JP4445095B2 - Composite structure steel plate excellent in burring workability and manufacturing method thereof - Google Patents

Composite structure steel plate excellent in burring workability and manufacturing method thereof Download PDF

Info

Publication number
JP4445095B2
JP4445095B2 JP2000121209A JP2000121209A JP4445095B2 JP 4445095 B2 JP4445095 B2 JP 4445095B2 JP 2000121209 A JP2000121209 A JP 2000121209A JP 2000121209 A JP2000121209 A JP 2000121209A JP 4445095 B2 JP4445095 B2 JP 4445095B2
Authority
JP
Japan
Prior art keywords
phase
ferrite
less
steel
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000121209A
Other languages
Japanese (ja)
Other versions
JP2001303186A (en
Inventor
龍雄 横井
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000121209A priority Critical patent/JP4445095B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to US09/890,048 priority patent/US6589369B2/en
Priority to DE60018940T priority patent/DE60018940D1/en
Priority to PCT/JP2000/008934 priority patent/WO2001081640A1/en
Priority to EP00981781A priority patent/EP1201780B1/en
Priority to KR10-2001-7010080A priority patent/KR100441414B1/en
Priority to TW089127752A priority patent/TWI261072B/en
Publication of JP2001303186A publication Critical patent/JP2001303186A/en
Application granted granted Critical
Publication of JP4445095B2 publication Critical patent/JP4445095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、バーリング加工性に優れた引張強度540MPa以上の複合組織鋼板およびその製造方法に関するものであり、特に、自動車の足廻り部品やロードホイール等の穴拡げ加工性と耐久性の両立が求められる素材として好適な、穴拡げ性(バーリング加工性)に優れた複合組織鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、自動車の燃費向上などのために軽量化を目的として、Al合金等の軽金属や高強度鋼板の自動車部材への適用が進められている。ただし、Al合金等の軽金属は比強度が高いという利点があるものの、鋼に比較して著しく高価であるため、その適用は特殊な用途に限られている。従って、より広い範囲で自動車の軽量化を推進するためには、安価な高強度鋼板の適用が強く求められている。
【0003】
このような高強度化の要求に対して、これまでは車体重量の1/4程度を占めるホワイトボティーや、パネル類に使用される冷延鋼板の分野において、強度と深絞り性を兼ね備えた鋼板や焼付け硬化性のある鋼板等の開発が進められ、車体の軽量化に寄与してきた。ところが現在、軽量化の対象は車体重量の約20%を占める構造部材や足廻り部材にシフトしてきており、これらの部材に用いる高強度熱延鋼板の開発が急務となっている。
【0004】
ただし、高強度化は一般的に成形性(加工性)等の材料特性を劣化させるため、材料特性を劣化させずに如何に高強度化を図るかが高強度鋼板開発の鍵になる。特に構造部材や足廻り部材用鋼板に求められる特性としては、穴拡げ性、疲労耐久性および耐食性等が重要であり、高強度とこれら特性を如何に高次元でバランスさせるかが重要である。
【0005】
例えば、ロードホイールディスク用鋼板に求められる特性としては、穴拡げ性と疲労耐久性が特に重要視されている。これは、ロードホイールディスクの成形工程の中でもハブ穴成形でのバーリング加工(穴拡げ加工)が特に厳しく、また、ホイールの部材特性で最も厳しい基準で管理されているのが疲労耐久性であるためである。
【0006】
現在、これらロードホイールディスク用高強度熱延鋼板として、部材での疲労耐久性を重視して疲労特性に優れる590MPa級のフェライト−マルテンサイトの複合組織鋼板(いわゆるDual Phase鋼)が用いられているが、これら部材用鋼板に要求される強度レベルは、590MPa級から780MPa級へとさらなる高強度化へ向かいつつある。一方、高強度化に伴って穴拡げ性は低下する傾向を示すばかりでなく、複合組織鋼板はその不均一な組織のために穴拡げ性に関しては不利であると言われている。従って、590MPa級で問題とはならなかった穴拡げ性が780MPa級では問題となる可能性がある。
【0007】
すなわち、ロードホイール等足廻り部品への高強度鋼板の適用にあたっては、疲労耐久性に加えて穴拡げ性も重要な検討課題となる。ところが、疲労耐久性を向上させるためにミクロ組織をフェライト−マルテンサイトの複合組織とし、かつ穴拡げ性にも優れる高強度鋼板について記述した発明は、一部の例外を除いて殆ど見受けられないのが現状である。
【0008】
例えば特開平5−179396号公報には、ミクロ組織をフェライトとマルテンサイトまたは残留オーステナイトとして疲労耐久性を確保し、フェライトをTiCやNbCの析出物で強化することで、フェライト粒とマルテンサイト相との強度差を小さくし、フェライト粒への局所的な変形の集中を抑制して穴拡げ性を確保する技術が開示されている。
【0009】
【発明が解決しようとする課題】
しかしながら、ロードホイールのディスク等一部の部品用鋼板においては、バーリング加工性等の成形性と疲労耐久性の高いレベルでのバランスが大変に重要であり、上記従来技術では満足する特性が得られない。また例え両特性が満足されたとしても、安価に安定して製造できる製造方法を提供することが重要であり、上記従来技術では不十分であると言わざるを得ない。
【0010】
すなわち上記特開平5−179396号公報は、フェライト粒を析出強化しているために伸びが十分得られないばかりか、製造時にマルテンサイト相の周囲に導入される高密度の可動転位が析出物によって移動を妨げられるため、低降伏比というフェライト−マルテンサイト複合組織特有の特性が得られない。また、Ti,Nbの添加は製造コストの増加を招くために好ましくない。
【0011】
そこで本発明は、上記従来技術の課題を有利に解決できる、疲労特性とバーリング加工性(穴拡げ性)に優れた引張強度540MPa以上の熱延鋼板、およびその鋼板を安価に安定して製造できる製造方法を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
本発明者らは、現在通常に採用されている連続熱間圧延設備により工業的規模で生産されている熱延鋼板の製造プロセスを念頭において、熱延鋼板のバーリング加工性と疲労特性の両立を達成すべく鋭意研究を重ねた。その結果、ミクロ組織が、体積分率最大の相をフェライトとし、第二相を主にマルテンサイトとする複合組織であり、フェライト平均粒径が2μm以上20μm以下、第二相の平均粒径をフェライト平均粒径で除した値が0.05以上0.8以下、且つ第二相の炭素濃度が0.2%以上2%以下であることが、バーリング加工性向上に非常に有効であることを新たに見出し、本発明をなしたものである。
【0013】
即ち、本発明の要旨は以下の通りである。
(1) 質量%で、
C :0.01〜0.2%、 Si:0.01〜2%、
Mn:0.05〜3%、 P ≦0.1%、
S ≦0.01%、 Al:0.005〜1%、
Cu:0.2〜2%、 B:0.0002〜0.002%、
Ni:0.1〜1%
を含み、残部がFe及び不可避的不純物からなり、鋼板強度レベルが780Mpa級であり、穴拡げ率が62%以上の鋼であって、そのミクロ組織が、体積分率最大の相をフェライトとし、第二相を主にマルテンサイトとする複合組織であり、フェライト平均粒径が2μm以上20μm以下、第二相の平均粒径をフェライト平均粒径で除した値が0.05以上0.8以下、且つ第二相の炭素濃度が0.2%以上2%以下であることを特徴とする、バーリング加工性に優れる複合組織鋼板。
【0014】
) 前記(1)に記載の成分を有する鋼片の熱間圧延に際し、Ar3 変態点温度以上Ar3 変態点温度+100℃以下で熱間仕上圧延を終了した後、Ar1 変態点温度以上Ar3 変態点温度以下の温度域で1〜20秒間滞留し、その後、20℃/s以上の冷却速度で冷却して、350℃以下の巻取温度で巻き取り、そのミクロ組織が、体積分率最大の相をフェライトとし、第二相を主にマルテンサイトとする複合組織であり、フェライト平均粒径が2μm以上20μm以下、第二相の平均粒径をフェライト平均粒径で除した値が0.05以上0.8以下、且つ第二相の炭素濃度が0.2%以上2%以下である鋼板を得ることを特徴とする、バーリング加工性に優れる複合組織鋼板の製造方法。
) 前記熱間圧延に際し、粗圧延終了後、高圧デスケーリングを行い、Ar3 変態点温度以上Ar3 変態点温度+100℃以下で熱間仕上圧延を終了することを特徴とする、前記()記載のバーリング加工性に優れる複合組織鋼板の製造方法。
【0015】
【発明の実施の形態】
以下に、本発明に至った基礎研究結果について説明する。
まず、穴拡げ性に及ぼすフェライト平均粒径および第二相の大きさの影響を調査した。そのための供試材は次のようにして準備した。すなわち、0.07%C−1.6%Si−2.0%Mn−0.01%P−0.001%S−0.03%Alに成分調整し溶製した鋳片を、Ar3 変態点温度以上のいずれかの温度で熱間仕上圧延を終了した後、Ar1 変態点温度以上Ar3 変態点温度以下のいずれかの温度域で1〜15秒間滞留し、その後20℃/s以上の冷却速度で冷却して、常温で巻き取った。
これらの鋼板について穴拡げ試験を行った結果から、フェライト平均粒径および第二相の大きさについて整理したものを図1に示す。
【0016】
この結果より、フェライト平均粒径および第二相の大きさ(第二相の平均粒径をフェライト平均粒径で除した値)と穴拡げ性には強い相関があり、フェライト平均粒径および第二相の大きさがそれぞれ2μm以上20μm以下、および0.05以上0.8以下で、穴拡げ性が著しく向上することを新規に知見した。
【0017】
このメカニズムは必ずしも明らかではないが、第二相が大きすぎると第二相と母相の界面にボイドが生じやすく、穴拡げの際にクラックの起点となり、小さすぎると穴拡げ率と相関がある局部延性が低下するため、最適なサイズと間隔において穴拡げ率が向上すると推測される。また、フェライト平均粒径が小さすぎると降伏応力が上昇し、成形後の形状凍結性に悪影響を及ぼし、大きすぎるとミクロ組織の均一性が失われ、穴拡げ率と相関がある局部延性が低下するためと考えられる。
なお、フェライト平均粒径の測定法は、JIS G 0552鋼のフェライト結晶粒度試験法に記載の切断法に準じた。また、第二相の平均粒径については平均円相当径と定義し、画像処理装置等より得られる値を採用した。
【0018】
さらに、穴拡げ性に及ぼす第二相の炭素濃度の影響を調査した。上記鋼板について穴拡げ性を第二相の炭素濃度で整理したものを図2に示す。この結果より、第二相の炭素濃度と穴拡げ性には強い相関があり、第二相の炭素濃度が0.2%以上2%以下で、穴拡げ性が著しく向上することを新規に知見した。
【0019】
このメカニズムは必ずしも明らかではないが、第二相の炭素濃度が高すぎると第二相と母相との強度差が大きくなり、打ち抜き時にその界面にボイドが生じやすく、穴拡げの際にクラックの起点となる。一方、第二相の炭素濃度が低すぎると必然的にフェライト相の延性が低下し、穴拡げ率と相関がある局部延性が低下するため、穴拡げ率が低下する。従って、最適な第二相の炭素濃度において穴拡げ率が向上すると推測される。
【0020】
ただし、第二相の炭素濃度が1.2%超であると、スポット溶接等の溶接時に熱影響部の軟化が著しくなり疲労破壊の起点となる可能性があるので、第二相の炭素濃度は0.2%以上1.2%以下の範囲が好ましい。
なお、穴拡げ性(バーリング加工性)については、日本鉄鋼連盟規格JFS T 1001−1996記載の穴拡げ試験方法に従って評価した。
【0021】
次に、本発明における鋼板のミクロ組織および第二相の炭素濃度について、詳細に説明する。
鋼板のミクロ組織は、疲労特性とバーリング加工性(穴拡げ性)を両立させるために体積分率最大の相をフェライトとし、第二相を主にマルテンサイトとする複合組織とした。ただし、第二相には不可避的なベイナイト、残留オーステナイトを含むことを許容するものである。
【0022】
なお、良好な疲労特性を確保するためには、ベイナイトおよび/または残留オーステナイトの体積分率は5%以下が好ましい。ここで、フェライトおよび第二相の体積率とは、鋼板の圧延方向断面厚みの1/4厚における光学顕微鏡で、200〜500倍で観察されたミクロ組織中におけるそれらの組織の面積分率で定義される。
【0023】
また、第二相の炭素濃度はEPMA(Electron Probe Micro Analyzer :電子線マイクロアナライザー)を用い、文献(電子線マイクロアナリシス:副島 啓義著 日刊工業新聞社出版)記載の検量線法により得られた値である。ただし、測定した第二相の粒は5個以上であり、炭素濃度はその平均値とした。
【0024】
一方、上記方法に置き換わる簡易測定方法として、以下の方法にて第二相の炭素濃度を求めても良い。すなわち、鋼全体(体積分率最大の相と第二相)の炭素含有量(鋼全体での平均炭素濃度)とフェライトでの炭素濃度から、第二相の炭素濃度を算出する方法である。
【0025】
鋼全体(体積分率最大の相と第二相)の炭素含有量は鋼成分の炭素量であり、フェライトでの炭素濃度は焼付硬化指数(以下BH)より見積もることができる。ただしBH量(MPa)とは、JIS5号引張試験片を用い、2.0%の予ひずみを付与後、170℃で20分の熱処理を施し、再度引張試験を行って得られる値で、熱処理前の2.0%での流動応力と熱処理後の降伏点の差である。
複合組織鋼におけるBH量は、2.0%程度の予ひずみでは硬質な第二相が塑性変形を起こさないと考えられることから、フェライト中の固用炭素量と相関があるとして差し支えない。
【0026】
文献 Foemable HSLA and Dual-Phase Steels (1977), A.T.DAVENPORT著、131頁のFig.4に、複合組織鋼の固溶炭素量とBH量の関係が示されている。この関係から複合組織鋼のBH量と固溶炭素量の関係は
Cs(固溶炭素量)=1.5×10-4exp(0.033×BH)
と近似することができる。従って第二相の炭素濃度は
Cm=〔C(鋼中の炭素含有量)−Cs〕/fM(第二相体積率)
で見積もることができる。また、上記の式より見積もった第二相の炭素濃度とEPMAによって測定した炭素濃度は非常によい相関を示している。
【0027】
続いて、本発明の化学成分の限定理由について説明する。成分含有量は質量%である。
Cは、所望のミクロ組織を得るのに必要な元素である。ただし、0.2%超含有していると加工性及び溶接性が劣化するので、0.2%以下とする。また0.01%未満であると強度が低下するので、0.01%以上とする。
【0028】
Siは、所望のミクロ組織を得るのに必要であると共に、固溶強化元素として強度上昇に有効である。所望の強度を得るためには0.01%以上含有する必要がある。しかし2%超含有すると加工性が劣化する。そこでSiの含有量は0.01%以上、2%以下とする。
【0029】
Mnは、固溶強化元素として強度上昇に有効である。所望の強度を得るためには0.05%以上必要である。また、3%超添加するとスラブ割れを生ずるため、3%以下とする。
【0030】
Pは、不純物であり低いほど好ましく、0.1%超含有すると加工性や溶接性に悪影響を及ぼすと共に疲労特性も低下させるので、0.1%以下とする。
【0031】
Sは、不純物であり低いほど好ましく、多すぎると穴拡げ性を劣化させるA系介在物を生成するので、極力低減させるべきであるが、0.01%以下ならば許容できる範囲である。
【0032】
Alは、溶鋼脱酸のために0.005%以上添加する必要があるが、コストの上昇を招くため、その上限を1.0%とする。また、あまり多量に添加すると非金属介在物を増大させて伸びを劣化させるので、好ましくは0.5%以下とする。
【0033】
Cuは、固溶状態で疲労特性を改善する効果があるので添加する。ただし、0.2%未満ではその効果は少なく、2%を超えて含有しても効果が飽和する。そこで、Cuの含有量は0.2〜2%の範囲とする。
【0034】
Bは、Cuと複合添加することにより疲労限を上昇させる効果があるので添加する。ただし、0.0002%未満ではその効果を得るために不十分であり、0.002%超添加するとスラブ割れが起こる。よって、Bの添加は0.0002%以上、0.002%以下とする。
【0035】
Niは、Cu含有による熱間脆性防止のために添加する。ただし、0.1%未満ではその効果が少なく、1%を超えて添加してもその効果が飽和するので、0.1〜1%とする。
【0039】
次に、本発明の製造方法の限定理由について、以下に詳細に述べる。
本発明では、目的の成分含有量になるように成分調整した溶鋼を鋳込むことによって得たスラブを、高温鋳片のまま熱間圧延機に直送してもよいし、室温まで冷却後、加熱炉で再加熱した後に熱間圧延してもよい。再加熱温度については特に制限はないが、1400℃以上であると、スケールオフ量が多量になり歩留まりが低下するので、再加熱温度は1400℃未満が望ましい。また、1000℃未満の加熱はスケジュール上操業効率を著しく損なうため、再加熱温度は1000℃以上が望ましい。
【0040】
熱間圧延工程は、粗圧延を終了後、仕上げ圧延を行うが、最終パス温度(FT)がAr3 変態点温度以上Ar3 変態点温度+100℃以下の温度域で終了する必要がある。これは、熱間圧延中に圧延温度がAr3 変態点温度を切ると、ひずみが残留して延性が低下してしまい加工性が劣化し、仕上げ温度がAr3 変態点温度+100℃超では、仕上げ圧延後のオーステナイト粒径が大きくなってしまうために、後の冷却工程において行う二相域でフェライト変態の促進が不十分になり、目的とするミクロ組織が得られない。従って、仕上げ温度はAr3 変態点温度以上Ar3 変態点温度+100℃以下とする。
【0041】
ここで、粗圧延終了後に高圧デスケーリングを行う場合は、鋼板表面での高圧水の衝突圧P(MPa)×流量L(リットル/cm2 )≧0.0025の条件を満たすことが好ましい。
鋼板表面での高圧水の衝突圧Pは以下のように記述される(「鉄と鋼」、1991, vol.77, No.9, P1450 参照)。
P(MPa)=5.64×P0 ×V/H2
ただし、
0 (MPa):液圧力
V(リットル/min):ノズル流液量
H(cm):鋼板表面とノズル間の距離
【0042】
流量Lは以下のように記述される。
L(リットル/cm2 )=V/(W×v)
ただし、
V(リットル/min):ノズル流液量
W(cm):ノズル当たり噴射液が鋼板表面に当たっている幅
v(cm/min):通板速度
衝突圧P×流量Lの上限は、本発明の効果を得るためには特に定める必要はないが、ノズル流液量を増加させるとノズルの摩耗が激しくなる等の不都合が生じるため、0.02以下とすることが好ましい。
【0043】
さらに、仕上げ圧延後の鋼板の最大高さRyが15μm(15μmRy,l2.5mm,ln12.5mm)以下であることが好ましい。これは、例えば「金属材料疲労設計便覧」、日本材料学会編、84頁に記載されている通り、熱延または酸洗ままの鋼板の疲労強度は、鋼板表面の最大高さRyと相関があることから明らかである。またその後の仕上げ圧延は、デスケーリング後に再びスケールが生成してしまうのを防ぐために、5秒以内に行うのが望ましい。
【0044】
仕上圧延を終了した後の工程は、まずAr3 変態点からAr1 変態点までの温度域(フェライトとオーステナイトの二相域)で1〜20秒間滞留する。ここでの滞留は、二相域でフェライト変態を促進させるために行うが、1秒未満では、二相域におけるフェライト変態が不十分なため、十分な延性が得られない。一方、20秒超ではパーライトが生成し、目的とする体積分率最大の相をフェライトとし、第二相を主にマルテンサイトとする複合組織が得られない。
【0045】
また、1〜20秒間の滞留をさせる温度域は、フェライト変態を容易に促進させるためAr1 変態点以上800℃以下が望ましく、そのためには、仕上げ圧延終了後20℃/s以上の冷却速度で当該温度域に迅速に到達させることが好ましい。さらに、1〜20秒間の滞留時間は生産性を極端に低下させないためには、1〜10秒間とすることが好ましい。
【0046】
次に、その温度域から巻取温度(CT)までは20℃/s以上の冷却速度で冷却するが、20℃/s未満の冷却速度では、パーライトもしくはベイナイトが生成してしまい十分なマルテンサイトが得られず、目的とするフェライトを体積分率最大の相とし、マルテンサイトを第二相とするミクロ組織が得られない。
巻取温度までの冷却速度の上限は、特に定めることなく本発明の効果を得ることができるが、熱ひずみによる板そりが懸念されることから、200℃/s以下とすることが好ましい。
【0047】
巻取温度が350℃超では、ベイナイトが生成して十分なマルテンサイトが得られず、目的とするフェライトを体積分率最大の相とし、マルテンサイトを第二相とするミクロ組織が得られないため、巻取温度は350℃以下と限定する。
また、巻取温度の下限値は特に限定する必要はないが、コイルが長時間水濡れの状態にあると錆による外観不良が懸念されるため、50℃以上が望ましい。
【0048】
【実施例】
以下に、実施例により本発明をさらに説明する。
表1に示す化学成分を有するD〜Jの鋼は、転炉で溶製して連続鋳造後、表2に示す加熱温度(SRT)で再加熱し、粗圧延後に同じく表2に示す仕上げ圧延温度(FT)で1.2〜5.4mmの板厚に圧延した後、表2に示す巻取温度(CT)でそれぞれ巻き取った。なお一部については粗圧延後に衝突圧2.7MPa、流量0.001リットル/cm2 の条件で高圧デスケーリングを行った。ただし、表中の化学組成についての表示は質量%である。
【0049】
このようにして得られた熱延板の引張試験は、供試材を、まず、JIS Z 2201記載の5号試験片に加工し、JIS Z 2241記載の試験方法に従って行った。表2にその試験結果を示す。ここで、フェライトおよび第二相の体積率とは、鋼板の圧延方向断面厚みの1/4厚における光学顕微鏡で、200〜500倍で観察されたミクロ組織中におけるそれらの組織の面積分率で定義される。なお、フェライト平均粒径の測定法は、JIS G 0552鋼のフェライト結晶粒度試験法に記載の切断法に準じ、第二相の平均粒径については平均円相当径と定義し、画像処理装置等より得られる値を採用した。
【0050】
また、第二相の炭素濃度はEPMA(Electron Probe Micro Analyzer :電子線マイクロアナライザー)を用い、文献(「電子線マイクロアナリシス」、副島啓義著 日刊工業新聞社出版)記載の検量線法により得られた値である。ただし、測定した第二相粒は5個以上であり、炭素濃度はその平均値とした。
一方、一部の試料については、上述の簡易測定方法で第二相の炭素濃度を測定している。
【0051】
さらに、図3に示すような長さ98mm、幅38mm、最小断面部の幅が20mm、切り欠きの曲率半径が30mmである平面曲げ疲労試験片にて、完全両振りの平面曲げ疲労試験を行った。鋼板の疲労特性は、10×107 回での疲労限σWを鋼板の引張り強さσBで除した値(疲労限度比σW/σB)で評価した。
ただし、疲労試験片の表面は研削など一切行わず酸洗ままの表面とした。
一方、バーリング加工性(穴拡げ性)については、日本鉄鋼連盟規格JFS T 1001−1996記載の穴拡げ試験方法に従って評価した。
【0052】
本発明に沿うものは、鋼Gであり、所定の量の鋼成分を含有し、そのミクロ組織が、体積分率最大の相をフェライトとし、第二相を主にマルテンサイトとする複合組織であり、フェライト平均粒径が2μm以上20μm以下、第二相の平均粒径をフェライト平均粒径で除した値が0.05以上0.8以下、且つ第二相の炭素濃度が0.2%以上2%以下であることを特徴とする、バーリング加工性に優れる複合組織鋼板が得られている。
【0053】
上記以外の鋼は、以下の理由によって本発明の範囲外である。
すなわち、鋼C−1は、仕上圧延終了温度(FT)が本発明の範囲より高く、フェライト粒径(Df)、第二相の大きさ(dm/Df)および第二相炭素濃度(Cm)が本発明の範囲外であるので、十分な穴拡げ率(λ)および疲労限度比(σW/σB)が得られていない。
鋼C−2は、仕上圧延終了温度(FT)が本発明の範囲より低く、第二相の大きさ(dm/Df)が本発明の範囲外であるので、十分な穴拡げ率(λ)および疲労限度比(σW/σB)が得られていない。さらに、ひずみが残留して延性 (El)も低下する。
【0054】
鋼C−3は、滞留後の冷却速度(CR)が本発明の範囲より遅く、巻取温度 (CT)も本発明の範囲より高い。従ってフェライト粒径(Df)、第二相の大きさ(dm/Df)および第二相炭素濃度(Cm)が本発明の範囲外であるので、十分な穴拡げ率(λ)および疲労限度比(σW/σB)が得られていない。
鋼C−4は、滞留温度(MT)が本発明の範囲より低く、第二相の大きさ(dm/Df)および第二相炭素濃度(Cm)が本発明の範囲外であるので、十分な穴拡げ率(λ)および疲労限度比(σW/σB)が得られていない。
【0055】
鋼C−5は、滞留時間(Time)がなく、第二相の大きさ(dm/Df)および第二相炭素濃度(Cm)が本発明の範囲外であるので、十分な穴拡げ率(λ)および疲労限度比(σW/σB)が得られていない。
鋼Dは、Cの含有量が本発明の範囲外であるので、目的とするミクロ組織が得られず、十分な強度(TS)および疲労限度比(σW/σB)が得られていない。
鋼Eは、Siの含有量が本発明の範囲外であるので、十分な強度(TS)および疲労限度比(σW/σB)が得られていない。
【0056】
鋼Fは、Mnの含有量が本発明の範囲外であり、フェライト粒径(Df)および第二相の大きさ(dm/Df)が本発明の範囲外であるので、十分な強度(TS)、穴拡げ率(λ)および疲労限度比(σW/σB)が得られていない。
鋼Hは、Sの含有量が本発明の範囲外であるので、十分な穴拡げ率(λ)および疲労限度比(σW/σB)が得られていない。
鋼Iは、Pの含有量が本発明の範囲外であるので、十分な疲労限度比(σW/σB)が得られていない。
鋼Jは、Cの含有量が本発明の範囲外であるので、十分な伸び(El)、穴拡げ率(λ)および疲労限度比(σW/σB)が得られていない。
【0057】
【表1】

Figure 0004445095
【0058】
【表2】
Figure 0004445095
【0059】
【発明の効果】
以上詳述したように、本発明は、バーリング加工性に優れた引張強度540MPa以上の複合組織鋼板およびその製造方法を提供するものであり、これらの熱延鋼板を用いることにより、疲労特性を十分に確保しつつバーリング加工性(穴拡げ性)の大幅な改善が期待できるため、工業的価値が高い発明である。
【図面の簡単な説明】
【図1】本発明に至る予備実験の結果を、フェライト平均粒径、第二相の大きさと穴拡げ率の関係で示す図である。
【図2】本発明に至る予備実験の結果を、第二相の炭素濃度と穴拡げ率の関係で示す図である。
【図3】疲労試験片の形状を説明する図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite steel sheet having excellent burring workability and a tensile strength of 540 MPa or more, and a method for producing the same, and in particular, it is required to satisfy both hole expansion workability and durability of automobile undercarriage parts and road wheels. The present invention relates to a composite structure steel plate excellent in hole expansibility (burring workability) and a method for producing the same.
[0002]
[Prior art]
In recent years, application of light metals such as Al alloys and high-strength steel sheets to automobile members has been promoted for the purpose of reducing the weight in order to improve the fuel efficiency of automobiles. However, although light metals such as Al alloys have the advantage of high specific strength, they are extremely expensive compared to steel, so their application is limited to special applications. Therefore, in order to promote weight reduction of automobiles in a wider range, application of inexpensive high-strength steel sheets is strongly demanded.
[0003]
In response to such demands for high strength, steel sheets that have both strength and deep drawability in the field of white bodies that account for about 1/4 of the weight of the vehicle body and cold-rolled steel sheets used for panels. Development of steel plates with bake hardenability has been promoted, which has contributed to weight reduction of vehicle bodies. However, at present, the object of weight reduction has shifted to structural members and suspension members that account for about 20% of the weight of the vehicle body, and the development of high-strength hot-rolled steel sheets used for these members has become an urgent task.
[0004]
However, increasing strength generally degrades material properties such as formability (workability), so the key to developing a high-strength steel sheet is how to increase strength without deteriorating material properties. In particular, hole expandability, fatigue durability, corrosion resistance, and the like are important as properties required for structural members and steel plates for suspension members, and how to balance high strength with these properties at a high level is important.
[0005]
For example, hole expansibility and fatigue durability are particularly emphasized as characteristics required for a steel plate for a road wheel disc. This is because the burring process (hole expansion process) in hub hole molding is particularly strict in the road wheel disk molding process, and it is fatigue durability that is managed according to the strictest standards of wheel member characteristics. It is.
[0006]
Currently, as a high-strength hot-rolled steel sheet for road wheel discs, a 590 MPa class ferritic-martensitic composite structure steel sheet (so-called dual phase steel) is used which emphasizes fatigue durability of members and is excellent in fatigue characteristics. However, the strength level required for these steel plates for members is increasing from 590 MPa class to 780 MPa class. On the other hand, not only does the hole expandability tend to decrease with increasing strength, but the composite steel sheet is said to be disadvantageous in terms of hole expandability due to its non-uniform structure. Therefore, there is a possibility that the hole expandability, which was not a problem in the 590 MPa class, becomes a problem in the 780 MPa class.
[0007]
In other words, in the application of high-strength steel plates to undercarriage parts such as road wheels, hole expansibility is an important consideration in addition to fatigue durability. However, with the exception of some exceptions, the invention described for a high-strength steel sheet having a ferrite-martensite composite structure for improving fatigue durability and excellent hole expansibility is hardly seen. Is the current situation.
[0008]
For example, Japanese Patent Laid-Open No. 5-179396 discloses that the microstructure is ferrite and martensite or retained austenite to ensure fatigue durability, and the ferrite is strengthened with precipitates of TiC and NbC, so that the ferrite grains and the martensite phase Has been disclosed in which the difference in the strength is reduced and the concentration of local deformation on the ferrite grains is suppressed to ensure the hole expandability.
[0009]
[Problems to be solved by the invention]
However, in some parts steel plates such as road wheel disks, a balance between formability such as burring workability and a high level of fatigue durability is very important, and satisfactory characteristics can be obtained with the above-mentioned conventional technology. Absent. Moreover, even if both characteristics are satisfied, it is important to provide a manufacturing method that can be stably manufactured at low cost, and the above-described conventional technique is insufficient.
[0010]
That is, the above-mentioned Japanese Patent Application Laid-Open No. 5-179396 is not only able to obtain sufficient elongation because precipitation strengthening of ferrite grains, but also high-density movable dislocations introduced around the martensite phase during production are caused by precipitates. Since the movement is hindered, a characteristic unique to a ferrite-martensite composite structure having a low yield ratio cannot be obtained. Further, the addition of Ti and Nb is not preferable because the manufacturing cost increases.
[0011]
Therefore, the present invention can stably solve the above-mentioned problems of the prior art, and can stably produce a hot-rolled steel sheet having excellent fatigue characteristics and burring workability (hole expansibility) with a tensile strength of 540 MPa or more, and the steel sheet at low cost. The object is to provide a manufacturing method.
[0012]
[Means for Solving the Problems]
The present inventors have made both the burring workability and fatigue characteristics of hot-rolled steel sheet compatible with the manufacturing process of hot-rolled steel sheet produced on an industrial scale by the continuous hot rolling equipment that is currently normally employed. We worked hard to achieve it. As a result, the microstructure is a composite structure in which the phase with the largest volume fraction is ferrite and the second phase is mainly martensite, the ferrite average particle diameter is 2 μm or more and 20 μm or less, and the average particle diameter of the second phase is It is very effective for improving the burring workability that the value divided by the average ferrite particle diameter is 0.05 or more and 0.8 or less and the carbon concentration of the second phase is 0.2% or more and 2% or less. Is newly found and the present invention has been made.
[0013]
That is, the gist of the present invention is as follows.
(1) In mass%,
C: 0.01 to 0.2%, Si: 0.01 to 2%,
Mn: 0.05 to 3%, P ≦ 0.1%,
S ≦ 0.01%, Al: 0.005 to 1%,
Cu: 0.2-2%, B: 0.0002-0.002%,
Ni: 0.1 to 1%
Wherein the remainder Ri Do Fe and unavoidable impurities, the steel sheet strength level is 780Mpa class, a steel hole expansion ratio is not less than 62%, the microstructure, the volume fraction up phase and ferrite , A composite structure mainly composed of martensite in the second phase, the ferrite average particle diameter is 2 μm or more and 20 μm or less, and the value obtained by dividing the average particle diameter of the second phase by the ferrite average particle diameter is 0.05 or more and 0.8 A composite structure steel sheet having excellent burring workability, wherein the carbon concentration of the second phase is 0.2% or more and 2% or less.
[0014]
( 2 ) Upon hot rolling of the steel slab having the component described in (1) above, after finishing the hot finish rolling at Ar3 transformation point temperature or higher and Ar3 transformation point temperature + 100 ° C or lower, Ar3 transformation point temperature or higher and Ar3 transformation temperature is reached. It stays in the temperature range below the point temperature for 1 to 20 seconds, then cools at a cooling rate of 20 ° C./s or more and winds up at a winding temperature of 350 ° C. or less, and its microstructure has the largest volume fraction. A composite structure in which the phase is ferrite and the second phase is mainly martensite, the ferrite average particle size is 2 μm or more and 20 μm or less, and the value obtained by dividing the average particle size of the second phase by the ferrite average particle size is 0.05. A method for producing a composite structure steel plate excellent in burring workability, comprising obtaining a steel plate having a carbon concentration in the second phase of 0.2% or more and 2% or less.
( 3 ) In the hot rolling, after finishing the rough rolling, high pressure descaling is performed, and the hot finish rolling is finished at an Ar3 transformation point temperature or higher and an Ar3 transformation point temperature + 100 ° C or lower ( 2 ). The manufacturing method of the composite structure steel plate excellent in the burring workability of description.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The basic research results that led to the present invention will be described below.
First, the influence of the average ferrite grain size and the size of the second phase on the hole expandability was investigated. The test material for that purpose was prepared as follows. That is, 0.07% C-1.6% Si-2.0% Mn-0.01% P-0.001% S-0.03% Al slab was prepared by adjusting the composition of the slab. After finishing hot finish rolling at any temperature above the point temperature, it stays for 1 to 15 seconds in any temperature range from the Ar1 transformation point temperature to the Ar3 transformation point temperature, and then cooled to 20 ° C / s or more. Cooled at a speed and wound up at room temperature.
FIG. 1 shows an arrangement of the average ferrite grain size and the size of the second phase based on the results of the hole expansion test performed on these steel sheets.
[0016]
From this result, there is a strong correlation between the ferrite average particle size and the size of the second phase (the value obtained by dividing the average particle size of the second phase by the ferrite average particle size) and the hole expandability. It has been newly found that the hole expandability is remarkably improved when the size of the two phases is 2 μm or more and 20 μm or less and 0.05 or more and 0.8 or less, respectively.
[0017]
This mechanism is not always clear, but if the second phase is too large, voids are likely to be generated at the interface between the second phase and the parent phase, which becomes the starting point of cracks when expanding the hole, and if it is too small, it correlates with the hole expansion rate. Since the local ductility is lowered, it is estimated that the hole expansion rate is improved at the optimum size and interval. In addition, if the average ferrite grain size is too small, the yield stress increases, which adversely affects the shape freezing property after molding. If it is too large, the microstructure is lost, and the local ductility correlated with the hole expansion rate decreases. It is thought to do.
In addition, the measuring method of a ferrite average particle diameter followed the cutting method as described in the ferrite crystal grain size test method of JIS G 0552 steel. The average particle diameter of the second phase was defined as the average equivalent circle diameter, and a value obtained from an image processing apparatus or the like was adopted.
[0018]
Furthermore, the effect of the carbon concentration of the second phase on the hole expandability was investigated. FIG. 2 shows the steel sheet in which the hole expandability is arranged by the carbon concentration of the second phase. From this result, there is a strong correlation between the carbon concentration of the second phase and the hole expandability, and it is newly found that the hole expandability is significantly improved when the carbon concentration of the second phase is 0.2% or more and 2% or less. did.
[0019]
This mechanism is not always clear, but if the carbon concentration of the second phase is too high, the difference in strength between the second phase and the parent phase becomes large, and voids are likely to form at the interface during punching. The starting point. On the other hand, if the carbon concentration of the second phase is too low, the ductility of the ferrite phase is inevitably lowered, and the local ductility correlated with the hole expansion rate is lowered, so that the hole expansion rate is lowered. Therefore, it is presumed that the hole expansion rate is improved at the optimum carbon concentration of the second phase.
[0020]
However, if the carbon concentration of the second phase is more than 1.2%, the heat-affected zone may be significantly softened during welding such as spot welding, which may become a starting point for fatigue failure. Is preferably in the range of 0.2% to 1.2%.
The hole expandability (burring workability) was evaluated according to the hole expansion test method described in Japan Iron and Steel Federation Standard JFS T 1001-1996.
[0021]
Next, the microstructure of the steel sheet and the carbon concentration of the second phase in the present invention will be described in detail.
The microstructure of the steel sheet was a composite structure in which the phase with the largest volume fraction was ferrite and the second phase was mainly martensite in order to achieve both fatigue characteristics and burring workability (hole expansibility). However, the second phase is allowed to contain unavoidable bainite and retained austenite.
[0022]
In order to secure good fatigue properties, the volume fraction of bainite and / or retained austenite is preferably 5% or less. Here, the volume fraction of the ferrite and the second phase is an area fraction of the microstructure in the microstructure observed at 200 to 500 times with an optical microscope at a quarter thickness of the steel sheet in the rolling direction. Defined.
[0023]
Moreover, the carbon concentration of the second phase is a value obtained by the calibration curve method described in the literature (Electron Beam Microanalysis: written by Keiyoshi Soejima, published by Nikkan Kogyo Shimbun) using EPMA (Electron Probe Micro Analyzer). It is. However, the measured second phase grains were 5 or more, and the carbon concentration was the average value.
[0024]
On the other hand, as a simple measurement method that replaces the above method, the carbon concentration of the second phase may be obtained by the following method. That is, it is a method of calculating the carbon concentration of the second phase from the carbon content (average carbon concentration in the whole steel) of the whole steel (phase with the largest volume fraction and the second phase) and the carbon concentration in the ferrite.
[0025]
The carbon content of the whole steel (phase with the largest volume fraction and the second phase) is the carbon content of the steel component, and the carbon concentration in ferrite can be estimated from the bake hardening index (hereinafter referred to as BH). However, the amount of BH (MPa) is a value obtained by using a JIS No. 5 tensile test piece, giving a pre-strain of 2.0%, performing a heat treatment at 170 ° C. for 20 minutes, and performing a tensile test again. It is the difference between the previous 2.0% flow stress and the yield point after heat treatment.
The amount of BH in the composite structure steel is considered to be correlated with the amount of solid carbon in the ferrite because it is considered that the hard second phase does not cause plastic deformation at a pre-strain of about 2.0%.
[0026]
Literature Foemable HSLA and Dual-Phase Steels (1977), ATDAVENPORT, page 131, FIG. 4 shows the relationship between the solute carbon content and the BH content of the composite structure steel. From this relationship, the relationship between the amount of BH and the amount of solute carbon in the composite structure steel is Cs (solute carbon amount) = 1.5 × 10 −4 exp (0.033 × BH)
And can be approximated. Therefore, the carbon concentration of the second phase is Cm = [C (carbon content in steel) −Cs] / fM (second phase volume fraction).
Can be estimated. Moreover, the carbon concentration of the second phase estimated from the above formula and the carbon concentration measured by EPMA show a very good correlation.
[0027]
Then, the reason for limitation of the chemical component of this invention is demonstrated. The component content is% by mass.
C is an element necessary for obtaining a desired microstructure. However, if the content exceeds 0.2%, workability and weldability deteriorate, so the content is made 0.2% or less. Moreover, since intensity | strength will fall that it is less than 0.01%, it is made 0.01% or more.
[0028]
Si is effective for increasing the strength as a solid solution strengthening element as well as being necessary for obtaining a desired microstructure. In order to obtain a desired strength, it is necessary to contain 0.01% or more. However, if it exceeds 2%, workability deteriorates. Therefore, the Si content is set to 0.01% or more and 2% or less.
[0029]
Mn is effective for increasing the strength as a solid solution strengthening element. In order to obtain a desired strength, 0.05% or more is necessary. Further, if over 3% is added, slab cracking occurs, so the content is made 3% or less.
[0030]
P is preferably an impurity and is preferably as low as possible. If contained over 0.1%, the workability and weldability are adversely affected and the fatigue characteristics are also reduced.
[0031]
S is preferably an impurity and is preferably as low as possible. If it is too large, A-based inclusions that deteriorate the hole expansibility are generated. Therefore, S should be reduced as much as possible, but 0.01% or less is acceptable.
[0032]
Al needs to be added in an amount of 0.005% or more for deoxidation of molten steel, but the cost is increased, so the upper limit is made 1.0%. Moreover, when adding too much, a nonmetallic inclusion will be increased and elongation will be degraded, Therefore Preferably it is 0.5% or less.
[0033]
Cu is added in there is an effect of improving the fatigue characteristics in the solid solution state. However, if the content is less than 0.2%, the effect is small, and even if the content exceeds 2%, the effect is saturated. Therefore, the Cu content is in the range of 0.2 to 2%.
[0034]
B is added in the an effect of increasing the fatigue limit by combined addition with Cu. However, if it is less than 0.0002%, it is insufficient for obtaining the effect, and if added over 0.002%, slab cracking occurs. Therefore, the addition of B is set to 0.0002% or more and 0.002% or less.
[0035]
Ni is added to prevent hot brittleness due to Cu inclusion. However, if the content is less than 0.1%, the effect is small, and even if added over 1%, the effect is saturated.
[0039]
Next, the reasons for limiting the production method of the present invention will be described in detail below.
In the present invention, the slab obtained by casting the molten steel whose components are adjusted so as to have the desired component content may be sent directly to a hot rolling mill with a high-temperature slab, or after cooling to room temperature, heating You may hot-roll after reheating in a furnace. The reheating temperature is not particularly limited, but if it is 1400 ° C. or higher, the scale-off amount becomes large and the yield decreases, so the reheating temperature is preferably less than 1400 ° C. In addition, since heating below 1000 ° C. significantly impairs the operation efficiency on the schedule, the reheating temperature is desirably 1000 ° C. or higher.
[0040]
In the hot rolling process, after the rough rolling is finished, finish rolling is performed, but the final pass temperature (FT) needs to be finished in a temperature range of Ar3 transformation point temperature to Ar3 transformation point temperature + 100 ° C. or less. This is because when the rolling temperature falls below the Ar3 transformation point temperature during hot rolling, strain remains and the ductility is lowered and the workability deteriorates. When the finishing temperature exceeds the Ar3 transformation point temperature + 100 ° C, the finish rolling is performed. Since the subsequent austenite grain size is increased, the ferrite transformation is not sufficiently promoted in the two-phase region performed in the subsequent cooling step, and the desired microstructure cannot be obtained. Accordingly, the finishing temperature is set to Ar3 transformation point temperature or higher and Ar3 transformation point temperature + 100 ° C or lower.
[0041]
Here, when high-pressure descaling is performed after the end of rough rolling, it is preferable that the condition of high-pressure water collision pressure P (MPa) × flow rate L (liter / cm 2 ) ≧ 0.0025 on the steel plate surface is satisfied.
The collision pressure P of high-pressure water on the steel sheet surface is described as follows (see “Iron and Steel”, 1991, vol. 77, No. 9, P1450).
P (MPa) = 5.64 × P 0 × V / H 2
However,
P 0 (MPa): Fluid pressure V (L / min): Nozzle flow rate H (cm): Distance between steel plate surface and nozzle
The flow rate L is described as follows.
L (liter / cm 2 ) = V / (W × v)
However,
V (liter / min): Nozzle flow rate W (cm): Width of spray liquid per nozzle hitting the steel plate surface v (cm / min): Upper limit of plate speed collision pressure P × flow rate L is the effect of the present invention Although there is no particular need to determine the value in order to obtain the above, it is preferable that the amount be 0.02 or less because inconveniences such as increased wear of the nozzles occur when the nozzle flow rate is increased.
[0043]
Furthermore, the maximum height Ry of the steel sheet after finish rolling is preferably 15 μm (15 μm Ry, l2.5 mm, ln12.5 mm) or less. For example, as described in “Handbook of Fatigue Design for Metallic Materials”, edited by the Japan Society of Materials Science, page 84, the fatigue strength of a hot-rolled or pickled steel sheet correlates with the maximum height Ry of the steel sheet surface. It is clear from this. Further, the subsequent finish rolling is desirably performed within 5 seconds in order to prevent the scale from being generated again after descaling.
[0044]
In the process after finishing rolling, first, the process stays for 1 to 20 seconds in the temperature range (two-phase region of ferrite and austenite) from the Ar3 transformation point to the Ar1 transformation point. The retention here is performed in order to promote the ferrite transformation in the two-phase region, but if it is less than 1 second, the ferrite transformation in the two-phase region is insufficient, so that sufficient ductility cannot be obtained. On the other hand, if it exceeds 20 seconds, pearlite is generated, and a composite structure in which the target phase with the maximum volume fraction is ferrite and the second phase is mainly martensite cannot be obtained.
[0045]
Further, the temperature range for retaining for 1 to 20 seconds is preferably Ar1 transformation point or more and 800 ° C or less in order to facilitate the ferrite transformation, and for that purpose, at the cooling rate of 20 ° C / s or more after finish rolling is finished. It is preferable to quickly reach the temperature range. Further, the residence time of 1 to 20 seconds is preferably 1 to 10 seconds so as not to extremely reduce productivity.
[0046]
Next, from the temperature range to the coiling temperature (CT), cooling is performed at a cooling rate of 20 ° C./s or more, but at a cooling rate of less than 20 ° C./s, pearlite or bainite is generated and sufficient martensite. Thus, a microstructure having the target ferrite as the phase with the maximum volume fraction and martensite as the second phase cannot be obtained.
The upper limit of the cooling rate up to the coiling temperature is not particularly defined, but the effects of the present invention can be obtained.
[0047]
When the coiling temperature exceeds 350 ° C., bainite is generated and sufficient martensite cannot be obtained, and a microstructure with the target ferrite as the phase with the largest volume fraction and martensite as the second phase cannot be obtained. Therefore, the coiling temperature is limited to 350 ° C. or less.
Further, the lower limit value of the coiling temperature is not particularly limited. However, if the coil is wet for a long time, there is a concern about poor appearance due to rust.
[0048]
【Example】
The following examples further illustrate the present invention.
The steels D to J having chemical components shown in Table 1 are melted in a converter and continuously cast, then reheated at the heating temperature (SRT) shown in Table 2, and after rough rolling, the finish rolling shown in Table 2 is also performed. After rolling at a temperature (FT) to a plate thickness of 1.2 to 5.4 mm, each was wound at a winding temperature (CT) shown in Table 2. In some cases, high pressure descaling was performed under conditions of a collision pressure of 2.7 MPa and a flow rate of 0.001 liter / cm 2 after rough rolling. However, the display about the chemical composition in a table | surface is the mass%.
[0049]
The tensile test of the hot-rolled sheet thus obtained was performed by first processing the specimen into a No. 5 test piece described in JIS Z 2201, and following the test method described in JIS Z 2241. Table 2 shows the test results. Here, the volume fraction of the ferrite and the second phase is an area fraction of the microstructure in the microstructure observed at 200 to 500 times with an optical microscope at a quarter thickness of the steel sheet in the rolling direction. Defined. In addition, the measurement method of the ferrite average particle diameter is based on the cutting method described in the ferrite crystal grain size test method of JIS G 0552 steel, the average particle diameter of the second phase is defined as the average equivalent circle diameter, and the image processing apparatus, etc. The value obtained was adopted.
[0050]
The carbon concentration of the second phase is obtained by using a calibration curve method described in the literature ("Electron Beam Microanalysis", published by Nikkan Kogyo Shimbun Co., Ltd.) using EPMA (Electron Probe Micro Analyzer). Value. However, the measured second phase grains were 5 or more, and the carbon concentration was the average value.
On the other hand, for some samples, the carbon concentration of the second phase is measured by the above-described simple measurement method.
[0051]
Further, a complete double-bending plane bending fatigue test was performed on a plane bending fatigue test piece having a length of 98 mm, a width of 38 mm, a minimum cross-sectional width of 20 mm, and a notch curvature radius of 30 mm as shown in FIG. It was. The fatigue properties of the steel sheet were evaluated by a value obtained by dividing the fatigue limit σW at 10 × 10 7 times by the tensile strength σB of the steel sheet (fatigue limit ratio σW / σB).
However, the surface of the fatigue test piece was left as pickled without any grinding.
On the other hand, burring workability (hole expandability) was evaluated according to the hole expansion test method described in Japan Iron and Steel Federation Standard JFS T 1001-1996.
[0052]
Consistent with the present invention is steel G, which contains a predetermined amount of steel components, and its microstructure is a composite structure in which the phase with the largest volume fraction is ferrite and the second phase is mainly martensite. Yes, the average ferrite particle size is 2 μm or more and 20 μm or less, the average particle size of the second phase divided by the average ferrite particle size is 0.05 or more and 0.8 or less, and the carbon concentration of the second phase is 0.2%. A composite structure steel sheet having excellent burring workability, characterized by being 2% or less, is obtained.
[0053]
Steels other than the above are outside the scope of the present invention for the following reasons.
That is, steel C-1 has a finish rolling finish temperature (FT) higher than the range of the present invention, and the ferrite grain size (Df), the size of the second phase (dm / Df), and the second phase carbon concentration (Cm). Is outside the scope of the present invention, a sufficient hole expansion ratio (λ) and fatigue limit ratio (σW / σB) are not obtained.
Steel C-2 has a finish rolling end temperature (FT) lower than the range of the present invention and the size of the second phase (dm / Df) is outside the range of the present invention. Further, the fatigue limit ratio (σW / σB) is not obtained. Furthermore, strain remains and ductility (El) also decreases.
[0054]
Steel C-3 has a cooling rate (CR) after residence lower than the range of the present invention, and the coiling temperature (CT) is also higher than the range of the present invention. Therefore, since the ferrite grain size (Df), the size of the second phase (dm / Df) and the second phase carbon concentration (Cm) are outside the scope of the present invention, a sufficient hole expansion ratio (λ) and fatigue limit ratio (ΣW / σB) is not obtained.
Steel C-4 has a residence temperature (MT) lower than the range of the present invention, and the second phase size (dm / Df) and the second phase carbon concentration (Cm) are outside the range of the present invention. The hole expansion rate (λ) and the fatigue limit ratio (σW / σB) are not obtained.
[0055]
Steel C-5 has no residence time (Time), and the size of the second phase (dm / Df) and the second phase carbon concentration (Cm) are outside the scope of the present invention. λ) and fatigue limit ratio (σW / σB) are not obtained.
Steel D has a C content outside the range of the present invention, so that the target microstructure cannot be obtained, and sufficient strength (TS) and fatigue limit ratio (σW / σB) cannot be obtained.
Steel E does not have a sufficient strength (TS) and fatigue limit ratio (σW / σB) because the Si content is outside the scope of the present invention.
[0056]
Steel F has a sufficient strength (TS) because the Mn content is outside the scope of the present invention, and the ferrite grain size (Df) and the size of the second phase (dm / Df) are outside the scope of the present invention. ), Hole expansion rate (λ) and fatigue limit ratio (σW / σB) are not obtained.
Steel H does not have a sufficient hole expansion ratio (λ) and fatigue limit ratio (σW / σB) because the S content is outside the range of the present invention.
In Steel I, since the P content is outside the range of the present invention, a sufficient fatigue limit ratio (σW / σB) is not obtained.
In Steel J, the C content is outside the range of the present invention, so that sufficient elongation (El), hole expansion rate (λ) and fatigue limit ratio (σW / σB) are not obtained.
[0057]
[Table 1]
Figure 0004445095
[0058]
[Table 2]
Figure 0004445095
[0059]
【The invention's effect】
As described above in detail, the present invention provides a composite structure steel plate having a tensile strength of 540 MPa or more excellent in burring workability and a method for producing the same. By using these hot-rolled steel plates, sufficient fatigue characteristics are provided. Therefore, a significant improvement in burring workability (hole expansibility) can be expected while ensuring a high industrial value.
[Brief description of the drawings]
FIG. 1 is a diagram showing the results of a preliminary experiment leading to the present invention in relation to the average ferrite grain size, the size of the second phase, and the hole expansion rate.
FIG. 2 is a diagram showing the results of a preliminary experiment leading to the present invention in relation to the carbon concentration of the second phase and the hole expansion rate.
FIG. 3 is a diagram illustrating the shape of a fatigue test piece.

Claims (3)

質量%で、
C :0.01〜0.2%、
Si:0.01〜2%、
Mn:0.05〜3%、
P ≦0.1%、
S ≦0.01%、
Al:0.005〜1%、
Cu:0.2〜2%、
B :0.0002〜0.002%、
Ni:0.1〜1%
を含み、残部がFe及び不可避的不純物からなり、鋼板強度レベルが780Mpa級であり、穴拡げ率が62%以上の鋼であって、そのミクロ組織が、体積分率最大の相をフェライトとし、第二相を主にマルテンサイトとする複合組織であり、フェライト平均粒径が2μm以上20μm以下、第二相の平均粒径をフェライト平均粒径で除した値が0.05以上0.8以下、且つ第二相の炭素濃度が0.2%以上2%以下であることを特徴とする、バーリング加工性に優れる複合組織鋼板。
% By mass
C: 0.01-0.2%
Si: 0.01-2%
Mn: 0.05-3%,
P ≦ 0.1%,
S ≦ 0.01%,
Al: 0.005 to 1%
Cu: 0.2-2%,
B: 0.0002 to 0.002%,
Ni: 0.1 to 1%
Wherein the remainder Ri Do Fe and unavoidable impurities, the steel sheet strength level is 780Mpa class, a steel hole expansion ratio is not less than 62%, the microstructure, the volume fraction up phase and ferrite , A composite structure mainly composed of martensite in the second phase, the ferrite average particle diameter is 2 μm or more and 20 μm or less, and the value obtained by dividing the average particle diameter of the second phase by the ferrite average particle diameter is 0.05 or more and 0.8 A composite structure steel sheet having excellent burring workability, wherein the carbon concentration of the second phase is 0.2% or more and 2% or less.
請求項1に記載の成分を有する鋼片の熱間圧延に際し、Ar3 変態点温度以上Ar3 変態点温度+100℃以下で熱間仕上圧延を終了した後、Ar1 変態点温度以上Ar3 変態点温度以下の温度域で1〜20秒間滞留し、その後、20℃/s以上の冷却速度で冷却して、350℃以下の巻取温度で巻き取り、そのミクロ組織が、体積分率最大の相をフェライトとし、第二相を主にマルテンサイトとする複合組織であり、フェライト平均粒径が2μm以上20μm以下、第二相の平均粒径をフェライト平均粒径で除した値が0.05以上0.8以下、且つ第二相の炭素濃度が0.2%以上2%以下である鋼板を得ることを特徴とする、バーリング加工性に優れる複合組織鋼板の製造方法。  In the hot rolling of the steel slab having the component according to claim 1, after finishing the hot finish rolling at Ar3 transformation point temperature or higher and Ar3 transformation point temperature + 100 ° C or lower, Ar1 transformation point temperature or higher and Ar3 transformation point temperature or lower. It stays in the temperature range for 1 to 20 seconds, then cools at a cooling rate of 20 ° C./s or more, and winds at a coiling temperature of 350 ° C. or less. The microstructure has the maximum volume fraction as ferrite. , A composite structure mainly composed of martensite in the second phase, the ferrite average particle diameter is 2 μm or more and 20 μm or less, and the value obtained by dividing the average particle diameter of the second phase by the ferrite average particle diameter is 0.05 or more and 0.8 A method for producing a composite structure steel sheet having excellent burring workability, wherein a steel sheet having a second phase carbon concentration of 0.2% or more and 2% or less is obtained. 前記熱間圧延に際し、粗圧延終了後、高圧デスケーリングを行い、Ar3 変態点温度以上Ar3 変態点温度+100℃以下で熱間仕上圧延を終了することを特徴とする、請求項2記載のバーリング加工性に優れる複合組織鋼板の製造方法。  3. The burring process according to claim 2, wherein in the hot rolling, after the rough rolling is finished, high-pressure descaling is performed, and the hot finish rolling is finished at an Ar 3 transformation point temperature or higher and an Ar 3 transformation point temperature + 100 ° C. or lower. A method for producing a composite steel sheet having excellent properties.
JP2000121209A 2000-04-21 2000-04-21 Composite structure steel plate excellent in burring workability and manufacturing method thereof Expired - Fee Related JP4445095B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000121209A JP4445095B2 (en) 2000-04-21 2000-04-21 Composite structure steel plate excellent in burring workability and manufacturing method thereof
DE60018940T DE60018940D1 (en) 2000-04-21 2000-12-15 STEEL PLATE WITH EXCELLENT FREE SHIPPING AT THE SAME TEMPERATURE OF HIGH TEMPERATURE AND METHOD OF MANUFACTURING THE SAME
PCT/JP2000/008934 WO2001081640A1 (en) 2000-04-21 2000-12-15 Steel plate having excellent burring workability together with high fatigue strength, and method for producing the same
EP00981781A EP1201780B1 (en) 2000-04-21 2000-12-15 Steel plate having excellent burring workability together with high fatigue strength, and method for producing the same
US09/890,048 US6589369B2 (en) 2000-04-21 2000-12-15 High fatigue strength steel sheet excellent in burring workability and method for producing the same
KR10-2001-7010080A KR100441414B1 (en) 2000-04-21 2000-12-15 High fatigue strength steel sheet excellent in burring workability and method for producing the same
TW089127752A TWI261072B (en) 2000-04-21 2000-12-22 High fatigue strength steel sheet having stretch frangeability and a method for production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000121209A JP4445095B2 (en) 2000-04-21 2000-04-21 Composite structure steel plate excellent in burring workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001303186A JP2001303186A (en) 2001-10-31
JP4445095B2 true JP4445095B2 (en) 2010-04-07

Family

ID=18631897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000121209A Expired - Fee Related JP4445095B2 (en) 2000-04-21 2000-04-21 Composite structure steel plate excellent in burring workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4445095B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4180909B2 (en) * 2002-12-26 2008-11-12 新日本製鐵株式会社 High-strength hot-rolled steel sheet excellent in hole expansibility, ductility and chemical conversion treatment, and method for producing the same
WO2004059024A1 (en) * 2002-12-26 2004-07-15 Nippon Steel Corporation High strength thin steel sheet excellent in hole expansibility, ductility and chemical treatment characteristics, and method for production thereof
JP4580157B2 (en) * 2003-09-05 2010-11-10 新日本製鐵株式会社 Hot-rolled steel sheet having both BH property and stretch flangeability and manufacturing method thereof
TWI290586B (en) * 2003-09-24 2007-12-01 Nippon Steel Corp Hot rolled steel sheet and method of producing the same
JP4404004B2 (en) * 2005-05-11 2010-01-27 住友金属工業株式会社 High-tensile hot-rolled steel sheet and manufacturing method thereof
JP5353573B2 (en) * 2009-09-03 2013-11-27 新日鐵住金株式会社 Composite steel sheet with excellent formability and fatigue characteristics and method for producing the same
JP5857694B2 (en) * 2011-12-06 2016-02-10 新日鐵住金株式会社 High-strength hot-rolled steel sheet with excellent coating corrosion resistance and bending fatigue characteristics and method for producing the same
JP5486634B2 (en) 2012-04-24 2014-05-07 株式会社神戸製鋼所 Steel for machine structure for cold working and method for producing the same
EP3085805B1 (en) 2013-12-19 2020-02-19 Nippon Steel Nisshin Co., Ltd. Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same
CN103741057B (en) * 2014-01-26 2016-04-20 北京科技大学 The high steel plate of resistance to marine environment of a kind of low density and production technique thereof
BR112017013229A2 (en) 2015-02-20 2018-01-09 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel product
WO2016132549A1 (en) 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
ES2763574T3 (en) 2015-02-20 2020-05-29 Nippon Steel Corp Hot rolled steel sheet
WO2016135898A1 (en) 2015-02-25 2016-09-01 新日鐵住金株式会社 Hot-rolled steel sheet or plate
ES2769224T3 (en) 2015-02-25 2020-06-25 Nippon Steel Corp Hot rolled steel sheet
JP6601286B2 (en) * 2016-03-15 2019-11-06 日本製鉄株式会社 Hot-rolled steel sheet and manufacturing method thereof
WO2018026014A1 (en) 2016-08-05 2018-02-08 新日鐵住金株式会社 Steel sheet and plated steel sheet
KR102205432B1 (en) 2016-08-05 2021-01-20 닛폰세이테츠 가부시키가이샤 Steel plate and plated steel plate
BR112019019586A2 (en) 2017-03-31 2020-04-14 Nippon Steel Corp hot rolled steel sheet
WO2019003450A1 (en) 2017-06-30 2019-01-03 Jfeスチール株式会社 Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing

Also Published As

Publication number Publication date
JP2001303186A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
CA3133435C (en) High strength and high formability steel sheet and manufacturing method
JP4445095B2 (en) Composite structure steel plate excellent in burring workability and manufacturing method thereof
US11466335B2 (en) High strength steel sheet having excellent formability and a method of manufacturing the steel sheet
KR100441414B1 (en) High fatigue strength steel sheet excellent in burring workability and method for producing the same
US20080000555A1 (en) High Strength Thin-Gauge Steel Sheet Excellent in Elongation and Hole Expandability and Method of Production of Same
JP5339005B1 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
KR101626233B1 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
JP5699860B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
KR20060047587A (en) High-strength hot-dip galvanized steel sheet with excellent spot weldability and stability of material properties
EP4206351A1 (en) 980 mpa-grade bainite high hole expansion steel and manufacturing method therefor
US20130048155A1 (en) High-strength galvanized steel sheet having excellent formability and spot weldability and method for manufacturing the same
JP4291711B2 (en) High burring hot rolled steel sheet having bake hardenability and method for producing the same
KR101115739B1 (en) Steel sheet having excellent spot weldabity, strength and elongation for automobile and method for manufacturing the same
KR100903546B1 (en) High tensile hot rolled steel sheet excellent in shape freezing property and endurance fatigue characteristics after forming
JP2783809B2 (en) High tensile hot-rolled steel strip with excellent cold workability and weldability and a tensile strength of 55 kg / f / mm 2 or more
JP4867177B2 (en) High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same
JP3769143B2 (en) Hot-rolled steel sheet for machining excellent in fatigue characteristics and method for producing the same
JP2002129285A (en) Steel sheet with strain induced transformation type composite structure having excellent burring workability and its production method
JP2001303187A (en) Dual-phase steel sheet excellent in burring property, and its manufacturing method
JP3831146B2 (en) Manufacturing method of hot-rolled steel sheet for processing with excellent fatigue characteristics
JP2002129286A (en) Steel sheet with strain induced transformation type composite structure having excellent burring workability and its production method
JP3769146B2 (en) High burring hot-rolled steel sheet with excellent fatigue characteristics and method for producing the same
JP2003193186A (en) High strength steel sheet and high strength electroplated steel sheet having excellent ductility, stretch-flanging property and impact absorbing property and production method therefor
JP2002105594A (en) High burring property hot rolled steel sheet having excellent low cycle fatigue strength and its production method
JP2004250744A (en) High workability, high strength hot rolled steel sheet having excellent shape-fixability, and production method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

R151 Written notification of patent or utility model registration

Ref document number: 4445095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees