JP4291711B2 - High burring hot rolled steel sheet having bake hardenability and method for producing the same - Google Patents

High burring hot rolled steel sheet having bake hardenability and method for producing the same Download PDF

Info

Publication number
JP4291711B2
JP4291711B2 JP2004059376A JP2004059376A JP4291711B2 JP 4291711 B2 JP4291711 B2 JP 4291711B2 JP 2004059376 A JP2004059376 A JP 2004059376A JP 2004059376 A JP2004059376 A JP 2004059376A JP 4291711 B2 JP4291711 B2 JP 4291711B2
Authority
JP
Japan
Prior art keywords
steel sheet
hot
rolling
rolled steel
bake hardenability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004059376A
Other languages
Japanese (ja)
Other versions
JP2005248240A (en
Inventor
龍雄 横井
徹哉 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004059376A priority Critical patent/JP4291711B2/en
Publication of JP2005248240A publication Critical patent/JP2005248240A/en
Application granted granted Critical
Publication of JP4291711B2 publication Critical patent/JP4291711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、焼付け硬化性を有する高バーリング熱延鋼板およびその製造方法に関するものであり、特に490MPa級超の引張強度の鋼板であっても優れたバーリング加工性を発現させる均一なミクロ組織を有し、厳しい伸びフランジ加工が要求される部品でも容易に成形できるだけでなく、プレスによるひずみ導入と塗装焼き付け処理により1グレード上の鋼板を適用した場合の設計強度に相当するプレス品強度を得ることができる。   The present invention relates to a high burring hot-rolled steel sheet having bake hardenability and a method for producing the same, and in particular, has a uniform microstructure that exhibits excellent burring workability even for a steel sheet having a tensile strength exceeding 490 MPa. In addition, not only parts that require strict stretch flange processing can be easily formed, but also can obtain a pressed product strength equivalent to the design strength when one grade steel plate is applied by introducing strain and painting and baking by press. it can.

自動車の燃費向上などのために車体軽量化を目的としたゲージダウンへの要求は近年益々高まっており、ゲージダウンを前提に如何にしてプレス品強度特性を維持するかが車体軽量化の課題である。そこで、Al合金等の軽金属や高強度鋼板の自動車部材への適用が進められているが、Al合金等の軽金属は比強度が高いという利点があるものの、鋼に比較して著しく高価であるためその適用は特殊な用途に限られている。従ってより安価かつ広い範囲に自動車の軽量化を推進するためには、鋼板適用によるゲージダウンの実現が必要とされている。   The demand for gauge down for the purpose of reducing the weight of the car body for the purpose of improving the fuel efficiency of automobiles has been increasing in recent years. is there. Therefore, although light metals such as Al alloys and high strength steel plates are being applied to automobile members, although light metals such as Al alloys have the advantage of high specific strength, they are significantly more expensive than steel. Its application is limited to special uses. Therefore, in order to promote the weight reduction of automobiles at a lower cost and in a wider range, it is necessary to realize gauge down by applying a steel plate.

鋼板を用いたゲージダウンの手段として高強度鋼板の適用が検討されている。しかし、材料の高強度化は一般的に成形性(加工性)等の材料特性を劣化させるため、材料特性を劣化させずに如何に高強度化を図るかが高強度鋼板開発のカギになる。特に内板部材、構造部材、足廻り部材用鋼板に求められる特性としては、伸びフランジ性(バーリング性)、延性、疲労耐久性および耐食性等が重要であり、高強度とこれら特性を如何に高次元でバランスさせるかが重要である。   Application of high-strength steel sheets is being studied as a means of gauge down using steel sheets. However, increasing the strength of materials generally degrades material properties such as formability (workability), so how to increase strength without deteriorating material properties is the key to developing high-strength steel sheets. . In particular, stretch flangeability (burring properties), ductility, fatigue durability, and corrosion resistance are important properties required for steel sheets for inner plate members, structural members, and suspension members, and how high these strengths are. It is important to balance in dimension.

このように高強度化と諸特性、特に成形性を両立するために、例えば鋼のミクロ組織中に残留オーステナイトを含むことで、成形中にTRIP(TRansformation Induced Plasticity )現象を発現させることで飛躍的に成形性(延性および深絞り性)を向上させたTRIP鋼が開示されている(例えば特許文献1、2)。しかし、上記技術はバーリング性を向上させることを念頭に置いたものではないため、サスペンションアーム等をはじめとする足廻り部材のように厳しいバーリング加工が施される部品に適用するには、バーリング加工性が不十分である。   In this way, in order to achieve both high strength and various properties, especially formability, for example, by including residual austenite in the microstructure of steel, the TRIP (TRansformation Induced Plasticity) phenomenon is manifested during molding. Discloses TRIP steel having improved formability (ductility and deep drawability) (for example, Patent Documents 1 and 2). However, since the above technology is not intended to improve burring performance, it can be applied to parts that are subjected to severe burring such as suspension members such as suspension arms. Insufficient sex.

一方、高強度とバーリング加工性を両立する手段として、例えばTi,Nbを添加することにより第二相を低減し、主相であるポリゴナルフェライト中にTiC,NbCを析出強化させることによって、伸びフランジ性の優れた高強度熱延鋼板を得る発明が開示されている(例えば特許文献3)。さらに、Ti,Nbを添加することにより第二相を低減してミクロ組織をアシキュラーフェライトとし、TiC,NbCで析出強化することによって伸びフランジ性の優れた高強度熱延鋼板を得る発明が開示されている(例えば特許文献4)。   On the other hand, as a means for achieving both high strength and burring workability, for example, Ti and Nb are added to reduce the second phase, and TiC and NbC are precipitated and strengthened in polygonal ferrite, which is the main phase. An invention for obtaining a high-strength hot-rolled steel sheet having excellent flangeability is disclosed (for example, Patent Document 3). Furthermore, an invention for obtaining a high-strength hot-rolled steel sheet excellent in stretch flangeability by reducing the second phase by adding Ti and Nb to make the microstructure as acicular ferrite and strengthening by precipitation with TiC and NbC is disclosed. (For example, Patent Document 4).

しかしながら、これら鋼板はバーリング加工性には優れるものの、同一強度の上記TRIP鋼等と比較して延性および深絞り性が著しく劣っており、絞り成形が用いられるセンターピラーリインフォース等の構造部材への適用は難しい。すなわち、強度、延性、バーリング加工性はそれぞれトレードオフ関係にあり、これら全てを高次元でバランスさせることは非常に難しいのが現状である。   However, although these steel plates are excellent in burring workability, they are significantly inferior in ductility and deep drawability compared to the above-mentioned TRIP steel etc. of the same strength, and are applied to structural members such as center pillar reinforcements in which draw forming is used. Is difficult. That is, strength, ductility, and burring workability are in a trade-off relationship, and it is very difficult to balance all of these at a high level.

このような課題を解決する手段として、プレス成形時には強度が低く、プレスによるひずみの導入と後の塗装焼き付け処理にてプレス品の強度を向上させるBH(Bake Hardening)鋼板が提案されている。すなわち、比較的強度の低い状態でプレス加工を行うことで成形性を担保し、焼付け硬化によりプレス品強度を確保するということである。
BH性を向上させるためには固溶CやNの増加させることが有効であるが、一方でこれら固溶元素の増加は常温での時効劣化を悪化させるため、BH性と耐常温時効劣化を両立させることが重要な技術となる。
As means for solving such a problem, a BH (Bake Hardening) steel sheet has been proposed that has low strength during press forming and improves the strength of the pressed product by introducing strain due to pressing and subsequent coating baking treatment. That is, by performing the pressing process in a relatively low strength state, the moldability is ensured and the strength of the pressed product is ensured by baking and curing.
In order to improve the BH property, it is effective to increase the solute C and N. On the other hand, the increase of these solute elements deteriorates the aging deterioration at room temperature, so that the BH property and the room temperature aging deterioration are reduced. It is an important technology to achieve both.

以上のような必要性から、固溶Nの増加によりBH性を向上させ、結晶粒細粒化により増加した粒界面積の効果で常温における固溶C,Nの拡散を抑制することでBH性と耐常温時効劣化を両立させる技術が開示されている(例えば特許文献5)。しかしながら、ミクロ組織がフェライト−パーライト組織であり、490MPa級超の強度を得ことは難しく、さらなるゲージダウンには対応できない。   From the above necessity, the BH property is improved by improving the BH property by increasing the solid solution N and suppressing the diffusion of the solid solution C and N at room temperature by the effect of the grain boundary area increased by the grain refinement. And a technique that achieves both room temperature and aging resistance (for example, Patent Document 5). However, the microstructure is a ferrite-pearlite structure, and it is difficult to obtain strength exceeding 490 MPa class, and it cannot cope with further gauge down.

一方、ミクロ組織中にマルテンサイト等の硬質第二相を含有させることにより、高強度でありながらBH性を有する鋼板を製造する技術が開示されている(例えば特許文献6)。しかしながら、このようにマルテンサイト等の硬質第二相を含むミクロ組織をもつ鋼板は、元来バーリング加工性が著しく低いことが知られており、対象とする自動車部品への適用は困難である。   On the other hand, a technique for manufacturing a steel sheet having high strength and BH properties by including a hard second phase such as martensite in the microstructure is disclosed (for example, Patent Document 6). However, it is known that a steel sheet having a microstructure including a hard second phase such as martensite is inherently extremely low in burring workability, and it is difficult to apply to a target automobile part.

さらに、前記特許文献1、2のTRIP鋼は優れたBH性を示すものも存在するが、上記特許文献6の鋼板と同じく複合組織鋼であるがゆえにバーリング加工性が低い。また、前記特許文献3、4の鋼板はTi,Nbの析出強化を適用しているため、BH性に必要な固溶C,NがscavengingされてしまいBH性が期待できない。
特開2000−169935号公報 特開2000−169936号公報 特開平6−200351号公報 特開平7−011382号公報 特開平10−183301号公報 特開昭55−094438号公報
Furthermore, although the TRIP steels of Patent Documents 1 and 2 exhibit excellent BH properties, the burring workability is low because it is a composite structure steel similar to the steel sheet of Patent Document 6. Moreover, since the steel sheets of Patent Documents 3 and 4 apply precipitation strengthening of Ti and Nb, solute C and N necessary for BH properties are scavenging, and BH properties cannot be expected.
JP 2000-169935 A JP 2000-169936 A Japanese Patent Laid-Open No. 6-200351 Japanese Patent Laid-Open No. 7-011382 JP-A-10-183301 Japanese Patent Laid-Open No. 55-094438

そこで本発明は、優れたバーリング加工性を有するとともに490MPa級超の強度で50MPa以上のBH量を得られる、焼付け硬化性を有する高バーリング熱延鋼板およびその製造方法を提供する。すなわち本発明は、優れたバーリング加工性を発現させる均一なミクロ組織を有し、プレスによるひずみ導入と塗装焼き付け処理により、1グレード上の鋼板を適用した場合の設計強度に相当するプレス品強度を得ることができる、焼付け硬化性を有する高バーリング熱延鋼板、およびその鋼板を安価に安定して製造できる方法を提供することを目的とする。   Therefore, the present invention provides a high burring hot-rolled steel sheet having bake hardenability, which has excellent burring workability and can obtain a BH amount of 50 MPa or more with strength exceeding 490 MPa class and a method for producing the same. That is, the present invention has a uniform microstructure that expresses excellent burring workability, and has a press product strength equivalent to the design strength when a steel plate of one grade is applied by strain introduction by press and paint baking treatment. It is an object of the present invention to provide a high burring hot-rolled steel sheet having bake hardenability and a method capable of stably and inexpensively manufacturing the steel sheet.

本発明者らは、現在通常に採用されている製造設備により工業的規模で生産されている490MPa級超の鋼板の製造プロセスを念頭において、焼付け硬化性を有する高バーリング熱延鋼板を得るべく鋭意研究を重ねた結果、以下の手段が非常に有効であることを新たに見出し、本発明をなしたものである。   The inventors of the present invention are eager to obtain a high burring hot-rolled steel sheet having bake hardenability in consideration of the manufacturing process of a steel sheet exceeding 490 MPa class currently produced on an industrial scale by a production facility that is currently normally employed. As a result of repeated research, the present inventors have newly found that the following means are very effective.

即ち、本発明の要旨は以下の通りである。
(1) 質量%にて、
C :0.01〜0.1%、 Si:0.005〜2%、
Mn:0.1〜3%、 P ≦0.1%、
S ≦0.03%、 Al:0.001〜0.1%、
N ≦0.005%、 Ti:0.05〜0.2%
を含み、さらに
Ti(*)=Ti−(48/14)N−(48/32)S≧0%
かつ
C−(12/48)Ti(*)≦0.05%
を満たす範囲でC,S,N,Tiを含有し、残部がFe及び不可避的不純物からなる鋼板であって、そのミクロ組織が主にベイニティックフェライトであり、旧オーステナイト粒の平均粒径が8μm超〜80μmであることを特徴とする焼付け硬化性を有する高バーリング熱延鋼板。
(2) 前記(1)に記載の鋼が、さらに質量%にて、
Nb:0.01〜0.2%
を含み、さらに
Ti(*)=Ti+(48/93)Nb−(48/14)N−(48/32)S≧0%かつ
C−(12/48)Ti(*)≦0.05%
を満たす範囲でNbを含有することを特徴とする焼付け硬化性を有する高バーリング熱延鋼板。
(3) 前記(1)または(2)に記載の鋼が、さらに質量%にて、
Ca:0.0005〜0.005%、
REM:0.0005〜0.02%
の一種または二種を含有することを特徴とする焼付け硬化性を有する高バーリング熱延鋼板。
(4) 前記(1)〜(3)のいずれか1項に記載の鋼が、さらに質量%にて、
B :0.0002〜0.002%
を含有することを特徴とする焼付け硬化性を有する高バーリング熱延鋼板。
(5) 前記(1)〜(4)のいずれか1項に記載の鋼が、さらに質量%にて、
Mo:0.05〜1%、 V :0.02〜0.2%、
Cr:0.01〜1%
の一種または二種以上を含有することを特徴とする焼付け硬化性を有する高バーリング熱延鋼板。
(6) 前記(1)〜(5)のいずれか1項に記載の鋼が、さらに質量%にて、
Cu:0.2〜1.2%、 Ni:0.1〜0.6%
の一種または二種を含有することを特徴とする焼付け硬化性を有する高バーリング熱延鋼板。
(7) 前記(1)〜(3)のいずれか1項に記載の薄鋼板に亜鉛めっきが施されていることを特徴とする焼付け硬化性を有する高バーリング熱延鋼板。
That is, the gist of the present invention is as follows.
(1) In mass%
C: 0.01 to 0.1%, Si: 0.005 to 2%,
Mn: 0.1 to 3%, P ≦ 0.1%,
S ≦ 0.03%, Al: 0.001 to 0.1%,
N ≦ 0.005%, Ti: 0.05 to 0.2%
Ti (*) = Ti− (48/14) N− (48/32) S ≧ 0%
And C- (12/48) Ti (*) ≦ 0.05%
Is a steel plate that contains C, S, N, Ti in the range satisfying the following, the balance is Fe and inevitable impurities, the microstructure is mainly bainitic ferrite, the average grain size of the prior austenite grains is A high burring hot-rolled steel sheet having bake hardenability, characterized by being over 8 μm to 80 μm.
(2) The steel according to (1) is further in mass%,
Nb: 0.01 to 0.2%
Ti (*) = Ti + (48/93) Nb− (48/14) N− (48/32) S ≧ 0% and C− (12/48) Ti (*) ≦ 0.05%
A high burring hot-rolled steel sheet having bake hardenability characterized by containing Nb in a range satisfying the above.
(3) The steel according to (1) or (2) is further in mass%,
Ca: 0.0005 to 0.005%,
REM: 0.0005 to 0.02%
A high burring hot-rolled steel sheet having bake hardenability, characterized by containing one or two of the following.
(4) The steel according to any one of (1) to (3) is further in mass%,
B: 0.0002 to 0.002%
A high burring hot-rolled steel sheet having bake hardenability, comprising:
(5) The steel according to any one of (1) to (4), further in mass%,
Mo: 0.05 to 1%, V: 0.02 to 0.2%,
Cr: 0.01 to 1%
A high burring hot-rolled steel sheet having bake hardenability, characterized by containing one or more of the above.
(6) The steel according to any one of (1) to (5), further in mass%,
Cu: 0.2-1.2%, Ni: 0.1-0.6%
A high burring hot-rolled steel sheet having bake hardenability, characterized by containing one or two of the following.
(7) A high burring hot-rolled steel sheet having bake hardenability, wherein the thin steel sheet according to any one of (1) to (3) is galvanized.

(8) 前記(1)〜(6)のいずれか1項に記載の成分を有する薄鋼板を得るために熱間圧延をする際に、該成分を有する鋼片を粗圧延後に最終段の圧下率が1〜15%の仕上圧延をAr3 変態点温度+50℃以上の温度域で終了後、0.5〜5秒間で冷却を開始し、Ar3 〜Bfの温度域を80〜500℃/sec の冷却速度で冷却し、さらに500℃以下まで20℃/sec 以上の冷却速度で冷却した後、500℃以下で巻き取ることを特徴とする焼付け硬化性を有する高バーリング熱延鋼板の製造方法。
(9) 前記(8)に記載の熱間圧延に際し、仕上圧延開始温度を1000℃以上とすることを特徴とする焼付け硬化性を有する高バーリング熱延鋼板の製造方法。
(10) 前記(8)または(9)に記載の熱間圧延に際し、鋼片を粗圧延終了した後の粗バーを、仕上圧延開始までの間および粗バーの仕上圧延中の、いずれか一方または両方で加熱することを特徴とする、焼付け硬化性を有する高バーリング熱延鋼板の製造方法。(11) 前記(8)〜(10)のいずれか1項に記載の熱間圧延に際し、粗圧延終了から仕上圧延開始までの間にデスケーリングを行うことを特徴とする、焼付け硬化性を有する高バーリング熱延鋼板の製造方法。
(12) 前記(8)〜(11)のいずれか1項に記載の熱間圧延後、得られた熱延鋼板を亜鉛めっき浴中に浸漬させて鋼板表面を亜鉛めっきすることを特徴とする焼付け硬化性を有する高バーリング熱延鋼板の製造方法。
(13) 前記(12)に記載の製造方法に際し、亜鉛めっき後、合金化処理することを特徴とする焼付け硬化性を有する高バーリング熱延鋼板の製造方法。
(8) When hot-rolling to obtain a thin steel sheet having the component according to any one of (1) to (6), the steel slab having the component is subjected to final rolling reduction after rough rolling. After finishing rolling at a rate of 1 to 15% in the temperature range of Ar3 transformation temperature + 50 ° C or higher, cooling is started in 0.5 to 5 seconds, and the temperature range of Ar3 to Bf is 80 to 500 ° C / sec. A method for producing a high burring hot-rolled steel sheet having bake hardenability, wherein the steel sheet is cooled at a cooling rate, further cooled to 500 ° C. or less at a cooling rate of 20 ° C./sec or more, and then wound at 500 ° C. or less.
(9) A method for producing a high burring hot-rolled steel sheet having bake hardenability, wherein the finish rolling start temperature is set to 1000 ° C. or higher during the hot rolling described in (8).
(10) In the hot rolling described in (8) or (9) above, either the rough bar after the rough rolling of the steel slab is finished until the start of finish rolling or during the finish rolling of the coarse bar. Alternatively, a method for producing a high burring hot-rolled steel sheet having bake hardenability, characterized by heating both. (11) In the hot rolling described in any one of (8) to (10), the descaling is performed from the end of rough rolling to the start of finish rolling, and has bake curability. Manufacturing method of high burring hot-rolled steel sheet.
(12) After hot rolling according to any one of (8) to (11), the obtained hot rolled steel sheet is immersed in a galvanizing bath to galvanize the steel sheet surface. A method for producing a high burring hot rolled steel sheet having bake hardenability.
(13) A method for producing a high burring hot-rolled steel sheet having bake hardenability, characterized in that, in the production method according to (12), after galvanization, alloying is performed.

本発明は、焼付け硬化性を有する高バーリング熱延鋼板およびその製造方法に関するものであり、これらの鋼板を用いることにより厳しいバーリング加工が要求される部品でも容易に成形できるだけでなく、490MPa級超の強度で安定して50MPa以上のBH量を得られるので、プレスによるひずみ導入と塗装焼き付け処理により1グレード上の鋼板を適用した場合の設計強度に相当するプレス品強度を得ることができるため、工業的価値が高い発明であると言える。   The present invention relates to a high burring hot-rolled steel sheet having bake hardenability and a method for producing the same, and by using these steel sheets, not only parts that require severe burring processing can be easily formed, but also exceeding 490 MPa class. Since a BH amount of 50 MPa or more can be obtained stably in strength, it is possible to obtain the strength of a pressed product corresponding to the design strength when a steel sheet of one grade or higher is applied by strain introduction by press and paint baking treatment. It can be said that the invention is highly valuable.

以下に、本発明に至った基礎的研究結果について説明する。
発明者らは、バーリング加工性を維持しつつ高い焼付け硬化性(BH性)を得るために鋭意研究を重ねた結果、以下の結論に至った。すなわち、(1) バーリング加工性を確保するためにTi等で粗大な炭化物の析出を抑制した系において、さらにバーリング加工性を向上させるためには粒界脆化元素であるP等の局在化を押さえることが重要である。さらに、(2) このような固溶CをTi等の析出物として固定してしまうような化学量論組成に近い成分であっても、製造条件により十分なBH量を確保できる。
Hereinafter, the basic research results that led to the present invention will be described.
As a result of intensive studies to obtain high bake hardenability (BH property) while maintaining burring workability, the inventors have reached the following conclusion. (1) In a system in which precipitation of coarse carbides with Ti or the like is suppressed to ensure burring workability, in order to further improve burring workability, localization of P or the like as an intergranular embrittlement element It is important to hold down. Furthermore, (2) even if it is a component close to the stoichiometric composition that fixes such solute C as a precipitate such as Ti, a sufficient amount of BH can be secured depending on the production conditions.

そこで発明者らは上記のような新しい知見に基づいて、BH性とバーリング加工性を両立できるような製造条件およびミクロ組織との関係を、Ti炭化物の析出および粒界脆化元素であるP等の局在化という現象に密接に関係していると思われる旧オーステナイト粒径という観点で調査するために、次のような実験を行った。表1に示す鋼成分の鋳片を溶製し様々な製造プロセスで製造した2mm厚の鋼板を準備し、それらについてBH性とバーリング加工性およびミクロ組織を調査した。   Therefore, based on the above-described new findings, the inventors have established the relationship between the manufacturing conditions and the microstructure that can achieve both BH properties and burring workability, precipitation of Ti carbides, P that is an intergranular embrittlement element, and the like. In order to investigate from the viewpoint of the prior austenite grain size, which seems to be closely related to the phenomenon of localization of the following, the following experiment was conducted. 2 mm-thick steel plates prepared by melting various slabs of steel components shown in Table 1 and prepared by various manufacturing processes were prepared, and BH properties, burring workability, and microstructures were investigated.

BH性は以下の手順に従い評価した。それぞれの鋼板よりJIS Z 2201に記載の5号試験片を切出し、これら試験片に2%の引張予ひずみを試験片に付与した後、170℃×20分の塗装焼き付け工程相当の熱処理を施してから再度引張試験を実施した。引張試験はJIS Z 2241の方法に従った。ここでBH量とは、再引張での上降伏点から2%の引張り予ひずみの流動応力を差し引いたと定義される。
バーリング加工性は、日本鉄鋼連盟規格JFS T 1001−1996記載の穴拡げ試験方法に従い、穴拡げ値にて評価した。
BH property was evaluated according to the following procedure. Cut out No. 5 test pieces described in JIS Z 2201 from each steel plate, and after applying 2% tensile pre-strain to the test pieces, heat treatment equivalent to a coating baking process of 170 ° C. × 20 minutes was performed. The tensile test was performed again. The tensile test followed the method of JIS Z 2241. Here, the BH amount is defined as subtracting 2% tensile prestrained flow stress from the upper yield point in re-tensioning.
Burring workability was evaluated by a hole expansion value according to a hole expansion test method described in Japan Iron and Steel Federation Standard JFS T 1001-1996.

一方、ミクロ組織の調査は鋼板板幅の1/4Wもしくは3/4W位置より切出した試料を圧延方向断面に研磨し、ナイタール試薬を用いてエッチングし、光学顕微鏡を用い200〜500倍の倍率で観察された表層下0.2mm、板厚の1/4t、1/2tにおける視野の写真にて行った。ミクロ組織の体積分率とは、上記金属組織写真において面積分率で定義される。
ここでベイニティックフェライトとは、日本鉄鋼協会基礎研究会ベイナイト調査研究部会編、「低炭素鋼のベイナイト組織と変態挙動に関する最近の研究」、ベイナイト調査研究部会最終報告書(1994年、日本鉄鋼協会)に記載されているように、無拡散でせん断的機構により生成する変態組織と定義されるミクロ組織である。
On the other hand, the microstructure is examined by grinding a sample cut from a 1/4 W or 3/4 W position of the steel plate width to a cross section in the rolling direction, etching using a Nital reagent, and 200-500 times magnification using an optical microscope. The observation was carried out with photographs of the field of view at 0.2 mm below the surface layer and at 1/4 t and 1/2 t of the plate thickness. The volume fraction of the microstructure is defined as an area fraction in the metal structure photograph.
Here, bainitic ferrite refers to the latest research on the bainite structure and transformation behavior of low-carbon steel, edited by the Japan Iron and Steel Institute Basic Research Group, Bainite Research Group, 1994, Japan Steel This is a microstructure defined as a metamorphic structure generated by a non-diffusion and shearing mechanism, as described in the Association).

次に旧オーステナイト粒の平均粒径の測定であるが、ナイタール試薬にてエッチングし光学顕微鏡にて観察した同一試料を再度研磨し、特開平06−207279号公報に記載の腐食液および腐食方法に従いエッチングした後、JIS G 0552記載の切断法を用い、その測定値より求めた粒度番号Gより、断面積1mm2 当たりの結晶粒の数mをm=8×2G より求め、このmよりdm =1/√mで得られる平均粒径dm を平均粒径と定義する。 Next, the average particle size of prior austenite grains is measured. The same sample that has been etched with a Nital reagent and observed with an optical microscope is polished again, and in accordance with the corrosive liquid and the corrosive method described in JP-A-06-207279. After etching, using the cutting method described in JIS G 0552, the number m of crystal grains per 1 mm 2 in cross-sectional area is obtained from m = 8 × 2 G from the particle size number G obtained from the measured value. the average particle size d m obtained by m = 1 / √m defined as the average particle size.

上記の方法にてBH量、穴拡げ値を測定した結果において、旧オーステナイト粒の平均粒径とBH量、穴拡げ値(λ)の関係を図1に示す。BH量、穴拡げ値(λ)と旧オーステナイト粒の平均粒径には非常に強い相関があり、平均結晶粒径が8μm超〜80μmであるとBH量と穴拡げ値(λ)が高い値で両立できることを新たに知見した。   FIG. 1 shows the relationship between the average grain size of the prior austenite grains, the BH amount, and the hole expansion value (λ) as a result of measuring the BH amount and the hole expansion value by the above method. There is a very strong correlation between the BH amount and the hole expansion value (λ) and the average grain size of the prior austenite grains. When the average crystal grain size is more than 8 μm to 80 μm, the BH amount and the hole expansion value (λ) are high. It was newly discovered that it can be compatible.

このメカニズムは必ずしも明らかではないが以下のように推定される。
特開平06−207279号公報に記載のピクリン酸、ドデシルベンゼンスルフォン酸ナトリウム等よりなる腐食液にて現出される粒界は、変態前のオーステナイト粒界(旧オーステナイト粒界)と推定される。
この粒の粒径が8μm以下であると、フェライトの析出サイトとなるオーステナイト粒界の単位体積あたりの面積率が大きくなり、その結果、炭化物の析出サイトとなるγ→α°B 変態境界の単位体積あたりの面積率が大きくなる。また、γ→α°B 変態境界の単位体積あたり面積率が大きいと、固溶Cの拡散距離が短くなるため、析出サイトが多いことと相俟って炭化物の析出が促進されることとなる。するとBH性に必要な固溶Cが炭化物として析出してしまうためBH量が低下する。
Although this mechanism is not necessarily clear, it is estimated as follows.
Grain boundaries appearing in a corrosive solution composed of picric acid, sodium dodecylbenzene sulfonate, etc. described in JP-A-06-207279 are presumed to be austenite grain boundaries before transformation (former austenite grain boundaries).
When the grain size is 8 μm or less, the area ratio per unit volume of the austenite grain boundary, which becomes the ferrite precipitation site, increases, and as a result, the unit of the γ → α ° B transformation boundary that becomes the carbide precipitation site. The area ratio per volume increases. In addition, when the area ratio per unit volume of the γ → α ° B transformation boundary is large, the diffusion distance of the solid solution C is shortened, so that precipitation of carbides is promoted in combination with a large number of precipitation sites. . Then, since the solid solution C required for BH property will precipitate as a carbide | carbonized_material, the amount of BH will fall.

一方、変態前のオーステナイト粒界(旧オーステナイト粒界)が80μm超では、旧オーステナイト粒界の単位体積あたりの面積率が小さくなる。その結果、P等の粒界脆化元素がオーステナイト粒界に偏析すると、オーステナイト粒界の単位体積あたりの面積率が小さいので粗大に局在化し易くなる。さらに局在化したP等はCと比較して拡散速度が遅いために、γ→α°B 変態後もこの局在化は是正されない。従って、このP等の粒界脆化元素の粗大な局在化個所がバーリング割れの起点となるため穴拡げ性が低下する。 On the other hand, when the austenite grain boundary before transformation (former austenite grain boundary) exceeds 80 μm, the area ratio per unit volume of the prior austenite grain boundary becomes small. As a result, when grain boundary embrittlement elements such as P are segregated at the austenite grain boundaries, the area ratio per unit volume of the austenite grain boundaries is small, so that they are easily localized coarsely. Furthermore, since localized P or the like has a slower diffusion rate than C, this localization is not corrected even after the γ → α ° B transformation. Therefore, since the coarse localized portion of the grain boundary embrittlement element such as P becomes the starting point of burring crack, the hole expandability is lowered.

さらに、図1に示すように巻き取り温度によってTi等によるCの固定が促進され、ミクロ組織がポリゴナルフェライト(Quasi−ポリゴナルフェライトを含む)となる場合あるが、このミクロ組織ではバーリング割れの起点となるセメンタイト等の粗大な炭化物がほとんどないため、穴拡げ性は優れるものの、BH性を得るための固溶CがTi等の炭化物の析出に消費されてしまい、BH性を発現させるのに十分な固溶Cが存在しなくなり、BH性がほとんど期待できない。従って、ミクロ組織が主にベイニティックフェライトの場合に十分なBH量が得られる。なお図中のBF、PFはそれぞれの典型例としてその面積率が100%の場合を示している。
本発明においては、上記で評価した2%予ひずみでのBH量が優れるのみでなく、10%予ひずみでのBH量が30MPa以上、10%予ひずみでの引張強度の上昇代(ΔTS)が30MPa以上得られることも付記しておく。
Furthermore, as shown in FIG. 1, the fixing of C by Ti or the like is promoted by the winding temperature, and the microstructure may become polygonal ferrite (including quasi-polygonal ferrite), but in this microstructure, burring cracking occurs. Although there is almost no coarse carbide such as cementite as a starting point, the hole expandability is excellent, but the solid solution C for obtaining BH property is consumed for precipitation of carbides such as Ti, and the BH property is expressed. Sufficient solid solution C does not exist and BH property is hardly expected. Therefore, a sufficient amount of BH can be obtained when the microstructure is mainly bainitic ferrite. In addition, BF and PF in the figure show a case where the area ratio is 100% as a typical example.
In the present invention, not only the BH amount at the 2% pre-strain evaluated above is excellent, but the BH amount at the 10% pre-strain is 30 MPa or more, and the increase in tensile strength (ΔTS) at the 10% pre-strain is It is also noted that 30 MPa or more can be obtained.

続いて、本発明の化学成分の限定理由について説明する。
Cは、本発明において最も重要な元素の一つである。0.1%超含有していると伸びフランジ割れの起点となる炭化物が増加し、穴拡げ値が劣化するので、0.1%以下とする。延性を考慮すると0.06%以下が望ましい。また0.01%未満ではBH量を低下させてしまう怖れがあるので、0.01%以上とする。
Then, the reason for limitation of the chemical component of this invention is demonstrated.
C is one of the most important elements in the present invention. If it exceeds 0.1%, the carbide that becomes the starting point of stretch flange cracking increases and the hole expansion value deteriorates, so the content is made 0.1% or less. Considering ductility, 0.06% or less is desirable. Further, if it is less than 0.01%, there is a fear that the amount of BH may be reduced, so the content is made 0.01% or more.

Siは、冷却中に伸びフランジ割れの起点となる鉄炭化物の析出を抑制する効果があるので0.005%以上添加するが、2%を超えて添加してもその効果が飽和する。従ってその上限を2%とする。さらに0.3%超では化成処理性を劣化させる恐れがあるので、望ましくはその上限を0.3%とする。   Since Si has an effect of suppressing precipitation of iron carbide that becomes the starting point of stretch flange cracking during cooling, it is added in an amount of 0.005% or more, but even if added over 2%, the effect is saturated. Therefore, the upper limit is set to 2%. Further, if it exceeds 0.3%, there is a possibility that the chemical conversion processability is deteriorated, so the upper limit is desirably set to 0.3%.

Mnは、オーステナイト域温度を低温側に拡大させ圧延終了後の冷却中に、本発明の要件であるベイニティックフェライトを得やすくする効果があるので、0.1%以上添加する。しかしながら、Mnは3%超添加してもその効果が飽和するので、その上限を3%とする。また、Mn以外にSによる熱間割れの発生を抑制する元素が十分に添加されない場合には、質量%でMn/S≧20となるMn量を添加することが望ましい。   Mn has an effect of making it easy to obtain bainitic ferrite, which is a requirement of the present invention, by expanding the austenite temperature to the low temperature side and cooling after the end of rolling, so 0.1% or more is added. However, since the effect is saturated even if Mn is added in excess of 3%, the upper limit is made 3%. In addition, in addition to Mn, when an element that suppresses the occurrence of hot cracking due to S is not sufficiently added, it is desirable to add an amount of Mn that satisfies Mn / S ≧ 20 by mass%.

Pは、不純物であり低いほど望ましく、0.1%超含有すると加工性や溶接性に悪影響を及ぼすので、0.1%以下とする。ただし、穴拡げ性や溶接性を考慮すると0.02%以下が望ましい。   P is an impurity and is preferably as low as possible. If contained over 0.1%, the workability and weldability are adversely affected. However, considering hole expansibility and weldability, 0.02% or less is desirable.

Sは、熱間圧延時の割れを引き起こすばかりでなく、多すぎると穴拡げ性を劣化させるA系介在物を生成するので極力低減させるべきであるが、0.03%以下ならば許容できる範囲である。ただし、ある程度の穴拡げ性を必要とする場合は0.01%以下が、さらに高い穴拡げが要求される場合は0.003以下が望ましい。   S not only causes cracking during hot rolling, but if it is too much, it generates A-based inclusions that degrade the hole expandability, so it should be reduced as much as possible. It is. However, 0.01% or less is desirable when a certain degree of hole expansion is required, and 0.003 or less is desirable when higher hole expansion is required.

Alは、溶鋼脱酸のために0.001%以上添加する必要があるが、コストの上昇を招くためその上限を0.1%とする。また、あまり多量に添加すると非金属介在物を増大させ伸びを劣化させるので、望ましくは0.06%以下とする。   Al needs to be added in an amount of 0.001% or more for deoxidation of molten steel, but the upper limit is set to 0.1% because of an increase in cost. Moreover, when adding too much, a nonmetallic inclusion will be increased and elongation will be degraded, Therefore It is 0.06% or less desirably.

Tiは、本発明における最も重要な元素の一つである。Tiは析出強化により鋼板の強度上昇に寄与する。さらにセメンタイト等の粗大な炭化物の析出を抑制し、バーリング加工性を向上させる効果がある。ただし、0.05%未満ではこの効果が不十分であり、0.2%超含有してもその効果が飽和するだけでなく合金コストの上昇を招く。従ってTiの含有量は0.05%以上、0.2%以下とする。
さらにTiは、製造条件を限定することによりBH性を発現させる固溶C量を最適化する効果がある。すなわち、Ti量が少なすぎると高温で窒化物、硫化物を形成し、BH性に必要な固溶C量が得られないので、Ti(*)=Ti−(48/14)N−(48/32)S≧0%とする。また、バーリング加工性を劣化させるセメンタイト等の炭化物の原因となる過剰なCを析出固定し、バーリング加工性の向上に寄与するため、さらにBH量確保に必要な最適な固溶C量をえるためには、C−(12/48)Ti(*)≦0.05%、好ましくは≦0.03%の条件を満たすことが必要である。
Ti is one of the most important elements in the present invention. Ti contributes to an increase in strength of the steel sheet by precipitation strengthening. Furthermore, it has the effect of suppressing precipitation of coarse carbides such as cementite and improving burring workability. However, if it is less than 0.05%, this effect is insufficient, and if it exceeds 0.2%, the effect is not only saturated but also the alloy cost is increased. Therefore, the Ti content is 0.05% or more and 0.2% or less.
Furthermore, Ti has the effect of optimizing the amount of solid solution C that expresses BH properties by limiting the production conditions. That is, if the amount of Ti is too small, nitrides and sulfides are formed at high temperatures, and the amount of dissolved C necessary for the BH property cannot be obtained. Therefore, Ti (*) = Ti− (48/14) N− (48 / 32) S ≧ 0%. In addition, in order to contribute to the improvement of burring workability by depositing and fixing excess C that causes carbides such as cementite which deteriorates burring workability, in order to obtain the optimum amount of solute C necessary for securing BH content. In this case, it is necessary to satisfy the condition of C- (12/48) Ti (*) ≦ 0.05%, preferably ≦ 0.03%.

Nbは、Ti同様の効果がある。ただし、0.01%未満ではこの効果が不十分であり、0.2%超含有してもその効果が飽和するだけでなく合金コストの上昇を招く。従ってNbの含有量は0.01%以上、0.2%以下とする。さらに、バーリング加工性を劣化させるセメンタイト等の炭化物の原因となる過剰なCを析出固定し、バーリング加工性の向上に寄与するため、さらにBH量確保に必要な最適な固溶C量を得るためには、Ti(*)=Ti+(48/93)Nb−(48/14)N−(48/32)S≧0%、かつC−(12/48)Ti(*)≦0.05%、好ましくは≦0.03%の条件を満たすことが必要である。   Nb has the same effect as Ti. However, if the content is less than 0.01%, this effect is insufficient. Even if the content exceeds 0.2%, the effect is not only saturated but also the alloy cost is increased. Therefore, the Nb content is 0.01% or more and 0.2% or less. Furthermore, in order to contribute to the improvement of burring workability by precipitating and fixing excess C which causes carbides such as cementite which deteriorates burring workability, in order to obtain the optimum solute C content necessary for securing the BH content. Ti (*) = Ti + (48/93) Nb− (48/14) N− (48/32) S ≧ 0% and C− (12/48) Ti (*) ≦ 0.05% Preferably, it is necessary to satisfy the condition of ≦ 0.03%.

Nは、Cよりも高温にてTiおよびNbと析出物を形成し、所望のCを固定するのに有効なTiおよびNbを減少させる。従って極力低減させるべきであるが、0.005%以下ならば許容できる範囲である。   N forms precipitates with Ti and Nb at higher temperatures than C, reducing the Ti and Nb effective to fix the desired C. Therefore, it should be reduced as much as possible, but 0.005% or less is an acceptable range.

CaおよびREMは、破壊の起点となったり、加工性を劣化させる非金属介在物の形態を変化させて無害化する元素である。ただし、0.0005%未満添加してもその効果がなく、Caならば0.005%超、REMならば0.02%超添加してもその効果が飽和するので、Ca:0.0005〜0.005%、REM:0.0005〜0.02%添加する。   Ca and REM are elements that are detoxified by changing the form of non-metallic inclusions that become the starting point of destruction or deteriorate workability. However, even if less than 0.0005% is added, there is no effect, and if Ca is more than 0.005%, and if REM is added more than 0.02%, the effect is saturated. Add 0.005%, REM: 0.0005-0.02%.

Bは、固溶C量の減少が原因と考えられるPによる粒界脆化を抑制することによって疲労限を上昇させる効果があるので、必要に応じ添加する。さらに、母材強度が640MPa以上である場合、溶接熱影響部のうちα→γ→α変態が起こる熱履歴を受ける部位において低Ceq故に焼が入らず、相対的に軟化する恐れがある場合に焼き入れ性を向上させるBを添加することにより、当該部位での軟化を抑制し、継手の破断形態を溶接部から母材部へ遷移させる効果があるので、必要に応じて添加する。ただし、0.0002%未満ではそれら効果を得るために不十分であり、0.002%超添加するとスラブ割れが起こる。よってBの添加は0.0002%以上、0.002%以下とする。   B has an effect of increasing the fatigue limit by suppressing grain boundary embrittlement due to P, which is considered to be caused by a decrease in the amount of solute C. Therefore, B is added as necessary. Furthermore, when the base metal strength is 640 MPa or more, in the portion subjected to the thermal history in which α → γ → α transformation occurs in the weld heat affected zone, there is a risk that the material will not soften due to low Ceq and may be relatively softened. By adding B that improves the hardenability, softening at the relevant part is suppressed, and there is an effect of transitioning the fracture form of the joint from the welded part to the base material part. Therefore, it is added as necessary. However, if it is less than 0.0002%, it is insufficient for obtaining these effects, and if added over 0.002%, slab cracking occurs. Therefore, the addition of B is set to 0.0002% or more and 0.002% or less.

さらに、強度を付与するためにMo,V,Crの析出強化もしくは固溶強化元素の一種または二種以上を添加してもよい。ただし、それぞれ0.05%、0.02%、0.01%未満ではその効果を得ることができない。また、それぞれ1%、0.2%、1%を超え添加してもその効果は飽和する。   Furthermore, in order to provide strength, one or more of precipitation strengthening or solid solution strengthening elements of Mo, V, and Cr may be added. However, the effect cannot be obtained if the content is less than 0.05%, 0.02%, and 0.01%, respectively. Moreover, the effect is saturated even if added over 1%, 0.2%, and 1%, respectively.

Cuは、固溶状態で疲労特性を改善する効果がある。ただし、0.2%未満ではその効果は少なく、1.2%を超えて含有すると、巻取り中に析出して析出強化により鋼板の静的強度が著しく上昇する可能性があるため、加工性が著しく劣化することになる。また、このようなCuの析出強化では、疲労限は静的強度の上昇ほどには向上しないので疲労限度比が低下してしまう。そこでCuの含有量は0.2〜1.2%の範囲とする。   Cu has an effect of improving fatigue characteristics in a solid solution state. However, if the content is less than 0.2%, the effect is small. If the content exceeds 1.2%, precipitation may occur during winding, and the static strength of the steel sheet may increase significantly due to precipitation strengthening. Will deteriorate significantly. Further, with such Cu precipitation strengthening, the fatigue limit ratio does not improve as much as the increase in static strength, so the fatigue limit ratio decreases. Therefore, the Cu content is in the range of 0.2 to 1.2%.

Niは、Cu含有による熱間脆性防止のために必要に応じ添加する。ただし、0.1%未満ではその効果が少なく、0.6%を超えて添加してもその効果が飽和するので、0.1〜0.6%とする。   Ni is added as necessary to prevent hot brittleness due to Cu inclusion. However, if less than 0.1%, the effect is small, and even if added over 0.6%, the effect is saturated, so 0.1% to 0.6%.

なお、これらを主成分とする鋼にZr,Sn,Co,Zn,W,Mgを合計で1%以下含有しても構わない。しかしながらSnは熱間圧延時に疵が発生する恐れがあるので、0.05%以下が望ましい。   Note that Zr, Sn, Co, Zn, W, and Mg may be contained in a total amount of 1% or less in steel containing these as main components. However, since Sn may cause wrinkles during hot rolling, 0.05% or less is desirable.

次に本発明における鋼板のミクロ組織ついて詳細に説明する。
BH性とバーリング加工性とを両立させるためには、そのミクロ組織がベイニティックフェライトであり、旧オーステナイト粒の平均粒径が8μm超〜80μmであることが必要である。ここで、本発明おけるベイニティックフェライトは少量のγr 、MAはその合計量を3%以下で含むことは許容される。優れたBH性とバーリング加工性とを両立させるためには、上述したようにベイニティックフェライトが優れているが、鋼板のミクロ組織としてベイニティックフェライト以外にポリゴナルフェライトを少量ならば含んでもその特性を大幅に劣化させるものではないが、BH性を劣化させないためには最大20%以下とすることが望ましい。
Next, the microstructure of the steel sheet in the present invention will be described in detail.
In order to achieve both BH properties and burring workability, the microstructure needs to be bainitic ferrite and the average grain size of prior austenite grains needs to be more than 8 μm to 80 μm. Here, the bainitic ferrite in the present invention is allowed to contain a small amount of γ r and MA in a total amount of 3% or less. In order to achieve both excellent BH properties and burring workability, bainitic ferrite is excellent as described above, but even if it contains a small amount of polygonal ferrite in addition to bainitic ferrite as a microstructure of the steel sheet. Although it does not significantly deteriorate the characteristics, it is desirable to make it 20% or less at maximum in order not to deteriorate the BH property.

次に、本発明の製造方法の限定理由について、以下に詳細に述べる。
本発明は、鋳造後、熱間圧延後冷却ままもしくは熱間圧延後、あるいは熱延鋼板を溶融めっきラインにて熱処理を施したまま、更にはこれらの鋼板に別途表面処理を施すことによっても得られる。
本発明において熱間圧延に先行する製造方法は特に限定するものではない。すなわち、高炉、転炉や電炉等による溶製に引き続き、各種の2次精錬で目的の成分含有量になるように成分調整を行い、次いで通常の連続鋳造、インゴット法による鋳造の他、薄スラブ鋳造などの方法で鋳造すればよい。原料にはスクラップを使用しても構わない。連続鋳造よって得たスラブの場合には高温鋳片のまま熱間圧延機に直送してもよいし、室温まで冷却後に加熱炉にて再加熱した後に熱間圧延してもよい。
Next, the reasons for limiting the production method of the present invention will be described in detail below.
The present invention can also be obtained by casting, hot rolling after cooling or after hot rolling, or by subjecting hot-rolled steel sheets to heat treatment in a hot dipping line and further subjecting these steel sheets to surface treatment. It is done.
In the present invention, the production method preceding hot rolling is not particularly limited. That is, following smelting by blast furnace, converter, electric furnace, etc., the components are adjusted so that the desired component content is obtained by various secondary refining, and then, in addition to normal continuous casting, casting by ingot method, thin slab What is necessary is just to cast by methods, such as casting. Scrap may be used as a raw material. In the case of a slab obtained by continuous casting, it may be directly sent to a hot rolling mill as it is a high-temperature slab, or may be hot-rolled after being reheated in a heating furnace after being cooled to room temperature.

スラブ再加熱温度については特に制限はないが、1400℃以上であると、スケールオフ量が多量になり歩留まりが低下するので、再加熱温度は1400℃未満が望ましい。また、1000℃未満の加熱ではスケジュール上操業効率を著しく損なうため、スラブ再加熱温度は1000℃以上が望ましい。さらには、1100℃未満の加熱ではスケールオフ量が少なくスラブ表層の介在物をスケールと共に後のデスケーリングによって除去できなくなる可能性があるので、スラブ再加熱温度は1100℃以上が望ましい。   Although there is no restriction | limiting in particular about slab reheating temperature, Since a scale-off amount will become large and a yield will fall when it is 1400 degreeC or more, reheating temperature is desirable below 1400 degreeC. In addition, heating below 1000 ° C significantly impairs the operation efficiency in terms of schedule, so the slab reheating temperature is desirably 1000 ° C or higher. Furthermore, when the heating is less than 1100 ° C., the amount of scale-off is so small that inclusions on the surface of the slab cannot be removed together with the scale by subsequent descaling. Therefore, the slab reheating temperature is preferably 1100 ° C. or more.

熱間圧延工程は、粗圧延を終了後、仕上げ圧延を行うが、板厚方向によりベイニティックフェライトを得るためには仕上げ圧延開始温度を1000℃以上が望ましい。さらにエッジ部の温度低下による幅方向の材質劣化を回避するためには、1050℃以上が望ましい。そのためには必要に応じて粗圧延終了から仕上圧延開始までの間または/および仕上圧延中に粗バーまたは圧延材を加熱する。   In the hot rolling process, finish rolling is performed after finishing rough rolling. In order to obtain bainitic ferrite in the sheet thickness direction, the finish rolling start temperature is desirably 1000 ° C. or higher. Furthermore, in order to avoid the material deterioration in the width direction due to the temperature drop of the edge portion, it is desirable that the temperature is 1050 ° C. or higher. For this purpose, the rough bar or the rolled material is heated as necessary from the end of rough rolling to the start of finish rolling or / and during finish rolling.

特に本発明のうちでも優れた破断延びを安定して得るためには、MnS等の微細析出を抑制することが有効である。この場合の加熱装置はどのような方式でも構わないが、トランスバース型誘導加熱であれば板厚方向に均熱できるので、トランスバース型誘導加熱が望ましい。通常、MnS等の析出物は1250℃程度のスラブ再加熱で再固溶が起こり、後の熱間圧延中に微細析出する。従って、スラブ再加熱温度を1150℃程度に制御し、MnS等の再固溶を抑制できれば延性を改善できる。ただし、圧延終了温度を本発明の範囲にするためには、粗圧延終了から仕上圧延開始までの間または/および仕上げ圧延中での粗バーまたは圧延材の加熱が有効な手段となる。   In particular, in order to stably obtain excellent elongation at break in the present invention, it is effective to suppress fine precipitation of MnS or the like. Any heating apparatus may be used in this case, but transverse induction heating is desirable because transverse induction heating can equalize the thickness in the thickness direction. Usually, precipitates such as MnS are re-dissolved by slab reheating at about 1250 ° C. and finely precipitated during subsequent hot rolling. Therefore, ductility can be improved if the slab reheating temperature is controlled to about 1150 ° C. and re-solution of MnS or the like can be suppressed. However, in order to set the rolling end temperature within the range of the present invention, heating of the rough bar or rolled material from the end of rough rolling to the start of finish rolling and / or during finish rolling is an effective means.

粗圧延終了と仕上げ圧延開始の間にデスケーリングを行う場合は、鋼板表面での高圧水の衝突圧P(MPa)×流量L(リットル/cm2 )≧0.0025の条件を満たすことが望ましい。
鋼板表面での高圧水の衝突圧Pは以下のように記述される(「鉄と鋼」1991、vol.77、No.9、p1450参照)
P(MPa)=5.64×PO ×V/H2
ただし、
O (MPa):液圧力
V(リットル/min):ノズル流液量
H(cm):鋼板表面とノズル間の距離
When descaling is performed between the end of rough rolling and the start of finish rolling, it is desirable to satisfy the condition of high-pressure water collision pressure P (MPa) × flow rate L (liters / cm 2 ) ≧ 0.0025 on the steel sheet surface. .
The collision pressure P of high-pressure water on the steel sheet surface is described as follows (see “Iron and Steel” 1991, vol. 77, No. 9, p1450).
P (MPa) = 5.64 × P O × V / H 2
However,
P O (MPa): Liquid pressure V (L / min): Nozzle flow rate H (cm): Distance between steel plate surface and nozzle

流量Lは以下のように記述される。
L(リットル/cm2 )=V/(W×v)
ただし、
V(リットル/min):ノズル流液量
W(cm):ノズル当たり噴射液が鋼板表面に当たっている幅
v(cm/min):通板速度
衝突圧P×流量Lの上限は本発明の効果を得るためには特に定める必要はないが、ノズル流液量を増加させるとノズルの摩耗が激しくなる等の不都合が生じるため、0.02以下とすることが望ましい。
The flow rate L is described as follows.
L (liter / cm 2 ) = V / (W × v)
However,
V (liter / min): Nozzle flow rate W (cm): Width of spray liquid per nozzle hitting steel plate surface v (cm / min): Plate passing speed The upper limit of collision pressure P × flow rate L is the effect of the present invention. Although it is not necessary to determine in particular in order to obtain it, it is desirable to make it 0.02 or less because an increase in the amount of nozzle flow causes problems such as increased wear on the nozzle.

さらに、仕上げ圧延後の鋼板表面の最大高さRyが15μm(15μmRy,l2.5mm,ln12.5mm)以下であることが望ましい。これは、例えば「金属材料疲労設計便覧」、日本材料学会編、84頁に記載されている通り、熱延または酸洗ままの鋼板の疲労強度は鋼板表面の最大高さRyと相関があることから明らかである。またその後の仕上げ圧延は、デスケーリング後に再びスケールが生成してしまうのを防ぐため、5秒以内に行うのが望ましい。
また、粗圧延と仕上げ圧延の間にシートバーを接合し、連続的に仕上げ圧延をしてもよい。その際に粗バーを一旦コイル状に巻き、必要に応じて保温機能を有するカバーに格納し、再度巻き戻してから接合を行ってもよい。
Furthermore, it is desirable that the maximum height Ry of the steel sheet surface after finish rolling is 15 μm (15 μm Ry, l2.5 mm, ln12.5 mm) or less. For example, as described in “Handbook of Fatigue Design for Metallic Materials”, edited by the Japan Society of Materials Science, page 84, the fatigue strength of a hot-rolled or pickled steel sheet has a correlation with the maximum height Ry of the steel sheet surface. It is clear from Further, the subsequent finish rolling is desirably performed within 5 seconds in order to prevent the scale from being generated again after descaling.
Moreover, a sheet bar may be joined between rough rolling and finish rolling, and finish rolling may be performed continuously. At that time, the coarse bar may be wound once in a coil shape, stored in a cover having a heat retaining function as necessary, and rewound again before joining.

仕上げ圧延は、当該成分系にて望ましいベイニティックフェライト組織を得るためには、圧延終了後のフェライトの析出を抑制する必要があるので、最終段での圧下率の合計が1〜15%の圧延を行う必要がある。最終段の圧下率が1%未満では、鋼板の平坦度が劣化し、15%超ではフェライトの析出が進行しすぎて、望ましいベイニティックフェライト組織を得られない。従って最終段の圧下率は1〜15%とする。   In the finish rolling, in order to obtain the desired bainitic ferrite structure in the component system, it is necessary to suppress the precipitation of ferrite after the rolling, so the total rolling reduction in the final stage is 1 to 15%. It is necessary to perform rolling. If the rolling reduction at the final stage is less than 1%, the flatness of the steel sheet deteriorates, and if it exceeds 15%, precipitation of ferrite proceeds excessively, and a desirable bainitic ferrite structure cannot be obtained. Therefore, the rolling reduction in the final stage is 1 to 15%.

仕上げ圧延終了温度(FT)をAr3 変態点温度+50℃以上とする。ここでAr3 変態点温度とは、例えば以下の計算式により鋼成分との関係で簡易的に示される。すなわち Ar3 =910−310×%C+25×%Si−80×%Mneq
ただし、Mneq=Mn+Cr+Cu+Mo+Ni/2+10(Nb−0.02)
または、Mneq=Mn+Cr+Cu+Mo+Ni/2+10(Nb−0.02)+1:B添加の場合
Finish rolling end temperature (FT) is Ar3 transformation point temperature + 50 ° C. or higher. Here, the Ar3 transformation point temperature is simply shown in relation to the steel components by the following calculation formula, for example. That is, Ar 3 = 910-310 ×% C + 25 ×% Si-80 ×% Mneq
However, Mneq = Mn + Cr + Cu + Mo + Ni / 2 + 10 (Nb−0.02)
Or, Mneq = Mn + Cr + Cu + Mo + Ni / 2 + 10 (Nb−0.02) +1: When B is added

仕上げ圧延終了温度(FT)は、Ar3 変態点温度+50℃未満であるとフェライトの析出が進行し易くなり、目的とするベイニティックフェライト組織が得られなくなるので、Ar3 変態点温度+50℃以上とする。仕上げ圧延終了温度(FT)の上限は特に設けないが、Ar3 変態点温度+200℃超を得るためには、加熱炉温度または粗圧延終了から仕上圧延開始までの間または/および仕上げ圧延中での粗バーまたは圧延材の加熱が設備的に負荷が大きいので、その上限はAr3 変態点温度+200℃以下が望ましい。   If the finish rolling finish temperature (FT) is less than Ar3 transformation point temperature + 50 ° C., precipitation of ferrite tends to proceed and the intended bainitic ferrite structure cannot be obtained. Therefore, Ar3 transformation point temperature + 50 ° C. or more. To do. There is no particular upper limit for the finish rolling finish temperature (FT), but in order to obtain Ar3 transformation temperature + 200 ° C., the heating furnace temperature or from the end of rough rolling to the start of finish rolling and / or during finish rolling Since the heating of the rough bar or the rolled material has a large load in terms of equipment, the upper limit is desirably Ar3 transformation point temperature + 200 ° C. or less.

仕上げ圧延終了後、Ar3 〜Bfの温度域を80〜500℃/sec 以上の冷却速度で冷却するが、Ar3 変態点温度以上より冷却を開始しないとフェライトの析出が進行し、目的とするベイニティックフェライト組織が得られなくなる。従って、冷却はAr3 変態点以上にて開始する。一方、Bf以上で冷却を停止すると、やはりベイニティックフェライトへの変態が不十分で、十分なベイニティックフェライト組織が得られなくなる恐れがある。従って、冷却する温度域はAr3 〜Bfである。   After finishing rolling, the temperature range of Ar3 to Bf is cooled at a cooling rate of 80 to 500 [deg.] C./sec or more, but if the cooling is not started above the Ar3 transformation point temperature, precipitation of ferrite proceeds and the target baini A tick ferrite structure cannot be obtained. Therefore, cooling starts above the Ar3 transformation point. On the other hand, if the cooling is stopped at Bf or more, the transformation to bainitic ferrite is still insufficient, and there is a possibility that a sufficient bainitic ferrite structure cannot be obtained. Therefore, the cooling temperature range is Ar3 to Bf.

ただし、仕上げ圧延終了後0.5〜5秒間で冷却を開始する。0.5秒未満に冷却を開始すると、オーステナイトの再結晶および粒成長が不十分となり、8μm超のオーステナイト粒径が得られなくなる恐れがあり、5秒超後に冷却を開始するとAr3 変態点よりも温度が低下してしまう可能性があり、Ar3 変態点以上で冷却を開始することができない恐れがあるので5秒以内とする。さらにオーステナイト粒成長を抑制し、粒径を80μm以下にすると言う観点からは4秒以内が望ましい。   However, cooling is started 0.5 to 5 seconds after finish rolling. If cooling is started in less than 0.5 seconds, austenite recrystallization and grain growth may be insufficient, and an austenite grain size of more than 8 μm may not be obtained. If cooling is started after more than 5 seconds, the Ar3 transformation point may be exceeded. The temperature may drop, and cooling may not be started above the Ar3 transformation point, so the time is within 5 seconds. Further, from the viewpoint of suppressing the austenite grain growth and making the grain size 80 μm or less, it is preferably within 4 seconds.

また、冷却速度は80℃/sec 未満では、フェライトの析出が進行し目的とするベイニティックフェライト組織が得られず、BH性が十分確保できない。従って、冷却速度は80℃/sec 以上とする。さらに確実にベイニティックフェライト組織を得るためには130℃/sec 以上の冷却速度が望ましい。また、冷却速度が500℃/sec 超ではマルテンサイト変態が進行し、目的とするミクロ組織得られないので、その上限は500℃/sec 以下とする。さらに、熱ひずみによる板そりが懸念されることから、250℃/sec 以下とすることが望ましい。
ここでBf温度(ベイニティックフェライトの変態終了温度)とは、例えば以下の計算式により鋼成分との関係で簡易的に示される。すなわち
Bf=710−270×%C−90×%Mn−37×%Ni−70×%Cu
On the other hand, if the cooling rate is less than 80 ° C./sec, the precipitation of ferrite proceeds and the intended bainitic ferrite structure cannot be obtained, and the BH property cannot be sufficiently secured. Accordingly, the cooling rate is 80 ° C./sec or more. In order to obtain a bainitic ferrite structure more reliably, a cooling rate of 130 ° C./sec or more is desirable. On the other hand, if the cooling rate exceeds 500 ° C./sec, martensitic transformation proceeds and the desired microstructure cannot be obtained, so the upper limit is made 500 ° C./sec or less. Furthermore, since there is a concern about plate warpage due to thermal strain, it is desirable to set it to 250 ° C./sec or less.
Here, the Bf temperature (the transformation end temperature of bainitic ferrite) is simply shown in relation to the steel component by the following calculation formula, for example. That is, Bf = 710-270 ×% C-90 ×% Mn-37 ×% Ni-70 ×% Cu

上記温度域を特定の冷却速度で冷却した後に、20℃/sec 以上の冷却速度で冷却した後に巻取る。この時の冷却速度が20℃/sec 未満であると、十分な固溶Cが凍結できずBH量が減少する。また上限は特に限定しないが、100℃/sec 超の冷却速度で冷却しても効果が飽和するので、その上限は100℃/sec 以下が望ましい。さらにTi,Nb等による析出強化を有効に活用するために、巻取る前にBf〜500℃の温度域で2〜12秒の空冷を行った後に当該冷却速度での冷却を行ってもよい。この温度が500℃未満であると析出が十分に進行しない。また2秒未満ではやはり析出が不十分であり、12秒超というのは通板速度、ランナウトテーブルの長さより非現実的である。さらに、BH量を十分に確保すると言う観点からは8秒以内が望ましい。   The temperature range is cooled at a specific cooling rate, and then cooled at a cooling rate of 20 ° C./sec or more, and then wound. If the cooling rate at this time is less than 20 ° C./sec, sufficient solid solution C cannot be frozen and the amount of BH decreases. Although the upper limit is not particularly limited, the effect is saturated even when cooled at a cooling rate exceeding 100 ° C./sec. Therefore, the upper limit is preferably 100 ° C./sec or less. Further, in order to effectively utilize precipitation strengthening by Ti, Nb, etc., cooling at the cooling rate may be performed after air cooling for 2 to 12 seconds in a temperature range of Bf to 500 ° C. before winding. If this temperature is less than 500 ° C., precipitation does not proceed sufficiently. Also, if it is less than 2 seconds, precipitation is still insufficient, and exceeding 12 seconds is more impractical than the plate feed speed and the runout table length. Further, from the viewpoint of securing a sufficient amount of BH, it is preferably within 8 seconds.

巻取温度は500℃超では、当該温度域ではCの拡散が容易であり、BH性を高める固溶CがTi等に固定され十分確保できないため、巻取温度は500℃以下に限定する。BH量を60MPa以上得たい場合は350℃以下が望ましい。さらに望ましくは200℃以下である。巻取温度の下限値は特に限定しないが、コイルが長時間水濡れの状態にあると錆による外観不良が懸念されるため、50℃以上が望ましい。   When the coiling temperature is higher than 500 ° C., the diffusion of C is easy in the temperature range, and the solid solution C that improves the BH property is fixed to Ti or the like and cannot be sufficiently secured. When it is desired to obtain a BH amount of 60 MPa or more, 350 ° C. or less is desirable. More desirably, it is 200 ° C. or lower. The lower limit value of the coiling temperature is not particularly limited. However, if the coil is in a wet state for a long time, there is a concern about poor appearance due to rust.

熱間圧延工程終了後は必要に応じて酸洗し、その後インラインまたはオフラインで圧下率10%以下のスキンパスまたは圧下率40%程度までの冷間圧延を施しても構わない。 なお、鋼板形状の矯正や可動転位導入による延性の向上のためには、0.1%以上2%以下のスキンパス圧延を施すことが望ましい。
酸洗後の熱延鋼板に亜鉛めっきを施すためには、亜鉛めっき浴中に浸漬し、必要に応じて合金化処理してもよい。
After completion of the hot rolling process, pickling may be performed as necessary, and then a skin pass with a reduction rate of 10% or less or cold rolling to a reduction rate of about 40% may be performed inline or offline. In order to improve the ductility by correcting the shape of the steel plate or introducing movable dislocations, it is desirable to perform skin pass rolling of 0.1% or more and 2% or less.
In order to galvanize the hot-rolled steel sheet after pickling, it may be immersed in a galvanizing bath and alloyed as necessary.

以下に、実施例により本発明をさらに説明する。
表2に示す化学成分を有するA〜Kの鋼は、転炉にて溶製して、連続鋳造後、直送もしくは再加熱し、粗圧延に続く仕上げ圧延で1.2〜5.5mmの板厚にした後に巻き取った。ただし、表中の化学組成についての表示は質量%である。また、鋼Gについては粗圧延後に衝突圧2.7MPa、流量0.001リットル/cm2 の条件でデスケーリングを施した。さらに、表3に示すように鋼Bについては亜鉛めっきを施した。
The following examples further illustrate the present invention.
A to K steels having the chemical components shown in Table 2 are melted in a converter, continuously cast, then directly sent or reheated, and 1.2 to 5.5 mm in finish rolling following rough rolling. It was wound up after thickening. However, the display about the chemical composition in a table | surface is the mass%. Steel G was subjected to descaling after rough rolling under conditions of a collision pressure of 2.7 MPa and a flow rate of 0.001 liter / cm 2 . Furthermore, as shown in Table 3, the steel B was galvanized.

製造条件の詳細を表3に示す。ここで、「粗バー加熱」は粗圧延終了から仕上圧延開始までの間または/および仕上げ圧延中に粗バーまたは圧延材を加熱の有無を、「FT0」は仕上げ圧延温度開始、「FT」は仕上げ圧延温度終了、「冷却開始までの時間」とは仕上げ圧延終了から冷却を開始するまでの時間を、「Ar3 〜Bfでの冷却速度」とは冷却時にAr3 〜Bfの温度域を通過する時の平均冷却速度を、「Bf未満での冷却速度」とは冷却時にBf未満の温度域を通過する時の平均冷却速度を、「CT」とは巻取温度を示している。   Details of the manufacturing conditions are shown in Table 3. Here, “rough bar heating” means whether or not the rough bar or rolled material is heated during the period from the end of rough rolling to the start of finish rolling or / and during finish rolling, “FT0” is the start of finish rolling temperature, and “FT” is End of finish rolling temperature, "Time to start cooling" means time from finish finish rolling to start of cooling, "Cooling rate at Ar3 to Bf" means to pass through the temperature range of Ar3 to Bf during cooling "Cooling rate below Bf" means the average cooling rate when passing through a temperature range below Bf during cooling, and "CT" shows the coiling temperature.

このようにして得られた薄鋼板の引張試験は、供試材を、まずJIS Z 2201記載の5号試験片に加工し、JIS Z 2241記載の試験方法に従って行った。
BH試験は引張試験と同様にJIS Z 2201に記載の5号試験片に加工し、2%の引張予ひずみを試験片に付与した後、170℃×20分の塗装焼き付け工程相当の熱処理を施してから再度引張試験を実施した。ここでBH量とは、再引張での上降伏点から2%の引張り予ひずみの流動応力を差し引いたと定義される。
バーリング加工性は、日本鉄鋼連盟規格JFS T 1001−1996記載の穴拡げ試験方法に従い、穴拡げ値にて評価した。
The tensile test of the thin steel plate thus obtained was performed by first processing the specimen into a No. 5 test piece described in JIS Z 2201, and following the test method described in JIS Z 2241.
The BH test is processed into a No. 5 test piece described in JIS Z 2201 in the same way as the tensile test, 2% tensile pre-strain is applied to the test piece, and then a heat treatment equivalent to a coating baking process of 170 ° C. × 20 minutes is performed. Then, the tensile test was performed again. Here, the BH amount is defined as subtracting 2% tensile prestrained flow stress from the upper yield point in re-tensioning.
Burring workability was evaluated by a hole expansion value according to a hole expansion test method described in Japan Iron and Steel Federation Standard JFS T 1001-1996.

一方、ミクロ組織の調査は鋼板板幅の1/4Wもしくは3/4W位置より切出した試料を圧延方向断面に研磨し、ナイタール試薬を用いてエッチングし、光学顕微鏡を用い200〜500倍の倍率で観察された表層下0.2mm、板厚の1/4t、1/2tにおける視野の写真にて行った。ミクロ組織の体積分率とは上記金属組織写真において面積分率で定義される。   On the other hand, the microstructure was examined by grinding a sample cut from a 1/4 W or 3/4 W position of the steel plate width to a cross section in the rolling direction, etching using a Nital reagent, and 200-500 times magnification using an optical microscope. The observation was carried out with photographs of the field of view at 0.2 mm below the surface layer and at 1/4 t and 1/2 t of the plate thickness. The volume fraction of the microstructure is defined by the area fraction in the metal structure photograph.

ここでベイニティックフェライトとは、日本鉄鋼協会基礎研究会ベイナイト調査研究部会編、「低炭素鋼のベイナイト組織と変態挙動に関する最近の研究」、ベイナイト調査研究部会最終報告書(1994年、日本鉄鋼協会)に記載されているように、無拡散でせん断的機構により生成する変態組織と定義されるミクロ組織である。   Here, bainitic ferrite refers to the latest research on bainite structure and transformation behavior of low-carbon steel, edited by the Japan Iron and Steel Institute Basic Research Group, Bainite Research Group, 1994 Bainite Research Group Final Report (1994, Japan Steel). This is a microstructure defined as a metamorphic structure generated by a non-diffusion and shearing mechanism, as described in the Association).

次に旧オーステナイト粒の平均粒径の測定であるが、ナイタール試薬にてエッチングし光学顕微鏡にて観察した同一試料を再度研磨し、特開平06−207279に記載の腐食液および腐食方法に従いエッチングした後、JIS G 0552記載の切断法を用い、その測定値より求めた粒度番号Gより、断面積1mm2 当たりの結晶粒の数mをm=8×2G より求め、このmよりdm =1/√mで得られる平均粒径dm を平均粒径と定義する。 Next, the average particle size of the prior austenite grains was measured. The same sample that was etched with a Nital reagent and observed with an optical microscope was polished again, and etched according to the corrosive solution and the corrosive method described in JP-A-06-207279. Thereafter, using the cutting method described in JIS G 0552, the number m of crystal grains per 1 mm 2 in cross-sectional area is obtained from m = 8 × 2 G from the particle size number G obtained from the measured value. From this m, d m = the average particle size d m obtained by 1 / √m defined as the average particle size.

本発明に沿うものは、鋼A−1、A−2、B、C、D、E、F、Gの8鋼であり、所定の量の鋼成分を含有し、そのミクロ組織が主にベイニティックフェライトであり、旧オーステナイト粒の平均粒径が8μm超〜80μmであることを特徴とする、焼付け硬化性を有する高バーリング熱延鋼板が得られており、従って、本発明記載の方法によって評価した穴拡げ値およびBH量がそれぞれ70%、50MPaを上回っている。   In accordance with the present invention, steels A-1, A-2, B, C, D, E, F, and G are 8 steels, containing a predetermined amount of steel components, and the microstructure is mainly bay. A high burring hot-rolled steel sheet having bake hardenability is obtained, characterized in that it is nittic ferrite and the average grain size of prior austenite grains is more than 8 μm to 80 μm. The evaluated hole expansion value and BH amount exceed 70% and 50 MPa, respectively.

上記以外の鋼は、以下の理由によって本発明の範囲外である。
すなわち、鋼A−3は、仕上げ圧延終了温度(FT)が本発明請求項8の範囲外であるので、請求項1記載の目的とするミクロ組織が得られず十分なBH量が得られていない。鋼A−4は、最終段での圧下率が本発明請求項8の範囲外であるので、請求項1記載の目的とするミクロ組織が得られず十分なBH量が得られていない。鋼A−5は、冷却開始までの時間が本発明請求項8の範囲外であるので、請求項1記載の目的とするミクロ組織が得られず十分なBH量が得られていない。鋼A−6は、冷却開始までの時間が本発明請求項8の範囲外であるので、請求項1記載の目的とするミクロ組織が得られず十分な穴拡げ値が得られていない。
Steels other than the above are outside the scope of the present invention for the following reasons.
That is, since the finish rolling finish temperature (FT) of steel A-3 is outside the range of claim 8 of the present invention, the target microstructure of claim 1 cannot be obtained and a sufficient BH amount is obtained. Absent. Steel A-4 has a rolling reduction ratio in the final stage outside the range of claim 8 of the present invention, so that the target microstructure of claim 1 cannot be obtained and a sufficient amount of BH is not obtained. In Steel A-5, the time until the start of cooling is outside the scope of claim 8 of the present invention, so that the objective microstructure of claim 1 cannot be obtained and a sufficient amount of BH is not obtained. In Steel A-6, since the time until the start of cooling is outside the range of Claim 8 of the present invention, the target microstructure of Claim 1 cannot be obtained, and a sufficient hole expansion value cannot be obtained.

鋼A−7は、Ar3 〜Bfでの冷却速度が本発明請求項8の範囲外であるので、請求項1記載の目的とするミクロ組織が得られず十分なBH量が得られていない。鋼A−8は、Bf未満からの冷却速度が本発明請求項8の範囲外であるので、請求項1記載の目的とするミクロ組織が得られず十分な穴拡げ値とBH量が得られていない。鋼A−9は、巻取温度(CT)が本発明請求項8の範囲外であるので、請求項1記載の目的とするミクロ組織が得られず十分なBH量が得られていない。鋼Hは、Cの含有量が本発明請求項1の範囲外であり、Ar3 〜Bfでの冷却速度と巻取温度(CT)も本発明請求項8の範囲外であるので、請求項1記載の目的とするミクロ組織が得られず、十分な強度とBH量が得られていない。   In Steel A-7, since the cooling rate at Ar3 to Bf is outside the range of Claim 8 of the present invention, the target microstructure of Claim 1 cannot be obtained, and a sufficient amount of BH is not obtained. In Steel A-8, since the cooling rate from less than Bf is outside the range of Claim 8 of the present invention, the desired microstructure according to Claim 1 cannot be obtained, and a sufficient hole expansion value and BH amount can be obtained. Not. In Steel A-9, the coiling temperature (CT) is outside the range of Claim 8 of the present invention. Therefore, the objective microstructure of Claim 1 cannot be obtained, and a sufficient amount of BH is not obtained. In steel H, the C content is outside the scope of claim 1 of the present invention, and the cooling rate and winding temperature (CT) at Ar3 to Bf are also outside the scope of claim 8 of the present invention. The objective microstructure described is not obtained, and sufficient strength and BH content are not obtained.

鋼Iは、C−(12/48)Ti(*)の値が本発明請求項1の範囲外であり、Ar3 〜Bfでの冷却速度と巻取温度(CT)も本発明請求項8の範囲外であるので、請求項1記載の目的とするミクロ組織が得られず、十分な穴拡げ値とBH量が得られていない。鋼Jは、Tiの含有量が本発明請求項1の範囲外であり、かつ、Ar3 〜Bfでの冷却速度が本発明請求項8の範囲外であるので、請求項1記載の目的とするミクロ組織が得られず、十分な穴拡げ値とBH量が得られていない。鋼Kは、Cの含有量が本発明請求項1の範囲外でかつTiが無添加あり、Ar3 〜Bfでの冷却速度も本発明請求項8の範囲外であるので、請求項1記載の目的とするミクロ組織が得られず、十分な穴拡げ値とBH量が得られていない。   Steel I has a value of C- (12/48) Ti (*) outside the range of claim 1 of the present invention, and the cooling rate and coiling temperature (CT) at Ar3 to Bf are also of claim 8 of the present invention. Since it is out of the range, the target microstructure according to claim 1 is not obtained, and sufficient hole expansion value and BH amount are not obtained. Steel J has a Ti content outside the scope of claim 1 of the present invention, and the cooling rate at Ar3 to Bf is outside the scope of claim 8 of the present invention. A microstructure cannot be obtained, and a sufficient hole expansion value and BH amount are not obtained. Steel K has a C content outside the scope of claim 1 of the present invention, Ti is not added, and the cooling rate at Ar3 to Bf is also outside the scope of claim 8 of the present invention. The target microstructure cannot be obtained, and sufficient hole expansion value and BH amount are not obtained.

Figure 0004291711
Figure 0004291711

Figure 0004291711
Figure 0004291711

Figure 0004291711
Figure 0004291711

旧オーステナイト平均結晶粒径が8μm超〜80μm以下の範囲でのBH量と穴拡げ値の関係で示す図である。It is a figure shown by the relationship between the amount of BH and a hole expansion value in the range whose prior austenite average crystal grain diameter is more than 8 micrometers-80 micrometers or less.

Claims (13)

質量%にて、
C :0.01〜0.1%、
Si:0.005〜2%、
Mn:0.1〜3%、
P ≦0.1%、
S ≦0.03%、
Al:0.001〜0.1%、
N ≦0.005%、
Ti:0.05〜0.2%
を含み、さらに
Ti(*)=Ti−(48/14)N−(48/32)S≧0%
かつ
C−(12/48)Ti(*)≦0.05%
を満たす範囲でC,S,N,Tiを含有し、残部がFe及び不可避的不純物からなる鋼板であって、そのミクロ組織が主にベイニティックフェライトであり、旧オーステナイト粒の平均粒径が8μm超〜80μmであることを特徴とする焼付け硬化性を有する高バーリング熱延鋼板。
In mass%
C: 0.01 to 0.1%,
Si: 0.005 to 2%,
Mn: 0.1 to 3%
P ≦ 0.1%,
S ≦ 0.03%,
Al: 0.001 to 0.1%,
N ≦ 0.005%,
Ti: 0.05 to 0.2%
Ti (*) = Ti− (48/14) N− (48/32) S ≧ 0%
And C- (12/48) Ti (*) ≦ 0.05%
Is a steel plate that contains C, S, N, Ti in the range satisfying the following, the balance is Fe and inevitable impurities, the microstructure is mainly bainitic ferrite, the average grain size of the prior austenite grains is A high burring hot-rolled steel sheet having bake hardenability, characterized by being over 8 μm to 80 μm.
請求項1に記載の鋼が、さらに質量%にて、
Nb:0.01〜0.2%
を含み、さらに
Ti(*)=Ti+(48/93)Nb−(48/14)N−(48/32)S≧0%かつ
C−(12/48)Ti(*)≦0.05%
を満たす範囲でNbを含有することを特徴とする焼付け硬化性を有する高バーリング熱延鋼板。
The steel according to claim 1, further in mass%,
Nb: 0.01 to 0.2%
Ti (*) = Ti + (48/93) Nb− (48/14) N− (48/32) S ≧ 0% and C− (12/48) Ti (*) ≦ 0.05%
A high burring hot-rolled steel sheet having bake hardenability characterized by containing Nb in a range satisfying the above.
請求項1または2に記載の鋼が、さらに質量%にて、
Ca:0.0005〜0.005%、
REM:0.0005〜0.02%
の一種または二種を含有することを特徴とする焼付け硬化性を有する高バーリング熱延鋼板。
The steel according to claim 1 or 2, further in mass%,
Ca: 0.0005 to 0.005%,
REM: 0.0005 to 0.02%
A high burring hot-rolled steel sheet having bake hardenability, characterized by containing one or two of the following.
請求項1〜3のいずれか1項に記載の鋼が、さらに質量%にて、
B :0.0002〜0.002%
を含有することを特徴とする焼付け硬化性を有する高バーリング熱延鋼板。
The steel according to any one of claims 1 to 3, further in mass%,
B: 0.0002 to 0.002%
A high burring hot-rolled steel sheet having bake hardenability, comprising:
請求項1〜4のいずれか1項に記載の鋼が、さらに質量%にて、
Mo:0.05〜1%、
V :0.02〜0.2%、
Cr:0.01〜1%
の一種または二種以上を含有することを特徴とする焼付け硬化性を有する高バーリング熱延鋼板。
The steel according to any one of claims 1 to 4, further in mass%,
Mo: 0.05 to 1%
V: 0.02-0.2%,
Cr: 0.01 to 1%
A high burring hot-rolled steel sheet having bake hardenability, characterized by containing one or more of the above.
請求項1〜5のいずれか1項に記載の鋼が、さらに質量%にて、
Cu:0.2〜1.2%、
Ni:0.1〜0.6%
の一種または二種を含有することを特徴とする焼付け硬化性を有する高バーリング熱延鋼板。
The steel according to any one of claims 1 to 5, further in mass%,
Cu: 0.2 to 1.2%,
Ni: 0.1 to 0.6%
A high burring hot-rolled steel sheet having bake hardenability, characterized by containing one or two of the following.
請求項1〜3のいずれか1項に記載の薄鋼板に亜鉛めっきが施されていることを特徴とする焼付け硬化性を有する高バーリング熱延鋼板。 A high burring hot-rolled steel sheet having bake hardenability, wherein the thin steel sheet according to any one of claims 1 to 3 is galvanized. 請求項1〜6のいずれか1項に記載の成分を有する薄鋼板を得るために熱間圧延をする際に、該成分を有する鋼片を粗圧延後に最終段の圧下率が1〜15%の仕上圧延をAr3 変態点温度+50℃以上の温度域で終了後、0.5〜5秒間で冷却を開始し、Ar3 〜Bfの温度域を80〜500℃/sec の冷却速度で冷却し、さらに500℃以下まで20℃/sec 以上の冷却速度で冷却した後、500℃以下で巻き取ることを特徴とする焼付け硬化性を有する高バーリング熱延鋼板の製造方法。 When hot-rolling to obtain a thin steel sheet having the component according to any one of claims 1 to 6, the rolling reduction of the final stage is 1 to 15% after rough rolling the steel slab having the component. After finishing the finish rolling in the temperature range of Ar3 transformation point temperature + 50 ° C. or higher, cooling is started in 0.5 to 5 seconds, and the temperature range of Ar3 to Bf is cooled at a cooling rate of 80 to 500 ° C./sec. Further, after cooling at a cooling rate of 20 ° C./sec or more to 500 ° C. or less, winding at 500 ° C. or less, a method for producing a high burring hot rolled steel sheet having bake hardenability. 請求項8に記載の熱間圧延に際し、仕上圧延開始温度を1000℃以上とすることを特徴とする焼付け硬化性を有する高バーリング熱延鋼板の製造方法。 A method for producing a high burring hot-rolled steel sheet having bake hardenability, wherein the finish rolling start temperature is set to 1000 ° C or higher during the hot rolling according to claim 8. 請求項8または9に記載の熱間圧延に際し、鋼片を粗圧延終了した後の粗バーを、仕上圧延開始までの間および粗バーの仕上圧延中の、いずれか一方または両方で加熱することを特徴とする、焼付け硬化性を有する高バーリング熱延鋼板の製造方法。 In the hot rolling according to claim 8 or 9, the rough bar after the rough rolling of the steel slab is heated at one or both until the start of the finish rolling and during the finish rolling of the coarse bar. A method for producing a high burring hot-rolled steel sheet having bake hardenability. 請求項8〜10のいずれか1項に記載の熱間圧延に際し、粗圧延終了から仕上圧延開始までの間にデスケーリングを行うことを特徴とする、焼付け硬化性を有する高バーリング熱延鋼板の製造方法。 In hot rolling according to any one of claims 8 to 10, descaling is performed between the end of rough rolling and the start of finish rolling. Production method. 請求項8〜11のいずれか1項に記載の熱間圧延後、得られた熱延鋼板を亜鉛めっき浴中に浸漬させて鋼板表面を亜鉛めっきすることを特徴とする焼付け硬化性を有する高バーリング熱延鋼板の製造方法。 After hot rolling according to any one of claims 8 to 11, the obtained hot-rolled steel sheet is immersed in a galvanizing bath to galvanize the surface of the steel sheet. A method for producing a burring hot-rolled steel sheet. 請求項12に記載の製造方法に際し、亜鉛めっき後、合金化処理することを特徴とする焼付け硬化性を有する高バーリング熱延鋼板の製造方法。
A method for producing a high burring hot-rolled steel sheet having bake hardenability, wherein the alloying treatment is performed after galvanization in the production method according to claim 12.
JP2004059376A 2004-03-03 2004-03-03 High burring hot rolled steel sheet having bake hardenability and method for producing the same Expired - Fee Related JP4291711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059376A JP4291711B2 (en) 2004-03-03 2004-03-03 High burring hot rolled steel sheet having bake hardenability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059376A JP4291711B2 (en) 2004-03-03 2004-03-03 High burring hot rolled steel sheet having bake hardenability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005248240A JP2005248240A (en) 2005-09-15
JP4291711B2 true JP4291711B2 (en) 2009-07-08

Family

ID=35029003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059376A Expired - Fee Related JP4291711B2 (en) 2004-03-03 2004-03-03 High burring hot rolled steel sheet having bake hardenability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4291711B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4148149A4 (en) * 2020-05-08 2023-10-18 Nippon Steel Corporation Hot-rolled steel sheet and method for producing same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100992225B1 (en) 2005-12-06 2010-11-05 가부시키가이샤 고베 세이코쇼 High-strength galvannealed sheet steels excellent in powdering resistance and process for production of the same
KR100711474B1 (en) 2005-12-26 2007-04-24 주식회사 포스코 Method for manufacturing hot-rolled steel sheet with superior bake hardenability
JP4853075B2 (en) * 2006-03-28 2012-01-11 住友金属工業株式会社 Hot-rolled steel sheet for hydroforming and its manufacturing method, and electric resistance welded steel pipe for hydroforming
JP5040197B2 (en) * 2006-07-10 2012-10-03 Jfeスチール株式会社 Hot-rolled thin steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
KR100946148B1 (en) * 2006-11-21 2010-03-10 주식회사 포스코 Steel excellent in resistance to corrosion by sulfuric acid and method for manufacturing the same
CN101265553B (en) 2007-03-15 2011-01-19 株式会社神户制钢所 High strength hot rolled steel sheet with excellent press workability and method of manufacturing the same
JP4840270B2 (en) * 2007-06-29 2011-12-21 住友金属工業株式会社 Hot-rolled steel sheet and manufacturing method thereof
JP5040475B2 (en) * 2007-06-29 2012-10-03 Jfeスチール株式会社 Thick-walled hot-rolled steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
JP5194858B2 (en) * 2008-02-08 2013-05-08 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
CN101978083B (en) 2008-03-26 2012-08-29 新日本制铁株式会社 Hot rolled steel sheet possessing excellent fatigue properties and stretch-flange ability and process for producing the hot rolled steel sheet
CN101775561B (en) * 2010-03-19 2012-07-11 江苏省沙钢钢铁研究院有限公司 Low-yield-ratio and high strength thick plate and preparation process thereof
JP5402847B2 (en) * 2010-06-17 2014-01-29 新日鐵住金株式会社 High-strength hot-rolled steel sheet excellent in burring properties and method for producing the same
CN104884654B (en) * 2012-12-19 2016-09-21 新日铁住金株式会社 Hot rolled steel plate and manufacture method thereof
JP6354268B2 (en) * 2014-04-02 2018-07-11 新日鐵住金株式会社 High-strength hot-rolled steel sheet having a maximum tensile strength of 980 MPa or more excellent in punching hole expandability and low-temperature toughness, and a method for producing the same
CN112981237B (en) * 2021-01-28 2022-10-11 江阴兴澄特种钢铁有限公司 Steel for ball cage type universal joint retainer and production method thereof
CN113186469B (en) * 2021-04-30 2022-03-22 攀钢集团攀枝花钢铁研究院有限公司 780 MPa-grade hot rolled steel plate for hydraulic bulging and preparation method thereof
JPWO2023084926A1 (en) * 2021-11-12 2023-05-19

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080440A (en) * 1998-08-31 2000-03-21 Kawasaki Steel Corp High strength cold rolled steel sheet and its manufacture
JP3728239B2 (en) * 2001-11-16 2005-12-21 新日本製鐵株式会社 High-strength hot-rolled steel sheet excellent in corrosion resistance and stretch flangeability, and method for producing the same
JP2003277884A (en) * 2002-01-21 2003-10-02 Kobe Steel Ltd High strength steel sheet having excellent workability and baking hardenability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4148149A4 (en) * 2020-05-08 2023-10-18 Nippon Steel Corporation Hot-rolled steel sheet and method for producing same

Also Published As

Publication number Publication date
JP2005248240A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
CA3133435C (en) High strength and high formability steel sheet and manufacturing method
JP4555694B2 (en) Bake-hardening hot-rolled steel sheet excellent in workability and method for producing the same
KR101218448B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
KR101399741B1 (en) High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same
JP5821260B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and shape freezing property, and method for producing the same
JP4559969B2 (en) Hot-rolled steel sheet for processing and manufacturing method thereof
JP6179461B2 (en) Manufacturing method of high-strength steel sheet
KR101528080B1 (en) High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
JP5493986B2 (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them
JP4580157B2 (en) Hot-rolled steel sheet having both BH property and stretch flangeability and manufacturing method thereof
KR102000854B1 (en) High-strength cold-rolled steel sheet and method for manufacturing the same
JP4998757B2 (en) Manufacturing method of high strength steel sheet with excellent deep drawability
JP4837426B2 (en) High Young's modulus thin steel sheet with excellent burring workability and manufacturing method thereof
JP4291711B2 (en) High burring hot rolled steel sheet having bake hardenability and method for producing the same
WO2012002565A1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
KR20130083481A (en) High-strength hot-dip galvannealed steel shhet with excellent workability and fatigue characteristics and process for production thereof
JP2008291304A (en) High-strength cold-rolled steel sheet and high strength hot-dip galvanized steel sheet both excellent in deep-drawability and strength-ductility balance, and producing method of the both
KR101445465B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
JP2008274416A (en) Hot-rolled steel sheet excellent in fatigue characteristics and stretch-flanging, and producing method therefor
JP4116901B2 (en) Burring high strength thin steel sheet and method for producing the same
JP5141235B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP4288146B2 (en) Method for producing burring high-strength steel sheet with excellent softening resistance in weld heat affected zone
JP5141232B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP5870825B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090403

R151 Written notification of patent or utility model registration

Ref document number: 4291711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees