JP2002129285A - Steel sheet with strain induced transformation type composite structure having excellent burring workability and its production method - Google Patents

Steel sheet with strain induced transformation type composite structure having excellent burring workability and its production method

Info

Publication number
JP2002129285A
JP2002129285A JP2000330190A JP2000330190A JP2002129285A JP 2002129285 A JP2002129285 A JP 2002129285A JP 2000330190 A JP2000330190 A JP 2000330190A JP 2000330190 A JP2000330190 A JP 2000330190A JP 2002129285 A JP2002129285 A JP 2002129285A
Authority
JP
Japan
Prior art keywords
steel sheet
ferrite
retained austenite
less
composite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000330190A
Other languages
Japanese (ja)
Inventor
Tatsuo Yokoi
龍雄 横井
Manabu Takahashi
学 高橋
Hiroyuki Okada
浩幸 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000330190A priority Critical patent/JP2002129285A/en
Publication of JP2002129285A publication Critical patent/JP2002129285A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hot rolled steel sheet excellent in fatigue characteristics and burring workability (hole expandability) and having tensile strength of >=540 MPa and to provide a production method for inexpensively and stably producing the same steel sheet. SOLUTION: This steel sheet with a strain induced transformation type composite structure excellent in burring workability is composed of steel containing 0.01 to 0.3% C, 0.01 to 2% Si, 0.05 to 3% Mn, <=0.1% P, <=0.01% S and 0.005 to 1% Al, and whose microstructure is composed of the composite one containing retained austenite of 5 to 25% by volume fraction, and the balance mainly ferrite and bainite, in which the ferrite average grain size is 2 to 20 μm, and the value obtained by dividing the retained austenite average grain size by the ferrite average grain size is 0.05 to 0.8, and also, the concentration of carbon in the retained austenite is 0.2 to 3%, and, in the method for producing the same steel sheet, steel having the above components is subjected to hot finish rolling so as to be finished at the Ar3 transformation point temperature to the Ar3 transformation point temperature +100 deg.C, is thereafter retained in the temperature range of the Ar3 transformation point temperature to the Ar3 transformation point temperature for 1 to 20 sec, is subsequently cooled at a cooling rate of >=20 deg.C/s and is coiled at a coiling temperature in the temperature range of >350 to <450 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、バーリング加工性
に優れた引張強度540MPa以上の加工誘起変態型複
合組織鋼板およびその製造方法に関するものであり、特
に、自動車の足廻り部品やロードホイール等のバーリン
グ加工性や延性と耐久性の両立が求められる素材として
好適なバーリング加工性に優れた加工誘起変態型複合組
織鋼板およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel plate having excellent burring workability and a tensile strength of 540 MPa or more, and more particularly to a method for producing the same. The present invention relates to a work-induced transformation type composite structure steel sheet excellent in burring workability, which is suitable as a material requiring both burring workability and ductility and durability, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、自動車の燃費向上などのために軽
量化を目的として、Al合金等の軽金属や高強度鋼板の
自動車部材への適用が進められている。ただし、Al合
金等の軽金属は比強度が高いという利点があるものの鋼
に比較して著しく高価であるためその適用は特殊な用途
に限られている。従って、より広い範囲で自動車の軽量
化を推進するためには安価な高強度鋼板の適用が強く求
められている。
2. Description of the Related Art In recent years, the application of light metals such as Al alloys and high-strength steel sheets to automobile members has been promoted for the purpose of weight reduction in order to improve fuel efficiency of automobiles. However, although light metals such as Al alloys have the advantage of high specific strength, their application is limited to special applications because they are significantly more expensive than steel. Accordingly, there is a strong demand for the use of inexpensive high-strength steel sheets in order to promote a reduction in the weight of automobiles over a wider range.

【0003】このような高強度化の要求に対してこれま
では車体重量の1/4程度を占めるホワイトボティーや
パネル類に使用される冷延鋼板の分野において強度と深
絞り性を兼ね備えた鋼板や焼付け硬化性のある鋼板等の
開発が進められ、車体の軽量化に寄与してきた。ところ
が現在、軽量化の対象は車体重量の約20%を占める構
造部材や足廻り部材にシフトしてきており、これらの部
材に用いる高強度熱延鋼板の開発が急務となっている。
ただし、高強度化は一般的に成形性(加工性)等の材料
特性を劣化させるため、材料特性を劣化させずに如何に
高強度化を図るかが高強度鋼板開発のカギになる。特
に、構造部材や足廻り部材用鋼板に求められる特性とし
てはバーリング加工性、延性、疲労耐久性および耐食性
等が重要であり高強度とこれら特性を如何に高次元でバ
ランスさせるかが重要である。
[0003] In response to such demands for high strength, steel sheets having both strength and deep drawability in the field of cold-rolled steel sheets used for white bodies and panels that occupy about 1/4 of the body weight. And bake-hardening steel plates have been developed, which has contributed to weight reduction of vehicle bodies. However, at present, the object of weight reduction is shifting to structural members and undercarriage members occupying about 20% of the vehicle body weight, and there is an urgent need to develop high-strength hot-rolled steel sheets used for these members.
However, since increasing strength generally degrades material properties such as formability (workability), the key to developing high-strength steel sheets is how to increase strength without deteriorating material properties. In particular, burring workability, ductility, fatigue durability, corrosion resistance, and the like are important as characteristics required for steel sheets for structural members and suspension members, and it is important to balance high strength with these characteristics in high dimensions. .

【0004】例えば、ロードホイールディスク用鋼板に
求められる特性としてはバーリング加工性と疲労耐久性
が特に重要視されている。これは、ロードホイールディ
スクの成形工程の中でもハブ穴成形でのバーリング加工
(穴拡げ加工)が特に厳しく、また、ホイールの部材特
性で最も厳しい基準で管理されているのが疲労耐久性で
あるためである。
For example, burring workability and fatigue durability are particularly regarded as important characteristics required for a steel plate for a road wheel disc. This is because the burring process (hole enlarging process) in hub hole forming is particularly severe in the road wheel disc forming process, and the fatigue durability is controlled by the strictest standards in wheel member characteristics. It is.

【0005】現在、これらロードホイールディスク用高
強度熱延鋼板として部材での疲労耐久性を重視して疲労
特性に優れる590MPa級のフェライト−マルテンサ
イトの複合組織鋼板(いわゆるDual Phase
鋼)が用いられているが、これら部材用鋼板に要求され
る強度レベルは590MPa級から780MPa級へと
さらなる高強度化へ向かいつつある。一方、高強度化に
伴ってバーリング加工性は低下する傾向を示すばかりで
なく、複合組織鋼板はその不均一な組織のためにバーリ
ング加工性に関しては不利であると言われている。従っ
て、590MPa級で問題とはならなかったバーリング
加工性が780MPa級では問題となる可能性がある。
At present, as a high-strength hot-rolled steel sheet for a road wheel disk, a 590 MPa class ferrite-martensite composite structure steel sheet (so-called Dual Phase) having excellent fatigue characteristics with emphasis on fatigue durability of members.
However, the strength level required for these steel sheets for members is from 590 MPa class to 780 MPa class, and the strength is being further increased. On the other hand, it is said that not only the burring workability tends to decrease with the increase in strength, but also the composite structure steel sheet is disadvantageous in terms of the burring workability due to its uneven structure. Therefore, the burring processability which was not a problem in the 590 MPa class may become a problem in the 780 MPa class.

【0006】すなわち、ロードホイール等足廻り部品へ
の高強度鋼板の適用にあたっては疲労耐久性や延性に加
えてバーリング加工性も重要な検討課題となる。ところ
が、疲労耐久性を向上させるためにミクロ組織をフェラ
イト−マルテンサイト等の複合組織とし、かつバーリン
グ加工性にも優れる高強度鋼板について記述した発明は
一部の例外を除いてほとんど見受けられないのが現状で
ある。例えば、特開平5−179396号公報にはミク
ロ組織をフェライトとマルテンサイトまたは残留オース
テナイトとして疲労耐久性を確保し、フェライトをTi
CやNbCの析出物で強化することでフェライト粒とマ
ルテンサイト相との強度差を小さくし、フェライト粒へ
の局所的な変形の集中を抑制して穴拡げ性(バーリング
加工性)を確保する技術が開示されている。
That is, in applying a high-strength steel plate to a part around a foot such as a road wheel, in addition to fatigue durability and ductility, burring workability is also an important subject to be studied. However, the invention describing a high-strength steel sheet with a microstructure of ferrite-martensite or the like in order to improve fatigue durability, and having excellent burring workability is hardly found except for some exceptions. Is the current situation. For example, Japanese Patent Application Laid-Open No. Hei 5-179396 discloses that the microstructure is made of ferrite and martensite or retained austenite to ensure fatigue durability, and ferrite is made of Ti.
By strengthening with precipitates of C and NbC, the difference in strength between the ferrite grains and the martensite phase is reduced, local concentration of deformation on the ferrite grains is suppressed, and hole expandability (burring workability) is secured. Techniques are disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、ロード
ホイールのディスク等一部の部品用鋼板においては、バ
ーリング加工性や延性等の成形性と疲労耐久性の高いレ
ベルでのバランスが大変に重要であり、上記従来技術で
は、満足する特性が得られない。また、例え両特性が満
足されたとしても安価に安定して製造できる製造方法を
提供することが重要であり、上記従来技術では、不十分
であると言わざるを得ない。すなわち、上記特開平5−
179396号公報はフェライト粒を析出強化している
ために伸びが十分得られない。また、Ti、Nbの添加
は製造コストの増加を招くために好ましくない。そこ
で、本発明は、上記従来技術の課題を有利に解決でき
る、疲労特性とバーリング加工性(穴拡げ性)に優れた
引張強度540MPa以上の熱延鋼板およびその鋼板を
安価に安定して製造できる製造方法を提供することを目
的とするものである。
However, in a steel plate for some parts such as a disk of a road wheel, a balance between formability such as burring workability and ductility and a high level of fatigue durability is very important. However, with the above-mentioned prior art, satisfactory characteristics cannot be obtained. It is also important to provide a manufacturing method that can be manufactured stably at low cost even if both characteristics are satisfied, and it cannot be said that the above conventional technology is insufficient. That is, Japanese Patent Application Laid-Open No.
In 179396, elongation cannot be sufficiently obtained because the ferrite grains are precipitation-strengthened. Further, addition of Ti and Nb is not preferable because it causes an increase in manufacturing cost. Accordingly, the present invention can advantageously and stably produce a hot-rolled steel sheet having a tensile strength of 540 MPa or more, which is excellent in fatigue characteristics and burring workability (hole expanding properties), and which can advantageously solve the above-mentioned problems of the prior art. It is intended to provide a manufacturing method.

【0008】[0008]

【課題を解決するための手段】本発明者らは、現在通常
に採用されている連続熱間圧延設備により工業的規模で
生産されている熱延鋼板の製造プロセスを念頭におい
て、熱延鋼板のバーリング加工性や延性と疲労特性の両
立を達成すべく鋭意研究を重ねた。その結果、ミクロ組
織が、体積分率5%以上25%以下の残留オーステナイ
トを含み、残部が主にフェライト、ベイナイトからなる
複合組織であり、フェライト平均粒径が2μm以上20
μm以下、残留オーステナイト平均粒径をフェライト平
均粒径で除した値が0.05以上0.8以下且つ、残留
オーステナイトの炭素濃度が0.2%以上3%以下であ
ることがバーリング加工性向上に非常に有効であること
を新たに見出し、本発明をなしたものである。
Means for Solving the Problems The present inventors considered the production process of a hot-rolled steel sheet produced on an industrial scale by a continuous hot-rolling equipment which is currently usually used, and considered the production process of the hot-rolled steel sheet. We conducted intensive research to achieve both burring workability, ductility and fatigue properties. As a result, the microstructure is a composite structure including residual austenite having a volume fraction of 5% or more and 25% or less, and the balance is mainly composed of ferrite and bainite, and has an average ferrite particle size of 2 μm to 20%.
The burring processability is improved when the value obtained by dividing the average particle size of the retained austenite by the average particle size of the ferrite is 0.05 to 0.8 and the carbon concentration of the retained austenite is 0.2% to 3%. The present inventors newly found that the present invention is very effective, and made the present invention.

【0009】すなわち、本発明の要旨は、以下の通りで
ある。 (1)質量%にて、C:0.01〜0.3%、Si:
0.01〜2%、Mn:0.05〜3%、P:≦0.1
%、S:≦0.01%、Al:0.005〜1%、を含
み、残部がFe及び不可避的不純物からなる鋼であっ
て、そのミクロ組織が、体積分率5%以上25%以下の
残留オーステナイトを含み、残部が主にフェライト及び
ベイナイトからなる複合組織であり、フェライト平均粒
径が2μm以上20μm以下、残留オーステナイト平均
粒径をフェライト平均粒径で除した値が0.05以上
0.8以下且つ、残留オーステナイトの炭素濃度が0.
2%以上3%以下であることを特徴とする、バーリング
加工性に優れる加工誘起変態型複合組織鋼板。
That is, the gist of the present invention is as follows. (1) In mass%, C: 0.01 to 0.3%, Si:
0.01-2%, Mn: 0.05-3%, P: ≦ 0.1
%, S: ≦ 0.01%, Al: 0.005 to 1%, the balance being Fe and unavoidable impurities, the microstructure of which is 5% or more and 25% or less by volume. And a residual structure mainly composed of ferrite and bainite. The average ferrite grain size is 2 μm to 20 μm, and the value obtained by dividing the average austenite grain size by the average ferrite grain size is 0.05 to 0. 0.8 or less and the carbon concentration of the retained austenite is 0.8.
A work-induced transformation-type composite structure steel sheet having excellent burring workability, characterized in that the steel sheet content is 2% or more and 3% or less.

【0010】(2)前記鋼が、さらに、質量%にて、C
u:0.2〜2%を含有することを特徴とする、(1)
に記載のバーリング加工性に優れる加工誘起変態型複合
組織鋼板。 (3)前記鋼が、さらに、質量%にて、B:0.000
2〜0.002%を含有することを特徴とする、(1)
または(2)に記載のバーリング加工性に優れる加工誘
起変態型複合組織鋼板。
(2) The steel further comprises, by mass%, C
u: 0.2 to 2%, (1)
A work-induced transformation type composite structure steel sheet having excellent burring workability according to item 1. (3) The steel further contains B: 0.000% by mass.
(1) characterized by containing 2 to 0.002%.
Or a work-induced transformation type composite structure steel sheet excellent in burring workability according to (2).

【0011】(4)前記鋼が、さらに、質量%にて、N
i:0.1〜1%を含有することを特徴とする、(1)
ないし(3)のいずれか1項に記載のバーリング加工性
に優れる加工誘起変態型複合組織鋼板。 (5)前記鋼が、さらに、質量%にて、Ca:0.00
05〜0.002%、REM:0.0005〜0.02
%の一種または二種を含有することを特徴とする、
(1)ないし(4)のいずれか1項に記載のバーリング
加工性に優れる加工誘起変態型複合組織鋼板。
(4) The steel further comprises N
i: containing 0.1 to 1%, (1)
Or a work-induced transformation type composite structure steel sheet excellent in burring workability according to any one of (3) to (3). (5) The steel further contains Ca: 0.00% by mass.
05-0.002%, REM: 0.0005-0.02
% Or one or two kinds,
The work-induced transformation composite structure steel sheet having excellent burring workability according to any one of (1) to (4).

【0012】(6)前記鋼が、さらに、質量%にて、T
i:0.05〜0.5%、Nb:0.01〜0.5%、
Mo:0.05〜1%、V:0.02〜0.2%、C
r:0.01〜1%、Zr:0.02〜0.2%の一種
または二種以上を含有することを特徴とする、(1)な
いし(5)のいずれか1項に記載のバーリング加工性に
優れる加工誘起変態型複合組織鋼板。
(6) The steel further comprises, by mass%,
i: 0.05 to 0.5%, Nb: 0.01 to 0.5%,
Mo: 0.05-1%, V: 0.02-0.2%, C
The burring according to any one of (1) to (5), characterized by containing one or more of r: 0.01 to 1% and Zr: 0.02 to 0.2%. A work-induced transformation-type composite structure steel sheet with excellent workability.

【0013】(7)(1)ないし(6)のいずれか1項
に記載の成分を有する鋼片の熱間圧延に際し、Ar3
態点温度以上Ar3変態点温度+100℃以下で熱間仕
上圧延を終了した後、Ar1変態点温度以上Ar3変態点
温度以下の温度域で1〜20秒間滞留し、その後、20
℃/s以上の冷却速度で冷却して、350℃超450℃
未満の温度範囲の巻取温度で巻き取り、そのミクロ組織
が、体積分率5%以上25%以下の残留オーステナイト
を含み、残部が主にフェライト及びベイナイトからなる
複合組織であり、フェライト平均粒径が2μm以上20
μm以下、残留オーステナイト平均粒径をフェライト平
均粒径で除した値が0.05以上0.8以下且つ、残留
オーステナイトの炭素濃度が0.2%以上3%以下であ
る鋼板を得ることを特徴とする、バーリング加工性に優
れる加工誘起変態型複合組織鋼板の製造方法。 (8)前記熱間圧延に際し、粗圧延終了後、高圧デスケ
ーリングを行い、Ar3変態点温度以上Ar3変態点温度
+100℃以下で熱間仕上圧延を終了することを特徴と
する(7)記載のバーリング加工性に優れる加工誘起変
態型複合組織鋼板の製造方法にある。
(7) In the hot rolling of a steel slab having the component described in any one of (1) to (6), hot finishing is performed at an Ar 3 transformation point temperature or higher and an Ar 3 transformation point temperature + 100 ° C. or lower. After the end of the rolling, it is kept for 1 to 20 seconds in a temperature range from the Ar 1 transformation point temperature to the Ar 3 transformation point temperature, and
Cooling at a cooling rate of at least 350 ° C / s
A microstructure including a retained austenite with a volume fraction of 5% or more and 25% or less, and a balance mainly composed of ferrite and bainite. Is 2 μm or more and 20
μm or less, a steel sheet having a value obtained by dividing the average retained austenite grain size by the average ferrite grain size of 0.05 to 0.8 and a carbon concentration of the retained austenite of 0.2% to 3%. A method for producing a work-induced transformed composite structure steel sheet having excellent burring workability. Upon inter (8) the hot rolling, after rough rolling termination, perform high pressure descaling, characterized in that to end the hot finish rolling at Ar 3 transformation point temperature or more Ar 3 transformation temperature + 100 ° C. or less (7) The present invention relates to a method for producing a work-induced transformed composite structure steel sheet having excellent burring workability as described above.

【0014】[0014]

【発明の実施の形態】以下に、本発明に至った基礎研究
結果について説明する。まず、バーリング加工性に及ぼ
すフェライト平均粒径および残留オーステナイト平均粒
径の影響を調査した。そのための供試材は、次のように
して準備した。すなわち、0.07%C−1.6%Si
−2.0%Mn−0.01%P−0.001%S−0.
03%Alに成分調整し溶製した鋳片をAr3変態点温
度以上のいずれかの温度で熱間仕上圧延を終了して後、
Ar1変態点温度以上Ar3変態点温度以下のいずれかの
温度域で1〜15秒間滞留し、その後、20℃/s以上
の冷却速度で冷却して、550℃〜常温で巻き取った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The results of basic research that led to the present invention will be described below. First, the effects of the average ferrite grain size and the retained austenite grain size on the burring workability were investigated. The test material for that was prepared as follows. That is, 0.07% C-1.6% Si
-2.0% Mn-0.01% P-0.001% S-0.0%
After finishing the hot finish rolling at a temperature equal to or higher than the Ar 3 transformation point, the ingot obtained by adjusting the composition to 03% Al is
It stayed for 1 to 15 seconds in any temperature range from the Ar 1 transformation point temperature to the Ar 3 transformation point temperature, then cooled at a cooling rate of 20 ° C./s or more, and wound at 550 ° C. to normal temperature.

【0015】これらの鋼板について穴拡げ試験を行った
結果をフェライト平均粒径および残留オーステナイト粒
径のフェライト粒径に対する相対的な大きさについて整
理したものを図1に示す。この結果より、フェライト平
均粒径Dfおよび残留オーステナイト粒径のフェライト
粒径に対する相対的な大きさ(残留オーステナイト平均
粒径dmをフェライト平均粒径Dfで除した値)と穴拡
げ値には強い相関があり、フェライト平均粒径Dfおよ
び残留オーステナイト粒径dmのフェライト粒径Dfに
対する相対的な大きさがそれぞれ2μm以上20μm以
下および0.05以上0.8以下で穴拡げ値が著しく向
上することを新規に知見した。
FIG. 1 shows the results of the hole expansion test performed on these steel sheets, with respect to the relative sizes of the average ferrite grain size and the retained austenite grain size with respect to the ferrite grain size. From these results, there is a strong correlation between the relative size of ferrite average particle size Df and the relative size of retained austenite particle size to ferrite particle size (value obtained by dividing residual austenite average particle size dm by ferrite average particle size Df) and hole expansion value. When the relative sizes of the average ferrite particle diameter Df and the residual austenite particle diameter dm with respect to the ferrite particle diameter Df are respectively 2 μm or more and 20 μm or less and 0.05 or more and 0.8 or less, the hole expansion value is significantly improved. Newly discovered.

【0016】このメカニズムは必ずしも明らかではない
が、残留オーステナイト粒径のフェライト粒径に対する
相対的な大きさが大きすぎると残留オーステナイトと母
相の界面にボイドが生じやすく穴拡げの際にクラックの
起点となり、小さすぎると穴拡げ率と相関がある局部延
性が低下するため、最適なサイズと間隔において穴拡げ
率が向上すると推測される。また、フェライト平均粒径
が小さすぎると降伏応力が上昇し打抜き穴の破断面の面
積が大きくなり、打抜き面の粗度が上昇し穴拡げ値が低
下する恐れがあり、大きすぎるとミクロ組織の均一性が
失われ穴拡げ率と相関がある局部延性が低下するためと
考えられる。なお、フェライト平均粒径の測定法はJI
S G 0552鋼のフェライト結晶粒度試験法に記載
の切断法に準じた。また、残留オーステナイト平均粒径
については平均円相当径と定義し、画像処理装置等より
得られる値を採用した。
Although the mechanism is not always clear, if the relative size of the retained austenite grain size to the ferrite grain size is too large, voids are likely to be formed at the interface between the retained austenite and the parent phase, and the starting point of the crack at the time of hole expansion is increased. When it is too small, the local ductility, which is correlated with the hole expansion rate, is reduced, and it is presumed that the hole expansion rate is improved at an optimum size and interval. Also, if the average ferrite grain size is too small, the yield stress increases and the area of the fractured surface of the punched hole increases, and the roughness of the punched surface may increase and the hole expansion value may decrease. It is considered that the uniformity was lost and the local ductility, which is correlated with the hole expansion rate, was reduced. The method for measuring the average ferrite grain size is described in JI
The cutting method described in the Ferrite grain size test method for SG0552 steel was used. Further, the average particle diameter of retained austenite was defined as an average circle equivalent diameter, and a value obtained from an image processing apparatus or the like was adopted.

【0017】次に、本試験の結果において図1にに示す
ようにフェライト平均粒径Dfが2μm以上20μm以
下で残留オーステナイト粒径dmのフェライト粒径Df
に対する相対的な大きさが0.05以上0.8以下を満
たしても穴拡げ値が低いものが認められたので、さら
に、穴拡げ値に及ぼす残留オーステナイトの炭素濃度の
影響を調査した。上記鋼板について穴拡げ値を残留オー
ステナイトの炭素濃度で整理したものを図2に示す。こ
の結果より、残留オーステナイトの炭素濃度と穴拡げ値
には強い相関があり、フェライト平均粒径Dfが2μm
以上20μm以下で残留オーステナイト粒径dmのフェ
ライト粒径Dfに対する相対的な大きさが0.05以上
0.8以下を満たし,更に残留オーステナイトの炭素濃
度が0.2%以上3%以下で穴拡げ値が著しく向上する
ことを新規に知見した。
Next, as shown in FIG. 1 in the results of this test, the ferrite particle diameter Df having an average ferrite particle diameter Df of 2 μm or more and 20 μm or less and a residual austenite particle diameter dm is shown.
Although the hole expansion value was low even when the relative size with respect to 0.05 or more and 0.8 or less, the influence of the carbon concentration of retained austenite on the hole expansion value was further investigated. FIG. 2 shows the results obtained by rearranging the hole expansion values of the above steel sheets by the carbon concentration of retained austenite. From this result, there is a strong correlation between the carbon concentration of retained austenite and the hole expansion value, and the average ferrite particle diameter Df is 2 μm.
When the residual austenite particle size dm is not less than 20 μm and the relative size with respect to the ferrite particle size Df is not less than 0.05 and not more than 0.8, the hole is expanded when the residual austenite carbon concentration is not less than 0.2% and not more than 3%. It was newly found that the value was significantly improved.

【0018】このメカニズムは必ずしも明らかではない
が、残留オーステナイトの炭素濃度が高すぎると残留オ
ーステナイトもしくは加工誘起変態後のマルテンサイト
と母相との強度差が大きくなり、打ち抜き時にその界面
にボイドが生じやすく、穴拡げの際にクラックの起点と
なる。一方、残留オーステナイトの炭素濃度が低すぎる
と必然的にフェライト相の炭素濃度が上昇するために、
延性が低下し穴拡げ率と相関がある局部延性が低下する
ため、穴拡げ率が低下する。従って最適な残留オーステ
ナイトの炭素濃度において穴拡げ率が向上すると推測さ
れる。
Although this mechanism is not always clear, if the carbon concentration of the retained austenite is too high, the strength difference between the retained austenite or martensite after the work-induced transformation and the parent phase becomes large, and voids occur at the interface at the time of punching. It is easy to cause cracks when expanding holes. On the other hand, if the carbon concentration of the retained austenite is too low, the carbon concentration of the ferrite phase inevitably increases,
Since the ductility decreases and the local ductility, which is correlated with the hole expansion ratio, decreases, the hole expansion ratio decreases. Therefore, it is presumed that the hole expansion ratio is improved at the optimum retained austenite carbon concentration.

【0019】ただし、残留オーステナイトの炭素濃度が
2.4%超であるとスポット溶接等の溶接不良が著しく
なる可能性があるので、残留オーステナイトの炭素濃度
は0.2%以上2.4%以下の範囲が更に望ましい。な
お、穴拡げ性(バーリング加工性)については日本鉄鋼
連盟規格JFS T1001−1996記載の穴拡げ試
験方法に従って穴拡げ値にて評価した。
However, if the carbon concentration of the retained austenite is more than 2.4%, welding defects such as spot welding may become remarkable, so that the carbon concentration of the retained austenite is 0.2% or more and 2.4% or less. Is more desirable. The hole expandability (burring workability) was evaluated by a hole expansion value in accordance with the hole expansion test method described in the Japan Iron and Steel Federation Standard JFS T1001-1996.

【0020】次に本発明における鋼板のミクロ組織およ
び残留オーステナイトの炭素濃度について詳細に説明す
る。鋼板のミクロ組織は、疲労特性や延性とバーリング
加工性(穴拡げ性)を両立させるために体積分率5%以
上25%以下の残留オーステナイトを含み、残部が主に
フェライト及びベイナイトからなる複合組織とした。た
だし、不可避的なパーライト、マルテンサイトを含むこ
とを許容するものである。なお、良好な疲労特性を確保
するためには、パーライトの体積分率は5%以下が望ま
しい。さらに、良好な延性を得るためにはフェライトの
体積分率は40%以上が望ましく、マルテンサイトの体
積分率は5%未満が望ましい。
Next, the microstructure of the steel sheet and the carbon concentration of retained austenite in the present invention will be described in detail. The microstructure of the steel sheet contains a retained austenite with a volume fraction of 5% or more and 25% or less in order to achieve both fatigue properties and ductility and burring workability (hole expandability), and the rest is a composite structure mainly composed of ferrite and bainite. And However, the inclusion of unavoidable pearlite and martensite is permitted. In order to secure good fatigue characteristics, the volume fraction of pearlite is desirably 5% or less. Further, in order to obtain good ductility, the volume fraction of ferrite is desirably 40% or more, and the volume fraction of martensite is desirably less than 5%.

【0021】ここで、残留オーステナイト,フェライ
ト、ベイナイト、パーライト及びマルテンサイトの体積
分率とは鋼板板幅の1/4Wもしくは3/4W位置より
切出した試料を圧延方向断面に研磨し、ナイタール試薬
および特開平5−163590号公報で開示されている
試薬を用いてエッチングし、光学顕微鏡を用い200〜
500倍の倍率で観察された板厚の1/4tにおけるミ
クロ組織の面積分率で定義される。
Here, the volume fraction of retained austenite, ferrite, bainite, pearlite and martensite refers to a sample cut from a 1 / 4W or 3 / 4W position of the steel sheet width, which is polished to a cross section in the rolling direction, and a nital reagent and Etching is performed using the reagent disclosed in JP-A-5-163590, and 200 to
It is defined as the area fraction of the microstructure at 1 / 4t of the plate thickness observed at a magnification of 500 times.

【0022】一方、オーステナイトはフェライトと結晶
構造が違うため結晶学的に容易に識別できる。従って、
残留オーステナイトの体積分率はX線回折法によっても
実験的に求めることができる。すなわち、MoのKα線
を用いてオーステナイトとフェライトとの反射面強度の
違いより次式を用いてその体積分率を簡便に求める方法
である。 Vγ=(2/3){100/(0.7×α(211)/
γ(220)+1)}+(1/3){100/(0.7
8×α(211)/γ(311)+1)} ただし、α(211)、γ(220)およびγ(31
1)は、それぞれフェライト(α)オーステナイト
(γ)のX線反射面強度である。残留オーステナイトの
体積分率は光学顕微鏡観察およびX線回折法のいずれの
方法を用いてもほぼ一致した値が得られたので、いずれ
の測定値を用いても差し支えない。
On the other hand, austenite has a different crystal structure from ferrite and can be easily identified crystallographically. Therefore,
The volume fraction of retained austenite can also be experimentally determined by an X-ray diffraction method. In other words, the method is a method of easily obtaining the volume fraction of the austenite and ferrite from the difference in the reflection surface strength between austenite and ferrite using the Mo Kα ray and the following equation. Vγ = (2/3) {100 / (0.7 × α (211) /
γ (220) +1)} + (1 /) {100 / (0.7
8 × α (211) / γ (311) +1) where α (211), γ (220) and γ (31
1) is the X-ray reflection surface intensity of ferrite (α) austenite (γ), respectively. As for the volume fraction of retained austenite, almost the same value was obtained by using either the optical microscope observation method or the X-ray diffraction method, and any measurement value may be used.

【0023】また、残留オーステナイトの炭素濃度はX
線回折法やメスバウアー分光法により実験的に求めるこ
とができる。例えば、X線回折法では進入型固溶元素で
あるCがオーステナイトの結晶格子に配位されるために
起こる格子定数の変化と炭素濃度との関係より残留オー
ステナイトの炭素濃度が測定可能である。すなわち、格
子定数の測定はCo、Cu、FeのKα線を用いて、オ
ーステナイトの(002)、(022)、(113)、
(222)面の反射角度を測定し、文献(「X線回折概
論」:B.D.Cullity著(松村源太郎訳)、株
式会社アグネ)記載の反射角度から格子定数を計算する
方法にて得ることができる。
The carbon concentration of the retained austenite is X
It can be obtained experimentally by a line diffraction method or Mossbauer spectroscopy. For example, in the X-ray diffraction method, the carbon concentration of the retained austenite can be measured from the relationship between the carbon concentration and the change in the lattice constant that occurs because C, which is an intrusive solid solution element, is coordinated with the austenite crystal lattice. That is, the lattice constants were measured using Kα rays of Co, Cu, and Fe, and the austenite (002), (022), (113),
The reflection angle of the (222) plane is measured, and is obtained by a method of calculating the lattice constant from the reflection angle described in the literature ("Introduction to X-ray Diffraction": BD Culliity (Gentaro Matsumura), Agne Corporation). be able to.

【0024】ここで、cos2θ(ただし、θは反射角
度)と格子定数aには直線関係があることから、真の格
子定数a0は、この直線をcos2θ=0に外挿して得ら
れる。さらに、この真の格子定数a0の値から、オース
テナイトの格子定数とオーステナイト中の炭素濃度との
関係、例えば文献(R.C.Ruhl and M.C
ohen、Transaction of the M
etallurgical Society of A
IME、vol 245(1969)pp241)記載
のa0=3.572+0.033%C(炭素濃度)を用
いて得ることができる。
Since there is a linear relationship between cos 2 θ (where θ is the reflection angle) and the lattice constant a, the true lattice constant a 0 is obtained by extrapolating this straight line to cos 2 θ = 0. can get. Further, based on the value of the true lattice constant a 0 , the relationship between the lattice constant of austenite and the carbon concentration in austenite, for example, literature (RC Ruhl and MC)
ohen, Transaction of the M
et alurgical Society of A
It can be obtained by using a 0 = 3.572 + 0.033% C (carbon concentration) described in IME, vol 245 (1969) pp 241).

【0025】続いて、本発明の化学成分の限定理由につ
いて説明する。Cは、所望のミクロ組織を得るのに必要
な元素である。ただし、0.3%超含有していると加工
性が劣化するので、0.3%以下とする。また、0.2
%超含有すると溶接性が劣化するので0.2%以下が望
ましい。一方、0.01%未満であると強度が低下する
ので0.01%以上とする。また、良好な延性を得るた
めの十分な残留オーステナイト量を安定的に得るために
は0.05%以上が望ましい。
Next, the reasons for limiting the chemical components of the present invention will be described. C is an element necessary for obtaining a desired microstructure. However, if the content exceeds 0.3%, the workability deteriorates, so the content is set to 0.3% or less. Also, 0.2
%, The weldability deteriorates, so that 0.2% or less is desirable. On the other hand, if it is less than 0.01%, the strength is reduced. Further, in order to stably obtain a sufficient amount of retained austenite for obtaining good ductility, 0.05% or more is desirable.

【0026】Siは、所望のミクロ組織を得るのに必要
であるとともに固溶強化元素として強度上昇に有効であ
る。所望の強度を得るためには、0.01%以上含有す
る必要がある。しかし、2%超含有すると加工性が劣化
する。そこで、Siの含有量は0.01%以上、2%以
下とする。Mnは、固溶強化元素として強度上昇に有効
である。所望の強度を得るためには、0.05%以上必
要である。また、Mnはオーステナイト安定化元素であ
り、良好な延性を得るための十分な残留オーステナイト
量を安定的に得るためその添加量は0.05%以上が望
ましい。一方、3%超添加するとスラブ割れを生ずるた
め、3%以下とする。
Si is necessary for obtaining a desired microstructure and is effective for increasing the strength as a solid solution strengthening element. In order to obtain a desired strength, the content needs to be 0.01% or more. However, if the content exceeds 2%, the workability deteriorates. Therefore, the content of Si is set to 0.01% or more and 2% or less. Mn is effective for increasing strength as a solid solution strengthening element. To obtain the desired strength, 0.05% or more is required. Mn is an austenite stabilizing element, and its addition amount is desirably 0.05% or more in order to stably obtain a sufficient amount of retained austenite for obtaining good ductility. On the other hand, if added over 3%, slab cracks occur, so the content is set to 3% or less.

【0027】Pは、不純物であり低いほど好ましく、
0.1%超含有すると加工性や溶接性に悪影響を及ぼす
とともに疲労特性も低下させるので、0.1%以下とす
る。Sは、不純物であり低いほど好ましく、多すぎると
局部延性やバーリング加工性を劣化させるA系介在物を
生成するので極力低減させるべきであるが、0.01%
以下ならば許容できる範囲である。Alは、溶鋼脱酸の
ために0.005%以上添加する必要があるが、コスト
の上昇を招くため、その上限を1.0%とする。また、
あまり多量に添加すると、非金属介在物を増大させ伸び
を劣化させるので好ましくは0.5%以下とする。
P is an impurity and is preferably as low as possible.
If the content exceeds 0.1%, the workability and the weldability are adversely affected and the fatigue characteristics are also reduced. S is an impurity and is preferably as low as possible. If it is too high, A-based inclusions that deteriorate local ductility and burring workability are generated. Therefore, S should be reduced as much as possible.
Below is an acceptable range. Al needs to be added in an amount of 0.005% or more for deoxidation of molten steel. However, the cost is increased, so the upper limit is set to 1.0%. Also,
If it is added in an excessively large amount, nonmetallic inclusions are increased and elongation is deteriorated.

【0028】Cuは、固溶状態で疲労特性を改善する効
果があるので必要に応じ添加する。ただし、0.2%未
満では、その効果は少なく、2%を超えて含有しても効
果が飽和する。そこで、Cuの含有量は0.2〜2%の
範囲とする。Bは、Cuと複合添加されることによって
疲労限を上昇させる効果があるので必要に応じ添加す
る。ただし、0.0002%未満ではその効果を得るた
めに不十分であり、0.002%超添加するとスラブ割
れが起こる。よって、Bの添加は、0.0002%以
上、0.002%以下とする。
Since Cu has an effect of improving fatigue characteristics in a solid solution state, Cu is added as necessary. However, if the content is less than 0.2%, the effect is small, and even if the content exceeds 2%, the effect is saturated. Therefore, the content of Cu is set in the range of 0.2 to 2%. B is added as necessary since it is effective to increase the fatigue limit by being combined with Cu. However, if it is less than 0.0002%, it is insufficient to obtain the effect, and if it exceeds 0.002%, slab cracking occurs. Therefore, the addition of B is set to 0.0002% or more and 0.002% or less.

【0029】Niは、Cu含有による熱間脆性防止のた
めに必要に応じ添加する。ただし、0.1%未満ではそ
の効果が少なく、1%を超えて添加してもその効果が飽
和するので、0.1〜1%とする。CaおよびREM
は、破壊の起点となったり、加工性を劣化させる非金属
介在物の形態を変化させて無害化する元素である。ただ
し、0.0005%未満添加してもその効果がなく、C
aならば0.002%超、REMならば0.02%超添
加してもその効果が飽和するのでCa:0.0005〜
0.002%、REM:0.0005〜0.02%添加
することが望ましい。
Ni is added as necessary to prevent hot brittleness due to the inclusion of Cu. However, if the content is less than 0.1%, the effect is small, and if the content exceeds 1%, the effect is saturated. Therefore, the content is set to 0.1 to 1%. Ca and REM
Is an element that becomes a starting point of destruction or changes the form of nonmetallic inclusions that degrade workability and renders them harmless. However, if less than 0.0005% is added, there is no effect.
If a exceeds 0.002%, and if REM exceeds 0.02%, the effect is saturated.
It is desirable to add 0.002% and REM: 0.0005 to 0.02%.

【0030】さらに、強度を付与するために、Ti、N
b、Mo、V、Cr、Zrの析出強化もしくは固溶強化
元素の一種または二種以上を添加しても良い。ただし、
それぞれ、0.05%、0.01%、0.05%、0.
02%、0.01%、0.02%未満ではその効果を得
ることができない。また、それぞれ、0.5%、0.5
%、1%、0.2%、1%、0.2%を超え添加しても
その効果は飽和する。なお、Snを添加しても本発明の
効果を得ることができ、その含有量は特に定める必要は
ないが熱間圧延時に疵が発生する恐れがあるので0.0
5%以下が望ましい。
Further, in order to impart strength, Ti, N
One, two or more of precipitation strengthening or solid solution strengthening elements of b, Mo, V, Cr, and Zr may be added. However,
0.05%, 0.01%, 0.05%, 0.
If it is less than 02%, 0.01% or 0.02%, the effect cannot be obtained. Also, 0.5% and 0.5%, respectively.
%, 1%, 0.2%, 1%, and 0.2%, the effect is saturated even if added. The effect of the present invention can be obtained even if Sn is added, and its content is not particularly limited, but may be flawed during hot rolling.
5% or less is desirable.

【0031】次に、本発明の製造方法の限定理由につい
て、以下に詳細に述べる。本発明では、目的の成分含有
量になるように成分調整した溶鋼を鋳込むことによって
得たスラブを、高温鋳片のまま熱間圧延機に直送しても
よいし、室温まで冷却後に加熱炉にて再加熱した後に熱
間圧延してもよい。再加熱温度については特に制限はな
いが、1400℃以上であると、スケールオフ量が多量
になり歩留まりが低下するので、再加熱温度は1400
℃未満が望ましい。また、1000℃未満の加熱はスケ
ジュール上操業効率を著しく損なうため、再加熱温度は
1000℃以上が望ましい。
Next, the reasons for limiting the production method of the present invention will be described in detail below. In the present invention, a slab obtained by casting molten steel whose components have been adjusted so as to have the target component content may be directly sent to a hot rolling mill as a high-temperature slab, or a heating furnace after cooling to room temperature. And then hot-rolled. The reheating temperature is not particularly limited, but if it is 1400 ° C. or more, the scale-off amount becomes large and the yield decreases, so the reheating temperature is 1400 ° C.
Desirably less than ° C. Further, since the heating at a temperature lower than 1000 ° C. significantly impairs the operation efficiency on a schedule, the reheating temperature is desirably 1000 ° C. or higher.

【0032】熱間圧延工程は、粗圧延を終了後、仕上げ
圧延を行うが、最終パス温度(FT)をAr3変態点温
度以上Ar3変態点温度+100℃以下の温度域で終了
する必要がある。これは、熱間圧延中に圧延温度がAr
3変態点温度を下回るとひずみが残留して延性が低下し
てしまい加工性が劣化し、仕上げ温度がAr3変態点温
度+100℃超では仕上げ圧延後のオーステナイト粒径
が大きくなってしまうために後の冷却工程において行う
二相域でフェライト変態の促進が不十分になり、目的と
するミクロ組織が得られない。従って仕上げ温度はAr
3変態点温度以上Ar3変態点温度+100℃以下とす
る。ここで、粗圧延終了後に高圧デスケーリングを行う
場合は、鋼板表面での高圧水の衝突圧P(MPa)×流
量L(リットル/cm2)≧0.0025の条件を満た
すことが望ましい。
In the hot rolling step, finish rolling is performed after rough rolling is completed, but it is necessary to finish the final pass temperature (FT) in a temperature range from the Ar 3 transformation point temperature to the Ar 3 transformation point temperature + 100 ° C. or less. is there. This is because during hot rolling the rolling temperature is Ar
If the temperature is lower than the 3 transformation point temperature, strain remains, ductility is reduced and workability is deteriorated. If the finishing temperature is higher than the Ar 3 transformation point temperature + 100 ° C., the austenite grain size after finish rolling becomes large. The promotion of ferrite transformation in the two-phase region performed in the subsequent cooling step becomes insufficient, and the desired microstructure cannot be obtained. Therefore, the finishing temperature is Ar
3, transformation point temperature or higher Ar 3 transformation temperature + 100 ° C. or less. Here, when high-pressure descaling is performed after the completion of rough rolling, it is desirable that the condition of collision pressure P (MPa) of high-pressure water on the steel sheet surface × flow rate L (liter / cm 2 ) ≧ 0.0025 is satisfied.

【0033】鋼板表面での高圧水の衝突圧Pは以下のよ
うに記述される。(「鉄と鋼」1991 vol.77
No.9 p1450参照) P(MPa)=5.64×P0×V/H2 ただし、 P0(MPa):液圧力 V(リットル/min):ノズル流液量 H(cm):鋼板表面とノズル間の距離 流量Lは以下のように記述される。 L(リットル/cm2)=V/(W×v)
The collision pressure P of the high-pressure water on the steel plate surface is described as follows. ("Iron and Steel" 1991 vol. 77
No. 9 P1450) P (MPa) = 5.64 × P 0 × V / H 2 where P 0 (MPa): liquid pressure V (liter / min): nozzle flow H (cm): steel sheet surface and nozzle The distance between the flows L is described as follows: L (liter / cm 2 ) = V / (W × v)

【0034】ただし、 V(リットル/min):ノズル流液量 W(cm):ノズル当たり噴射液が鋼板表面に当たって
いる幅 v(cm/min):通板速度 衝突圧P×流量Lの上限は本発明の効果を得るためには
特に定める必要はないが、ノズル流液量を増加させると
ノズルの摩耗が激しくなる等の不都合が生じるため、
0.02以下とすることが望ましい。
V (liter / min): Nozzle flow rate W (cm): Width of spray liquid per nozzle hitting steel sheet surface v (cm / min): Passing speed The upper limit of collision pressure P × flow rate L is as follows. In order to obtain the effects of the present invention, it is not particularly necessary to determine, but increasing the flow rate of the nozzle causes inconveniences such as intensified wear of the nozzle.
It is desirable to set it to 0.02 or less.

【0035】さらに、仕上げ圧延後の鋼板の最大高さR
yが15μm(15μmRy,l2.5mm,ln1
2.5mm)以下であることが望ましい。これは、例え
ば金属材料疲労設計便覧、日本材料学会編、84ページ
に記載されている通り熱延または酸洗ままの鋼板の疲労
強度は鋼板表面の最大高さRyと相関があることから明
らかである。また、その後の仕上げ圧延はデスケーリン
グ後に再びスケールが生成してしまうのを防ぐために5
秒以内に行うのが望ましい。
Further, the maximum height R of the steel sheet after the finish rolling is performed.
y is 15 μm (15 μm Ry, 12.5 mm, ln1
2.5 mm) or less. This is apparent from the fact that the fatigue strength of a hot-rolled or pickled steel sheet is correlated with the maximum height Ry of the steel sheet surface, as described in, for example, Handbook of Fatigue Design for Metallic Materials, edited by The Society of Materials Science, Japan, page 84. is there. Further, the subsequent finish rolling is performed in order to prevent scale from being formed again after descaling.
It is desirable to do this within seconds.

【0036】仕上圧延を終了した後の工程は、まず、A
3変態点からAr1変態点までの温度域(フェライトと
オーステナイトの二相域)で1〜20秒間滞留する。こ
こでの滞留は、二相域でフェライト変態を促進させるた
めに行うが、1秒未満では、二相域におけるフェライト
変態が不十分なため、十分な延性が得られない。一方、
20秒超では、パーライトが生成し、目的とするミクロ
組織が得られない。また、1〜20秒間の滞留をさせる
温度域はフェライト変態を容易に促進させるためAr1
変態点以上800℃以下が望ましく、そのためには、仕
上げ圧延終了後20℃/s以上の冷却速度で当該温度域
に迅速に到達させることが望ましい。
After the finish rolling, the steps first are as follows:
It stays for 1 to 20 seconds in the temperature range from the r 3 transformation point to the Ar 1 transformation point (two-phase region of ferrite and austenite). The retention here is performed to promote ferrite transformation in the two-phase region, but if it is less than 1 second, sufficient ductility cannot be obtained because the ferrite transformation in the two-phase region is insufficient. on the other hand,
If it exceeds 20 seconds, pearlite is generated, and the desired microstructure cannot be obtained. In addition, the temperature range in which the stagnation is performed for 1 to 20 seconds is Ar 1 in order to facilitate the ferrite transformation.
The temperature is preferably from the transformation point to 800 ° C., and for that purpose, it is desirable to quickly reach the temperature range at a cooling rate of 20 ° C./s or more after finish rolling.

【0037】さらに、1〜20秒間の滞留時間は生産性
を極端に低下させないためには1〜10秒間とすること
が望ましい。また、これらの条件を満たすためには、仕
上げ圧延終了後20℃/s以上の冷却速度で当該温度域
に迅速に到達させることが必要である。冷却速度の上限
は特に定めないが、冷却設備の能力上300℃/s以下
が妥当な冷却速度である。さらに、あまりにもこの冷却
速度が早いと冷却終了温度を制御できずオーバーシュー
トしてAr1変態点以下まで過冷却されてしまう可能性
があるのでここでの冷却速度は150℃/s以下が望ま
しい。
Further, the residence time for 1 to 20 seconds is desirably 1 to 10 seconds in order not to significantly reduce the productivity. In order to satisfy these conditions, it is necessary to quickly reach the temperature range at a cooling rate of 20 ° C./s or more after finishing rolling. The upper limit of the cooling rate is not particularly defined, but 300 ° C./s or less is a reasonable cooling rate in view of the capacity of the cooling equipment. Further, if the cooling rate is too high, the cooling end temperature cannot be controlled, and there is a possibility of overshoot and overcooling to the Ar 1 transformation point or less. Therefore, the cooling rate here is desirably 150 ° C./s or less. .

【0038】次に、その温度域から巻取温度(CT)ま
では20℃/s以上の冷却速度で冷却するが、20℃/
s未満の冷却速度では、パーライトもしくは炭化物を多
く含むベイナイトが生成してしまい十分な残留オーステ
ナイトが得られず目的とするミクロ組織が得られない。
巻取温度までの冷却速度の上限は特に定めることなく本
発明の効果を得ることができるが、熱ひずみによる板そ
りが懸念されることから、300℃/s以下とすること
が望ましい。
Next, cooling is performed at a cooling rate of 20 ° C./s or more from the temperature range to the winding temperature (CT).
If the cooling rate is less than s, bainite containing a large amount of pearlite or carbide is generated, and sufficient retained austenite cannot be obtained, and a desired microstructure cannot be obtained.
Although the effect of the present invention can be obtained without particularly setting the upper limit of the cooling rate to the winding temperature, it is preferable to set the cooling rate to 300 ° C./s or less because there is a concern about warpage due to thermal strain.

【0039】次に、巻取温度は450℃以上では、炭化
物を多く含むベイナイトが生成して十分な残留オーステ
ナイトが得られず目的とするミクロ組織が得られないた
め、巻取温度は、450℃未満と限定する。また、巻取
温度が350℃以下では、マルテンサイトが多量に生成
して十分な残留オーステナイトが得られず目的とするミ
クロ組織が得られないため、巻取温度は、350℃超と
限定する。熱間圧延工程終了後は必要に応じて酸洗し、
その後インラインまたはオフラインで圧下率10%以下
のスキンパスまたは圧下率40%程度までの冷間圧延を
施しても構わない。
Next, if the winding temperature is 450 ° C. or higher, bainite containing a large amount of carbide is generated, and sufficient retained austenite cannot be obtained, and the desired microstructure cannot be obtained. Limited to less than. If the winding temperature is 350 ° C. or lower, a large amount of martensite is generated, and sufficient retained austenite cannot be obtained, and a desired microstructure cannot be obtained. Therefore, the winding temperature is limited to over 350 ° C. After the hot rolling process, pickling is performed if necessary,
Thereafter, skin rolling with a rolling reduction of 10% or less or cold rolling to a rolling reduction of about 40% may be performed in-line or off-line.

【0040】[0040]

【実施例】以下に、実施例により本発明をさらに説明す
る。表1に示す化学成分を有するA〜Oの鋼は、転炉に
て溶製して、連続鋳造後、表2に示す加熱温度(SR
T)で再加熱し、粗圧延後に同じく表2に示す仕上げ圧
延温度(FT)で1.2〜5.4mmの板厚に圧延した
後、表2に示す巻取温度(CT)でそれぞれ巻き取っ
た。なお一部については粗圧延後に衝突圧2.7MP
a、流量0.001リットル/cm2 の条件で高圧デス
ケーリングを行った。ただし、表中の化学組成について
の表示は質量%である。
The present invention will be further described below with reference to examples. The steels A to O having the chemical components shown in Table 1 were melted in a converter and continuously cast, and then heated at a temperature shown in Table 2 (SR
T), and after rough rolling, after rolling at a finish rolling temperature (FT) shown in Table 2 to a sheet thickness of 1.2 to 5.4 mm, winding at a winding temperature (CT) shown in Table 2 respectively. I took it. For some parts, after rough rolling, the collision pressure was 2.7MP.
a, High-pressure descaling was performed under the conditions of a flow rate of 0.001 liter / cm 2 . However, the indication of the chemical composition in the table is% by mass.

【0041】[0041]

【表1】 [Table 1]

【0042】このようにして得られた熱延板の引張試験
は、供試材を、まず、JIS Z2201記載の5号試
験片に加工し、JIS Z 2241記載の試験方法に
従って行った。表2にその試験結果を示す。表2のミク
ロ組織中、「その他」はパーライトまたはマルテンサイ
トであった。ここで、残留オーステナイト,フェライ
ト、ベイナイト、パーライト及びマルテンサイトの体積
分率とは鋼板板幅の1/4Wもしくは3/4W位置より
切出した試料を圧延方向断面に研磨し、ナイタール試薬
および特開平5−163590号公報で開示されている
試薬を用いてエッチングし、光学顕微鏡を用い200〜
500倍の倍率で観察された板厚の1/4tにおけるミ
クロ組織の面積分率である。ただし、一部は前述のX線
回折法にて得られた値も含まれている。なお、フェライ
ト平均粒径の測定法はJIS G0552鋼のフェライ
ト結晶粒度試験法に記載の切断法に準じ、残留オーステ
ナイト平均粒径については平均円相当径と定義し、画像
処理装置等より得られる値を採用した。
In the tensile test of the hot-rolled sheet obtained in this manner, the test material was first processed into a No. 5 test piece described in JIS Z2201, and the tensile test was performed according to the test method described in JIS Z2241. Table 2 shows the test results. In the microstructure of Table 2, "Others" was pearlite or martensite. Here, the volume fraction of retained austenite, ferrite, bainite, pearlite and martensite refers to a sample cut from a 1/4 W or 3/4 W position of a steel sheet width, polished into a section in the rolling direction, and using a Nital reagent and JP -163590 using a reagent disclosed in JP-A-163590, and using an optical microscope to 200-
It is the area fraction of the microstructure at 1 / 4t of the plate thickness observed at a magnification of 500 times. However, some values include values obtained by the above-mentioned X-ray diffraction method. The method for measuring the average ferrite particle size is based on the cutting method described in JIS G0552 Steel Ferrite Grain Size Test Method, and the average retained austenite particle size is defined as the average circle equivalent diameter, and the value obtained from an image processing device or the like. It was adopted.

【0043】また、残留オーステナイトの炭素濃度はX
線回折法より実験的に求めた。格子定数の測定はCo、
Cu、FeのKα線を用いて、オーステナイトの(00
2)、(022)、(113)、(222)面の反射角
度を測定し、文献(「X線回折概論」:B.D.Cul
lity著(松村源太郎訳)、株式会社アグネ)記載の
反射角度から格子定数を計算する方法にて得ることがで
きる。ここで、cos 2θ(ただし、θは反射角度)と
格子定数aには直線関係があることから、真の格子定数
0は、この直線をcos2θ=0に外挿して得られる。
The carbon concentration of the retained austenite is X
It was determined experimentally by the line diffraction method. Measurement of lattice constant is Co,
Using Kα rays of Cu and Fe, (00
2), (022), (113), and (222) plane reflection angles
And the literature ("Introduction to X-ray diffraction": BD Cul)
(written by Gentaro Matsumura, Agne Co., Ltd.)
It can be obtained by calculating the lattice constant from the reflection angle.
Wear. Where cos Twoθ (where θ is the reflection angle) and
Since the lattice constant a has a linear relationship, the true lattice constant
a0Calculates this line as cosTwoIt is obtained by extrapolating to θ = 0.

【0044】さらに、この真のオーステナイトの格子定
数a0の値から、オーステナイトの炭素濃度は、例えば
文献(R.C.Ruhl and M.Cohen、T
ransaction of the Metallu
rgical Society of AIME、vo
l 245(1969)pp241)記載のオーステナ
イト格子定数a0とオーステナイト炭素濃度の関係を示
した式であるa0=3.572+0.033%C(炭素
濃度)を用いて得た値とした。ただし、測定した残留オ
ーステナイト粒は5個以上であり炭素濃度はその平均値
とした。
Further, from the value of the lattice constant a 0 of this true austenite, the carbon concentration of austenite can be determined, for example, according to the literature (RC Ruhl and M. Cohen, T.C.
transaction of the Metallu
rgical Society of AIME, vo
l 245 (1969) pp 241), which is a value obtained by using a 0 = 3.572 + 0.033% C (carbon concentration) which is a formula showing the relationship between the austenite lattice constant a 0 and the austenite carbon concentration. However, the measured number of retained austenite grains was 5 or more, and the carbon concentration was the average value.

【0045】さらに、図3に示すような長さ98mm、
幅38mm、最小断面部の幅が20mm、切り欠きの曲
率半径が30mmである平面曲げ疲労試験片にて、完全
両振りの平面曲げ疲労試験を行った。鋼板の疲労特性
は、10×107回での疲労限σWを鋼板の引張り強さσ
Bで除した値(疲労限度比σW/σB)で評価した。ただ
し、疲労試験片の表面は研削など一切行わず酸洗ままの
表面とした。一方、バーリング加工性(穴拡げ性)につ
いては日本鉄鋼連盟規格JFS T1001−1996
記載の穴拡げ試験方法に従って穴拡げ値にて評価した。
Further, as shown in FIG.
A plane bending fatigue test of complete swinging was performed on a plane bending fatigue test piece having a width of 38 mm, a minimum cross section width of 20 mm, and a notch with a radius of curvature of 30 mm. The fatigue properties of the steel sheet are determined by changing the fatigue limit σ W at 10 × 10 7 times to the tensile strength σ of the steel sheet.
Evaluation was made by dividing by B (fatigue limit ratio σ W / σ B ). However, the surface of the fatigue test piece was a pickled surface without any grinding or the like. On the other hand, regarding burring workability (hole expanding property), Japan Iron and Steel Federation Standard JFS T1001-1996
The evaluation was based on the hole expansion value according to the described hole expansion test method.

【0046】[0046]

【表2】 [Table 2]

【0047】本発明に沿うものは、鋼A−1、E、I、
J、K、L、M,N、Oの9鋼であり、所定の量の鋼成
分を含有し、そのミクロ組織が、体積分率5%以上25
%以下の残留オーステナイトを含み、残部が主にフェラ
イト、ベイナイトからなる複合組織であり、フェライト
平均粒径が2μm以上20μm以下、残留オーステナイ
ト平均粒径をフェライト平均粒径で除した値が0.05
以上0.8以下且つ、残留オーステナイトの炭素濃度が
0.2%以上3%以下であることを特徴とする、バーリ
ング加工性に優れる加工誘起変態型複合組織鋼板が得ら
れている。
According to the present invention, steels A-1, E, I,
9 steels of J, K, L, M, N, and O, containing a predetermined amount of steel components, and having a microstructure having a volume fraction of 5% or more and 25% or more.
% Of residual austenite, the remainder being a composite structure mainly composed of ferrite and bainite, having an average ferrite grain size of 2 μm to 20 μm, and a value obtained by dividing the average retained austenite grain size by the average ferrite grain size of 0.05.
A work-induced transformation-type composite structure steel sheet excellent in burring workability, characterized in that the carbon content of retained austenite is not less than 0.8 and not more than 0.2% and not more than 3%.

【0048】上記以外の鋼は、以下の理由によって本発
明の範囲外である。すなわち、鋼A−2は、仕上圧延終
了温度(FT)が本発明の範囲より低く、ひずみが残留
して強度―延性バランス(TS×El)が低く、穴拡げ
値(λ)も低い。鋼A−3は、仕上圧延終了温度(F
T)が本発明の範囲より高く、目的とするミクロ組織が
得られていないため強度―延性バランス(TS×El)
が低く、疲労限度比(σ W/σB)も低い。鋼A−4は、
滞留温度(MT)が本発明の範囲より低く、目的とする
ミクロ組織が得られていないため強度―延性バランス
(TS×El)が低く、疲労限度比(σW/σB)も低
い。
The steels other than those described above were used for the following reasons.
Out of the range of light. That is, steel A-2 is finished at the finish rolling.
Temperature (FT) is lower than the range of the present invention, strain remains
Low strength-ductility balance (TS × El)
The value (λ) is also low. Steel A-3 has a finish rolling end temperature (F
T) is higher than the range of the present invention, and the target microstructure is
Strength-ductility balance (TS × El)
Low fatigue limit ratio (σ W/ ΣB) Is also low. Steel A-4 is
Retention temperature (MT) is lower than the range of the present invention,
Strength-ductility balance due to lack of microstructure
(TS × El) is low and the fatigue limit ratio (σW/ ΣB) Also low
No.

【0049】鋼A−5は、滞留温度(MT)が本発明の
範囲より高く、目的とするミクロ組織が得られていない
ため強度―延性バランス(TS×El)が低く、疲労限
度比(σW/σB)も低い。鋼A−6は、滞留時間(M
T)がなく、目的とするミクロ組織が得られていないた
め強度―延性バランス(TS×El)が低く、疲労限度
比(σW/σB)も低い。また十分な穴拡げ値(λ)も得
られていない。鋼A−7は、滞留後の冷却速度(CR)
が本発明の範囲より遅く、目的とするミクロ組織が得ら
れていないため強度―延性バランス(TS×El)が低
く、疲労限度比(σW/σB)も低い。また十分な穴拡げ
値(λ)も得られていない。
[0049] Steel A-5 has a higher retention temperature (MT) than the range of the present invention and has a low strength-ductility balance (TS x El) because the desired microstructure is not obtained, and a fatigue limit ratio (σ). W / σ B ) is also low. Steel A-6 has a residence time (M
T), and the desired microstructure was not obtained, so that the strength-ductility balance (TS × El) was low and the fatigue limit ratio (σ W / σ B ) was low. Also, a sufficient hole expansion value (λ) has not been obtained. Steel A-7 has a cooling rate after retention (CR)
However, since the desired microstructure was not obtained, the strength-ductility balance (TS × El) was low and the fatigue limit ratio (σ W / σ B ) was low. Also, a sufficient hole expansion value (λ) has not been obtained.

【0050】鋼A−8は、巻取温度(CT)が本発明の
範囲より高く、目的とするミクロ組織が得られていない
ため強度―延性バランス(TS×El)が低い。鋼A−
9は、巻取温度(CT)が本発明の範囲より低く、目的
とするミクロ組織が得られていないため強度―延性バラ
ンス(TS×El)が低い。鋼Bは、Cの含有量が本発
明の範囲外であるので、目的とするミクロ組織が得られ
ず十分な強度(TS)および疲労限度比(σW/σB)が
得られていない。鋼Cは、Siの含有量が本発明の範囲
外であるので十分な強度(TS)および疲労限度比(σ
W/σB)が得られていない。
The steel A-8 has a higher winding temperature (CT) than the range of the present invention, and has a low strength-ductility balance (TS × El) because a desired microstructure is not obtained. Steel A-
In No. 9, the winding temperature (CT) was lower than the range of the present invention, and the strength-ductility balance (TS × El) was low because the desired microstructure was not obtained. In steel B, since the content of C is out of the range of the present invention, a desired microstructure cannot be obtained, and a sufficient strength (TS) and a fatigue limit ratio (σ W / σ B ) cannot be obtained. Steel C has sufficient strength (TS) and fatigue limit ratio (σ) since the content of Si is out of the range of the present invention.
W / σ B ) has not been obtained.

【0051】鋼Dは、Mnの含有量が本発明の範囲外で
あり、目的とするミクロ組織が得られていないため強度
―延性バランス(TS×El)が低く、疲労限度比(σ
W/σB)も低い。鋼Fは、Pの含有量が本発明の範囲外
であるので十分な疲労限度比(σW/σB)が得られてい
ない。鋼Gは、Sの含有量が本発明の範囲外であるので
十分な穴拡げ値(λ)および疲労限度比(σW/σB)が
得られていない。鋼Hは、Cの含有量が本発明の範囲外
であるので十分な伸び(El)、穴拡げ値(λ)および
疲労限度比(σW/σB)が得られていない。
In steel D, the Mn content was out of the range of the present invention, and the desired microstructure was not obtained, so that the strength-ductility balance (TS × El) was low and the fatigue limit ratio (σ
W / σ B ) is also low. Steel F does not have a sufficient fatigue limit ratio (σ W / σ B ) because the content of P is out of the range of the present invention. Steel G does not have sufficient hole expansion value (λ) and fatigue limit ratio (σ W / σ B ) because the content of S is out of the range of the present invention. Steel H does not have sufficient elongation (El), hole expansion value (λ), and fatigue limit ratio (σ W / σ B ) because the content of C is outside the range of the present invention.

【0052】[0052]

【発明の効果】以上詳述したように、本発明は、バーリ
ング加工性に優れた引張強度540MPa以上の加工誘
起変態型複合組織鋼板およびその製造方法を提供するも
のであり、これらの熱延鋼板を用いることにより、疲労
特性や延性を十分に確保しつつバーリング加工性(穴拡
げ性)の大幅な改善が期待できるため、本発明は、工業
的価値が高い発明であると言える。
As described above in detail, the present invention provides a work-induced transformed composite structure steel sheet excellent in burring workability and having a tensile strength of 540 MPa or more, and a method for producing the same. By using, it is possible to expect a significant improvement in burring workability (hole expanding property) while sufficiently securing fatigue properties and ductility, and thus the present invention can be said to be an invention having high industrial value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に至る予備実験の結果を、フェライト平
均粒径、残留オーステナイト粒径のフェライト粒径に対
する相対的な大きさと穴拡げ値の関係で示す図である。
FIG. 1 is a diagram showing the results of preliminary experiments leading to the present invention in relation to the relative sizes of ferrite average grain size and retained austenite grain size with respect to ferrite grain size and hole expansion values.

【図2】本発明に至る予備実験の結果を、残留オーステ
ナイトの炭素濃度と穴拡げ値の関係で示す図である。
FIG. 2 is a diagram showing the results of preliminary experiments leading to the present invention in the relationship between the carbon concentration of retained austenite and the hole expansion value.

【図3】疲労試験片の形状を説明する図である。FIG. 3 is a diagram illustrating the shape of a fatigue test piece.

フロントページの続き (72)発明者 岡田 浩幸 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 Fターム(参考) 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA14 AA15 AA16 AA17 AA19 AA22 AA23 AA27 AA29 AA31 AA32 AA35 AA36 AA39 AA40 BA01 CA02 CC03 CD03 CE01 4K037 EA01 EA02 EA05 EA06 EA09 EA11 EA13 EA15 EA16 EA17 EA19 EA20 EA23 EA25 EA27 EA28 EA31 EA32 EA35 EA36 EB06 EB07 EB08 EB09 EB11 FA02 FC03 FC04 FC07 FD03 FD04 FD08 FE01 FE06 FF01 JA06 JA07 Continuing from the front page (72) Inventor Hiroyuki Okada 5-3 Tokai-cho, Tokai-shi, Aichi F-term in Nippon Steel Corporation Nagoya Works (reference) 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA14 AA15 AA16 AA17 AA19 AA22 AA23 AA27 AA29 AA31 AA32. JA07

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 質量%にて、 C :0.01〜0.3%、 Si:0.01〜2%、 Mn:0.05〜3%、 P:≦0.1%、 S:≦0.01%、 Al:0.005〜1%、 を含み、残部がFe及び不可避的不純物からなる鋼であ
って、そのミクロ組織が、体積分率5%以上25%以下
の残留オーステナイトを含み、残部が主にフェライト及
びベイナイトからなる複合組織であり、フェライト平均
粒径が2μm以上20μm以下、残留オーステナイト平
均粒径をフェライト平均粒径で除した値が0.05以上
0.8以下且つ、残留オーステナイトの炭素濃度が0.
2%以上3%以下であることを特徴とする、バーリング
加工性に優れる加工誘起変態型複合組織鋼板。
1. In mass%, C: 0.01 to 0.3%, Si: 0.01 to 2%, Mn: 0.05 to 3%, P: ≦ 0.1%, S: ≦ 0.01%, Al: 0.005 to 1%, the balance being Fe and inevitable impurities, the microstructure of which contains retained austenite with a volume fraction of 5% or more and 25% or less. The remainder is a composite structure mainly composed of ferrite and bainite, the average ferrite grain size is 2 μm or more and 20 μm or less, the value obtained by dividing the residual austenite average grain size by the ferrite average grain size is 0.05 or more and 0.8 or less, The carbon concentration of the retained austenite is 0.
A work-induced transformation-type composite structure steel sheet having excellent burring workability, wherein the steel sheet content is 2% or more and 3% or less.
【請求項2】 前記鋼が、さらに、質量%にて、Cu:
0.2〜2%を含有することを特徴とする、請求項1に
記載のバーリング加工性に優れる加工誘起変態型複合組
織鋼板。
2. The steel according to claim 1, further comprising:
2. The steel sheet according to claim 1, wherein the steel sheet contains 0.2 to 2% of burring workability. 3.
【請求項3】 前記鋼が、さらに、質量%にて、B:
0.0002〜0.002%を含有することを特徴とす
る、請求項1または請求項2に記載のバーリング加工性
に優れる加工誘起変態型複合組織鋼板。
3. The steel according to claim 1, further comprising:
The work-induced transformation type composite structure steel sheet having excellent burring workability according to claim 1 or 2, characterized by containing 0.0002 to 0.002%.
【請求項4】 前記鋼が、さらに、質量%にて、Ni:
0.1〜1%を含有することを特徴とする、請求項1な
いし請求項3のいずれか1項に記載のバーリング加工性
に優れる加工誘起変態型複合組織鋼板。
4. The steel according to claim 1, further comprising:
The multi-structure steel sheet according to any one of claims 1 to 3, wherein the multi-structure steel sheet has excellent burring workability, comprising 0.1 to 1%.
【請求項5】 前記鋼が、さらに、質量%にて、 Ca:0.0005〜0.002%、 REM:0.0005〜0.02% の一種または二種を含有することを特徴とする、請求項
1ないし請求項4のいずれか1項に記載のバーリング加
工性に優れる加工誘起変態型複合組織鋼板。
5. The steel further comprises, in mass%, one or two of Ca: 0.0005 to 0.002% and REM: 0.0005 to 0.02%. The work-induced transformation type composite structure steel sheet according to any one of claims 1 to 4, which is excellent in burring workability.
【請求項6】 前記鋼が、さらに、質量%にて、 Ti:0.05〜0.5%、 Nb:0.01〜0.5%、 Mo:0.05〜1%、 V :0.02〜0.2%、 Cr:0.01〜1%、 Zr:0.02〜0.2% の一種または二種以上を含有することを特徴とする、請
求項1ないし請求項5のいずれか1項に記載のバーリン
グ加工性に優れる加工誘起変態型複合組織鋼板。
6. The steel further comprises, by mass%, Ti: 0.05 to 0.5%, Nb: 0.01 to 0.5%, Mo: 0.05 to 1%, V: 0. 6. One to two or more of 0.02 to 0.2%, Cr: 0.01 to 1%, and Zr: 0.02 to 0.2%. A work-induced transformation-type composite structure steel sheet having excellent burring workability according to any one of the preceding claims.
【請求項7】 請求項1ないし請求項6のいずれか1項
に記載の成分を有する鋼片の熱間圧延に際し、Ar3
態点温度以上Ar3変態点温度+100℃以下で熱間仕
上圧延を終了した後、Ar1変態点温度以上Ar3変態点
温度以下の温度域で1〜20秒間滞留し、その後、20
℃/s以上の冷却速度で冷却して、350℃超450℃
未満の温度範囲の巻取温度で巻き取り、そのミクロ組織
が、体積分率5%以上25%以下の残留オーステナイト
を含み、残部が主にフェライト及びベイナイトからなる
複合組織であり、フェライト平均粒径が2μm以上20
μm以下、残留オーステナイト平均粒径をフェライト平
均粒径で除した値が0.05以上0.8以下且つ、残留
オーステナイトの炭素濃度が0.2%以上3%以下であ
る鋼板を得ることを特徴とする、バーリング加工性に優
れる加工誘起変態型複合組織鋼板の製造方法。
7. Hot-rolling of a slab having the composition according to claim 1 at a temperature between the Ar 3 transformation point temperature and the Ar 3 transformation point temperature + 100 ° C. or less. Is completed, and is retained for 1 to 20 seconds in a temperature range from the Ar 1 transformation point temperature to the Ar 3 transformation point temperature, and then 20
Cooling at a cooling rate of at least 350 ° C / s
A microstructure including a retained austenite with a volume fraction of 5% or more and 25% or less, and a balance mainly composed of ferrite and bainite. Is 2 μm or more and 20
μm or less, a steel sheet having a value obtained by dividing the average retained austenite grain size by the average ferrite grain size of 0.05 to 0.8 and a carbon concentration of the retained austenite of 0.2% to 3%. A method for producing a work-induced transformed composite structure steel sheet having excellent burring workability.
【請求項8】 前記熱間圧延に際し、粗圧延終了後、高
圧デスケーリングを行ない、Ar3変態点温度以上Ar3
変態点温度+100℃以下で熱間仕上圧延を終了するこ
とを特徴とする請求項7記載のバーリング加工性に優れ
る加工誘起変態型複合組織鋼板の製造方法。
Upon wherein said hot rolling after rough rolling end performs high pressure descaling, Ar 3 transformation point temperature or more Ar 3
The method for producing a work-induced transformation-type composite structure steel sheet excellent in burring workability according to claim 7, wherein the hot finish rolling is completed at a transformation point temperature of + 100 ° C or lower.
JP2000330190A 2000-10-30 2000-10-30 Steel sheet with strain induced transformation type composite structure having excellent burring workability and its production method Withdrawn JP2002129285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000330190A JP2002129285A (en) 2000-10-30 2000-10-30 Steel sheet with strain induced transformation type composite structure having excellent burring workability and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000330190A JP2002129285A (en) 2000-10-30 2000-10-30 Steel sheet with strain induced transformation type composite structure having excellent burring workability and its production method

Publications (1)

Publication Number Publication Date
JP2002129285A true JP2002129285A (en) 2002-05-09

Family

ID=18806756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000330190A Withdrawn JP2002129285A (en) 2000-10-30 2000-10-30 Steel sheet with strain induced transformation type composite structure having excellent burring workability and its production method

Country Status (1)

Country Link
JP (1) JP2002129285A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028693A1 (en) * 2003-09-24 2005-03-31 Nippon Steel Corporation Hot rolled steel sheet for working
CN101120114A (en) * 2005-03-31 2008-02-06 株式会社神户制钢所 High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile
US7780797B2 (en) * 2002-12-26 2010-08-24 Nippon Steel Corporation High strength thin steel excellent in hole expansibility, ductility and chemical treatment characteristics
JP2011084813A (en) * 2009-09-15 2011-04-28 Usui Kokusai Sangyo Kaisha Ltd Workpiece made of high strength steel having excellent notch fatigue strength, and method for producing the same
US7981224B2 (en) * 2003-12-18 2011-07-19 Nippon Steel Corporation Multi-phase steel sheet excellent in hole expandability and method of producing the same
WO2013102982A1 (en) * 2012-01-05 2013-07-11 Jfeスチール株式会社 High carbon hot-rolled steel sheet with excellent hardenability and minimal in-plane anisotropy, and method for producing same
WO2018006844A1 (en) * 2016-07-06 2018-01-11 马钢(集团)控股有限公司 High strength, high toughness, heat-cracking resistant bainite steel wheel for rail transportation and manufacturing method thereof
JP2019044217A (en) * 2017-08-31 2019-03-22 新日鐵住金株式会社 Hot rolled steel sheet, spline shaft bearing and manufacturing method therefor
CN109852882A (en) * 2019-02-27 2019-06-07 舞阳钢铁有限责任公司 A kind of alloy structure 30MnB steel plate and its production method
CN109943775A (en) * 2019-03-26 2019-06-28 舞阳钢铁有限责任公司 A kind of structure 28MnB steel plate and its production method
JP2020509192A (en) * 2016-12-20 2020-03-26 ポスコPosco High strength hot rolled steel sheet excellent in weldability and ductility and method for producing the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7780797B2 (en) * 2002-12-26 2010-08-24 Nippon Steel Corporation High strength thin steel excellent in hole expansibility, ductility and chemical treatment characteristics
WO2005028693A1 (en) * 2003-09-24 2005-03-31 Nippon Steel Corporation Hot rolled steel sheet for working
US7381478B2 (en) 2003-09-24 2008-06-03 Nippon Steel Corporation Hot rolled steel sheet for processing and method for manufacturing the same
CN100392131C (en) * 2003-09-24 2008-06-04 新日本制铁株式会社 Hot rolled steel sheet for working
US7981224B2 (en) * 2003-12-18 2011-07-19 Nippon Steel Corporation Multi-phase steel sheet excellent in hole expandability and method of producing the same
US8986468B2 (en) 2005-03-31 2015-03-24 Kobe Steel, Ltd. High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile
CN101120114A (en) * 2005-03-31 2008-02-06 株式会社神户制钢所 High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile
JP2011084813A (en) * 2009-09-15 2011-04-28 Usui Kokusai Sangyo Kaisha Ltd Workpiece made of high strength steel having excellent notch fatigue strength, and method for producing the same
US10323293B2 (en) 2012-01-05 2019-06-18 Jfe Steel Corporation High-carbon hot rolled steel sheet with excellent hardenability and small in-plane anistropy and method for manufacturing the same
WO2013102982A1 (en) * 2012-01-05 2013-07-11 Jfeスチール株式会社 High carbon hot-rolled steel sheet with excellent hardenability and minimal in-plane anisotropy, and method for producing same
JP2019524992A (en) * 2016-07-06 2019-09-05 ▲馬▼▲鋼▼(集▲団▼)控股有限公司 High strength, high toughness, heat crack resistant bainite steel wheels for railway transportation and manufacturing method thereof
EP3483296A4 (en) * 2016-07-06 2019-05-15 Magang (Group) Holding Co., Ltd. High strength, high toughness, heat-cracking resistant bainite steel wheel for rail transportation and manufacturing method thereof
WO2018006844A1 (en) * 2016-07-06 2018-01-11 马钢(集团)控股有限公司 High strength, high toughness, heat-cracking resistant bainite steel wheel for rail transportation and manufacturing method thereof
AU2017294246B2 (en) * 2016-07-06 2020-01-02 Maanshan Iron & Steel Co., Ltd. High strength, high toughness, heat-cracking resistant bainite steel wheel for rail transportation and manufacturing method thereof
US11306377B2 (en) 2016-07-06 2022-04-19 Magang (Group) Holding Co., Ltd. High strength, high toughness, heat-cracking resistant bainite steel wheel for rail transportation and manufacturing method thereof
JP2020509192A (en) * 2016-12-20 2020-03-26 ポスコPosco High strength hot rolled steel sheet excellent in weldability and ductility and method for producing the same
JP2019044217A (en) * 2017-08-31 2019-03-22 新日鐵住金株式会社 Hot rolled steel sheet, spline shaft bearing and manufacturing method therefor
CN109852882A (en) * 2019-02-27 2019-06-07 舞阳钢铁有限责任公司 A kind of alloy structure 30MnB steel plate and its production method
CN109943775A (en) * 2019-03-26 2019-06-28 舞阳钢铁有限责任公司 A kind of structure 28MnB steel plate and its production method

Similar Documents

Publication Publication Date Title
EP2703512B1 (en) High-strength steel sheet with excellent formability and stability of material properties, and method for manufacturing same
EP1201780B1 (en) Steel plate having excellent burring workability together with high fatigue strength, and method for producing the same
CA2788095C (en) Steel sheet and method of manufacturing steel sheet
CA2712226C (en) High strength galvanized steel sheet with excellent formability and method for manufacturing the same
US8657969B2 (en) High-strength galvanized steel sheet with excellent formability and method for manufacturing the same
CA2767439C (en) High-strength steel sheet and method for manufacturing the same
US10689724B2 (en) Steel sheet with strain induced transformation type composite structure and method of manufacturing same
US11739392B2 (en) High-strength steel sheet and method for manufacturing the same
JP5339005B1 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4559969B2 (en) Hot-rolled steel sheet for processing and manufacturing method thereof
JP4580157B2 (en) Hot-rolled steel sheet having both BH property and stretch flangeability and manufacturing method thereof
US20150000797A1 (en) Cold-Rolled Flat Steel Product and Method for its Production
JP4445095B2 (en) Composite structure steel plate excellent in burring workability and manufacturing method thereof
WO2013160928A1 (en) High-strength steel sheet and method for manufacturing same
CN112313349B (en) Flat steel product and method for the production thereof
JP2002129285A (en) Steel sheet with strain induced transformation type composite structure having excellent burring workability and its production method
JP2004250749A (en) High strength thin steel sheet having burring property, and production method therefor
US20230107809A1 (en) Hot-rolled steel sheet
JP2002241897A (en) Steel sheet having small variation in yield strength and fracture elongation, high formability and low yield ratio, and method for manufacturing the same
JP4028719B2 (en) Squeezable burring high-strength thin steel sheet having excellent shape freezing property and manufacturing method thereof
CN115298342B (en) steel plate
JP2002129286A (en) Steel sheet with strain induced transformation type composite structure having excellent burring workability and its production method
JP2008050622A (en) High-strength steel sheet having excellent ductility and deep drawability, and manufacturing method therefor
JP2001303187A (en) Dual-phase steel sheet excellent in burring property, and its manufacturing method
US20240052449A1 (en) High strength steel sheet, impact absorbing member, and method for manufacturing high strength steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108