JP2001303187A - Dual-phase steel sheet excellent in burring property, and its manufacturing method - Google Patents

Dual-phase steel sheet excellent in burring property, and its manufacturing method

Info

Publication number
JP2001303187A
JP2001303187A JP2000121210A JP2000121210A JP2001303187A JP 2001303187 A JP2001303187 A JP 2001303187A JP 2000121210 A JP2000121210 A JP 2000121210A JP 2000121210 A JP2000121210 A JP 2000121210A JP 2001303187 A JP2001303187 A JP 2001303187A
Authority
JP
Japan
Prior art keywords
phase
steel sheet
ferrite
steel
composite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000121210A
Other languages
Japanese (ja)
Inventor
Tatsuo Yokoi
龍雄 横井
Manabu Takahashi
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000121210A priority Critical patent/JP2001303187A/en
Priority to PCT/JP2000/008934 priority patent/WO2001081640A1/en
Priority to DE60018940T priority patent/DE60018940D1/en
Priority to EP00981781A priority patent/EP1201780B1/en
Priority to US09/890,048 priority patent/US6589369B2/en
Priority to KR10-2001-7010080A priority patent/KR100441414B1/en
Priority to TW089127752A priority patent/TWI261072B/en
Publication of JP2001303187A publication Critical patent/JP2001303187A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a hot rolled steel sheet having >=540 MPa tensile strength and excellent in fatigue characteristic and burring property (bore expandability) and also to provide a manufacturing method for stably manufacturing this steel sheet at a low cost. SOLUTION: The dual-phase steel sheet excellent in burring property is composed of steel having a composition containing, by mass, 0.01-0.2% C, 0.01-2% Si, 0.05-3% Mn, <=0.1% P, <=0.01% S and 0.005-1% Al and has a microstructure consisting of a dual-phase structure in which a phase having maximum volume fraction is composed of ferrite and a second phase is composed essentially of martensite; a value given by dividing the volume fraction of the second phase by the average grain size of the second phase is 3-12; and a value given by dividing the average value of the hardness of the second phase by the average value of the hardness of ferrite is 1.5-7. This steel sheet can be manufactured by finishing the hot finish rolling of the steel with the above composition at a temperature between the Ar3 transformation point and (Ar3 transformation point + 100 deg.C), holding the resultant steel sheet in the temperature region between the Ar1 transformation point and the Ar3 transformation point for 1-20 s, cooling the steel sheet at >=20 deg.C/s cooling rate, and then coiling it at <=350 deg.C coiling temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、バーリング加工性
に優れた引張強度540MPa以上の複合組織鋼板およ
びその製造方法に関するものであり、特に、自動車の足
廻り部品やロードホイール等の穴拡げ加工性と耐久性の
両立が求められる素材として好適な、穴拡げ性(バーリ
ング加工性)に優れた複合組織鋼板およびその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite steel sheet having excellent burring workability and a tensile strength of 540 MPa or more, and a method for producing the same. The present invention relates to a composite structure steel sheet excellent in hole expandability (burring workability) and a method for producing the same, which is suitable as a material required to achieve both balance and durability.

【0002】[0002]

【従来の技術】近年、自動車の燃費向上などのために軽
量化を目的として、Al合金等の軽金属や高強度鋼板の
自動車部材への適用が進められている。ただし、Al合
金等の軽金属は比強度が高いという利点があるものの、
鋼に比較して著しく高価であるため、その適用は特殊な
用途に限られている。従って、より広い範囲で自動車の
軽量化を推進するためには、安価な高強度鋼板の適用が
強く求められている。
2. Description of the Related Art In recent years, the application of light metals such as Al alloys and high-strength steel sheets to automobile members has been promoted for the purpose of weight reduction in order to improve fuel efficiency of automobiles. However, although light metals such as Al alloys have the advantage of high specific strength,
Due to their considerable cost compared to steel, their application is limited to special applications. Therefore, in order to promote weight reduction of automobiles in a wider range, there is a strong demand for the use of inexpensive high-strength steel sheets.

【0003】このような高強度化の要求に対して、これ
までは車体重量の1/4程度を占めるホワイトボティー
やパネル類に使用される冷延鋼板の分野において、強度
と深絞り性を兼ね備えた鋼板や焼付け硬化性のある鋼板
等の開発が進められ、車体の軽量化に寄与してきた。と
ころが現在、軽量化の対象は車体重量の約20%を占め
る構造部材や足廻り部材にシフトしてきており、これら
の部材に用いる高強度熱延鋼板の開発が急務となってい
る。
[0003] In response to such demands for high strength, in the field of cold rolled steel sheets used for white bodies and panels that occupy about 1/4 of the body weight, they have both strength and deep drawability. Development of steel sheets and bake-hardening steel sheets has been promoted, which has contributed to weight reduction of vehicle bodies. However, at present, the object of weight reduction is shifting to structural members and undercarriage members occupying about 20% of the vehicle body weight, and there is an urgent need to develop high-strength hot-rolled steel sheets used for these members.

【0004】ただし、高強度化は一般的に成形性(加工
性)等の材料特性を劣化させるため、材料特性を劣化さ
せずに如何に高強度化を図るかが高強度鋼板開発の鍵に
なる。特に構造部材や足廻り部材用鋼板に求められる特
性としては、穴拡げ性、疲労耐久性および耐食性等が重
要であり、高強度とこれら特性を如何に高次元でバラン
スさせるかが重要である。
However, since high strength generally degrades material properties such as formability (workability), how to achieve high strength without deteriorating material properties is a key to the development of high strength steel sheets. Become. In particular, as properties required for steel sheets for structural members and suspension members, hole expandability, fatigue durability, corrosion resistance, and the like are important, and high strength and how to balance these properties in high dimensions are important.

【0005】例えば、ロードホイールディスク用鋼板に
求められる特性としては、穴拡げ性と疲労耐久性が特に
重要視されている。これは、ロードホイールディスクの
成形工程の中でもハブ穴成形でのバーリング加工(穴拡
げ加工)が特に厳しく、またホイールの部材特性で最も
厳しい基準で管理されているのが疲労耐久性であるため
である。
[0005] For example, as properties required for a steel plate for a road wheel disc, hole expandability and fatigue durability are particularly important. This is because the burring process (hole expansion process) in hub hole forming is particularly severe in the road wheel disc forming process, and the fatigue durability is controlled by the strictest standards for wheel member characteristics. is there.

【0006】現在、これらロードホイールディスク用高
強度熱延鋼板として、部材での疲労耐久性を重視して疲
労特性に優れる590MPa級のフェライト−マルテン
サイトの複合組織鋼板(いわゆるDual Phase
鋼)が用いられているが、これら部材用鋼板に要求され
る強度レベルは、590MPa級から780MPa級へ
とさらなる高強度化へ向かいつつある。一方、高強度化
に伴って穴拡げ性は低下する傾向を示すばかりでなく、
複合組織鋼板はその不均一な組織のために穴拡げ性に関
しては不利であると言われている。従って590MPa
級で問題とはならなかった穴拡げ性が、780MPa級
では問題となる可能性がある。
At present, as a high-strength hot-rolled steel sheet for a road wheel disc, a 590 MPa class ferrite-martensite composite structure steel sheet (so-called dual phase steel sheet) having excellent fatigue properties with emphasis on fatigue durability of members.
However, the strength level required for these steel sheets for members is from 590 MPa class to 780 MPa class, and the strength is being further increased. On the other hand, hole expandability not only tends to decrease with higher strength,
Composite steel sheets are said to be disadvantageous in terms of hole expandability due to their uneven structure. Therefore, 590 MPa
The hole expandability that was not a problem in the 780 MPa class may be a problem in the 780 MPa class.

【0007】すなわち、ロードホイール等足廻り部品へ
の高強度鋼板の適用にあたっては、疲労耐久性に加えて
穴拡げ性も重要な検討課題となる。ところが、疲労耐久
性を向上させるためにミクロ組織をフェライト−マルテ
ンサイトの複合組織とし、かつ穴拡げ性にも優れる高強
度鋼板について記述した発明は、一部の例外を除いて殆
ど見受けられないのが現状である。
That is, in applying a high-strength steel plate to a part around a load such as a road wheel, in addition to fatigue durability, hole expandability is an important consideration. However, the invention describing a high-strength steel sheet having a microstructure of a ferrite-martensite composite structure in order to improve fatigue durability, and also having excellent hole expandability is hardly found except for some exceptions. Is the current situation.

【0008】例えば特開平5−179396号公報に
は、ミクロ組織をフェライトとマルテンサイトまたは残
留オーステナイトとして疲労耐久性を確保し、フェライ
トをTiCやNbCの析出物で強化することでフェライ
ト粒とマルテンサイト相との強度差を小さくし、フェラ
イト粒への局所的な変形の集中を抑制して穴拡げ性を確
保する技術が開示されている。
For example, Japanese Patent Application Laid-Open No. 5-179396 discloses that the microstructure is made of ferrite and martensite or retained austenite to ensure fatigue durability, and that ferrite is strengthened by TiC or NbC precipitates to form ferrite grains and martensite. A technique has been disclosed in which the difference in strength from the phase is reduced, the concentration of local deformation on the ferrite grains is suppressed, and the hole expandability is ensured.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、ロード
ホイールのディスク等一部の部品用鋼板においては、バ
ーリング加工性等の成形性と疲労耐久性の高いレベルで
のバランスが大変に重要であり、上記従来技術ではこれ
を満足する特性が得られない。また例え両特性が満足さ
れたとしても、安価に安定して製造できる製造方法を提
供することが重要であり、上記従来技術では不十分であ
ると言わざるを得ない。
However, in a steel plate for some parts such as a disk of a road wheel, a balance between formability such as burring workability and a high level of fatigue durability is very important. With the conventional technology, characteristics satisfying this cannot be obtained. Even if both characteristics are satisfied, it is important to provide a manufacturing method that can be manufactured stably at a low cost, and the above-mentioned conventional technology has to be said to be insufficient.

【0010】すなわち上記特開平5−179396号公
報は、フェライト粒を析出強化しているために伸びが十
分得られないばかりか、製造時にマルテンサイト相の周
囲に導入される高密度の可動転位が析出物によって移動
を妨げられるために、低降伏比というフェライト−マル
テンサイト複合組織特有の特性が得られない。また、T
i、Nbの添加は製造コストの増加を招くために好まし
くない。
That is, Japanese Patent Application Laid-Open No. Hei 5-179396 discloses that not only a sufficient elongation cannot be obtained due to precipitation strengthening of ferrite grains, but also that high-density mobile dislocations introduced around the martensite phase at the time of production are not sufficient. Since the migration is hindered by the precipitates, the characteristic characteristic of the ferrite-martensite composite structure of low yield ratio cannot be obtained. Also, T
Addition of i and Nb is not preferable because it increases the production cost.

【0011】そこで本発明は、上記従来技術の課題を有
利に解決できる、疲労特性とバーリング加工性(穴拡げ
性)に優れた引張強度540MPa以上の熱延鋼板、お
よびその鋼板を安価に安定して製造できる製造方法を提
供することを目的とする。
Accordingly, the present invention provides a hot-rolled steel sheet having a tensile strength of 540 MPa or more excellent in fatigue characteristics and burring workability (hole-expandability), which can advantageously solve the above-mentioned problems of the prior art, and can stably produce the steel sheet at low cost. It is an object of the present invention to provide a manufacturing method which can be manufactured by using the method.

【0012】[0012]

【課題を解決するための手段】本発明者らは、現在通常
に採用されている連続熱間圧延設備により工業的規模で
生産されている熱延鋼板の製造プロセスを念頭におい
て、熱延鋼板のバーリング加工性と疲労特性の両立を達
成すべく、鋭意研究を重ねた。その結果、ミクロ組織
が、体積分率最大の相をフェライトとし、第二相を主に
マルテンサイトとする複合組織であり、第二相の体積分
率を第二相の平均粒径で除した値が3以上12以下、且
つ第二相の硬さの平均値をフェライトの硬さの平均値で
除した値が1.5以上7以下であることが、バーリング
加工性向上に非常に有効であることを新たに見出し、本
発明をなしたものである。
Means for Solving the Problems The present inventors considered the production process of a hot-rolled steel sheet produced on an industrial scale by a continuous hot-rolling equipment which is currently usually used, and considered the production process of the hot-rolled steel sheet. In order to achieve both burring workability and fatigue characteristics, intensive research was conducted. As a result, the microstructure is a composite structure in which the phase having the largest volume fraction is ferrite and the second phase is mainly martensite, and the volume fraction of the second phase is divided by the average particle size of the second phase. A value of 3 or more and 12 or less, and a value obtained by dividing the average value of the hardness of the second phase by the average value of the hardness of the ferrite is 1.5 or more and 7 or less is very effective in improving burring workability. The present invention has been newly found, and the present invention has been made.

【0013】即ち、本発明の要旨は以下の通りである。 (1) 質量%で、 C :0.01〜0.2%、 Si:0.01〜2%、 Mn:0.05〜3%、 P ≦0.1%、 S ≦0.01%、 Al:0.005〜1% を含み、残部がFe及び不可避的不純物からなる鋼であ
って、そのミクロ組織が、体積分率最大の相をフェライ
トとし、第二相を主にマルテンサイトとする複合組織で
あり、第二相の体積分率を第二相の平均粒径で除した値
が3以上12以下、且つ第二相の硬さの平均値をフェラ
イトの硬さの平均値で除した値が1.5以上7以下であ
ることを特徴とする、バーリング加工性に優れる複合組
織鋼板。 (2) 前記鋼が、さらに質量%で、Cu:0.2〜2
%を含有することを特徴とする、前記(1)に記載のバ
ーリング加工性に優れる複合組織鋼板。 (3) 前記鋼が、さらに質量%で、B:0.0002
〜0.002%を含有することを特徴とする、前記
(1)または(2)に記載のバーリング加工性に優れる
複合組織鋼板。 (4) 前記鋼が、さらに質量%で、Ni:0.1〜1
%を含有することを特徴とする、前記(1)ないし
(3)のいずれか1項に記載のバーリング加工性に優れ
る複合組織鋼板。 (5) 前記鋼が、さらに質量%で、 Ca:0.0005〜0.002%、REM:0.00
05〜0.02% の一種または二種を含有することを特徴とする、前記
(1)ないし(4)のいずれか1項に記載のバーリング
加工性に優れる複合組織鋼板。 (6) 前記鋼が、さらに質量%で、 Ti:0.05〜0.5%、 Nb:0.01〜0.5%、 Mo:0.05〜1%、 V :0.02〜0.2%、 Cr:0.01〜1%、 Zr:0.02〜0.2% の一種または二種以上を含有することを特徴とする、前
記(1)ないし(5)のいずれか1項に記載のバーリン
グ加工性に優れる複合組織鋼板。
That is, the gist of the present invention is as follows. (1) In mass%, C: 0.01 to 0.2%, Si: 0.01 to 2%, Mn: 0.05 to 3%, P ≦ 0.1%, S ≦ 0.01%, Al: A steel containing 0.005 to 1%, with the balance being Fe and unavoidable impurities, the microstructure of which is ferrite as the phase having the largest volume fraction and mainly martensite as the second phase. It is a composite structure, and the value obtained by dividing the volume fraction of the second phase by the average particle size of the second phase is 3 or more and 12 or less, and the average value of the hardness of the second phase is divided by the average value of the hardness of the ferrite. The composite structure steel sheet having excellent burring workability, characterized in that the obtained value is 1.5 or more and 7 or less. (2) The steel further contains, by mass%, Cu: 0.2 to 2
%, Wherein the composite structure steel sheet is excellent in burring workability according to the above (1). (3) The steel further contains B: 0.0002 by mass%.
The composite structure steel sheet having excellent burring workability according to the above (1) or (2), characterized in that the steel sheet contains 0.1 to 0.002%. (4) The steel further contains Ni: 0.1 to 1 in mass%.
%. The composite structure steel sheet having excellent burring workability according to any one of the above (1) to (3), wherein (5) The steel further contains, by mass%, Ca: 0.0005 to 0.002%, REM: 0.00
The composite structure steel sheet having excellent burring workability according to any one of the above (1) to (4), characterized in that the steel sheet contains one or two kinds of steels having a burring property of from 0.05 to 0.02%. (6) The steel further contains, in mass%, Ti: 0.05 to 0.5%, Nb: 0.01 to 0.5%, Mo: 0.05 to 1%, and V: 0.02 to 0%. 2%, Cr: 0.01% to 1%, Zr: 0.02% to 0.2%, one or more of the above (1) to (5). 2. A composite structure steel sheet having excellent burring workability according to the above item.

【0014】(7) 前記(1)ないし(6)のいずれ
か1項に記載の成分を有する鋼片の熱間圧延に際し、A
r3 変態点温度以上Ar3 変態点温度+100℃以下で
熱間仕上圧延を終了した後、Ar1 変態点温度以上Ar
3 変態点温度以下の温度域で1〜20秒間滞留し、その
後、20℃/s以上の冷却速度で冷却して、350℃以
下の巻取温度で巻き取り、そのミクロ組織が、体積分率
最大の相をフェライトとし、第二相を主にマルテンサイ
トとする複合組織であり、第二相の体積分率を第二相の
平均粒径で除した値が3以上12以下、且つ第二相の硬
さの平均値をフェライトの硬さの平均値で除した値が
1.5以上7以下であることを特徴とする、バーリング
加工性に優れる複合組織鋼板の製造方法。 (8)前記熱間圧延に際し、粗圧延終了後、高圧デスケ
ーリングを行い、Ar3変態点温度以上Ar3 変態点温
度+100℃以下で熱間仕上圧延を終了することを特徴
とする前記(7)記載のバーリング加工性に優れる複合
組織鋼板の製造方法。
(7) When hot rolling a steel slab having the components described in any one of the above (1) to (6),
After finishing hot finish rolling at the r3 transformation point temperature or higher and the Ar3 transformation point temperature + 100 ° C or lower, the Ar1 transformation point temperature is higher than the Ar1 transformation point temperature.
3 Stay for 1 to 20 seconds in the temperature range below the transformation point temperature, then cool at a cooling rate of 20 ° C / s or more and wind it up at a winding temperature of 350 ° C or less. A composite structure in which the largest phase is ferrite and the second phase is mainly martensite. The value obtained by dividing the volume fraction of the second phase by the average particle size of the second phase is 3 or more and 12 or less, and A method for producing a composite structure steel sheet excellent in burring workability, wherein a value obtained by dividing an average value of phase hardness by an average value of ferrite hardness is 1.5 or more and 7 or less. (8) In the hot rolling described above, after the rough rolling is completed, high-pressure descaling is performed, and the hot finish rolling is completed at an Ar3 transformation point temperature or higher and an Ar3 transformation point temperature + 100 ° C or lower. A method for producing a composite structure steel sheet having excellent burring workability.

【0015】[0015]

【発明の実施の形態】以下に、本発明に至った基礎研究
結果について説明する。まず、穴拡げ性に及ぼすフェラ
イト平均粒径および第二相粒の大きさの影響を調査し
た。そのための供試材は次のようにして準備した。すな
わち、0.07%C−1.6%Si−2.0%Mn−
0.01%P−0.001%S−0.03%Alに成分
調整し溶製した鋳片を、Ar3 変態点温度以上のいずれ
かの温度で熱間仕上圧延を終了した後、Ar1 変態点温
度以上Ar3 変態点温度以下のいずれかの温度域で1〜
15秒間滞留し、その後20℃/s以上の冷却速度で冷
却して、常温で巻き取った。これらの鋼板について穴拡
げ試験を行った結果を、第二相の体積分率Vsを第二相
の平均粒径dmで除した値、および第二相の硬さの平均
値Hvsをフェライトの硬さの平均値Hvfで除した値
について整理したものを図1に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The results of basic research that led to the present invention will be described below. First, the influence of the average ferrite grain size and the size of the second phase grain on the hole expandability was investigated. The test materials for that were prepared as follows. That is, 0.07% C-1.6% Si-2.0% Mn-
After the hot finish rolling of the ingot obtained by adjusting the composition to 0.01% P-0.001% S-0.03% Al at any temperature not lower than the Ar3 transformation point temperature, the Ar1 transformation is performed. In the temperature range from the point temperature to the Ar3 transformation point temperature.
It was kept for 15 seconds, then cooled at a cooling rate of 20 ° C./s or more, and wound at normal temperature. The results of the hole expansion test performed on these steel sheets were determined by dividing the volume fraction Vs of the second phase by the average particle diameter dm of the second phase and the average hardness Hvs of the second phase by the hardness of the ferrite. FIG. 1 shows the values obtained by dividing the average values Hvf.

【0016】この結果より、第二相の体積分率を第二相
の平均粒径で除した値、および第二相の硬さの平均値を
フェライトの硬さの平均値で除した値と、穴拡げ性には
強い相関があり、第二相の体積分率を第二相の平均粒径
で除した値、および第二相の硬さの平均値をフェライト
の硬さの平均値で除した値が、それぞれ3以上12以
下、且つ1.5以上7以下で穴拡げ性が著しく向上する
ことを知見した。
From the results, the value obtained by dividing the volume fraction of the second phase by the average particle size of the second phase, and the value obtained by dividing the average value of the hardness of the second phase by the average value of the hardness of the ferrite were obtained. There is a strong correlation between the hole expandability and the value obtained by dividing the volume fraction of the second phase by the average particle size of the second phase, and the average value of the hardness of the second phase by the average value of the hardness of the ferrite. It has been found that when the divided values are 3 or more and 12 or less, and 1.5 or more and 7 or less, the hole expandability is remarkably improved.

【0017】このメカニズムは必ずしも明らかではない
が、第二相の体積分率を第二相の平均粒径で除した値
(第二相粒の大きさ)が大きすぎるとミクロ組織の均一
性が失われ、第二相と母相の界面にボイドが生じやす
く、穴拡げの際にクラックの起点となり易くなり、小さ
すぎると穴拡げ率と相関がある局部延性が低下するた
め、最適な値において穴拡げ率が向上すると推測され
る。また、第二相の硬さの平均値をフェライトの硬さの
平均値で除した値(フェライトと第二相の強度差)が大
きすぎると、第二相と母相の界面にボイドが生じやす
く、穴拡げの際にクラックの起点となり、小さすぎる疲
労き裂の停留に有効な第二相の効果が失われ、穴拡げ性
と疲労特性の両立が困難になると考えられる。
Although this mechanism is not always clear, if the value obtained by dividing the volume fraction of the second phase by the average particle size of the second phase (the size of the second phase grains) is too large, the uniformity of the microstructure may be reduced. Lost, voids tend to occur at the interface between the second phase and the parent phase, tend to be the starting point of cracks at the time of hole expansion, and if too small, the local ductility, which is correlated with the hole expansion rate, decreases, so at the optimal value It is estimated that the hole expansion rate is improved. Also, if the average value of the hardness of the second phase divided by the average value of the hardness of the ferrite (the difference in strength between the ferrite and the second phase) is too large, voids are generated at the interface between the second phase and the mother phase. This is considered to be a starting point of cracks during hole expansion, and the effect of the second phase, which is effective in stopping fatigue cracks that are too small, is lost, and it is considered difficult to achieve both hole expansion properties and fatigue characteristics.

【0018】なお、フェライト平均粒径の測定法は、J
IS G 0552鋼のフェライ結晶粒度試験法に記載
の切断法に準じた。また、第二相の平均粒径については
平均円相当径と定義し、画像処理装置等より得られる値
を採用した。また硬さ測定法は、JIS Z 2244
記載のビッカース硬さ試験―試験方法に従って測定し
た。ただし、試験力は0.049〜0.098N、保持
時間は15秒である。さらに、穴拡げ性(バーリング加
工性)については日本鉄鋼連盟規格JFST 1001
−1996記載の穴拡げ試験方法に従って評価した。
The method of measuring the average grain size of ferrite is described in J.
The cutting method described in the method for testing ferrite grain size of IS G 0552 steel was used. Further, the average particle diameter of the second phase was defined as an average circle equivalent diameter, and a value obtained from an image processing apparatus or the like was adopted. The hardness is measured in accordance with JIS Z 2244.
Vickers hardness test described-measured according to test method. However, the test force is 0.049 to 0.098 N, and the holding time is 15 seconds. Further, regarding the hole expandability (burring workability), Japan Iron and Steel Federation Standard JFST 1001
-Evaluated according to the hole expansion test method described in 1996.

【0019】次に、本発明における鋼板のミクロ組織つ
いて詳細に説明する。鋼板のミクロ組織は、疲労特性と
バーリング加工性(穴拡げ性)を両立させるために体積
分率最大の相をフェライトとし、第二相を主にマルテン
サイトとする複合組織とした。ただし、第二相には不可
避的なベイナイト、残留オーステナイトを含むことを許
容するものである。なお、良好な疲労特性を確保するた
めには、ベイナイトおよび/または残留オーステナイト
の体積分率は5%以下が好ましい。ここで、フェライト
および第二相の体積率とは、鋼板の圧延方向断面厚みの
1/4厚における光学顕微鏡で、200〜500倍で観
察されたミクロ組織中におけるそれらの組織の面積分率
で定義される。
Next, the microstructure of the steel sheet according to the present invention will be described in detail. The microstructure of the steel sheet was a composite structure in which the phase having the largest volume fraction was ferrite and the second phase was mainly martensite in order to achieve both fatigue characteristics and burring workability (hole expanding properties). However, the second phase permits inclusion of unavoidable bainite and retained austenite. In order to secure good fatigue characteristics, the volume fraction of bainite and / or retained austenite is preferably 5% or less. Here, the volume fraction of the ferrite and the second phase is the area fraction of those structures in the microstructure observed at a magnification of 200 to 500 times with an optical microscope at a quarter of the thickness in the rolling direction of the steel sheet. Defined.

【0020】続いて、本発明の化学成分の限定理由につ
いて説明する。成分含有量は質量%である。Cは、所望
のミクロ組織を得るのに必要な元素である。ただし、
0.2%超含有していると加工性及び溶接性が劣化する
ので、0.2%以下とする。また0.01%未満である
と強度が低下するので、0.01%以上とする。
Next, the reasons for limiting the chemical components of the present invention will be described. The component content is% by mass. C is an element necessary for obtaining a desired microstructure. However,
If the content exceeds 0.2%, workability and weldability deteriorate, so the content is made 0.2% or less. If it is less than 0.01%, the strength is reduced.

【0021】Siは、所望のミクロ組織を得るのに必要
であると共に、固溶強化元素として強度上昇に有効であ
る。所望の強度を得るためには0.01%以上含有する
必要がある。しかし、2%超含有すると加工性が劣化す
る。そこでSiの含有量は0.01%以上、2%以下と
する。
[0021] Si is necessary for obtaining a desired microstructure and is effective for increasing the strength as a solid solution strengthening element. In order to obtain a desired strength, it is necessary to contain 0.01% or more. However, if the content exceeds 2%, the workability deteriorates. Therefore, the content of Si is set to 0.01% or more and 2% or less.

【0022】Mnは、固溶強化元素として強度上昇に有
効である。所望の強度を得るためには0.05%以上必
要である。また、3%超添加するとスラブ割れを生ずる
ため、3%以下とする。
Mn is effective for increasing the strength as a solid solution strengthening element. To obtain the desired strength, 0.05% or more is required. Further, if added over 3%, slab cracks occur, so the content is made 3% or less.

【0023】Pは、不純物であり低いほど好ましく、
0.1%超含有すると加工性や溶接性に悪影響を及ぼす
と共に、疲労特性も低下させるので、0.1%以下とす
る。
P is an impurity and is preferably as low as possible.
If the content exceeds 0.1%, workability and weldability are adversely affected, and fatigue characteristics are also reduced.

【0024】Sは、不純物であり低いほど好ましく、多
すぎると穴拡げ性を劣化させるA系介在物を生成するの
で、極力低減させるべきであるが、0.01%以下なら
ば許容できる範囲である。
S is an impurity and is preferably as low as possible. If it is too large, A-based inclusions which deteriorate the hole expandability are generated. Therefore, the content of S should be reduced as much as possible. is there.

【0025】Alは、溶鋼脱酸のために0.005%以
上添加する必要があるが、コストの上昇を招くためその
上限を1.0%とする。一方あまり多量に添加すると、
非金属介在物を増大させ伸びを劣化させるので、1.0
%以下、更に好ましくは0.5%以下とする。
[0025] Al must be added in an amount of 0.005% or more for deoxidation of molten steel, but the upper limit is set to 1.0% because it causes an increase in cost. On the other hand, if you add too much,
Since increasing non-metallic inclusions and deteriorating elongation, 1.0%
%, More preferably 0.5% or less.

【0026】Cuは、固溶状態で疲労特性を改善する効
果があるので、必要に応じ添加する。ただし0.2%未
満ではその効果は少なく、2%を超えて含有しても効果
が飽和する。そこでCuの含有量は0.2〜2%の範囲
とする。
Since Cu has an effect of improving fatigue characteristics in a solid solution state, Cu is added as necessary. However, if the content is less than 0.2%, the effect is small, and even if the content exceeds 2%, the effect is saturated. Therefore, the content of Cu is set in the range of 0.2 to 2%.

【0027】Bは、Cuと複合添加することにより疲労
限を上昇させる効果があるので、必要に応じ添加する。
ただし、0.0002%未満ではその効果を得るために
不十分であり、0.002%超添加するとスラブ割れが
起こる。よってBの添加は0.0002%以上、0.0
02%以下とする。
B has an effect of increasing the fatigue limit by being added in combination with Cu, so B is added as necessary.
However, if it is less than 0.0002%, it is insufficient to obtain the effect, and if it exceeds 0.002%, slab cracking occurs. Therefore, the addition of B is 0.0002% or more,
02% or less.

【0028】Niは、Cu含有による熱間脆性防止のた
めに必要に応じ添加する。ただし、0.1%未満ではそ
の効果が少なく、1%を超えて添加してもその効果が飽
和するので、0.1〜1%とする。
Ni is added as necessary to prevent hot brittleness due to the inclusion of Cu. However, if the content is less than 0.1%, the effect is small, and if the content exceeds 1%, the effect is saturated. Therefore, the content is set to 0.1 to 1%.

【0029】CaおよびREMは、破壊の起点となった
り、加工性を劣化させる非金属介在物の形態を変化させ
て無害化する元素である。ただし、0.0005%未満
添加してもその効果がなく、Caならば0.002%
超、REMならば0.02%超添加してもその効果が飽
和するのでCa=0.0005〜0.002%、REM
=0.0005〜0.02%添加することが好ましい。
Ca and REM are elements that become the starting point of destruction or change the form of nonmetallic inclusions that degrade workability and render them harmless. However, even if added less than 0.0005%, there is no effect, and if Ca is added, 0.002%
If the content of REM is more than 0.02%, the effect saturates even if it is added more than 0.02%.
= 0.0005 to 0.02% is preferably added.

【0030】さらに、強度を付与するために、Ti,N
b,Mo,V,Cr,Zrの析出強化もしくは固溶強化
元素の一種または二種以上を添加しても良い。ただし、
それぞれ0.05%、0.01%、0.05%、0.0
2%、0.01%、0.02%未満ではその効果を得る
ことができない。また、それぞれ0.5%、0.5%、
1%、0.2%、1%、0.2%を超え添加しても、そ
の効果は飽和する。
Further, in order to impart strength, Ti, N
One, two or more of precipitation strengthening or solid solution strengthening elements of b, Mo, V, Cr and Zr may be added. However,
0.05%, 0.01%, 0.05%, 0.0% respectively
If it is less than 2%, 0.01% or 0.02%, the effect cannot be obtained. Also, 0.5%, 0.5%,
Even if it exceeds 1%, 0.2%, 1%, and 0.2%, the effect is saturated.

【0031】なお、Snは本発明の効果を得るためには
特に定める必要はないが、熱間圧延時に疵が発生する恐
れがあるので、0.05%以下が望ましい。
It is to be noted that Sn is not particularly required to obtain the effects of the present invention, but is desirably 0.05% or less because flaws may occur during hot rolling.

【0032】次に、本発明の製造方法の限定理由につい
て、以下に詳細に述べる。本発明では、目的の成分含有
量になるように成分調整した溶鋼を鋳込むことによって
得たスラブを、高温鋳片のまま熱間圧延機に直送しても
よいし、室温まで冷却後に加熱炉で再加熱した後に熱間
圧延してもよい。再加熱温度については特に制限はない
が、1400℃以上であると、スケールオフ量が多量に
なり歩留まりが低下するので、再加熱温度は1400℃
未満が望ましい。また、1000℃未満の加熱はスケジ
ュール上操業効率を著しく損なうため、再加熱温度は1
000℃以上が望ましい。
Next, the reasons for limiting the production method of the present invention will be described in detail below. In the present invention, a slab obtained by casting molten steel whose components have been adjusted so as to have a target component content may be directly sent to a hot rolling mill as a high-temperature slab, or a heating furnace after cooling to room temperature. And then hot-rolled. The reheating temperature is not particularly limited, but if it is 1400 ° C or higher, the scale-off amount becomes large and the yield decreases, so the reheating temperature is 1400 ° C.
Less than is desirable. Heating at a temperature lower than 1000 ° C. significantly impairs the operation efficiency according to the schedule.
The temperature is preferably 000 ° C or higher.

【0033】熱間圧延工程は、粗圧延を終了後、仕上げ
圧延を行うが、最終パス温度(FT)がAr3 変態点温
度以上、Ar3 変態点温度+100℃以下の温度域で終
了する必要がある。これは、熱間圧延中に圧延温度がA
r3 変態点温度を切ると、ひずみが残留して延性が低下
してしまい加工性が劣化し、仕上げ温度がAr3 変態点
温度+100℃超では、仕上げ圧延後のオーステナイト
粒径が大きくなってしまうため、後の冷却工程において
行う二相域でフェライト変態の促進が不十分になり、目
的とするミクロ組織が得られない。従って、仕上げ温度
はAr3 変態点温度以上Ar3 変態点温度+100℃以
下とする。
In the hot rolling step, finish rolling is performed after rough rolling is completed, but it is necessary to finish the final pass temperature (FT) in a temperature range not lower than the Ar3 transformation point temperature and not higher than the Ar3 transformation point temperature + 100 ° C. . This is because the rolling temperature during hot rolling is A
If the r3 transformation point temperature is reduced, strain remains and ductility is reduced to deteriorate workability. If the finishing temperature is higher than the Ar3 transformation point temperature + 100 ° C., the austenite grain size after finish rolling becomes large. In addition, the promotion of ferrite transformation in the two-phase region performed in the subsequent cooling step becomes insufficient, and the desired microstructure cannot be obtained. Therefore, the finishing temperature is not less than the Ar3 transformation point temperature and not more than the Ar3 transformation point temperature + 100 ° C.

【0034】ここで、粗圧延終了後に高圧デスケーリン
グを行う場合は、鋼板表面での高圧水の衝突圧P(MP
a)×流量L(リットル/cm2 )≧0.0025の条
件を満たすことが好ましい。鋼板表面での高圧水の衝突
圧Pは以下のように記述される(「鉄と鋼」1991,vol.7
7, No.9, P1450 参照)。 P(MPa)=5.64×P0 ×V/H2 ただし、 P0 (MPa):液圧力 V(リットル/min):ノズル流液量 H(cm):鋼板表面とノズル間の距離
When high-pressure descaling is performed after the completion of rough rolling, the collision pressure P (MP
It is preferable that the condition of a) × flow rate L (liter / cm 2 ) ≧ 0.0025 is satisfied. The collision pressure P of high-pressure water on the steel sheet surface is described as follows ("Iron and Steel", 1991, vol.
7, No. 9, P1450). P (MPa) = 5.64 × P 0 × V / H 2 where P 0 (MPa): liquid pressure V (liter / min): nozzle flow H (cm): distance between steel plate surface and nozzle

【0035】流量Lは以下のように記述される。 L(リットル/cm2 )=V/(W×v) ただし、 V(リットル/min):ノズル流液量 W(cm):ノズル当たり噴射液が鋼板表面に当たって
いる幅 v(cm/min):通板速度
The flow rate L is described as follows. L (liter / cm 2 ) = V / (W × v), where V (liter / min): Nozzle flow amount W (cm): Width of jet liquid per nozzle hitting steel sheet surface v (cm / min): Stripping speed

【0036】衝突圧P×流量Lの上限は、本発明の効果
を得るためには特に定める必要はないが、ノズル流液量
を増加させるとノズルの摩耗が激しくなる等の不都合が
生じるため、0.02以下とすることが好ましい。
The upper limit of the collision pressure P × the flow rate L does not need to be particularly determined in order to obtain the effect of the present invention. However, if the flow rate of the nozzle is increased, inconvenience such as intensified wear of the nozzle occurs. It is preferable to be 0.02 or less.

【0037】さらに、仕上げ圧延後の鋼板表面の最大高
さRyが15μm(15μmRy,l2.5mm,ln
12.5mm)以下であることが好ましい。これは、例
えば「金属材料疲労設計便覧」日本材料学会編、84頁
に記載されている通り、熱延または酸洗ままの鋼板の疲
労強度は、鋼板表面の最大高さRyと相関があることか
ら明らかである。またその後の仕上げ圧延は、デスケー
リング後に再びスケールが生成してしまうのを防ぐため
に、5秒以内に行うのが望ましい。
Further, the maximum height Ry of the steel sheet surface after finish rolling is 15 μm (15 μm Ry, 12.5 mm, ln
12.5 mm) or less. This is because the fatigue strength of a hot-rolled or pickled steel sheet has a correlation with the maximum height Ry of the steel sheet surface, as described in, for example, “Handbook for Designing Fatigue of Metallic Materials” edited by The Society of Materials Science, Japan, page 84. It is clear from Further, the subsequent finish rolling is desirably performed within 5 seconds in order to prevent scale from being generated again after descaling.

【0038】仕上圧延を終了した後の工程は、まずAr
3 変態点からAr3 変態点までの温度域(フェライトと
オーステナイトの二相域)で1〜20秒間滞留する。こ
こでの滞留は、二相域でフェライト変態を促進させるた
めに行うが、1秒未満では、二相域におけるフェライト
変態が不十分なため、十分な延性が得られない。一方2
0秒超では、パーライトが生成し、目的とする体積分率
最大の相をフェライトとし、第二相を主にマルテンサイ
トとする複合組織が得られない。
After finishing the finish rolling, the process is first performed by using Ar
3 Stay in the temperature range from the transformation point to the Ar3 transformation point (two-phase region of ferrite and austenite) for 1 to 20 seconds. The retention here is performed to promote ferrite transformation in the two-phase region, but if it is less than 1 second, sufficient ductility cannot be obtained because the ferrite transformation in the two-phase region is insufficient. On the other hand 2
If it exceeds 0 seconds, pearlite is generated, and a composite structure in which the phase having the intended maximum volume fraction is ferrite and the second phase is mainly martensite cannot be obtained.

【0039】また、1〜20秒間の滞留をさせる温度域
は、フェライト変態を容易に促進させるためAr1 変態
点以上800℃以下が望ましく、そのためには仕上げ圧
延終了後20℃/s以上の冷却速度で、当該温度域に迅
速に到達させることが好ましい。さらに1〜20秒間の
滞留時間は、生産性を極端に低下させないためには1〜
10秒間とすることが好ましい。
The temperature range in which the stagnation is maintained for 1 to 20 seconds is desirably from the Ar1 transformation point to 800 ° C. in order to facilitate the ferrite transformation. It is preferable to quickly reach the temperature range. Further, the residence time of 1 to 20 seconds is 1 to 20 in order not to reduce productivity extremely.
Preferably, it is 10 seconds.

【0040】次に、その温度域から巻取温度(CT)ま
では20℃/s以上の冷却速度で冷却するが、20℃/
s未満の冷却速度では、パーライトもしくはベイナイト
が生成してしまい十分なマルテンサイトが得られず、目
的とするフェライトを体積分率最大の相とし、マルテン
サイトを第二相とするミクロ組織が得られない。巻取温
度までの冷却速度の上限は、特に定めることなく本発明
の効果を得ることができるが、熱ひずみによる板そりが
懸念されることから、200℃/s以下とすることが好
ましい。
Next, cooling is performed at a cooling rate of 20 ° C./s or more from the temperature range to the winding temperature (CT).
At a cooling rate of less than s, pearlite or bainite is generated, and sufficient martensite cannot be obtained, and a microstructure in which the intended ferrite is the phase having the maximum volume fraction and martensite is the second phase is obtained. Absent. The upper limit of the cooling rate to the winding temperature can obtain the effect of the present invention without any particular limitation, but is preferably 200 ° C./s or less because there is a concern about sheet warpage due to thermal strain.

【0041】巻取温度が350℃超では、ベイナイトが
生成して十分なマルテンサイトが得られず、目的とする
フェライトを体積分率最大の相とし、マルテンサイトを
第二相とするミクロ組織が得られないため、巻取温度は
350℃以下と限定する。また、巻取温度の下限値は特
に限定する必要はないが、コイルが長時間水濡れの状態
にあると錆による外観不良が懸念されるため、50℃以
上が望ましい。
If the winding temperature is higher than 350 ° C., bainite is formed and sufficient martensite cannot be obtained, and the microstructure in which the intended ferrite is the phase having the maximum volume fraction and the martensite is the second phase is formed. Since it cannot be obtained, the winding temperature is limited to 350 ° C. or less. The lower limit of the winding temperature is not particularly limited, but if the coil is in a wet state for a long time, the appearance may be poor due to rust.

【0042】[0042]

【実施例】以下に、実施例により本発明をさらに説明す
る。表1に示す化学成分を有するA〜Qの鋼は、転炉で
溶製して、連続鋳造後、表2に示す加熱温度(SRT)
で再加熱し、粗圧延後に同じく表2に示す仕上げ圧延温
度(FT)で1.2〜5.4mmの板厚に圧延した後、
表2に示す巻取温度(CT)でそれぞれ巻き取った。な
お一部については粗圧延後に衝突圧2.7MPa、流量
0.001リットル/cm2 の条件で高圧デスケーリン
グを行った。ただし、表中の化学組成についての表示は
質量%である。
The present invention will be further described below with reference to examples. The steels A to Q having the chemical components shown in Table 1 were melted in a converter and continuously cast, and then heated at a temperature shown in Table 2 (SRT).
After the rough rolling, after rolling to a sheet thickness of 1.2 to 5.4 mm at the finish rolling temperature (FT) also shown in Table 2,
Each was wound at a winding temperature (CT) shown in Table 2. In addition, after rough rolling, high pressure descaling was performed under the conditions of a collision pressure of 2.7 MPa and a flow rate of 0.001 liter / cm 2 . However, the indication of the chemical composition in the table is% by mass.

【0043】このようにして得られた熱延板の引張試験
は、供試材を、まずJIS Z 2201記載の5号試
験片に加工し、JIS Z 2241記載の試験方法に
従って行った。表2にその試験結果を示す。ここで、フ
ェライトおよび第二相の体積率とは、鋼板の圧延方向断
面厚みの1/4厚における光学顕微鏡で、200〜50
0倍で観察されたミクロ組織中におけるそれらの組織の
面積分率で定義される。
In the tensile test of the hot-rolled sheet obtained in this manner, the test material was first processed into a No. 5 test piece described in JIS Z 2201, and was subjected to the test method described in JIS Z 2241. Table 2 shows the test results. Here, the volume ratios of the ferrite and the second phase are 200 to 50 by an optical microscope at a thickness of 1/4 of the cross section in the rolling direction of the steel sheet.
It is defined as the area fraction of those structures in the microstructure observed at 0x.

【0044】なお、フェライト平均粒径の測定法は、J
IS G 0552鋼のフェライト結晶粒度試験法に記
載の切断法に準じ、第二相の平均粒径については平均円
相当径と定義し、画像処理装置等より得られる値を採用
した。また硬さ測定法は、JIS Z 2244記載の
ビッカース硬さ試験方法に従って測定した。ただし、試
験力は0.049〜0.098N、保持時間は15秒で
ある。
The method for measuring the average ferrite grain size is described in J.
The average particle diameter of the second phase was defined as an average circle equivalent diameter, and a value obtained from an image processing device or the like was adopted according to the cutting method described in the ferrite crystal grain size test method of IS G 0552 steel. The hardness was measured according to the Vickers hardness test method described in JIS Z 2244. However, the test force is 0.049 to 0.098 N, and the holding time is 15 seconds.

【0045】さらに、図2に示すような長さ98mm、
幅38mm、最小断面部の幅が20mm、切り欠きの曲
率半径が30mmである平面曲げ疲労試験片にて、完全
両振りの平面曲げ疲労試験を行った。鋼板の疲労特性
は、10×107 回での疲労限σWを鋼板の引張り強さ
σBで除した値(疲労限度比σW/σB)で評価した。
ただし、疲労試験片の表面は研削など一切行わず、酸洗
ままの表面とした。一方、バーリング加工性(穴拡げ
性)については、日本鉄鋼連盟規格JFST 1001
−1996記載の穴拡げ試験方法に従って評価した。
Further, as shown in FIG.
A plane bending fatigue test of complete swinging was performed on a plane bending fatigue test piece having a width of 38 mm, a minimum cross section width of 20 mm, and a notch with a radius of curvature of 30 mm. The fatigue properties of the steel sheet were evaluated by a value obtained by dividing the fatigue limit σW at 10 × 10 7 times by the tensile strength σB of the steel sheet (fatigue limit ratio σW / σB).
However, the surface of the fatigue test piece was not pickled at all, and was left as pickled. On the other hand, regarding the burring workability (hole expanding property), Japan Iron and Steel Federation Standard JFST 1001
-Evaluated according to the hole expansion test method described in 1996.

【0046】本発明に沿うものは、鋼A,B,C−6,
G,K,L,M,N,O,P,Qの11鋼種であり、所
定の量の鋼成分を含有し、そのミクロ組織が、体積分率
最大の相をフェライトとし、第二相を主にマルテンサイ
トとする複合組織であり、第二相の体積分率Vsを第二
相の平均粒径dmで除した値が3以上12以下、且つ第
二相の硬さの平均値Hvsをフェライトの硬さの平均値
Hvfで除した値が、1.5以上7以下であることを特
徴とする、バーリング加工性に優れる複合組織鋼板が得
られている。
According to the present invention, steels A, B, C-6,
G, K, L, M, N, O, P, and Q steels, each containing a predetermined amount of a steel component, and have a microstructure in which the phase having the maximum volume fraction is ferrite and the second phase is ferrite. The composite structure is mainly martensite, and the value obtained by dividing the volume fraction Vs of the second phase by the average particle diameter dm of the second phase is 3 or more and 12 or less, and the average value Hvs of the hardness of the second phase is A composite structure steel sheet excellent in burring workability, characterized in that a value obtained by dividing the average ferrite hardness value Hvf from 1.5 to 7 is obtained.

【0047】上記以外の鋼は、以下の理由によって本発
明の範囲外である。すなわち、鋼C−1は、仕上圧延終
了温度(FT)が本発明の範囲より高く、第二相粒の大
きさ(Vs/dm)が本発明の範囲外であるので、十分
な穴拡げ率(λ)および疲労限度比(σW/σB)が得
られていない。鋼C−2は、仕上圧延終了温度(FT)
が本発明の範囲より低く、フェライトと第二相の強度差
(Hvs/Hvf)が本発明の範囲外であるので、十分
な穴拡げ率(λ)および疲労限度比(σW/σB)が得
られていない。さらに、ひずみが残留して延性(El)
も低下する。
Other steels are outside the scope of the present invention for the following reasons. That is, the finish rolling temperature (FT) of steel C-1 is higher than the range of the present invention, and the size (Vs / dm) of the second phase grains is out of the range of the present invention. (Λ) and fatigue limit ratio (σW / σB) were not obtained. Steel C-2 has a finish rolling end temperature (FT)
Is lower than the range of the present invention, and the strength difference between the ferrite and the second phase (Hvs / Hvf) is out of the range of the present invention, so that a sufficient hole expansion ratio (λ) and a fatigue limit ratio (σW / σB) are obtained. Not been. Further, the strain remains and the ductility (El)
Also decrease.

【0048】鋼C−3は、滞留後の冷却速度(CR)が
本発明の範囲より遅く、巻取温度(CT)も本発明の範
囲より高い。従って第二相粒の大きさ(Vs/dm)が
本発明の範囲外であるので、十分な穴拡げ率(λ)およ
び疲労限度比(σW/σB)が得られていない。鋼C−
4は、滞留温度(MT)が本発明の範囲より低く、フェ
ライトと第二相の強度差(Hvs/Hvf)が本発明の
範囲外であるので、十分な穴拡げ率(λ)および疲労限
度比(σW/σB)が得られていない。鋼C−5は、滞
留時間(Time)がなく、フェライトと第二相の強度
差(Hvs/Hvf)が本発明の範囲外であるので、十
分な穴拡げ率(λ)および疲労限度比(σW/σB)が
得られていない。
The steel C-3 has a cooling rate (CR) after staying lower than the range of the present invention and a winding temperature (CT) higher than the range of the present invention. Therefore, since the size (Vs / dm) of the second phase grains is out of the range of the present invention, a sufficient hole expansion ratio (λ) and a fatigue limit ratio (σW / σB) are not obtained. Steel C-
No. 4 has a sufficient hole expansion ratio (λ) and fatigue limit because the retention temperature (MT) is lower than the range of the present invention and the strength difference between the ferrite and the second phase (Hvs / Hvf) is out of the range of the present invention. The ratio (σW / σB) was not obtained. Steel C-5 has no residence time (Time) and the difference in strength between the ferrite and the second phase (Hvs / Hvf) is out of the range of the present invention. Therefore, a sufficient hole expansion ratio (λ) and fatigue limit ratio ( σW / σB) is not obtained.

【0049】鋼Dは、Cの含有量が本発明の範囲外であ
るので、目的とするミクロ組織が得られず十分な強度
(TS)および疲労限度比(σW/σB)が得られてい
ない。鋼Eは、Siの含有量が本発明の範囲外であるの
で、十分な強度(TS)および疲労限度比(σW/σ
B)が得られていない。鋼Fは、Mnの含有量が本発明
の範囲外であり、第二相粒の大きさ(Vs/dm)が本
発明の範囲外であるので、十分な強度(TS)、穴拡げ
率(λ)および疲労限度比(σW/σB)が得られてい
ない。
In steel D, since the content of C is out of the range of the present invention, a desired microstructure cannot be obtained, and sufficient strength (TS) and fatigue limit ratio (σW / σB) cannot be obtained. . Steel E has a sufficient strength (TS) and a sufficient fatigue limit ratio (σW / σ) since the content of Si is out of the range of the present invention.
B) was not obtained. In steel F, since the content of Mn is out of the range of the present invention and the size of the second phase grains (Vs / dm) is out of the range of the present invention, sufficient strength (TS) and hole expansion ratio ( λ) and the fatigue limit ratio (σW / σB) are not obtained.

【0050】鋼Hは、Sの含有量が本発明の範囲外であ
るので、十分な穴拡げ率(λ)および疲労限度比(σW
/σB)が得られていない。鋼Iは、Pの含有量が本発
明の範囲外であるので、十分な疲労限度比(σW/σ
B)が得られていない。鋼Jは、Cの含有量が本発明の
範囲外であるので、十分な伸び(El)、穴拡げ率
(λ)および疲労限度比(σW/σB)が得られていな
い。
In steel H, since the content of S is out of the range of the present invention, a sufficient hole expansion ratio (λ) and a fatigue limit ratio (σW)
/ ΣB) is not obtained. Steel I has a sufficient fatigue limit ratio (σW / σ) since the content of P is out of the range of the present invention.
B) was not obtained. Steel J does not have sufficient elongation (El), hole expansion ratio (λ), and fatigue limit ratio (σW / σB) because the content of C is outside the range of the present invention.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【発明の効果】以上詳述したように、本発明は、バーリ
ング加工性に優れた引張強度540MPa以上の複合組
織鋼板およびその製造方法を提供するものであり、これ
らの熱延鋼板を用いることにより、疲労特性を十分に確
保しつつバーリング加工性(穴拡げ性)の大幅な改善が
期待できるため、工業的価値が高い発明である。
As described in detail above, the present invention provides a composite structure steel sheet excellent in burring workability and having a tensile strength of 540 MPa or more, and a method for producing the same. By using these hot-rolled steel sheets, Since the burring processability (hole expanding property) can be expected to be greatly improved while ensuring sufficient fatigue properties, the present invention has a high industrial value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に至る予備実験の結果を、第二相の体積
分率を第二相の平均粒径で除した値、第二相の硬さの平
均値をフェライトの硬さの平均値で除した値と、穴拡げ
率の関係で示す図である。
FIG. 1 shows the results of preliminary experiments leading to the present invention obtained by dividing the volume fraction of the second phase by the average particle diameter of the second phase, and calculating the average value of the hardness of the second phase as the average of the hardness of the ferrite. It is a figure shown by the value divided by the value and the relationship of a hole expansion rate.

【図2】疲労試験片の形状を説明する図である。FIG. 2 is a diagram illustrating the shape of a fatigue test piece.

フロントページの続き Fターム(参考) 4K037 EA01 EA02 EA05 EA06 EA09 EA11 EA13 EA15 EA16 EA17 EA19 EA20 EA23 EA25 EA27 EA28 EA31 EA32 EA35 EA36 EB06 EB07 EB08 EB09 EB11 FA02 FA03 FC03 FC04 FC07 FD03 FD04 FE01 FE06 HA05 JA06 JA07 Continued on the front page F term (reference) 4K037 EA01 EA02 EA05 EA06 EA09 EA11 EA13 EA15 EA16 EA17 EA19 EA20 EA23 EA25 EA27 EA28 EA31 EA32 EA35 EA36 EB06 EB07 EB08 EB09 EB11 FC04 JA03 FC03 FC04

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.01〜0.2%、 Si:0.01〜2%、 Mn:0.05〜3%、 P ≦0.1%、 S ≦0.01%、 Al:0.005〜1%、 を含み、残部がFe及び不可避的不純物からなる鋼であ
って、そのミクロ組織が、体積分率最大の相をフェライ
トとし、第二相を主にマルテンサイトとする複合組織で
あり、第二相の体積分率を第二相の平均粒径で除した値
が3以上12以下、且つ第二相の硬さの平均値をフェラ
イトの硬さの平均値で除した値が1.5以上7以下であ
ることを特徴とする、バーリング加工性に優れる複合組
織鋼板。
1. Mass%, C: 0.01 to 0.2%, Si: 0.01 to 2%, Mn: 0.05 to 3%, P ≦ 0.1%, S ≦ 0.01 %, Al: 0.005 to 1%, with the balance being Fe and unavoidable impurities, the microstructure of which is ferrite as the phase having the largest volume fraction and mainly martensite as the second phase. The composite structure is a site, and the value obtained by dividing the volume fraction of the second phase by the average particle size of the second phase is 3 or more and 12 or less, and the average value of the hardness of the second phase is the average of the hardness of the ferrite. A composite structure steel sheet having excellent burring workability, characterized in that the value divided by the value is 1.5 or more and 7 or less.
【請求項2】 前記鋼が、さらに質量%で、 Cu:0.2〜2% を含有することを特徴とする、請求項1に記載のバーリ
ング加工性に優れる複合組織鋼板。
2. The composite structure steel sheet according to claim 1, wherein the steel further contains Cu: 0.2 to 2% by mass%.
【請求項3】 前記鋼が、さらに質量%で、 B :0.0002〜0.002% を含有することを特徴とする、請求項1または2に記載
のバーリング加工性に優れる複合組織鋼板。
3. The composite structure steel sheet having excellent burring workability according to claim 1, wherein the steel further contains B: 0.0002 to 0.002% by mass%.
【請求項4】 前記鋼が、さらに質量%で、 Ni:0.1〜1% を含有することを特徴とする、請求項1ないし3のいず
れか1項に記載のバーリング加工性に優れる複合組織鋼
板。
4. The composite having excellent burring workability according to claim 1, wherein the steel further contains Ni: 0.1 to 1% by mass%. Texture steel sheet.
【請求項5】 前記鋼が、さらに質量%で、 Ca:0.0005〜0.002%、 REM:0.0005〜0.02% の一種または二種を含有することを特徴とする、請求項
1ないし4のいずれか1項に記載のバーリング加工性に
優れる複合組織鋼板。
5. The steel according to claim 1, wherein the steel further contains one or two types of Ca: 0.0005 to 0.002% and REM: 0.0005 to 0.02% by mass%. Item 5. The composite structure steel sheet having excellent burring workability according to any one of Items 1 to 4.
【請求項6】 前記鋼が、さらに質量%で、 Ti:0.05〜0.5%、 Nb:0.01〜0.5%、 Mo:0.05〜1%、 V :0.02〜0.2%、 Cr:0.01〜1%、 Zr:0.02〜0.2% の一種または二種以上を含有することを特徴とする、請
求項1ないし5のいずれか1項に記載のバーリング加工
性に優れる複合組織鋼板。
6. The steel further contains, by mass%, Ti: 0.05 to 0.5%, Nb: 0.01 to 0.5%, Mo: 0.05 to 1%, V: 0.02. The composition according to any one of claims 1 to 5, wherein the composition contains one or more of the following: 1 to 0.2%; Cr: 0.01 to 1%; Zr: 0.02 to 0.2%. A composite structure steel sheet having excellent burring workability according to item 1.
【請求項7】 請求項1ないし6のいずれか1項に記載
の成分を有する鋼片の熱間圧延に際し、Ar3 変態点温
度以上Ar3 変態点温度+100℃以下で熱間仕上圧延
を終了した後、Ar1 変態点温度以上Ar3 変態点温度
以下の温度域で1〜20秒間滞留し、その後、20℃/
s以上の冷却速度で冷却して、350℃以下の巻取温度
で巻き取り、そのミクロ組織が、体積分率最大の相をフ
ェライトとし、第二相を主にマルテンサイトとする複合
組織であり、第二相の体積分率を第二相の平均粒径で除
した値が3以上12以下、且つ第二相の硬さの平均値を
フェライトの硬さの平均値で除した値が1.5以上7以
下であることを特徴とする、バーリング加工性に優れる
複合組織鋼板の製造方法。
7. The hot rolling of a steel slab having the composition according to claim 1 after finishing hot finish rolling at a temperature between the Ar3 transformation point temperature and the Ar3 transformation point temperature + 100 ° C. or less. , Stay in the temperature range from the Ar1 transformation point temperature to the Ar3 transformation point temperature for 1 to 20 seconds,
Cooling at a cooling rate of s or more and winding at a winding temperature of 350 ° C. or less, the microstructure is a composite structure in which the phase having the maximum volume fraction is ferrite and the second phase is mainly martensite. The value obtained by dividing the volume fraction of the second phase by the average particle size of the second phase is 3 or more and 12 or less, and the value obtained by dividing the average value of the hardness of the second phase by the average value of the ferrite hardness is 1 A method for producing a composite structure steel sheet having excellent burring workability, wherein the steel sheet has a burring workability of 5 or more and 7 or less.
【請求項8】 前記熱間圧延に際し、粗圧延終了後、高
圧デスケーリングを行ない、Ar3 変態点温度以上Ar
3 変態点温度+100℃以下で熱間仕上圧延を終了する
ことを特徴とする請求項7記載のバーリング加工性に優
れる複合組織鋼板の製造方法。
8. During the hot rolling, after the rough rolling is completed, high-pressure descaling is performed, and the Ar3 transformation point temperature or higher is determined.
8. The method for producing a composite structure steel sheet having excellent burring workability according to claim 7, wherein the hot finish rolling is completed at a transformation point temperature of + 100 ° C. or lower.
JP2000121210A 2000-04-21 2000-04-21 Dual-phase steel sheet excellent in burring property, and its manufacturing method Pending JP2001303187A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000121210A JP2001303187A (en) 2000-04-21 2000-04-21 Dual-phase steel sheet excellent in burring property, and its manufacturing method
PCT/JP2000/008934 WO2001081640A1 (en) 2000-04-21 2000-12-15 Steel plate having excellent burring workability together with high fatigue strength, and method for producing the same
DE60018940T DE60018940D1 (en) 2000-04-21 2000-12-15 STEEL PLATE WITH EXCELLENT FREE SHIPPING AT THE SAME TEMPERATURE OF HIGH TEMPERATURE AND METHOD OF MANUFACTURING THE SAME
EP00981781A EP1201780B1 (en) 2000-04-21 2000-12-15 Steel plate having excellent burring workability together with high fatigue strength, and method for producing the same
US09/890,048 US6589369B2 (en) 2000-04-21 2000-12-15 High fatigue strength steel sheet excellent in burring workability and method for producing the same
KR10-2001-7010080A KR100441414B1 (en) 2000-04-21 2000-12-15 High fatigue strength steel sheet excellent in burring workability and method for producing the same
TW089127752A TWI261072B (en) 2000-04-21 2000-12-22 High fatigue strength steel sheet having stretch frangeability and a method for production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000121210A JP2001303187A (en) 2000-04-21 2000-04-21 Dual-phase steel sheet excellent in burring property, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001303187A true JP2001303187A (en) 2001-10-31

Family

ID=18631898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000121210A Pending JP2001303187A (en) 2000-04-21 2000-04-21 Dual-phase steel sheet excellent in burring property, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001303187A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005028693A1 (en) * 2003-09-24 2006-11-30 新日本製鐵株式会社 Hot-rolled steel sheet for processing and manufacturing method thereof
JP2010150581A (en) * 2008-12-24 2010-07-08 Nippon Steel Corp High strength hot rolled steel sheet having excellent low cycle fatigue property and corrosion resistance after coating, and method for producing the same
KR101009796B1 (en) 2008-06-26 2011-01-21 현대제철 주식회사 Method for manufacturing high-strength hot-dip galvanized steel sheet
JP2011052293A (en) * 2009-09-03 2011-03-17 Nippon Steel Corp Steel sheet with composite structure having excellent formability and fatigue property and method for producing the same
WO2014051005A1 (en) * 2012-09-26 2014-04-03 新日鐵住金株式会社 Composite-structure steel sheet and process for producing same
WO2015093596A1 (en) 2013-12-19 2015-06-25 日新製鋼株式会社 Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same
US10655192B2 (en) 2014-09-17 2020-05-19 Nippon Steel Corporation Hot-rolled steel sheet

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005028693A1 (en) * 2003-09-24 2006-11-30 新日本製鐵株式会社 Hot-rolled steel sheet for processing and manufacturing method thereof
JP4559969B2 (en) * 2003-09-24 2010-10-13 新日本製鐵株式会社 Hot-rolled steel sheet for processing and manufacturing method thereof
KR101009796B1 (en) 2008-06-26 2011-01-21 현대제철 주식회사 Method for manufacturing high-strength hot-dip galvanized steel sheet
JP2010150581A (en) * 2008-12-24 2010-07-08 Nippon Steel Corp High strength hot rolled steel sheet having excellent low cycle fatigue property and corrosion resistance after coating, and method for producing the same
JP2011052293A (en) * 2009-09-03 2011-03-17 Nippon Steel Corp Steel sheet with composite structure having excellent formability and fatigue property and method for producing the same
JP5610103B2 (en) * 2012-09-26 2014-10-22 新日鐵住金株式会社 Composite structure steel plate and manufacturing method thereof
WO2014051005A1 (en) * 2012-09-26 2014-04-03 新日鐵住金株式会社 Composite-structure steel sheet and process for producing same
KR20150038727A (en) * 2012-09-26 2015-04-08 신닛테츠스미킨 카부시키카이샤 Composite-structure steel sheet and process for producing same
TWI480389B (en) * 2012-09-26 2015-04-11 Nippon Steel & Sumitomo Metal Corp Composite composite steel sheet and manufacturing method thereof
EP2896715A4 (en) * 2012-09-26 2016-06-15 Nippon Steel & Sumitomo Metal Corp Composite-structure steel sheet and process for producing same
KR101658744B1 (en) * 2012-09-26 2016-09-21 신닛테츠스미킨 카부시키카이샤 Compositestructure steel sheet and process for producing same
US9863026B2 (en) 2012-09-26 2018-01-09 Nippon Steel & Sumitomo Metal Corporation Dual phase steel sheet and manufacturing method thereof
WO2015093596A1 (en) 2013-12-19 2015-06-25 日新製鋼株式会社 Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same
US10655192B2 (en) 2014-09-17 2020-05-19 Nippon Steel Corporation Hot-rolled steel sheet

Similar Documents

Publication Publication Date Title
JP4559969B2 (en) Hot-rolled steel sheet for processing and manufacturing method thereof
KR101264574B1 (en) Method for producing high-strength steel plate having superior deep drawing characteristics
JP5339005B1 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4580157B2 (en) Hot-rolled steel sheet having both BH property and stretch flangeability and manufacturing method thereof
JP5326709B2 (en) Low yield ratio type high burring high strength hot rolled steel sheet and method for producing the same
JP2012237054A (en) High strength steel sheet excellent in workability and material stability, and method for producing the same
JP2010196115A (en) High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for manufacturing the same
CN115161552B (en) High-strength hot rolled strip steel with high weather resistance and manufacturing method thereof
JP4445095B2 (en) Composite structure steel plate excellent in burring workability and manufacturing method thereof
WO2013160928A1 (en) High-strength steel sheet and method for manufacturing same
JP4291711B2 (en) High burring hot rolled steel sheet having bake hardenability and method for producing the same
JP2014031538A (en) Hot-rolled steel sheet and method for producing the same
JP2004043856A (en) Low yield ratio type steel pipe
JP2004250749A (en) High strength thin steel sheet having burring property, and production method therefor
JP2005120472A (en) High-strength steel sheet and its production method
JP2013181183A (en) High strength cold rolled steel sheet having low in-plane anisotropy of yield strength, and method of producing the same
JP2002241897A (en) Steel sheet having small variation in yield strength and fracture elongation, high formability and low yield ratio, and method for manufacturing the same
JP2002129285A (en) Steel sheet with strain induced transformation type composite structure having excellent burring workability and its production method
JP2002012947A (en) Hot dip zinc-plated steel sheet with excellent strength- flangeability and production method for the same
JP2001303187A (en) Dual-phase steel sheet excellent in burring property, and its manufacturing method
JP2009144225A (en) High-strength hot-dip galvanized steel sheet superior in formability and manufacturing method therefor
JP5678695B2 (en) High strength steel plate and manufacturing method thereof
JP5088092B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP2002206138A (en) High tensile strength cold rolled steel sheet having excellent formability, strain age hardening characteristic and cold aging resistance and production method therefor
WO2021187238A1 (en) Steel sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060301