JP3769146B2 - High burring hot-rolled steel sheet with excellent fatigue characteristics and method for producing the same - Google Patents

High burring hot-rolled steel sheet with excellent fatigue characteristics and method for producing the same Download PDF

Info

Publication number
JP3769146B2
JP3769146B2 JP16806599A JP16806599A JP3769146B2 JP 3769146 B2 JP3769146 B2 JP 3769146B2 JP 16806599 A JP16806599 A JP 16806599A JP 16806599 A JP16806599 A JP 16806599A JP 3769146 B2 JP3769146 B2 JP 3769146B2
Authority
JP
Japan
Prior art keywords
hot
steel sheet
fatigue
steel
fatigue characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16806599A
Other languages
Japanese (ja)
Other versions
JP2000355734A (en
Inventor
龍雄 横井
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16806599A priority Critical patent/JP3769146B2/en
Publication of JP2000355734A publication Critical patent/JP2000355734A/en
Application granted granted Critical
Publication of JP3769146B2 publication Critical patent/JP3769146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、疲労特性に優れた高バーリング性熱延鋼板およびその製造方法に関するものであり、特に、自動車の足廻り部品やロードホイール等の耐久性と加工性の両立が求められる素材として好適な疲労特性に優れた高バーリング性熱延鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、自動車の燃費向上などのために軽量化を目的として、Al合金等の軽金属や高強度鋼板の自動車部材への適用が進められている。ただ、Al合金等の軽金属は比強度が高いという利点があるものの鋼に比較して著しく高価であるためその適用は特殊な用途に限られてきた。より広い範囲で自動車の軽量化を推進するためには安価な高強度鋼板の適用が強く求められている。
一般に、材料は、高強度になるほど延性が低下して加工性(成形性)が悪くなるばかりでなく、切り欠き感受性も高くなる。そのため、複雑な形状をしている自動車の足廻り部品等への高強度鋼板の適用にあたっては、その成形性だけでなく、疲労耐久性も重要な検討課題となる。
【0003】
加工性に優れた高強度熱延鋼板として、伸びフランジ性(バーリング加工性)の優れた高強度鋼板を、フェライトとベイナイトを主体とするミクロ組織で得る発明が、例えば、特開昭57−145965号公報や特開昭61−96057号公報等で開示されている。さらにまた、これらの特性に低降伏比でかつ優れた延性を兼備させた高強度鋼板を、フェライト、ベイナイトとマルテンサイトを主体とするミクロ組織で得る発明が、例えば、特開平3−264645号公報等で開示されている。
【0004】
また、疲労特性に優れた高強度熱延鋼板としては、特開平4−276016号公報、特開平5−331591号公報、特開平6−145792号公報、特開平8−60240号公報等で、疲労特性を向上させるために特定の添加元素に注目して、Pの固溶強化および/またはCuの析出強化を利用する発明が開示されている。すなわち、上記の特開平4−276016号公報には、Pの固溶強化とCuの析出強化によって疲労強度を向上させる技術が開示されている。
【0005】
さらに疲労特性と伸びフランジ性を兼ね備えた高強度鋼板として、特開平5−331591号公報では、ミクロ組織をフェライトとマルテンサイトまたはフェライト、マルテンサイトおよび残留オーステナイトとし、フェライト相にε−Cuを析出させて疲労強度と伸びフランジ性を向上させる技術が開示されている。また、特開平6−145792号公報では、ミクロ組織をフェライト、ベイナイトおよびマルテンサイトの三相とし、それぞれの相の体積分率を規定して強度と伸びフランジ性を確保するとともに、Cuの析出強化によって疲労特性を向上させる技術が開示されている。
【0006】
さらに、特開平8−60240号公報では、ミクロ組織をフェライト、ベイナイトおよびマルテンサイトの三相とし、それぞれの相の体積分率を規定して強度延性バランスを確保し、Cuの析出強化によって疲労特性を向上させる技術が開示されている。一方、特開平9−137249号公報では、ミクロ組織をフェライト、ベイナイトおよびマルテンサイトの三相とし、それぞれの相の体積分率を特定するとともにTi、Nbの炭化物でフェライト相を析出強化し、さらに表面近傍のフェライト粒径と鋼板表面の粗さを規定して疲労特性を向上させる技術が開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、ロードホィールのディスク等の一部の部品においては、伸びフランジ性等の加工性とともに疲労耐久性が大変に重要であり、上記従来技術では、満足する特性が得られないといわざるを得ない。すなわち、上記特開平4−276016号公報に記載の発明では、結晶粒界に偏析し粒界脆化を引き起こすPが0.05〜0.12%添加されることが必須であるため、疲労破壊の起点となる粒界破壊が起こった場合、疲労特性が著しく劣化する可能性がある。さらに、同文献には、Pによる粒界脆化等を抑制するBの添加については何も記載されていない。
【0008】
また、上記特開平5−331591号公報に記載の発明では、フェライト相にε−Cuを析出させているため延性が低下して加工性が悪くなる可能性がある。また、上記特開平6−145792号公報に記載の発明では、熱履歴等によりフェライト、ベイナイトおよびマルテンサイトの各相の体積分率が変動しやすく、それによって延性等の特性が大きく影響されるため鋼板の長手方向や幅方向の材質のばらつきを生じやすいという問題点がある。また、上記特開平8−60240号公報に記載の発明では、仕上圧延後に二段階の冷却を行なうことを必須としており操業上温度管理が難しく歩留が低いという問題点がある。
【0009】
さらに、上記特開平9−137349号公報に記載の発明では、析出強化に有効なTi、Nbの炭化物を得るために熱間圧延前の加熱炉工程において高い溶体化温度での加熱が必要なため操業コストや省エネルギーの観点から好ましくない。そこで、本発明は、上記従来技術の課題を有利に解決できる、疲労特性に優れた高バーリング性熱延鋼板およびその鋼板を安定して製造できる製造方法を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明者らは、現在通常に採用されている連続熱間圧延設備により工業的規模で生産されている熱延鋼板の製造プロセスを念頭において、熱延鋼板の疲労特性と加工性の両立を達成すべく鋭意研究を重ねた。その結果、固溶しているCuもしくはCu単独で構成される粒子サイズが2nm以下のCu析出物が疲労特性向上に非常に有効であり、かつ加工性も損なわないことを見出し、本発明をなしたものである。
【0011】
即ち、本発明の要旨は、以下の通りである。
(1) 質量%にて、C:0.03〜0.20%、Si:0.1〜2.5%、Mn:0.5〜3.0%、P:≦0.02%、S:≦0.01%、Al:0.005〜1.0%、Cu:0.2〜1.2%、B:0.0002〜0.0020%、Ni:0.1〜1.0%を含み、残部がFe及び不可避的不純物からなる鋼片の熱間圧延に際し、Ar 3 変態点以上で熱間仕上圧延を終了した後、20℃/s以上の冷却速度で冷却して、350℃から550℃の温度で巻き取り、ミクロ組織が、ベイナイト、またはフェライトおよびベイナイトからなり、鋼中のCuの存在状態が固溶状態またはCu単独で構成される粒子の大きさで2nm以下の析出状態である鋼板を得ることを特徴とする疲労特性に優れた高バーリング性熱延鋼板の製造方法。
【0012】
)前記鋼が、さらに、質量%にて、Ca:0.005〜0.02%、REM:0.005〜0.2%の一種または二種を含有することを特徴とする、上記(1)に記載の疲労特性に優れた高バーリング性熱延鋼板の製造方法。
【0013】
(3)前記鋼が、さらに、質量%にて、Mo:0.05〜1.0%、V:0.02〜0.2%、Ti:0.01〜0.2%、Nb:0.01〜0.1%、Cr:0.01〜1.0%、Zr:0.02〜0.2%の一種または二種以上を含有することを特徴とする、上記(1)または(2)に記載の疲労特性に優れた高バーリング性熱延鋼板の製造方法
【0014】
)前記熱間圧延に際し、粗圧延終了後、高圧デスケーリングを行ない、Ar3 変態点以上で熱間仕上圧延を終了することを特徴とする上記(1)ないし(3)のいずれた1項に記載の疲労特性に優れた高バーリング性熱延鋼板の製造方法にある。
【0015】
【発明の実施の形態】
以下に、本発明に至った基礎研究結果について説明する。
まず、Cu単独で構成される粒子サイズの疲労特性に及ぼす効果についての調査を行った。そのための供試材は、次のようにして準備した。すなわち、0.05%C−1.0%Si−1.4%Mn−0.01%P−0.001%S−0.03%Al−1.0%Cu−0.0003%Bに成分調整し溶製した鋳片を熱間圧延して常温で巻き取った鋼板を、100〜600℃で1時間等温保持した後、炉冷する熱処理を施し、Cu単独で構成される粒子のサイズを変化させた鋼板を得た。これらの鋼板について疲労試験を行った結果を、図1に示す。この結果より、Cu単独で構成される粒子の平均サイズと疲労限度比には強い相関があり、Cu単独で構成される粒子の平均サイズが2nm以下で疲労限度比が著しく向上することを新規に知見した。
【0016】
このメカニズムは必ずしも明らかではないが、固溶しているCuもしくはCu単独で構成される粒子サイズが2nm以下のCu析出物は繰返し荷重下での差すべりを抑制し、繰返し荷重による表面のすべりステップの形態を粗で深い状態から密で浅い状態に変化させ、そこでの応力集中が緩和されるために疲労き裂の発生抵抗を向上させると推測される。
また、熱間圧延条件等を制限することによって、Cu単独で構成される粒子の平均サイズが2nm以下という鋼板を製造できることも新たに知見した。
【0017】
次に、B元素の疲労特性に及ぼす効果についての調査を行った。そのための供試材は、次のようにして準備した。すなわち、0.05%C−1.0%Si−1.4%Mn−0.01%P−0.001%S−0.03%Al鋼をベースにして、1.0%のCuを添加した鋼とCuを添加しない鋼に、さらに、B含有濃度を変化させた鋼を成分調整し溶製した鋳片を、熱間圧延して450℃で巻き取り、ミクロ組織が、ベイナイト、またはフェライトおよびベイナイトを有する鋼板を得た。なお、以下ベイナイトとはベイニティックフェライトおよびアシキュラーフェライト組織も含み、一部残留オーステナイトを含むことも許容されるものである。これらの鋼板について疲労試験を行った結果を、図2に示す。この結果より、1.0%のCuを添加した鋼に限り、B含有濃度と疲労限度比に強い相関があり、さらに、Bの含有濃度が2ppm以上で疲労限度比が著しく向上することを新規に知見した。
【0018】
なお、引張試験による機械的性質については、JIS Z 2201記載の5号試験片にて、JIS Z 2241記載の試験方法で測定した。また、鋼板の疲労特性は、図3に示すような板厚3.0mm、長さ98mm、幅38mm、最小断面部の幅が20mm、切り欠きの曲率半径が30mmである疲労試験片を用い、完全両振りの平面曲げ疲労試験によって得られた2×106回での疲労強度σWを鋼板の引張り強さσBで除した値(疲労限度比σW/σB)で評価した。
【0019】
また、鋼中のCu単独で構成される粒子は、供試鋼の1/4厚のところから透過型電子顕微鏡サンプルを採取し、エネルギー分散型X線分光(Energy Dispersive X−ray Spectroscope:EDS)や電子エネルギー損失分光(Electron Energy Loss Spectroscope:EELS)の組成分析機能を加えた、200kVの加速電圧の電界放射型電子銃(Field Emission Gun:FEG)を搭載した透過型電子顕微鏡によって観察した。観察される粒子の組成は、上記EDSおよびEELSによりCu単独であることを確認した。また、本発明で規定するCu単独で構成される粒子のサイズは、観察される粒子のサイズをそれぞれ測定したもののその一視野での平均の値である。
【0020】
次に、本発明の鋼板のミクロ組織およびCuの存在状態について説明する。鋼板のミクロ組織は、優れたバーリング加工性(伸びフランジ性)を確保するために、ベイナイト、またはフェライトおよびベイナイトとする。ただし、必要に応じ一部残留オーステナイトを含むことを許容するものである。なお、良好な伸びフランジ性を確保するためには、一部残留オーステナイトを含むベイナイトの体積分率が30%以上が好ましい。また、良好な伸びを得るためにはベイナイトの体積分率が70%以下が好ましい。ここで、フェライト、ベイナイトおよび残留オーステナイトの体積率とは鋼板の圧延方向断面厚みの1/4厚における光学顕微鏡で200〜500倍で観察されたミクロ組織中のそれらの組織の面積分率で定義される。
【0021】
また、鋼中のCuの存在状態が固溶状態またはCu単独で構成される粒子の大きさで2nm以下の析出状態とする。これにより、加工性の劣化につながる静的強度の上昇を抑えつつ、すなわち、ベイナイト、またはフェライトおよびベイナイトからなる鋼板の優れた加工性を損なうことなく、疲労特性を向上させることができる。一方、Cu単独で構成される粒子の大きさが2nm超であると、Cuの析出強化により鋼板の静的強度が著しく上昇するため、加工性が著しく劣化することになる。また、このようなCuの析出強化では、疲労限は静的強度の上昇ほどには向上しないので疲労限度比が低下してしまう。そのため、Cu単独で構成される粒子の大きさは、2nm以下とする必要がある。
【0022】
次に、本発明の化学成分の限定理由について説明する。
Cは、0.20%超含有していると加工性及び溶接性が劣化するので、0.20%以下とする。また0.03%未満であるとベイナイトの体積率が減少し、強度が低下するので0.03%以上とする。
Siは、固溶強化元素として強度上昇に有効である。当該するミクロ組織において所望の強度を得るためには、0.1%以上含有する必要がある。しかし、2.5%超含有すると加工性が劣化する。そこで、Siの含有量は0.1%超、2.5%以下とする。
【0023】
Mnは、固溶強化元素として強度上昇に有効である。当該するミクロ組織において所望の強度を得るためには、0.5%以上必要である。また、3.0%超添加するとスラブ割れを生ずるため、3.0%以下とする。
Pは、0.02%超添加すると加工性や溶接性に悪影響を及ぼすだけでなく、粒界に偏析して粒界強度を低下させ粒界脆化を起こすので、0.02%以下とする。
【0024】
Sは、多すぎると熱間圧延時の割れを引き起こすので極力低減させるべきであるが、0.01%以下ならば許容できる範囲である。
Alは、溶鋼脱酸のために0.005%以上添加する必要があるが、コストの上昇を招くため、その上限を1.0%とする。また、あまり多量に添加すると、非金属介在物を増大させ伸びを劣化させるので好ましくは0.5%以下とする。
【0025】
Cuは、本発明の最も重要な元素一つであり、固溶もしくは2nm以下の粒子サイズに析出させることにより疲労特性を改善する効果がある。ただし、0.2%未満では、その効果は少なく、1.2%を超えて含有すると巻取り中に2nm超の大きさに析出して析出強化により鋼板の静的強度が著しく上昇するため、加工性が著しく劣化することになる。また、このようなCuの析出強化では、疲労限は静的強度の上昇ほどには向上しないので疲労限度比が低下してしまう。そこで、Cuの含有量は0.2〜1.2%の範囲と限定する。
【0026】
Bは、本発明の最も重要な元素の一つであり、Cuと複合添加されることによって疲労限を上昇させる効果がある。ただし、0.0002%未満ではその効果を得るために不十分であり、0.0020%超添加するとスラブ割れが起こる。よって、Bの添加は、0.0002%以上、0.0020%以下とする。
Niは、Cu含有による熱間脆性防止のために添加する。ただし、0.01%未満ではその効果が少なく、1.0%を超えて添加してもその効果が飽和するので、0.01〜1.0%とする。
【0027】
CaおよびREMは、破壊の起点となったり、加工性を劣化させる非金属介在物の形態を変化させて無害化する元素である。ただし、0.005%未満添加してもその効果がなく、Caならば0.02%超、REMならば0.2%超添加してもその効果が飽和するのでCa:0.005〜0.02%、REM:0.005〜0.2%添加することが好ましい。
【0028】
さらに、強度を付与するために、Mo、V、Ti、Nb、Cr、Zrの析出強化もしくは固溶強化元素の一種または二種以上を添加しても良い。ただし、それぞれ、0.05%、0.02%、0.01%、0.01%、0.01%、0.02%未満ではその効果を得ることができない。また、それぞれ、1.0%、0.2%、0.2%、0.1%、1.0%、0.2%を超え添加してもその効果は飽和する。
【0029】
次に、本発明の製造方法の限定理由について、以下に詳細に述べる。
本発明では、目的の成分含有量になるように成分調整した溶鋼を鋳込むことによって得たスラブを、高温鋳片のまま熱間圧延機に直送してもよいし、室温まで冷却後に加熱炉にて再加熱した後に熱間圧延してもよい。再加熱温度については特に制限はないが、1350℃以上であると、スケールオフ量が多量になり歩留まりが低下するので、再加熱温度は1350℃未満が望ましい。
【0030】
熱間圧延工程は、粗圧延を終了後、仕上げ圧延を行うが、最終パス温度(FT)がAr3 変態点以上の温度域で終了する必要がある。これは、熱間圧延中に圧延温度がAr3 変態点を切るとひずみが残留して延性が低下するためである。仕上げ温度の上限は本発明の効果を得るためには特に定める必要はないが、操業上スケール疵が発生する可能性があるのため、1000℃以下とすることが好ましい。ここで、粗圧延終了後に高圧デスケーリングを行う場合は、鋼板表面での高圧水の衝突圧P(MPa)×流量L(リットル/cm2 )≧0.0025の条
件を満たすことが好ましい。
【0031】
鋼板表面での高圧水の衝突圧Pは以下のように記述される。(「鉄と鋼」1991 vol.77 No.9 p1450参照)
P(MPa)=5.64×P0×V/H2
ただし、
0(MPa):液圧力
V(リットル/min):ノズル流液量
H(cm):鋼板表面とノズル間の距離
【0032】
流量Lは以下のように記述される。
L(リットル/cm2)=V/(W×v)
ただし、
V(リットル/min):ノズル流液量
W(cm):ノズル当たり噴射液が鋼板表面に当たっている幅
v(cm/min):通板速度
衝突圧P×流量Lの上限は本発明の効果を得るためには特に定める必要はないが、ノズル流液量を増加させるとノズルの摩耗が激しくなる等の不都合が生じるため、0.02以下とすることが好ましい。
【0033】
さらに、仕上げ圧延後の鋼板の最大高さRyが15μm(15μmRy,l2.5mm,ln12.5mm)以下であることが好ましい。これは、例えば金属材料疲労設計便覧、日本材料学会編、84ページに記載されている通り熱延または酸洗ままの鋼板の疲労強度は鋼板表面の最大高さRyと相関があることから明らかである。また、その後の仕上げ圧延はデスケーリング後に再びスケールが生成してしまうのを防ぐために5秒以内に行うのが望ましい。
【0034】
仕上圧延を終了した後は、指定の巻取温度(CT)まで20℃/s以上の冷却速度で冷却するが、20℃/s未満の冷却速度では、パーライトが生成してしまう危険性があるので、20℃/s以上の冷却速度で冷却する。冷却速度の上限は本発明の効果を得るためには特に定める必要はないが、実際の工場設備能力等を考慮すると100℃以下である。
次に巻取温度が350℃未満では目的とするベイナイト体積率を得ることができず、550℃超ではパーライトが生成してしまい疲労強度著しく低下する。従って巻取温度は350℃〜550℃とする。
【0035】
【実施例】
以下に、実施例により本発明をさらに説明する。
表1に示す化学成分を有するA〜Zの鋼は、転炉にて溶製して、連続鋳造後、表2に示す加熱温度(SRT)で再加熱し、粗圧延後に同じく表2に示す仕上げ圧延温度(FT)で1.2〜5.4mmの板厚に圧延した後、表2に示す時間で滞留後、表2に示す冷却速度(CR)で冷却し巻取温度(CT)でそれぞれ巻き取った。なお一部については粗圧延後に衝突圧2.7MPa、流量0.001リットル/cm2の条件で高圧デスケーリングを行った。ただし、表中の化学組成についての表示は質量%である。
【0036】
このようにして得られた熱延板の引張試験は、供試材を、まず、JIS Z 2201記載の5号試験片に加工し、JIS Z 2241記載の試験方法に従って行った。表2にその試験結果を示す。鋼板圧延方向断面厚みの1/4厚を光学顕微鏡で200〜500倍で観察した組織の体積率を合わせて表2に示す。
さらに、図3に示すような長さ98mm、幅38mm、最小断面部の幅が20mm、切り欠きの曲率半径が30mmである平面曲げ疲労試験片にて、完全両振りの平面曲げ疲労試験を行った。鋼板の疲労特性は、2×106回での疲労強度σWを鋼板の引張り強さσBで除した値(疲労限度比σW/σB)で評価した。
【0037】
【表1】

Figure 0003769146
【0038】
【表2】
Figure 0003769146
【0039】
一方、バーリング加工性(伸びフランジ性)については日本鉄鋼連盟規格JFS T 1001−1996記載の穴拡げ試験方法に従って評価した。
また、Cu単独で構成される粒子は、供試鋼の1/4厚のところから透過型電子顕微鏡サンプルを採取し、エネルギー分散型X線分光(EDS)や電子エネルギー損失分光(EELS)の組成分析機能を加えた、200kVの加速電圧の電界放射型電子銃(FEG)を搭載した透過型電子顕微鏡によって観察した。観察される粒子の組成は、上記EDSおよびEELSによりCu単独であることを確認した。また、本発明で規定するCu単独で構成される粒子のサイズは、観察される粒子のサイズをそれぞれ測定したもののその一視野での平均の値である。
【0040】
本発明に沿うものは、鋼A−1、A−6、B、C、D、F、H、K、L、N、O、Qの12鋼であり、ベイナイト、またはフェライトおよびベイナイトからなり、鋼中のCuの存在状態が、固溶状態またはCu単独で構成される粒子の大きさが2nm以下の析出状態である疲労特性に優れた高バーリング性熱延鋼板が得られている。
【0041】
上記以外の鋼は、以下の理由によって本発明の範囲外である。すなわち、鋼A−2は、熱間圧延後の巻取温度(CT)が本発明の範囲より高いのでパーライトが生成してしまい十分な穴拡げ率(λ)が得られない。鋼A−3は、熱間圧延後の巻取温度(CT)が本発明の範囲より低いのでマルテンサイトが生成してしまい十分な穴拡げ率(λ)が得られない。鋼A−4は、熱間圧延後の冷却速度(CR)が本発明の範囲外であるのでパーライトが生成してしまい十分な穴拡げ率(λ)が得られない。鋼A−5は、仕上圧延終了温度(FT)が本発明の範囲外であるのでひずみが残留して延性が低下するだけでなく十分な穴拡げ率(λ)が得られない。
【0042】
鋼Eは、Cの含有量が本発明の範囲外であるので目的とするミクロ組織中が得られず十分な穴拡げ率(λ)が得られない。鋼Gは、Mnの含有量が本発明の範囲外であるので、目的とするミクロ組織中が得られず十分な穴拡げ率(λ)が得られない。鋼Iは、Pの含有量が本発明の範囲外であるのでPが粒界に偏析して粒界強度を低下させるため十分な疲労限度比が得られていない。鋼Jは、Cuの含有量が本発明の範囲より多いので巻取り中に2nm超の大きさに析出して析出強化により鋼板の静的強度が著しく上昇するため、加工性が著しく劣化することになる。
【0043】
また、このようなCuの析出強化では、疲労限は静的強度の上昇ほどには向上しないので疲労限度比が低下してしまう。従って十分な疲労限度比が得られていない。鋼Mは、Bの含有量が本発明の範囲外であるのでCuと複合添加されることで発現する疲労特性向上効果を得ることができず十分な疲労限度比も得られていない。鋼Pは、Cuの含有量が本発明の範囲より少ないので疲労特性を改善する効果が少なく十分な疲労限度比が得られていない。
【0044】
【発明の効果】
以上詳述したように、本発明は、疲労特性に優れた高バーリング性熱延鋼板およびその鋼板を安定して製造できる製造方法を提供するものであり、これらの熱延鋼板を用いることにより、バーリング加工性(伸びフランジ性)を十分に確保しつつ疲労特性の大幅な改善が期待できるため、本発明は、工業的価値が高い発明であると言える。
【図面の簡単な説明】
【図1】本発明に至る予備実験の結果を、Cu単独で構成される粒子の大きさと疲労限度比の関係で示す図である。
【図2】本発明に至る予備実験の結果を、B元素の濃度と疲労限度比の関係で示す図である。
【図3】疲労試験片の形状を説明する図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high burring hot-rolled steel sheet having excellent fatigue properties and a method for producing the same, and is particularly suitable as a material that requires both durability and workability of automobile undercarriage parts and road wheels. The present invention relates to a high burring hot-rolled steel sheet having excellent fatigue characteristics and a method for producing the same.
[0002]
[Prior art]
In recent years, application of light metals such as Al alloys and high-strength steel sheets to automobile members has been promoted for the purpose of reducing the weight in order to improve the fuel efficiency of automobiles. However, although light metals such as Al alloys have the advantage of high specific strength, their application has been limited to special applications because they are significantly more expensive than steel. In order to promote weight reduction of automobiles in a wider range, application of inexpensive high-strength steel sheets is strongly demanded.
In general, the higher the strength of a material, the lower the ductility and the lower the workability (formability), and the higher the notch sensitivity. Therefore, in the application of high-strength steel sheets to undercarriage parts and the like of automobiles having complicated shapes, not only the formability but also fatigue durability becomes an important examination subject.
[0003]
As an example of a high-strength hot-rolled steel sheet excellent in workability, an invention for obtaining a high-strength steel sheet excellent in stretch flangeability (burring workability) with a microstructure mainly composed of ferrite and bainite is disclosed in, for example, JP-A-57-145965. And JP-A-61-96057. Furthermore, an invention for obtaining a high-strength steel sheet having a low yield ratio and excellent ductility in these characteristics with a microstructure mainly composed of ferrite, bainite and martensite is disclosed in, for example, Japanese Patent Laid-Open No. 3-264645. Etc. are disclosed.
[0004]
Further, as high-strength hot-rolled steel sheets having excellent fatigue properties, JP-A-4-276016, JP-A-5-331591, JP-A-6-145792, JP-A-8-60240, etc. In order to improve the characteristics, attention is paid to a specific additive element, and an invention using solid solution strengthening of P and / or precipitation strengthening of Cu is disclosed. That is, Japanese Patent Laid-Open No. 4-276016 discloses a technique for improving fatigue strength by solid solution strengthening of P and precipitation strengthening of Cu.
[0005]
Furthermore, as a high-strength steel sheet having both fatigue properties and stretch flangeability, Japanese Patent Laid-Open No. 5-331591 discloses that the microstructure is ferrite and martensite or ferrite, martensite and retained austenite, and ε-Cu is precipitated in the ferrite phase. A technique for improving fatigue strength and stretch flangeability is disclosed. Japanese Patent Laid-Open No. 6-145792 discloses that the microstructure is three phases of ferrite, bainite and martensite, and the volume fraction of each phase is specified to ensure strength and stretch flangeability, and Cu precipitation strengthening. Discloses a technique for improving fatigue characteristics.
[0006]
Furthermore, in JP-A-8-60240, the microstructure is three phases of ferrite, bainite and martensite, the volume fraction of each phase is defined to ensure the strength ductility balance, and the fatigue characteristics are enhanced by Cu precipitation strengthening. A technique for improving the above is disclosed. On the other hand, in JP-A-9-137249, the microstructure is three phases of ferrite, bainite and martensite, the volume fraction of each phase is specified, and the ferrite phase is precipitation strengthened with carbides of Ti and Nb, A technique for improving fatigue characteristics by defining the ferrite grain size near the surface and the roughness of the steel sheet surface is disclosed.
[0007]
[Problems to be solved by the invention]
However, in some parts such as road wheel disks, fatigue resistance as well as workability such as stretch flangeability is very important, and it can be said that satisfactory characteristics cannot be obtained with the above-mentioned conventional technology. Absent. That is, in the invention described in JP-A-4-276016, it is essential that 0.05 to 0.12% of P that segregates at the grain boundaries and causes embrittlement of grain boundaries is added. When the grain boundary fracture, which is the starting point, occurs, the fatigue characteristics may be significantly deteriorated. Furthermore, this document does not describe anything about the addition of B that suppresses grain boundary embrittlement due to P or the like.
[0008]
Further, in the invention described in JP-A-5-331591, since ε-Cu is precipitated in the ferrite phase, ductility may be reduced and workability may be deteriorated. Further, in the invention described in JP-A-6-145792, the volume fraction of each phase of ferrite, bainite, and martensite is likely to fluctuate due to the thermal history and the like, and thereby the characteristics such as ductility are greatly affected. There is a problem that the material in the longitudinal direction and the width direction of the steel sheet is likely to vary. In the invention described in the above-mentioned JP-A-8-60240, it is essential to perform two-stage cooling after finish rolling, and there is a problem that temperature control is difficult in operation and yield is low.
[0009]
Further, in the invention described in JP-A-9-137349, heating at a high solution temperature is required in the heating furnace step before hot rolling in order to obtain Ti and Nb carbides effective for precipitation strengthening. It is not preferable from the viewpoint of operation cost and energy saving. Then, this invention aims at providing the manufacturing method which can manufacture the high burring hot-rolled steel plate excellent in the fatigue characteristic, and the steel plate stably which can solve the subject of the said prior art advantageously. .
[0010]
[Means for Solving the Problems]
The present inventors have achieved both the fatigue characteristics and workability of hot-rolled steel sheet in consideration of the manufacturing process of hot-rolled steel sheet produced on an industrial scale by the continuous hot rolling equipment that is currently normally employed. As much research as possible. As a result, it was found that a Cu precipitate having a particle size of 2 nm or less composed of solid solution of Cu or Cu alone is very effective for improving fatigue characteristics and does not impair workability. It is a thing.
[0011]
That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.03-0.20%, Si: 0.1-2.5%, Mn: 0.5-3.0%, P: ≦ 0.02%, S : ≦ 0.01%, Al: 0.005 to 1.0%, Cu: 0.2 to 1.2%, B: 0.0002 to 0.0020%, Ni: 0.1 to 1.0% In the hot rolling of a steel slab comprising Fe and the inevitable impurities , the hot finish rolling is finished at the Ar 3 transformation point or higher, and then cooled at a cooling rate of 20 ° C./s or more to 350 ° C. To 550 ° C., the microstructure is bainite, or ferrite and bainite, and the presence state of Cu in the steel is a solid solution state or a precipitation state of 2 nm or less in the size of particles composed of Cu alone A method for producing a high burring hot-rolled steel sheet having excellent fatigue characteristics, characterized by obtaining a steel sheet as described above.
[0012]
( 2 ) The steel slab further contains one or two of Ca: 0.005 to 0.02% and REM: 0.005 to 0.2% in mass%. The manufacturing method of the high burring hot-rolled steel plate excellent in the fatigue characteristics as described in said (1) .
[0013]
(3) The steel slab is further in mass%, Mo: 0.05 to 1.0%, V: 0.02 to 0.2%, Ti: 0.01 to 0.2%, Nb: 0.01-0.1%, Cr: 0.01-1.0%, or Zr: 0.02-0.2%, or one or more of the above (1) or (2) The manufacturing method of the high burring hot-rolled steel plate excellent in the fatigue characteristics as described in (2).
[0014]
( 4 ) At the time of the hot rolling, after completion of the rough rolling, high-pressure descaling is performed, and the hot finish rolling is finished at the Ar 3 transformation point or higher, and any one of the above (1) to (3) It exists in the manufacturing method of the high burring hot-rolled steel plate excellent in the fatigue characteristic as described in a term .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The basic research results that led to the present invention will be described below.
First, the effect of the particle size composed of Cu alone on the fatigue characteristics was investigated. The test material for that purpose was prepared as follows. That is, 0.05% C-1.0% Si-1.4% Mn-0.01% P-0.001% S-0.03% Al-1.0% Cu-0.0003% B The size of the particles composed of Cu alone after subjecting the steel sheet, which has been hot-rolled at room temperature by adjusting the components and melting the slab, to isothermal holding at 100-600 ° C. for 1 hour, followed by furnace heat treatment A steel sheet having a changed thickness was obtained. The results of fatigue tests on these steel sheets are shown in FIG. From this result, there is a strong correlation between the average size of particles composed of Cu alone and the fatigue limit ratio, and it is novel that the fatigue limit ratio is remarkably improved when the average size of particles composed of Cu alone is 2 nm or less. I found out.
[0016]
This mechanism is not always clear, but Cu precipitates with a particle size of 2 nm or less composed of solid Cu or Cu alone suppress the differential slip under repeated load, and the surface slip step due to repeated load It is estimated that the resistance of fatigue cracks is improved because the stress concentration is relaxed by changing the shape of the material from a rough and deep state to a dense and shallow state.
Moreover, it also newly discovered that the steel plate whose average size of the particle | grains comprised only by Cu is 2 nm or less can be manufactured by restrict | limiting hot rolling conditions etc.
[0017]
Next, the effect of the B element on the fatigue characteristics was investigated. The test material for that purpose was prepared as follows. That is, based on 0.05% C-1.0% Si-1.4% Mn-0.01% P-0.001% S-0.03% Al steel, 1.0% Cu is added. A steel slab prepared by adjusting the composition of the steel with added B and the steel with no added Cu added, and hot-rolled at 450 ° C., the microstructure is bainite, or A steel sheet having ferrite and bainite was obtained. In the following, bainite includes bainitic ferrite and acicular ferrite structures, and it is allowed to partially contain retained austenite. The results of fatigue tests on these steel plates are shown in FIG. From this result, it is novel that there is a strong correlation between the B content concentration and the fatigue limit ratio only for steel to which 1.0% Cu is added, and the fatigue limit ratio is remarkably improved when the B content concentration is 2 ppm or more. I found out.
[0018]
In addition, about the mechanical property by a tensile test, it measured with the test method of JISZ2241 with the No. 5 test piece of JISZ2201. Further, the fatigue characteristics of the steel sheet are as follows: a fatigue test piece having a plate thickness of 3.0 mm, a length of 98 mm, a width of 38 mm, a minimum cross-sectional width of 20 mm, and a notch curvature radius of 30 mm as shown in FIG. The fatigue strength σW at 2 × 10 6 times obtained by a complete double swing plane bending fatigue test was evaluated by a value (fatigue limit ratio σW / σB) obtained by dividing the tensile strength σB of the steel sheet.
[0019]
Moreover, the particle | grains comprised only by Cu in steel extract a transmission electron microscope sample from the place of 1/4 thickness of test steel, and energy dispersive X-ray spectroscopy (Energy Dispersive X-ray Spectroscope: EDS). And a transmission electron microscope equipped with a field emission electron gun (FEG) having an acceleration voltage of 200 kV to which a composition analysis function of Electron Energy Loss Spectroscope (EELS) is added. The composition of the observed particles was confirmed to be Cu alone by the EDS and EELS. Moreover, the size of the particle | grains comprised only by Cu prescribed | regulated by this invention is the average value in the one visual field, although each measured the size of the particle | grains observed.
[0020]
Next, the microstructure of the steel sheet of the present invention and the presence state of Cu will be described. The microstructure of the steel sheet is bainite or ferrite and bainite in order to ensure excellent burring workability (stretch flangeability). However, it is allowed to partially contain retained austenite as necessary. In order to ensure good stretch flangeability, the volume fraction of bainite partially containing retained austenite is preferably 30% or more. In order to obtain good elongation, the volume fraction of bainite is preferably 70% or less. Here, the volume fraction of ferrite, bainite and retained austenite is defined as the area fraction of the microstructure in the microstructure observed with an optical microscope at a thickness of 1/4 of the cross-sectional thickness in the rolling direction of the steel sheet. Is done.
[0021]
The presence state of Cu in the steel is 2nm on purpose following precipitation like the size of the solid solution state or Cu alone constituted particles. Thereby, fatigue characteristics can be improved while suppressing an increase in static strength that leads to deterioration of workability, that is, without impairing the excellent workability of a steel sheet made of bainite or ferrite and bainite. On the other hand, when the size of the particles composed of Cu alone is more than 2 nm, the static strength of the steel sheet is remarkably increased due to precipitation precipitation of Cu, so that the workability is remarkably deteriorated. Further, with such Cu precipitation strengthening, the fatigue limit ratio does not improve as much as the increase in static strength, so the fatigue limit ratio decreases. Therefore, the size of the particles composed of Cu alone needs to be 2 nm or less.
[0022]
Next, the reasons for limiting the chemical components of the present invention will be described.
If the C content exceeds 0.20%, workability and weldability deteriorate, so the content is made 0.20% or less. Further, if it is less than 0.03%, the volume fraction of bainite decreases and the strength decreases, so the content is made 0.03% or more.
Si is effective for increasing the strength as a solid solution strengthening element. In order to obtain a desired strength in the microstructure, it is necessary to contain 0.1% or more. However, if the content exceeds 2.5%, the workability deteriorates. Therefore, the Si content is more than 0.1% and not more than 2.5%.
[0023]
Mn is effective for increasing the strength as a solid solution strengthening element. In order to obtain a desired strength in the microstructure, 0.5% or more is necessary. Further, if added over 3.0%, slab cracking occurs, so the content is made 3.0% or less.
When P is added in excess of 0.02%, it not only adversely affects workability and weldability, but also segregates at the grain boundaries to reduce grain boundary strength and cause grain boundary embrittlement, so the P content is made 0.02% or less. .
[0024]
If S is too large, it will cause cracking during hot rolling, so it should be reduced as much as possible.
Al needs to be added in an amount of 0.005% or more for deoxidation of molten steel, but the cost is increased, so the upper limit is made 1.0%. Moreover, when adding too much, nonmetallic inclusions are increased and elongation is deteriorated, so the content is preferably made 0.5% or less.
[0025]
Cu is one of the most important elements of the present invention, and has the effect of improving fatigue properties by being deposited in a solid solution or a particle size of 2 nm or less. However, if the content is less than 0.2%, the effect is small. If the content exceeds 1.2%, the static strength of the steel sheet is remarkably increased by precipitation strengthening due to precipitation exceeding 2 nm during winding. Workability will deteriorate significantly. Further, with such Cu precipitation strengthening, the fatigue limit ratio does not improve as much as the increase in static strength, so the fatigue limit ratio decreases. Therefore, the Cu content is limited to a range of 0.2 to 1.2%.
[0026]
B is one of the most important elements of the present invention, and has the effect of increasing the fatigue limit when added in combination with Cu. However, if it is less than 0.0002%, it is insufficient for obtaining the effect, and if added over 0.0020%, slab cracking occurs. Therefore, the addition of B is set to 0.0002% or more and 0.0020% or less.
Ni is added to prevent hot brittleness due to Cu inclusion. However, if less than 0.01 %, the effect is small, and even if added over 1.0%, the effect is saturated, so 0.01 to 1.0%.
[0027]
Ca and REM are elements that are detoxified by changing the form of non-metallic inclusions that become the starting point of destruction or deteriorate workability. However, even if less than 0.005% is added, there is no effect, and if Ca is more than 0.02% and REM is added more than 0.2%, the effect is saturated, so Ca: 0.005 to 0 0.02%, REM: 0.005 to 0.2% is preferably added.
[0028]
Further, in order to impart strength, one or more of precipitation strengthening or solid solution strengthening elements of Mo, V, Ti, Nb, Cr, and Zr may be added. However, if it is less than 0.05%, 0.02%, 0.01%, 0.01%, 0.01%, and 0.02%, the effect cannot be obtained. Moreover, the effect will be saturated even if it adds exceeding 1.0%, 0.2%, 0.2%, 0.1%, 1.0%, and 0.2%, respectively.
[0029]
Next, the reasons for limiting the production method of the present invention will be described in detail below.
In the present invention, a slab obtained by casting a molten steel whose components are adjusted so as to have a desired component content may be directly sent to a hot rolling mill as a high-temperature slab, or after being cooled to room temperature, a heating furnace It may be hot-rolled after reheating at. The reheating temperature is not particularly limited, but if it is 1350 ° C. or higher, the amount of scale-off increases and the yield decreases, so the reheating temperature is preferably less than 1350 ° C.
[0030]
In the hot rolling process, finish rolling is performed after finishing rough rolling, but the final pass temperature (FT) needs to be finished in a temperature range equal to or higher than the Ar 3 transformation point. This is because if the rolling temperature falls below the Ar 3 transformation point during hot rolling, strain remains and ductility decreases. The upper limit of the finishing temperature is not particularly required to obtain the effect of the present invention, but it is preferably set to 1000 ° C. or less because scale soot may be generated in operation. Here, when high-pressure descaling is performed after the end of rough rolling, it is preferable that the condition of high-pressure water collision pressure P (MPa) × flow rate L (liter / cm 2 ) ≧ 0.0025 on the steel plate surface is satisfied.
[0031]
The collision pressure P of high-pressure water on the steel sheet surface is described as follows. (Refer to "Iron and Steel" 1991 vol. 77 No. 9 p1450)
P (MPa) = 5.64 × P 0 × V / H 2
However,
P 0 (MPa): Fluid pressure V (L / min): Nozzle flow rate H (cm): Distance between steel plate surface and nozzle
The flow rate L is described as follows.
L (liter / cm 2 ) = V / (W × v)
However,
V (liter / min): Nozzle flow rate W (cm): Width of spray liquid per nozzle hitting the steel plate surface v (cm / min): Upper limit of plate speed collision pressure P × flow rate L is the effect of the present invention. Although it is not necessary to determine in particular in order to obtain it, it is preferable to make it 0.02 or less because an increase in the amount of nozzle flow causes problems such as increased wear on the nozzle.
[0033]
Furthermore, the maximum height Ry of the steel sheet after finish rolling is preferably 15 μm (15 μm Ry, l2.5 mm, ln12.5 mm) or less. This is clear from the fact that the fatigue strength of a hot-rolled or pickled steel sheet correlates with the maximum height Ry of the steel sheet surface, as described in, for example, Metal Material Fatigue Design Handbook, edited by the Japan Society of Materials Science, page 84. is there. Further, the subsequent finish rolling is desirably performed within 5 seconds in order to prevent the scale from being generated again after descaling.
[0034]
After finishing rolling, the steel sheet is cooled to a specified winding temperature (CT) at a cooling rate of 20 ° C./s or more, but at a cooling rate of less than 20 ° C./s, there is a risk that pearlite is generated. Therefore, it cools with the cooling rate of 20 degrees C / s or more. The upper limit of the cooling rate is not particularly required to obtain the effect of the present invention, but is 100 ° C. or less in consideration of actual factory equipment capacity and the like.
Next, when the coiling temperature is less than 350 ° C., the target bainite volume fraction cannot be obtained, and when it exceeds 550 ° C., pearlite is generated and the fatigue strength is remarkably reduced. Therefore, the coiling temperature is set to 350 ° C to 550 ° C.
[0035]
【Example】
The following examples further illustrate the present invention.
Steels A to Z having chemical components shown in Table 1 are melted in a converter, re-heated at the heating temperature (SRT) shown in Table 2 after continuous casting, and also shown in Table 2 after rough rolling. After rolling to a plate thickness of 1.2 to 5.4 mm at the finish rolling temperature (FT), after staying for the time shown in Table 2, it is cooled at the cooling rate (CR) shown in Table 2 and at the coiling temperature (CT). Each was wound up. In some cases, high pressure descaling was performed under conditions of a collision pressure of 2.7 MPa and a flow rate of 0.001 liter / cm 2 after rough rolling. However, the display about the chemical composition in a table | surface is the mass%.
[0036]
The tensile test of the hot-rolled sheet thus obtained was performed by first processing the specimen into a No. 5 test piece described in JIS Z 2201, and following the test method described in JIS Z 2241. Table 2 shows the test results. Table 2 shows the volume ratio of the structure obtained by observing a thickness of ¼ of the cross-sectional thickness in the rolling direction of the steel sheet with an optical microscope at 200 to 500 times.
Further, a complete double-bending plane bending fatigue test was performed on a plane bending fatigue test piece having a length of 98 mm, a width of 38 mm, a minimum cross-sectional width of 20 mm, and a notch curvature radius of 30 mm as shown in FIG. It was. The fatigue properties of the steel sheet were evaluated by a value (fatigue limit ratio σW / σB) obtained by dividing the fatigue strength σW at 2 × 10 6 times by the tensile strength σB of the steel sheet.
[0037]
[Table 1]
Figure 0003769146
[0038]
[Table 2]
Figure 0003769146
[0039]
On the other hand, burring workability (stretch flangeability) was evaluated according to the hole expansion test method described in the Japan Iron and Steel Federation Standard JFS T 1001-1996.
Moreover, the particle | grains comprised only by Cu extract | collect a transmission electron microscope sample from the place of 1/4 thickness of test steel, and composition of energy dispersive X-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS) The observation function was observed with a transmission electron microscope equipped with a field emission electron gun (FEG) having an acceleration voltage of 200 kV. The composition of the observed particles was confirmed to be Cu alone by the EDS and EELS. Moreover, the size of the particle | grains comprised only by Cu prescribed | regulated by this invention is the average value in the one visual field, although each measured the size of the particle | grains observed.
[0040]
Consistent with the present invention are steels A-1, A-6, B, C, D, F, H, K, L, N, O, Q, 12 steels, consisting of bainite, or ferrite and bainite, state of existence of Cu in the steel, high burring hot-rolled steel sheet size of the formed particles is superior in fatigue properties which is less precipitation state 2nm in a solid solution state or Cu alone is obtained.
[0041]
Steels other than the above are outside the scope of the present invention for the following reasons. That is, steel A-2 has a coiling temperature (CT) after hot rolling higher than the range of the present invention, so that pearlite is generated and a sufficient hole expansion rate (λ) cannot be obtained. In Steel A-3, since the coiling temperature (CT) after hot rolling is lower than the range of the present invention, martensite is generated and a sufficient hole expansion rate (λ) cannot be obtained. Steel A-4 has a cooling rate (CR) after hot rolling outside the range of the present invention, so that pearlite is generated and a sufficient hole expansion rate (λ) cannot be obtained. Steel A-5 has a finish rolling finish temperature (FT) outside the range of the present invention, so that not only does strain remain and ductility decreases, but also a sufficient hole expansion rate (λ) cannot be obtained.
[0042]
In Steel E, since the C content is outside the range of the present invention, the intended microstructure cannot be obtained, and a sufficient hole expansion rate (λ) cannot be obtained. In steel G, the Mn content is outside the range of the present invention, so that the target microstructure cannot be obtained and a sufficient hole expansion rate (λ) cannot be obtained. In Steel I, the content of P is outside the range of the present invention, so that P segregates at the grain boundaries and lowers the grain boundary strength, so that a sufficient fatigue limit ratio is not obtained. Steel J has a Cu content greater than the range of the present invention, so that it precipitates to a size of more than 2 nm during winding and the static strength of the steel sheet is remarkably increased by precipitation strengthening. become.
[0043]
Further, with such Cu precipitation strengthening, the fatigue limit ratio does not improve as much as the increase in static strength, so the fatigue limit ratio decreases. Therefore, a sufficient fatigue limit ratio is not obtained. In steel M, the content of B is outside the range of the present invention, so that it is not possible to obtain the effect of improving the fatigue characteristics that are manifested by being added together with Cu, and a sufficient fatigue limit ratio is not obtained. Since the steel P has less Cu content than the range of the present invention, the effect of improving the fatigue characteristics is small and a sufficient fatigue limit ratio is not obtained.
[0044]
【The invention's effect】
As described above in detail, the present invention provides a high burring hot-rolled steel sheet excellent in fatigue properties and a production method capable of stably producing the steel sheet, and by using these hot-rolled steel sheets, Since significant improvement in fatigue characteristics can be expected while sufficiently securing burring workability (stretch flangeability), it can be said that the present invention is an invention with high industrial value.
[Brief description of the drawings]
FIG. 1 is a graph showing the results of a preliminary experiment leading to the present invention in relation to the size of particles composed of Cu alone and the fatigue limit ratio.
FIG. 2 is a diagram showing the results of a preliminary experiment leading to the present invention in relation to the concentration of B element and the fatigue limit ratio.
FIG. 3 is a diagram illustrating the shape of a fatigue test piece.

Claims (4)

質量%にて、
C :0.03〜0.20%、
Si:0.1〜2.5%、
Mn:0.5〜3.0%、
P:≦0.02%、
S:≦0.01%、
Al:0.005〜1.0%、
Cu:0.2〜1.2%、
B :0.0002〜0.0020%、
Ni:0.1〜1.0%
を含み、残部がFe及び不可避的不純物からなる鋼片の熱間圧延に際し、Ar 3 変態点以上で熱間仕上圧延を終了した後、20℃/s以上の冷却速度で冷却して、350℃から550℃の温度で巻き取り、ミクロ組織が、ベイナイト、またはフェライトおよびベイナイトからなり、鋼中のCuの存在状態が固溶状態またはCu単独で構成される粒子の大きさで2nm以下の析出状態である鋼板を得ることを特徴とする疲労特性に優れた高バーリング性熱延鋼板の製造方法。
In mass%
C: 0.03-0.20%,
Si: 0.1 to 2.5%
Mn: 0.5 to 3.0%
P: ≦ 0.02%
S: ≦ 0.01%,
Al: 0.005 to 1.0%,
Cu: 0.2 to 1.2%,
B: 0.0002 to 0.0020%,
Ni: 0.1 to 1.0%
In the hot rolling of a steel slab comprising Fe and the inevitable impurities , the hot finish rolling is finished at the Ar 3 transformation point or higher, and then cooled at a cooling rate of 20 ° C./s or more to 350 ° C. To 550 ° C., the microstructure is bainite, or ferrite and bainite, and the presence state of Cu in the steel is a solid solution state or a precipitation state of 2 nm or less in the size of particles composed of Cu alone A method for producing a high burring hot-rolled steel sheet having excellent fatigue characteristics, characterized by obtaining a steel sheet as described above.
前記鋼が、さらに、質量%にて、
Ca:0.005〜0.02%、
REM:0.005〜0.2%
の一種または二種を含有することを特徴とする、請求項1に記載の疲労特性に優れた高バーリング性熱延鋼板の製造方法
The steel slab is further in mass%,
Ca: 0.005 to 0.02%,
REM: 0.005 to 0.2%
The manufacturing method of the high burring property hot-rolled steel plate excellent in the fatigue characteristics of Claim 1 characterized by including 1 type or 2 types of these.
前記鋼が、さらに、質量%にて、
Mo:0.05〜1.0%、
V :0.02〜0.2%、
Ti:0.01〜0.2%、
Nb:0.01〜0.1%、
Cr:0.01〜1.0%、
Zr:0.02〜0.2%
の一種または二種以上を含有することを特徴とする、請求項1または請求項2に記載の疲労特性に優れた高バーリング性熱延鋼板の製造方法
The steel slab is further in mass%,
Mo: 0.05-1.0%,
V: 0.02-0.2%,
Ti: 0.01-0.2%
Nb: 0.01 to 0.1%,
Cr: 0.01 to 1.0%,
Zr: 0.02 to 0.2%
The manufacturing method of the high burring hot-rolled steel plate excellent in the fatigue characteristics of Claim 1 or Claim 2 characterized by containing 1 type, or 2 or more types of these.
前記熱間圧延に際し、粗圧延終了後、高圧デスケーリングを行ない、Ar 3 変態点以上で熱間仕上圧延を終了することを特徴とする請求項1ないし請求項3のいずれか1項に記載の疲労特性に優れた高バーリング性熱延鋼板の製造方法。 4. The hot rolling according to claim 1 , wherein after the rough rolling, high-pressure descaling is performed at the hot rolling, and the hot finish rolling is finished at an Ar 3 transformation point or higher. 5. A method for producing a high burring hot-rolled steel sheet having excellent fatigue characteristics.
JP16806599A 1999-06-15 1999-06-15 High burring hot-rolled steel sheet with excellent fatigue characteristics and method for producing the same Expired - Fee Related JP3769146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16806599A JP3769146B2 (en) 1999-06-15 1999-06-15 High burring hot-rolled steel sheet with excellent fatigue characteristics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16806599A JP3769146B2 (en) 1999-06-15 1999-06-15 High burring hot-rolled steel sheet with excellent fatigue characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000355734A JP2000355734A (en) 2000-12-26
JP3769146B2 true JP3769146B2 (en) 2006-04-19

Family

ID=15861192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16806599A Expired - Fee Related JP3769146B2 (en) 1999-06-15 1999-06-15 High burring hot-rolled steel sheet with excellent fatigue characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP3769146B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3954411B2 (en) * 2002-02-28 2007-08-08 日新製鋼株式会社 Manufacturing method of high-strength hot-rolled steel sheet with excellent material uniformity and hole expandability
CN102766809B (en) * 2012-07-17 2013-11-20 东北大学 Hot rolled strip steel with yield strength higher than 800MPa for mine rescue capsule and preparation method of hot rolled strip steel
JP7333901B2 (en) * 2018-11-20 2023-08-28 東京製鐵株式会社 Automotive steel plate
CN114107809B (en) * 2021-11-12 2022-09-23 内蒙古科技大学 Oriented electrical steel with copper precipitation as single inhibitor and production method thereof

Also Published As

Publication number Publication date
JP2000355734A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
JP4894863B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5018934B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
WO2001081640A1 (en) Steel plate having excellent burring workability together with high fatigue strength, and method for producing the same
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
WO2008013300A1 (en) Process for producing pearlitic rail excellent in wearing resistance and ductility
WO2010087512A1 (en) Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor
WO2012002565A1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
JP4445095B2 (en) Composite structure steel plate excellent in burring workability and manufacturing method thereof
WO2019159771A1 (en) High-strength steel sheet and manufacturing method therefor
JP5742123B2 (en) High-tensile hot-rolled steel sheet for high-strength welded steel pipe for line pipe and method for producing the same
JP4205853B2 (en) Hot-rolled steel sheet with excellent burring workability and fatigue characteristics and method for producing the same
JP3769143B2 (en) Hot-rolled steel sheet for machining excellent in fatigue characteristics and method for producing the same
JP6037087B1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP4288146B2 (en) Method for producing burring high-strength steel sheet with excellent softening resistance in weld heat affected zone
JP3769146B2 (en) High burring hot-rolled steel sheet with excellent fatigue characteristics and method for producing the same
JP3781344B2 (en) Manufacturing method of hot-rolled steel sheet with excellent burring workability and fatigue characteristics
JP3831146B2 (en) Manufacturing method of hot-rolled steel sheet for processing with excellent fatigue characteristics
JP3771747B2 (en) Hot-rolled steel sheet for machining excellent in fatigue characteristics and method for producing the same
JP3790357B2 (en) Hot-rolled steel sheet for machining excellent in fatigue characteristics and method for producing the same
JP3752071B2 (en) Hot-rolled steel sheet for machining excellent in fatigue characteristics and method for producing the same
JP3887161B2 (en) High burring hot rolled steel sheet with excellent low cycle fatigue strength and method for producing the same
US20240052449A1 (en) High strength steel sheet, impact absorbing member, and method for manufacturing high strength steel sheet
JP4474952B2 (en) Hot-rolled steel sheet excellent in high-speed deformation characteristics and elongation characteristics and method for producing the same
JP3749615B2 (en) High-strength cold-rolled steel sheet for work with excellent fatigue characteristics and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060203

R151 Written notification of patent or utility model registration

Ref document number: 3769146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees