed high-strength steel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325657A (en) * 1991-04-26 1992-11-16 Kobe Steel Ltd High strength hot rolled steel sheet excellent in stretch-flanging property and its manufacture
JP3061218B2 (en) * 1991-12-26 2000-07-10 株式会社神戸製鋼所 Manufacturing method of high tension hot rolled steel sheet
JP3332172B2 (en) * 1993-06-30 2002-10-07 日本鋼管株式会社 High strength hot rolled steel sheet with excellent strength-stretch flange balance and strength-ductility balance
JPH11199974A (en) * 1998-01-19 1999-07-27 Nippon Steel Corp Hot rolled steel sheet excellent in scale peeling resistance and its production
JP3440894B2 (en) * 1998-08-05 2003-08-25 Jfeスチール株式会社 High strength hot rolled steel sheet excellent in stretch flangeability and method for producing the same
JP3716639B2 (en) * 1998-09-10 2005-11-16 Jfeスチール株式会社 Manufacturing method of bainite-based high-tensile hot-rolled steel strip
JP3769146B2 (en) * 1999-06-15 2006-04-19 新日本製鐵株式会社 High burring hot-rolled steel sheet with excellent fatigue characteristics and method for producing the same
JP3596509B2 (en) * 2001-10-04 2004-12-02 Jfeスチール株式会社 Manufacturing method of high strength hot rolled steel sheet

Also Published As

Publication number Publication date
JP2003253339A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
JP6210175B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5348268B2 (en) High-strength cold-rolled steel sheet having excellent formability and method for producing the same
KR101656977B1 (en) Steel sheet suitable as impact absorbing member, and method for manufacturing same
KR102000854B1 (en) High-strength cold-rolled steel sheet and method for manufacturing the same
JP5493986B2 (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them
JP5858174B2 (en) Low yield ratio high strength cold-rolled steel sheet and method for producing the same
US20080000555A1 (en) High Strength Thin-Gauge Steel Sheet Excellent in Elongation and Hole Expandability and Method of Production of Same
KR20200124293A (en) High-strength cold rolled steel sheet and its manufacturing method
KR20120023804A (en) High-strength hot-dip galvannealed steel shhet with excellent workability and fatigue characteristics and process for production thereof
JP2007254857A (en) High-strength hot rolled steel sheet having excellent composite moldability
JP6597938B1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing them
EP2987886A1 (en) High strength hot rolled steel sheet and method for producing same
JP3433687B2 (en) High-strength hot-rolled steel sheet excellent in workability and method for producing the same
JPWO2020184154A1 (en) High-strength steel sheet and its manufacturing method
WO2016113781A1 (en) High-strength steel sheet and production method therefor
CN115244200A (en) High-strength steel sheet and method for producing same
JP2010013700A (en) High strength hot dip galvanized steel sheet having excellent workability, and method for producing the same
KR102020407B1 (en) High-strength steel sheet having high yield ratio and method for manufacturing thereof
JP2013216945A (en) Steel sheet and impact absorbing member
JP2010229514A (en) Cold rolled steel sheet and method for producing the same
US20150354021A1 (en) A high-strength hot-rolled steel strip or sheet with excellent formability and fatigue performance and a method of manufacturing said steel strip or sheet
JPH1161327A (en) High strength automobile steel plate superior in collision safety and formability, and its manufacture
JP4980253B2 (en) High-strength hot-rolled steel sheet with excellent strength-ductility balance and punchability and method for producing the same
JP2009079255A (en) High-tensile-strength cold-rolled steel sheet and method for manufacturing the same
JP3954411B2 (en) Manufacturing method of high-strength hot-rolled steel sheet with excellent material uniformity and hole expandability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees